1
|
Huether KM, Lamb JM, Skelly J, Brigham E, McCormack MC, Bose S, Garrow OJ, Dixon AE. Omega-3 fatty acid intake potentiates bronchodilator response in patients with obesity and poorly controlled asthma. Respir Med 2025; 243:108131. [PMID: 40294806 DOI: 10.1016/j.rmed.2025.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
RATIONALE Obesity is linked to poorly controlled asthma and may impair bronchodilator response. This study examines dietary factors affecting asthma symptoms, control, and lung function. METHODS In a multi-center, cross-sectional study of 102 individuals with obesity and poorly controlled asthma, we assessed dietary intake (Arizona Food Frequency Questionnaire), asthma symptoms and control (standardized questionnaires), and lung function (spirometry and bronchodilator response). Correlations between omega-3 and -6 fatty acids with asthma outcomes and lung function were examined using Pearson correlations and multivariate regression. RESULTS Median age was 56 (IQR 41-64) years, and median BMI was 37 (35-42) kg/m2. Fifty-four percent were African American and 75 % were female. Median total calorie intake was 2029 (1199-3837) kcal, median total omega-3 intake was 1.07 (0.63-2.04) g, and median omega-6 intake was 24.54 (13.31-45.35) g. No significant relationship was found between fatty acid intake and asthma symptoms, asthma control, or baseline lung function. However, percent bronchodilator response was positively correlated with omega-3 fatty acids (r = 0.273, p = 0.0074). After adjusting for caloric intake, for every 1 g increase in omega-3 intake, there was a 4 % increase in percent bronchodilator response. CONCLUSIONS Dietary intake of omega-3 fatty acids may influence bronchodilator response in patients with poorly controlled asthma and obesity. Interventions to improve overall dietary quality, such as increased omega-3 intake, may improve medication response in people with obesity and poorly controlled asthma. Future research is needed to better understand this association and determine if additional dietary factors might affect medication responses.
Collapse
Affiliation(s)
| | | | | | | | - Meredith C McCormack
- Center for Clinical Trials, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Sonali Bose
- Icahn School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
2
|
Vegetable Oil or Animal Fat Oil, Which is More Conducive to Cardiovascular Health Among the Elderly in China? Curr Probl Cardiol 2023; 48:101485. [PMID: 36336120 DOI: 10.1016/j.cpcardiol.2022.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Our present study aimed to investigate the relationship between cooking oil types and atherosclerotic cardiovascular disease (ASCVD) and to reveal which cooking oil is more beneficial to cardiovascular health in older Chinese. This study relies on cross-section data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in the 2018 wave. A total of 15,874 elderly Chinese over 65 years old were included in our analysis. Logistic regression analysis was used to assess the association between cooking oil types and ASCVD. Of the 15,874 elderly people, 13,709 cooked with vegetable/gingili oil, with an average age [SD] of 84.47 [11.51] years; 1533 cooked with lard/other animal fat oils, with an average age [SD] of 85.90 [11.72] years. 3918 of those who cooked with vegetable/gingili oil had ASCVD, and 249 of those who cooked with lard/other animal fat oils had ASCVD. The prevalence of ASCVD in vegetable/gingili oil users (31.68%) was higher than that in lard/other animal fat oil users (17.46%). Compared with lard/other animal fat users, the multivariate-adjusted model indicated that vegetable oil/sesame oil users were significantly associated with a higher risk of ASCVD (OR = 2.19; 95%CI, 1.90-2.53). Our study found that cooking with lard/other animal fat oil is more beneficial to cardiovascular health in older Chinese. Dietary guidelines should seriously consider the health effects of substituting vegetable/gingili oil for lard/other animal fat oil for different populations.
Collapse
|
3
|
Videla LA, Hernandez-Rodas MC, Metherel AH, Valenzuela R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102441. [PMID: 35537354 DOI: 10.1016/j.plefa.2022.102441] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal β-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Ma M, Yang F, Wang Z, Bao Q, Shen J, Xie X. Association of plasma polyunsaturated fatty acids with arterial blood pressure: A Mendelian randomization study. Medicine (Baltimore) 2021; 100:e24359. [PMID: 33546071 PMCID: PMC7837969 DOI: 10.1097/md.0000000000024359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
High polyunsaturated fatty acids (PUFAs) intake is recommended for primary and secondary prevention of cardiovascular disease (CVD). However, the association of PUFAs with blood pressure (BP) is still controversial. In the present study, two-sample Mendelian randomization (MR) analysis was performed to investigate the causal relationship of PUFAs with BP, including systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP).Genetic instruments and summary statistics for two-sample MR analysis were obtained from 3 large-scale genome-wide association studies (GWASs). Eight single nucleotide polymorphisms (SNPs) significantly (P < 5 × 10-8) related to 6 PUFAs were used as instrumental variables. Conventional inverse-variance weighted method was adopted to evaluate the causality of PUFAs with BP; the Weighted Median, MR-egger, and Leave-one-out method were used for sensitivity analyses.As a result, there was no evidence of a causal association between all PUFAs and SBP. In addition, arachidonic acid (AA, β = -0.04, P < .001) and eicosapentaenoic acid (EPA, β = -0.47, P = .02) were negatively associated with DBP, while linoleic acid (LA, β = 0.03, P = .005) and α-linolenic acid (ALA, β = 3.83, P < .001) were positively associated with DBP. There was no evidence of a causal relationship between either docosapentaenoic acid (DPA) or docosahexaenoic acid (DHA) with DBP.In conclusion, a genetic predisposition to plasma polyunsaturated fatty acid (PUFA) had a divergent effect on DBP, independent of SBP. It suggested that it is helpful for lower DBP level to supplemental intake of AA and EPA or promote the conversion of LA and ALA to AA and EPA respectively, which need to be further validated with randomized controlled studies.
Collapse
|
5
|
Alhusseiny SM, El-Beshbishi SN. Omega polyunsaturated fatty acids and parasitic infections: An overview. Acta Trop 2020; 207:105466. [PMID: 32302690 DOI: 10.1016/j.actatropica.2020.105466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023]
Abstract
Omega-3 and omega-6 polyunsaturated fatty acids are synthesized from the essential fatty acids alpha-linolenic acid and linoleic acid, respectively. They are pivotal components of all mammalian cells and were found to be useful in prevention and treatment of a variety of health problems owing to their anti-inflammatory and anti-microbial properties. Omega-3 and omega-6 polyunsaturated fatty acids are further metabolized to anti-inflammatory mediators, such as lipoxins, resolvins, and protectins. Moreover, these polyunsaturated fatty acids were found to have in vivo and in vitro protective efficacies against some parasitic infections. Therefore, dietary intake of polyunsaturated fatty acids should be encouraged because of their considerable beneficial effects.
Collapse
Affiliation(s)
- Samar M Alhusseiny
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516- Egypt
| | - Samar N El-Beshbishi
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516- Egypt.
| |
Collapse
|
6
|
Abstract
Our own studies and those of others have shown that defects in essential fatty acid (EFA) metabolism occurs in age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, immune dysfunction and cancer. It has been noted that in all these disorders there could occur a defect in the activities of desaturases, cyclo-oxygenase (COX), and lipoxygenase (LOX) enzymes leading to a decrease in the formation of their long-chain products gamma-linolenic acid (GLA), arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). This leads to an increase in the production of pro-inflammatory prostaglandin E2 (PGE2), thromboxanes (TXs), and leukotrienes (LTs) and a decrease in anti-inflammatory lipoxin A4, resolvins, protectins and maresins. All these bioactive molecules are termed as bioactive lipids (BALs). This imbalance in the metabolites of EFAs leads to low-grade systemic inflammation and at times acute inflammatory events at specific local sites that trigger the development of various age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, coronary heart disease, atherosclerosis, and immune dysfunction as seen in rheumatoid arthritis, lupus, nephritis and other localized inflammatory conditions. This evidence implies that methods designed to restore BALs to normal can prevent age-related disorders and enhance longevity and health.
Collapse
|
7
|
Association between Plasma N-6 Polyunsaturated Fatty Acids Levels and the Risk of Cardiovascular Disease in a Community-based Cohort Study. Sci Rep 2019; 9:19298. [PMID: 31848413 PMCID: PMC6917802 DOI: 10.1038/s41598-019-55686-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Most studies support that saturated fatty acid replacement with polyunsaturated fatty acids (PUFAs) may reduce the risk of cardiovascular diseases (CVDs) and put emphasis on the effects of N-3 PUFAs. The reported relationships between N-6 PUFAs and CVD risks vary. We aimed to examine the associations between N-6 PUFA concentrations and CVD risks. In this community-based prospective cohort study on CVD-free patients at baseline (N = 1835, age: 60.6 ± 10.5 years, women: 44.5%), we measured the fatty acid concentrations in the blood using gas chromatography. Four hundred twenty-four participants developed CVDs during follow up. The total N-6 PUFA concentration was inversely associated with the CVD risk, with a 48% lower risk in the highest N-6 PUFA concentration quartile (hazard ratio = 0.52; P for trend <0.001). The estimated population attributable risk of N-6 PUFAs indicated that approximately 20.7% of CVD events would have been prevented if the plasma N-6 PUFA concentration had been higher than the median value. The total N-6 PUFA concentration presented the highest net reclassification improvement (NRI = 7.2%, P = 0.03) for predicting incident CVD. Further studies on N-6 PUFAs, diet habits, and their relationships with healthcare are warranted.
Collapse
|
8
|
Ouellette MÈ, Bérubé JC, Bourget JM, Vallée M, Bossé Y, Fradette J. Linoleic acid supplementation of cell culture media influences the phospholipid and lipid profiles of human reconstructed adipose tissue. PLoS One 2019; 14:e0224228. [PMID: 31639818 PMCID: PMC6805161 DOI: 10.1371/journal.pone.0224228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Reconstructed human adipose tissues represent novel tools available to perform in vitro pharmaco-toxicological studies. We used adipose-derived human stromal/stem cells to reconstruct, using tissue engineering techniques, such an adipose tridimensional model. To determine to what extent the in vitro model is representative of its native counterpart, adipogenic differentiation, triglycerides accumulation and phospholipids profiles were analysed. Ingenuity Pathway Analysis software revealed pathways enriched with differentially-expressed genes between native and reconstructed human adipose tissues. Interestingly, genes related to fatty acid metabolism were downregulated in vitro, which could be explained in part by the insufficient amount of essential fatty acids provided by the fetal calf serum used for the culture. Indeed, the lipid profile of the reconstructed human adipose tissues indicated a particular lack of linoleic acid, which could interfere with physiological cell processes such as membrane trafficking, signaling and inflammatory responses. Supplementation in the culture medium was able to influence the lipid profile of the reconstructed human adipose tissues. This study demonstrates the possibility to directly modulate the phospholipid profile of reconstructed human adipose tissues. This reinforces its use as a relevant physiological or pathological model for further pharmacological and metabolic studies of human adipose tissue functions.
Collapse
Affiliation(s)
- Marie-Ève Ouellette
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Jean-Christophe Bérubé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jean-Michel Bourget
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Maud Vallée
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Yohan Bossé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Julie Fradette
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
9
|
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019; 11:nu11102283. [PMID: 31554181 PMCID: PMC6835877 DOI: 10.3390/nu11102283] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The consumption of an olive oil rich diet has been associated with the diminished incidence of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1 (SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss our current understanding of the impact of gene-nutrient interactions in liver and gut diseases, by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different hepatic and intestinal metabolic pathways.
Collapse
Affiliation(s)
- Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marica Cariello
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Stefania De Santis
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Simon Ducheix
- Institut du thorax, INSERM, CNRS, University of Nantes, 44007 Nantes, France.
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - James M Ntambi
- Departments of Biochemistry and of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy.
| |
Collapse
|
10
|
Penesová A, Dean Z, Kollár B, Havranová A, Imrich R, Vlček M, Rádiková Ž. Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol Res 2018; 67:521-533. [PMID: 29750884 DOI: 10.33549/physiolres.933694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. In addition to the genetic, epigenetic and immunological components, various other factors, e.g. unhealthy dietary habits, play a role in the MS pathogenesis. Dietary intervention is a highly appealing approach, as it presents a simple and relatively low risk method to potentially improve outcomes in patients with brain disorders in order to achieve remission and improvement of clinical status, well-being and life expectancy of patients with MS. The importance of saturated fat intake restriction for the clinical status improvement of MS patients was pointed for the first time in 1950s. Recently, decreased risk of first clinical diagnosis of CNS demyelination associated with higher intake of omega-3 polyunsaturated fatty acids particularly originating from fish was reported. Only few clinical trials have been performed to address the question of the role of dietary intervention, such is e.g. low saturated fat diet in MS treatment. This review summarizes current knowledge about the effect of different dietary approaches (diets low in saturated fat and dietary supplements such as fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, seeds oils, high fiber diet, vitamin D, etc.) on neurological signs, patient's well-being, physical and inflammatory status. So far the results are not conclusive, therefore much more research is needed to confirm and to understand the effectiveness of these dietary interventions in the long term and well defined studies.
Collapse
Affiliation(s)
- A Penesová
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Das UN. Ageing: Is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res 2018; 11:67-79. [PMID: 30034877 PMCID: PMC6052661 DOI: 10.1016/j.jare.2018.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Ageing is inevitable. Recent studies suggest that it could be delayed. Low-grade systemic inflammation is seen in type 2 diabetes mellitus, hypertension and endothelial dysfunction that are common with increasing age. In all these conditions, an alteration in arachidonic acid (AA) metabolism is seen in the form of increased formation of pro-inflammatory eicosanoids and decreased production of anti-inflammatory lipoxins, resolvins, protectins and maresins and decreased activity of desaturases. Calorie restriction, exercise and parabiosis delay age-related changes that could be related to enhanced proliferation of stem cells, decrease in inflammation and transfer of GDF-11 (growth differentiation factor-11) and other related molecules from the young to the old, increase in the formation of lipoxin A4, resolvins, protectins and maresins, hydrogen sulfide (H2S) and nitric oxide (NO); inhibition of ageing-related hypothalamic or brain IKK-β and NF-kB activation, decreased gonadotropin-releasing hormone (GnRH) release resulting in increased neurogenesis and consequent decelerated ageing. This suggests that hypothalamus participates in ageing process. N-acylethanolamines (NAEs) and lipid-derived signalling molecules can be tuned favorably under dietary restriction to extend lifespan and/or prevent advanced age associated diseases in an mTOR dependent pathway manner. Sulfur amino acid (SAA) restriction increased hydrogen sulfide (H2S) production and protected tissues from hypoxia and tissue damage. Anti-inflammatory metabolites formed from AA such as LXA4, resolvins, protectins and maresins enhance production of NO, CO, H2S; suppress NF-kB expression and alter mTOR expression and thus, may aid in delaying ageing process. Dietary restriction and exercise enhance AA metabolism to form LXA4, resolvins, protectins and maresins that have anti-inflammatory actions. AA and their metabolites also influence stem cell biology, enhance neurogenesis to improve memory and augment autophagy to prolong life span. Thus, AA and other PUFAs and their anti-inflammatory metabolites inhibit inflammation, augment stem cell proliferation, restore to normal lipid-derived signaling molecules and NO and H2S production, enhance autophagy and prolong life span.
Collapse
|
12
|
Hadj Ahmed S, Kaoubaa N, Kharroubi W, Zarrouk A, Najjar MF, Batbout F, Gamra H, Lizard G, Hammami M. Association of plasma fatty acid alteration with the severity of coronary artery disease lesions in Tunisian patients. Lipids Health Dis 2017; 16:154. [PMID: 28806974 PMCID: PMC5557073 DOI: 10.1186/s12944-017-0538-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 08/02/2017] [Indexed: 11/12/2022] Open
Abstract
Background Some factors related to diet are known to be involved in the progression of atherosclerosis in humans. Methods The relationship between plasma fatty acid (FA) levels and the severity of coronary artery disease (CAD), evaluated by Gensini score (GS), was investigated in CAD Tunisian patients compared to controls. Lipid profiles were analyzed, GS was calculated in CAD and non-CAD patients and compared to controls. Results CAD patients showed an alteration of conventional lipid parameters. In fact, a significant increase of plasmatic triglycerides (TG) level, atherogenic lipid ratios (TC/HDL-C,TG/HDL-C, LDL-C/HDL-C); and ApoB/ApoA1 was observed in the CAD group comparatively to controls (p < 0.001). Gensini score was showed to be a good indicator to evaluate cholesterol metabolism disorders associated with HDL-C since a negative association was found between HDL-C levels and GS for the two groups of patients. In addition, in the relation with FA and classes of FA, a negative association was found as expected, between Gensini score and total MUFA, PUFA n-3, total PUFA, GLA, DGLA and DHA. Furthermore, a positive association with stearic and erucic acid was found. Suggests that, GS is also a good indicator to evaluate FA metabolic disorders. Higher elongation index and modifications of desaturation index (D5D, D6D and D9D) were observed in patients compared to controls, supporting FA metabolism modifications. Conclusions In conclusion, although that Tunisian population appears to follow the Mediterranean diet, variations of plasmatic FA levels and desaturase activities in CAD patients highlights an alteration of FA metabolism and suggests an important implication of certain FA in the development of atherosclerosis.
Collapse
Affiliation(s)
- Samia Hadj Ahmed
- Faculty of Medicine, Research Laboratory LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', University of Monastir (Tunisia), Avicene st, 5019, Monastir, Tunisia.
| | - Nadia Kaoubaa
- Faculty of Medicine, Research Laboratory LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', University of Monastir (Tunisia), Avicene st, 5019, Monastir, Tunisia
| | - Wafa Kharroubi
- Faculty of Medicine, Research Laboratory LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', University of Monastir (Tunisia), Avicene st, 5019, Monastir, Tunisia
| | - Amira Zarrouk
- Faculty of Medicine, Research Laboratory LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', University of Monastir (Tunisia), Avicene st, 5019, Monastir, Tunisia
| | | | - Fathi Batbout
- Cardiology Department CHU Fattouma Bourguiba Monastir- Tunisia, Monastir, Tunisia
| | - Habib Gamra
- Cardiology Department CHU Fattouma Bourguiba Monastir- Tunisia, Monastir, Tunisia
| | - Gerard Lizard
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270 /University of Bourgogne-Franche Comté / INSERM, Dijon, France
| | - Mohamed Hammami
- Faculty of Medicine, Research Laboratory LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', University of Monastir (Tunisia), Avicene st, 5019, Monastir, Tunisia
| |
Collapse
|
13
|
Hadj Ahmed S, Koubaa N, Kharroubi W, Zarrouk A, Mnari A, Batbout F, Gamra H, Hammami S, Lizard G, Hammami M. Identification of long and very long chain fatty acids, plasmalogen-C16:0 and phytanic acid as new lipid biomarkers in Tunisian coronary artery disease patients. Prostaglandins Other Lipid Mediat 2017; 131:49-58. [DOI: 10.1016/j.prostaglandins.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 06/28/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
|
14
|
Investigation of membrane fatty acid profiles in erythrocytes of patients with stable coronary artery disease. J Clin Lipidol 2016; 10:930-936. [PMID: 27578125 DOI: 10.1016/j.jacl.2016.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The association between the erythrocyte membrane fatty acids and the severity of coronary stenosis has not been studied in patients with stable coronary artery disease (CAD). OBJECTIVE We sought to investigate whether the fatty acid profile of erythrocyte membranes is significantly different in patients with stable CAD compared with patients with nonsignificant coronary stenosis and evaluate a possible relationship between fatty acid profile and the severity of coronary stenosis. METHODS The population included 144 patients, undergoing clinically indicated coronary angiography. The severity of coronary stenosis was scored after coronary angiography, and patients were divided into 2 groups; the S-stenosis group (CAD patients, n = 82) had a significant stenosis indicated by coronary angiography and the second group, S-stenosis (n = 62), had nonsignificant coronary stenosis. RESULTS The erythrocyte membranes linoleic acid (LA) levels were lower (P < .001) and the arachidonic acid (AA)-to-LA ratio, a marker of desaturase activity, were higher (P < .001) in CAD patients compared with S-stenosis patients. The CAD scores were correlated negatively with the membrane LA levels (r = -0.338; P < .001) and positively with the AA-to-LA ratio (r = 0.306; P < .001). CONCLUSIONS This study shows that LA levels of the erythrocyte membrane and AA-to-LA ratio are correlated with the severity of CAD.
Collapse
|
15
|
COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol 2016; 785:116-132. [DOI: 10.1016/j.ejphar.2015.08.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023]
|
16
|
Bhagat U, Das UN. Potential role of dietary lipids in the prophylaxis of some clinical conditions. Arch Med Sci 2015; 11:807-18. [PMID: 26322094 PMCID: PMC4548034 DOI: 10.5114/aoms.2015.53302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/12/2014] [Accepted: 04/20/2014] [Indexed: 01/01/2023] Open
Abstract
An imbalance of dietary lipids may potentially have a significant role in the pathobiology of some chronic diseases. Public health dietary fat recommendations have emphasized that low saturated fat, high monounsaturated fat, and high polyunsaturated fat with a lower ω-6 to ω-3 fatty acid ratio intake are necessary for normal health. However, such universal recommendations are likely to be hazardous, since the outcome of recommended lipid intake may depend on the consumption of other important dietary constituents that have an important role in the metabolism of lipids. In addition, consumption of fatty acids as per the individually tailored specific requirements in the context of other nutritional factors may have the potential to stabilize hormones, mood and sleep, and minimize adverse events. In support of this proposal, we review various factors that influence fatty acid metabolism, which need to be taken into consideration for appropriate utilization and consequently prevention of various diseases.
Collapse
|
17
|
Beam J, Botta A, Ye J, Soliman H, Matier BJ, Forrest M, MacLeod KM, Ghosh S. Excess Linoleic Acid Increases Collagen I/III Ratio and "Stiffens" the Heart Muscle Following High Fat Diets. J Biol Chem 2015; 290:23371-84. [PMID: 26240151 DOI: 10.1074/jbc.m115.682195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
Controversy exists on the benefits versus harms of n-6 polyunsaturated fatty acids (n-6 PUFA). Although n-6 PUFA demonstrates anti-atherosclerotic properties, survival following cardiac remodeling may be compromised. We hypothesized that n-6 PUFA like linoleic acid (LA) or other downstream PUFAs like γ-linolenic acid or arachidonic acid alter the transforming growth factor-β (TGFβ)-collagen axis in the heart. Excess dietary LA increased the collagen I/III ratio in the mouse myocardium, leading to cardiac "stiffening" characterized by impaired transmitral flow indicative of early diastolic dysfunction within 5 weeks. In vitro, LA under TGFβ1 stimulation increased collagen I and lysyl oxidase (LOX), the enzyme that cross-links soluble collagen resulting in deposited collagen. Overexpression of fatty acid desaturase 2 (fads2), which metabolizes LA to downstream PUFAs, reduced collagen deposits, LOX maturation, and activity with LA, whereas overexpressing fads1, unrelated to LA desaturation, did not. Furthermore, fads2 knockdown by RNAi elevated LOX activity and collagen deposits in fibroblasts with LA but not oleic acid, implying a buildup of LA for aggravating such pro-fibrotic effects. As direct incubation with γ-linolenic acid or arachidonic acid also attenuated collagen deposits and LOX activity, we concluded that LA itself, independent of other downstream PUFAs, promotes the pro-fibrotic effects of n-6 PUFA. Overall, these results attempt to reconcile opposing views of n-6 PUFA on the cardiovascular system and present evidence supporting a cardiac muscle-specific effect of n-6 PUFAs. Therefore, aggravation of the collagen I/III ratio and cardiac stiffening by excess n-6 PUFA represent a novel pathway of cardiac lipotoxicity caused by high n-6 PUFA diets.
Collapse
Affiliation(s)
- Julianne Beam
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Amy Botta
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Jiayu Ye
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Hesham Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Main Road, Minia 11432, Egypt
| | - Brieanne J Matier
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Mary Forrest
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Kathleen M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and
| | - Sanjoy Ghosh
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| |
Collapse
|
18
|
Wang L, Athinarayanan S, Jiang G, Chalasani N, Zhang M, Liu W. Fatty acid desaturase 1 gene polymorphisms control human hepatic lipid composition. Hepatology 2015; 61:119-28. [PMID: 25123259 PMCID: PMC4280302 DOI: 10.1002/hep.27373] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/10/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Fatty acid desaturase (FADS) genes and their variants have been associated with multiple metabolic phenotypes, including liver enzymes and hepatic fat accumulation, but the detailed mechanism remains unclear. We aimed to delineate the role of FADSs in modulating lipid composition in human liver. We performed a targeted lipidomic analysis of a variety of phospholipids, sphingolipids, and ceramides among 154 human liver tissue samples. The associations between previously genome-wide association studies (GWASs)-identified six FADS single-nucleotide polymorphisms (SNPs), and these lipid levels as well as total hepatic fat content (HFC) were tested. The potential function of these SNPs in regulating transcription of three FADS genes (FADS1, FADS2, and FADS3) in the locus was also investigated. We found that though these SNPs were in high linkage disequilibrium (r(2) > 0.8), the rare alleles of these SNPs were consistently and significantly associated with the accumulation of multiple long-chain fatty acids (LCFAs), with C47H85O13P (C36:4), a phosphatidylinositol (PI), and C43H80O8PN (C38:3), a phosphatidylethanolamine (PE), reached the Bonferroni corrected significance (P < 3 × 10(-4)). Meanwhile, these SNPs were significantly associated with increased ratios between the more saturated and relatively less saturated forms of LCFAs, especially between PEs, PIs, and phosphatidylcholines (PCs; P ≤ 3.5 × 10(-6)). These alleles were also associated with increased total HFC (P < 0.05). Further analyses revealed that these alleles were associated with decreased hepatic expression of FADS1 (P = 0.0018 for rs174556), but not FADS2 or FADS3 (P > 0.05). CONCLUSION Our findings revealed critical insight into the mechanism underlying FADS1 and its polymorphisms in modulating hepatic lipid deposition by altering gene transcription and controlling lipid composition in human livers.
Collapse
Affiliation(s)
- Libo Wang
- Department of Statistics, College of Science, Purdue University, West Lafayette, IN 47907
| | - Shaminie Athinarayanan
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Min Zhang
- Department of Statistics, College of Science, Purdue University, West Lafayette, IN 47907,Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, P. R. China
| | - Wanqing Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
19
|
Sucrose, fructose, glucose, and their link to metabolic syndrome and cancer. Nutrition 2015; 31:249-57. [DOI: 10.1016/j.nut.2014.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022]
|
20
|
Cormier H, Rudkowska I, Lemieux S, Couture P, Julien P, Vohl MC. Effects of FADS and ELOVL polymorphisms on indexes of desaturase and elongase activities: results from a pre-post fish oil supplementation. GENES AND NUTRITION 2014; 9:437. [PMID: 25367143 PMCID: PMC4235832 DOI: 10.1007/s12263-014-0437-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/17/2014] [Indexed: 12/17/2022]
Abstract
Polymorphisms (SNPs) within the FADS gene cluster and the ELOVL gene family are believed to influence enzyme activities after an omega-3 (n-3) fatty acid (FA) supplementation. The objectives of the study are to test whether an n-3 supplementation is associated with indexes of desaturase and elongase activities in addition to verify whether SNPs in the FADS gene cluster and the ELOVL gene family modulate enzyme activities of desaturases and elongases. A total 208 subjects completed a 6-week supplementation period with 5 g/day of fish oil (1.9–2.2 g/day of EPA + 1.1 g/day of DHA). FA profiles of plasma phospholipids were obtained by gas chromatography (n = 210). Desaturase and elongase indexes were estimated using product-to-precursor ratios. Twenty-eight SNPs from FADS1, FADS2, FADS3, ELOVL2 and ELOVL5 were genotyped using TaqMan technology. Desaturase indexes were significantly different after the 6-week n-3 supplementation. The index of δ-5 desaturase activity increased by 25.7 ± 28.8 % (p < 0.0001), whereas the index of δ-6 desaturase activity decreased by 17.7 ± 18.2 % (p < 0.0001) post-supplementation. Index of elongase activity decreased by 39.5 ± 27.9 % (p < 0.0001). Some gene–diet interactions potentially modulating the enzyme activities of desaturases and elongases involved in the FA metabolism post-supplementation were found. SNPs within the FADS gene cluster and the ELOVL gene family may play an important role in the enzyme activity of desaturases and elongases, suggesting that an n-3 FAs supplementation may affect PUFA metabolism.
Collapse
Affiliation(s)
- Hubert Cormier
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Québec, QC, G1V 0A6, Canada,
| | | | | | | | | | | |
Collapse
|
21
|
Laino CH, Garcia P, Podestá MF, Höcht C, Slobodianik N, Reinés A. Fluoxetine Potentiation of Omega-3 Fatty Acid Antidepressant Effect: Evaluating Pharmacokinetic and Brain Fatty Acid-Related Aspects in Rodents. J Pharm Sci 2014; 103:3316-25. [DOI: 10.1002/jps.24123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 11/11/2022]
|
22
|
Das UN. Nutritional factors in the prevention and management of coronary artery disease and heart failure. Nutrition 2014; 31:283-91. [PMID: 25592005 DOI: 10.1016/j.nut.2014.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/26/2022]
Abstract
Nutritional factors such as magnesium, folic acid, vitamins B12 and B6, L-arginine, and polyunsaturated fatty acids (PUFAs) appear to be significantly beneficial for patients with coronary artery disease (CAD), and in the prevention and arresting the progression of HF and cardiac arrhythmias. Additionally, ingestion of adequate amounts of protein and maintaining normal concentrations of plasma albumin seem to be essential for these patients. These nutrients closely interact with the metabolism of L-arginine-nitric oxide (NO) system, essential fatty acids, and eicosanoids such that beneficial products such as NO, prostaglandin E1, prostacyclin, prostaglandin I3, lipoxins, resolvins, and protectins are generated and synthesis of proinflammatory cytokines is suppressed that results in platelet anti-aggregation, vasodilation, angiogenesis, and prevention of CAD, cardiac arrhythmias, and stabilization of HF. This implies that individuals at high risk for CAD, cardiac arrhythmias, and HF and those who have these diseases need to be screened for plasma levels of magnesium, folic acid, vitamins B12 and B6, L-arginine, NO, various PUFAs, lipoxin A4, resolvins, protectins, asymmetrical dimethylarginine (an endogenous inhibitor of NO), albumin, and various eicosanoids and cytokines and correct their abnormalities to restore normal physiology.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Federal Way, WA, USA and Department of Medicine and BioScience Research Centre, Gayatri Vidya Parishad Hospital, Campus of GVP College of Engineering, Visakhapatnam, India.
| |
Collapse
|
23
|
Kuhnt K, Fuhrmann C, Köhler M, Kiehntopf M, Jahreis G. Dietary echium oil increases long-chain n-3 PUFAs, including docosapentaenoic acid, in blood fractions and alters biochemical markers for cardiovascular disease independently of age, sex, and metabolic syndrome. J Nutr 2014; 144:447-60. [PMID: 24553695 PMCID: PMC4083239 DOI: 10.3945/jn.113.180802] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dietary supplementation with echium oil (EO) containing stearidonic acid (SDA) is a plant-based strategy to improve long-chain (LC) n-3 (ω-3) polyunsaturated fatty acid (PUFA) status in humans. We investigated the effect of EO on LC n-3 PUFA accumulation in blood and biochemical markers with respect to age, sex, and metabolic syndrome. This double-blind, parallel-arm, randomized controlled study started with a 2-wk run-in period, during which participants (n = 80) were administered 17 g/d run-in oil. Normal-weight individuals from 2 age groups (20-35 and 49-69 y) were allotted to EO or fish oil (FO; control) groups. During the 8-wk intervention, participants were administered either 17 g/d EO (2 g SDA; n = 59) or FO [1.9 g eicosapentaenoic acid (EPA); n = 19]. Overweight individuals with metabolic syndrome (n = 19) were recruited for EO treatment only. During the 10-wk study, the participants followed a dietary n-3 PUFA restriction, e.g., no fish. After the 8-wk EO treatment, increases in the LC n-3 metabolites EPA (168% and 79%) and docosapentaenoic acid [DPA (68% and 39%)] were observed, whereas docosahexaenoic acid (DHA) decreased (-5% and -23%) in plasma and peripheral blood mononuclear cells, respectively. Compared with FO, the efficacy of EO to increase EPA and DPA in blood was significantly lower (∼25% and ∼50%, respectively). A higher body mass index (BMI) was associated with lower relative and net increases in EPA and DPA. Compared with baseline, EO significantly reduced serum cholesterol, LDL cholesterol, oxidized LDL, and triglyceride (TG), but also HDL cholesterol, regardless of age and BMI. In the FO group, only TG decreased. Overall, daily intake of 15-20 g EO increased EPA and DPA in blood but had no influence on DHA. EO lowered cardiovascular risk markers, e.g., serum TG, which is particularly relevant for individuals with metabolic syndrome. Natural EO could be a noteworthy source of n-3 PUFA in human nutrition.
Collapse
Affiliation(s)
- Katrin Kuhnt
- Department of Nutritional Physiology, Institute of Nutrition, and,To whom correspondence should be addressed. E-mail:
| | - Claudia Fuhrmann
- Department of Nutritional Physiology, Institute of Nutrition, and
| | - Melanie Köhler
- Department of Nutritional Physiology, Institute of Nutrition, and
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Friedrich Schiller University, Jena, Germany
| | - Gerhard Jahreis
- Department of Nutritional Physiology, Institute of Nutrition, and
| |
Collapse
|
24
|
Why fish oil fails: a comprehensive 21st century lipids-based physiologic analysis. J Lipids 2014; 2014:495761. [PMID: 24551453 PMCID: PMC3914521 DOI: 10.1155/2014/495761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
The medical community suffered three significant fish oil failures/setbacks in 2013. Claims that fish oil's EPA/DHA would stop the progression of heart disease were crushed when The Risk and Prevention Study Collaborative Group (Italy) released a conclusive negative finding regarding fish oil for those patients with high risk factors but no previous myocardial infarction. Fish oil failed in all measures of CVD prevention-both primary and secondary. Another major 2013 setback occurred when fish oil's DHA was shown to significantly increase prostate cancer in men, in particular, high-grade prostate cancer, in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) analysis by Brasky et al. Another monumental failure occurred in 2013 whereby fish oil's EPA/DHA failed to improve macular degeneration. In 2010, fish oil's EPA/DHA failed to help Alzheimer's victims, even those with low DHA levels. These are by no means isolated failures. The promise of fish oil and its so-called active ingredients EPA / DHA fails time and time again in clinical trials. This lipids-based physiologic review will explain precisely why there should have never been expectation for success. This review will focus on underpublicized lipid science with a focus on physiology.
Collapse
|
25
|
Asselin C, Ducharme A, Ntimbane T, Ruiz M, Fortier A, Guertin MC, Lavoie J, Diaz A, Levy É, Tardif JC, Des Rosiers C. Circulating levels of linoleic acid and HDL-cholesterol are major determinants of 4-hydroxynonenal protein adducts in patients with heart failure. Redox Biol 2013; 2:148-55. [PMID: 24494189 PMCID: PMC3909262 DOI: 10.1016/j.redox.2013.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Measurements of oxidative stress biomarkers in patients with heart failure (HF) have yielded controversial results. This study aimed at testing the hypothesis that circulating levels of the lipid peroxidation product 4-hydroxynonenal bound to thiol proteins (4HNE-P) are strongly associated with those of its potential precursors, namely n-6 polyunsaturated fatty acids (PUFA). METHODS AND RESULTS Circulating levels of 4HNE-P were evaluated by gas chromatography-mass spectrometry in 71 control subjects and 61 ambulatory symptomatic HF patients along with various other clinically- and biochemically-relevant parameters, including other oxidative stress markers, and total levels of fatty acids from all classes, which reflect both free and bound to cholesterol, phospholipids and triglycerides. All HF patients had severe systolic functional impairment despite receiving optimal evidence-based therapies. Compared to controls, HF patients displayed markedly lower circulating levels of HDL- and LDL-cholesterol, which are major PUFA carriers, as well as of PUFA of the n-6 series, specifically linoleic acid (LA; P=0.001). Circulating 4HNE-P in HF patients was similar to controls, albeit multiple regression analysis revealed that LA was the only factor that was significantly associated with circulating 4HNE-P in the entire population (R (2)=0.086; P=0.02). In HF patients only, 4HNE-P was even more strongly associated with LA (P=0.003) and HDL-cholesterol (p<0.0002). Our results demonstrate that 4HNE-P levels, expressed relative to HDL-cholesterol, increase as HDL-cholesterol plasma levels decrease in the HF group only. CONCLUSION Results from this study emphasize the importance of considering changes in lipids and lipoproteins in the interpretation of measurements of lipid peroxidation products. Further studies appear warranted to explore the possibility that HDL-cholesterol particles may be a carrier of 4HNE adducts.
Collapse
Key Words
- 4-Hydroxynnonenal
- 4HNE, 4-hydroxynonenal
- 4HNE-P, 4-hydroxynonenal bound to circulating thiol proteins
- AA, arachidonic acid
- CRP, C-reactive protein
- DHA, docosahexanaenoic acid
- EPA, eicosapentaenoic acid
- GSH, reduced glutathione
- GSSG, oxidized glutathione
- HF, heart failure
- HFC-MHI, heart failure clinic of the Montreal Heart Institute
- HOMA-IR, homeostatic model assessment of insulin resistance
- Heart failure patients
- LA, linoleic acid
- Linoleic acid
- Lipid peroxidation
- MDA, malondialdehyde
- MPO, myeloperoxidase
- NT-pro-BNP, N-terminal proB-type natriuretic peptide
- NYHA, New York Heart Association
- Oxidative stress
- PUFA, polyunsaturated fatty acids
- Polyunsaturated fatty acids
- RAS, renin-angiotensin system
- TBARS, thiobarbituric acid-reactive substances
- TNF, tumor necrosis factor
- eGFR, estimated glomerular filtration rate
Collapse
Affiliation(s)
- Caroline Asselin
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Anique Ducharme
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Thierry Ntimbane
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Annik Fortier
- Montreal Heart Institute Coordinating Center, Montreal, Quebec, Canada
| | | | - Joël Lavoie
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Ariel Diaz
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Émile Levy
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| |
Collapse
|
26
|
Dessì M, Noce A, Bertucci P, Manca di Villahermosa S, Zenobi R, Castagnola V, Addessi E, Di Daniele N. Atherosclerosis, dyslipidemia, and inflammation: the significant role of polyunsaturated Fatty acids. ISRN INFLAMMATION 2013; 2013:191823. [PMID: 24049656 PMCID: PMC3767348 DOI: 10.1155/2013/191823] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/09/2013] [Indexed: 12/22/2022]
Abstract
Phospholipids play an essential role in cell membrane structure and function. The length and number of double bonds of fatty acids in membrane phospholipids are main determinants of fluidity, transport systems, activity of membrane-bound enzymes, and susceptibility to lipid peroxidation. The fatty acid profile of serum lipids, especially the phospholipids, reflects the fatty acid composition of cell membranes. Moreover, long-chain n-3 polyunsatured fatty acids decrease very-low-density lipoprotein assembly and secretion reducing triacylglycerol production. N-6 and n-3 polyunsatured fatty acids are the precursors of signalling molecules, termed "eicosanoids," which play an important role in the regulation of inflammation. Eicosanoids derived from n-6 polyunsatured fatty acids have proinflammatory actions, while eicosanoids derived from n-3 polyunsatured fatty acids have anti-inflammatory ones. Previous studies showed that inflammation contributes to both the onset and progression of atherosclerosis: actually, atherosclerosis is predominantly a chronic low-grade inflammatory disease of the vessel wall. Several studies suggested the relationship between long-chain n-3 polyunsaturated fatty acids and inflammation, showing that fatty acids may decrease endothelial activation and affect eicosanoid metabolism.
Collapse
Affiliation(s)
- Mariarita Dessì
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Noce
- Nephrology and Hypertension Unit, Department of System Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Pierfrancesco Bertucci
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Simone Manca di Villahermosa
- Nephrology and Hypertension Unit, Department of System Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Rossella Zenobi
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Veronica Castagnola
- Nephrology and Hypertension Unit, Department of System Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Eliana Addessi
- Nephrology and Hypertension Unit, Department of System Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Nicola Di Daniele
- Nephrology and Hypertension Unit, Department of System Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
27
|
A case-control study between gene polymorphisms of polyunsaturated fatty acid metabolic rate-limiting enzymes and acute coronary syndrome in Chinese Han population. BIOMED RESEARCH INTERNATIONAL 2013; 2013:928178. [PMID: 23555103 PMCID: PMC3600233 DOI: 10.1155/2013/928178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022]
Abstract
The purpose of this study is to analyze the relationship between the polymorphisms of fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2), and elongation of very long-chain fatty acids-like 2 (ELOVL2) and acute coronary syndrome (ACS) in Chinese Han population. Therefore, we selected three single nucleotide polymorphisms (SNPs) from these candidate genes and genotyped them using PCR-based restriction fragment length polymorphism analysis in 249 ACS patients and 240 non-ACS subjects, as were Han Chinese ancestry. The results showed that rs174556 in the FADS1 gene is found to be in allelic association (P = 0.003 ) and genotypic association (P = 0.036) with ACS. The frequencies of rs174556 minor allele (T) in case group were obviously higher than in control group. The trans-phase gene-gene interaction analysis showed that the combined genotype of rs174556 (T/T) and rs3756963 (T/T) was associated with ACS (P = 0.031). And the results suggest that, for rs174556 C>T, the CT/TT genotypes were more likely to lead in ACS in subjects with hypertension after correction of all risk factors (OR = 4.236, 95% CI, 2.216-7.126). These findings suggest that the polymorphisms of rs174556 in the FADS1 gene are very likely to be associated with ACS in Chinese Han population, especially in subjects with hypertension.
Collapse
|
28
|
Li SW, Lin K, Ma P, Zhang ZL, Zhou YD, Lu SY, Zhou X, Liu SM. FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. PLoS One 2013; 8:e55869. [PMID: 23383292 PMCID: PMC3561316 DOI: 10.1371/journal.pone.0055869] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/03/2013] [Indexed: 12/02/2022] Open
Abstract
Objective We explored the desaturase activities and the correlation of fatty acid desaturases (FADS) gene single nucleotide polymorphisms (SNPs) with plasma fatty acid in coronary artery disease (CAD) patients in a Chinese Han population. Methods Plasma fatty acids were measured by gas chromatography in CAD patients (n = 505) and a control group (n = 510). Five SNPs in the FADS gene were genotyped with high-resolution melting (HRM) methods. Results After adjustment, D6D activity, assessed as arachidonic acid (AA, C20:4n-6)/linoleic acid (LA, C18:2n-6), was higher in CAD patients (p<0.001). D9D activity, which was estimated as the ratio of palmitoleic acid (C16:1)/palmitic acid (C16:0) or oleic acid (C18:1n-9) to stearic acid (C18:0), was also increased (p<0.001). The genotype distributions of rs174537 G>T and rs174460 C>T were different between the two groups. The rs174537 T allele was associated with a lower risk of CAD [OR 0.743, 95% CI (0.624, 0.884), p = 0.001]. Carriers of the rs174460 C allele were associated with a higher risk of CAD [OR 1.357, 95% CI (1.106, 1.665), p = 0.003]. Conclusions We firstly report that the rs174460 C allele is associated with a higher risk of CAD, and confirm that the rs174537 T allele is associated with a lower risk of CAD. Our results indicate that FADS gene polymorphisms are likely to influence plasma fatty acid concentrations and desaturase activities.
Collapse
Affiliation(s)
- Si-Wei Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Kun Lin
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Pei Ma
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhen-Lu Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, Hubei, People's Republic of China
| | - Yi-Dan Zhou
- School of Life Sciences, Jianghan University, Wuhan, Hubei, People's Republic of China
| | - Shuang-Yan Lu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xin Zhou
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- * E-mail: E-mail: (SML); (XZ)
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- * E-mail: E-mail: (SML); (XZ)
| |
Collapse
|
29
|
Devarshi PP, Jangale NM, Ghule AE, Bodhankar SL, Harsulkar AM. Beneficial effects of flaxseed oil and fish oil diet are through modulation of different hepatic genes involved in lipid metabolism in streptozotocin-nicotinamide induced diabetic rats. GENES AND NUTRITION 2012; 8:329-42. [PMID: 23225194 DOI: 10.1007/s12263-012-0326-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/14/2012] [Indexed: 01/06/2023]
Abstract
Dietary omega-3 fatty acids have been demonstrated to have positive physiological effects on lipid metabolism, cardiovascular system and insulin resistance. Type-2 diabetes (T2DM) is known for perturbations in fatty acid metabolism leading to dyslipidemia. Our objective was to investigate beneficial effects of dietary flaxseed oil and fish oil in streptozotocin-nicotinamide induced diabetic rats. Thirty-six adult, male, Wistar rats were divided into six groups: three diabetic and three non-diabetic. Diabetes was induced by an injection of nicotinamide (110 mg/kg) and STZ (65 mg/kg). The animals received either control, flaxseed oil or fish oil (10 % w/w) enriched diets for 35 days. Both diets lowered serum triglycerides and very low-density lipoprotein cholesterol levels and elevated serum high-density lipoprotein cholesterol levels in diabetic rats, while serum total cholesterol and LDL-C levels remained unaffected. Both the diets increased omega-3 levels in plasma and RBCs of diabetic rats. Flaxseed oil diet significantly up-regulated the key transcription factor peroxisome proliferator-activated receptor-α (PPAR-α ) and down-regulated sterol regulatory element-binding protein-1 (SREBP-1) in diabetic rats, which would have increased β-oxidation of fatty acids and concomitantly reduced lipogenesis respectively, thereby reducing TG levels. Fish oil diet, on the contrary lowered serum TG levels without altering PPAR-α while it showed a non-significant reduction in SREBP-1 expression in diabetic rats. Another key finding of the study is the activation of D5 and D6 desaturases in diabetic rats by flaxseed oil diet or fish oil diets, which may have resulted in an improved omega-3 status and comparable effects shown by both diets. The reduced expression of Liver-fatty acid binding protein in diabetic rats was restored by fish oil alone, while both diets showed equal effects on adipocyte fatty acid-binding protein expression. We also observed down-regulation of atherogenic cytokines tumor necrosis factor-α and interleukin-6 by both the diets. In conclusion, dietary flaxseed oil and fish oil have therapeutic potential in preventing lipid abnormalities in T2DM.
Collapse
Affiliation(s)
- Prasad P Devarshi
- Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, 411043, Maharashtra, India
| | | | | | | | | |
Collapse
|
30
|
Walker CG, Jebb SA, Calder PC. Stearidonic acid as a supplemental source of ω-3 polyunsaturated fatty acids to enhance status for improved human health. Nutrition 2012; 29:363-9. [PMID: 23102888 DOI: 10.1016/j.nut.2012.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/31/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
There is substantial evidence to show that consumption and increased blood levels of the very long-chain (VLC) ω-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with health benefits. The consumption of oily fish is an effective way of increasing EPA and DHA intake and status, but intake in most Western countries remains below the levels recommended for optimal health. The reasons for this include not liking the taste, a concern about sustainability of fish supplies, or potential chemical and heavy metal contamination. Alternative dietary sources of ω-3 fatty acids to enhance EPA and DHA status in the body would therefore be beneficial. There are many non-fish food sources of the essential plant-derived ω-3 fatty acid α-linolenic acid, but conversion from this to longer-chain EPA and especially to DHA is poor. Stearidonic acid (SDA) is an intermediate fatty acid in the biosynthetic pathway from α-linolenic acid to VLC ω-3 PUFAs and the conversion from SDA is more efficient than from α-linolenic acid. However, there are few food sources rich in SDA. Oil crops naturally rich in SDA or enriched through genetic modification may offer an alternative supplemental oil to boost the population status of VLC ω-3 PUFAs. This review discusses the currently available evidence that increased SDA consumption can increase red blood cell EPA content, although this is less than the effect of supplementation directly with EPA. There is now a need for trials specifically designed to assess whether an increased SDA consumption would translate into improved human health outcomes.
Collapse
Affiliation(s)
- Celia G Walker
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom.
| | | | | |
Collapse
|
31
|
Hempseed water extract ameliorates atherosclerosis in apolipoprotein E knockout mice. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0122-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
32
|
Voruganti VS, Higgins PB, Ebbesson SOE, Kennish J, Göring HHH, Haack K, Laston S, Drigalenko E, Wenger CR, Harris WS, Fabsitz RR, Devereux RB, Maccluer JW, Curran JE, Carless MA, Johnson MP, Moses EK, Blangero J, Umans JG, Howard BV, Cole SA, Comuzzie AG. Variants in CPT1A, FADS1, and FADS2 are Associated with Higher Levels of Estimated Plasma and Erythrocyte Delta-5 Desaturases in Alaskan Eskimos. Front Genet 2012; 3:86. [PMID: 22701466 PMCID: PMC3371589 DOI: 10.3389/fgene.2012.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/30/2012] [Indexed: 12/15/2022] Open
Abstract
The delta-5 and delta-6 desaturases (D5D and D6D), encoded by fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes, respectively, are rate-limiting enzymes in the metabolism of ω-3 and ω-6 fatty acids. The objective of this study was to identify genes influencing variation in estimated D5D and D6D activities in plasma and erythrocytes in Alaskan Eskimos (n = 761) participating in the genetics of coronary artery disease in Alaska Natives (GOCADAN) study. Desaturase activity was estimated by product: precursor ratio of polyunsaturated fatty acids. We found evidence of linkage for estimated erythrocyte D5D (eD5D) on chromosome 11q12-q13 (logarithm of odds score = 3.5). The confidence interval contains candidate genes FADS1, FADS2, 7-dehydrocholesterol reductase (DHCR7), and carnitine palmitoyl transferase 1A, liver (CPT1A). Measured genotype analysis found association between CPT1A, FADS1, and FADS2 single-nucleotide polymorphisms (SNPs) and estimated eD5D activity (p-values between 10−28 and 10−5). A Bayesian quantitative trait nucleotide analysis showed that rs3019594 in CPT1A, rs174541 in FADS1, and rs174568 in FADS2 had posterior probabilities > 0.8, thereby demonstrating significant statistical support for a functional effect on eD5D activity. Highly significant associations of FADS1, FADS2, and CPT1A transcripts with their respective SNPs (p-values between 10−75 and 10−7) in Mexican Americans of the San Antonio Family Heart Study corroborated our results. These findings strongly suggest a functional role for FADS1, FADS2, and CPT1A SNPs in the variation in eD5D activity.
Collapse
Affiliation(s)
- V Saroja Voruganti
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matesanz N, Jewhurst V, Trimble ER, McGinty A, Owens D, Tomkin GH, Powell LA. Linoleic acid increases monocyte chemotaxis and adhesion to human aortic endothelial cells through protein kinase C- and cyclooxygenase-2-dependent mechanisms. J Nutr Biochem 2012; 23:685-90. [DOI: 10.1016/j.jnutbio.2011.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/08/2011] [Accepted: 03/25/2011] [Indexed: 11/16/2022]
|
34
|
Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J Nutr Metab 2012; 2012:539426. [PMID: 22570770 PMCID: PMC3335257 DOI: 10.1155/2012/539426] [Citation(s) in RCA: 531] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 12/17/2022] Open
Abstract
Omega-6 (n-6) polyunsaturated fatty acids (PUFA) (e.g., arachidonic acid (AA)) and omega-3 (n-3) PUFA (e.g., eicosapentaenoic acid (EPA)) are precursors to potent lipid mediator signalling molecules, termed "eicosanoids," which have important roles in the regulation of inflammation. In general, eicosanoids derived from n-6 PUFA are proinflammatory while eicosanoids derived from n-3 PUFA are anti-inflammatory. Dietary changes over the past few decades in the intake of n-6 and n-3 PUFA show striking increases in the (n-6) to (n-3) ratio (~15 : 1), which are associated with greater metabolism of the n-6 PUFA compared with n-3 PUFA. Coinciding with this increase in the ratio of (n-6) : (n-3) PUFA are increases in chronic inflammatory diseases such as nonalcoholic fatty liver disease (NAFLD), cardiovascular disease, obesity, inflammatory bowel disease (IBD), rheumatoid arthritis, and Alzheimer's disease (AD). By increasing the ratio of (n-3) : (n-6) PUFA in the Western diet, reductions may be achieved in the incidence of these chronic inflammatory diseases.
Collapse
Affiliation(s)
- E. Patterson
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - R. Wall
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - G. F. Fitzgerald
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Department of Microbiology, University College Cork, County Cork, Ireland
| | - R. P. Ross
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| | - C. Stanton
- Alimentary Pharmabiotic Centre, Biosciences Institute, County Cork, Ireland
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
35
|
Kelsall CJ, Hoile SP, Irvine NA, Masoodi M, Torrens C, Lillycrop KA, Calder PC, Clough GF, Hanson MA, Burdge GC. Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis. PLoS One 2012; 7:e34492. [PMID: 22509311 PMCID: PMC3317992 DOI: 10.1371/journal.pone.0034492] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/01/2012] [Indexed: 12/26/2022] Open
Abstract
Nutrition during development affects risk of future cardiovascular disease. Relatively little is known about whether the amount and type of fat in the maternal diet affect vascular function in the offspring. To investigate this, pregnant and lactating rats were fed either 7%(w/w) or 21%(w/w) fat enriched in either 18:2n-6, trans fatty acids, saturated fatty acids, or fish oil. Their offspring were fed 4%(w/w) soybean oil from weaning until day 77. Type and amount of maternal dietary fat altered acetylcholine (ACh)-mediated vaso-relaxation in offspring aortae and mesenteric arteries, contingent on sex. Amount, but not type, of maternal dietary fat altered phenylephrine (Pe)-induced vasoconstriction in these arteries. Maternal 21% fat diet decreased 20:4n-6 concentration in offspring aortae. We investigated the role of Δ6 and Δ5 desaturases, showing that their inhibition in aortae and mesenteric arteries reduced vasoconstriction, but not vaso-relaxation, and the synthesis of specific pro-constriction eicosanoids. Removal of the aortic endothelium did not alter the effect of inhibition of Δ6 and Δ5 desaturases on Pe-mediated vasoconstriction. Thus arterial smooth muscle 20:4n-6 biosynthesis de novo appears to be important for Pe-mediated vasoconstriction. Next we studied genes encoding these desaturases, finding that maternal 21% fat reduced Fads2 mRNA expression and increased Fads1 in offspring aortae, indicating dysregulation of 20:4n-6 biosynthesis. Methylation at CpG -394 bp 5' to the Fads2 transcription start site predicted its expression. This locus was hypermethylated in offspring of dams fed 21% fat. Pe treatment of aortae for 10 minutes increased Fads2, but not Fads1, mRNA expression (76%; P<0.05). This suggests that Fads2 may be an immediate early gene in the response of aortae to Pe. Thus both amount and type of maternal dietary fat induce altered regulation of vascular tone in offspring though differential effects on vaso-relaxation, and persistent changes in vasoconstriction via epigenetic processes controlling arterial polyunsaturated fatty acid biosynthesis.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adrenergic alpha-1 Receptor Agonists/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Arteries/drug effects
- Arteries/metabolism
- Arteries/physiopathology
- Delta-5 Fatty Acid Desaturase
- Dietary Fats/adverse effects
- Fatty Acids, Unsaturated/biosynthesis
- Fatty Acids, Unsaturated/blood
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mothers
- Muscarinic Agonists/pharmacology
- Phenylephrine/pharmacology
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Muscarinic/metabolism
- Stearoyl-CoA Desaturase/genetics
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Christopher J. Kelsall
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
| | - Samuel P. Hoile
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
| | - Nicola A. Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
| | - Mojgan Masoodi
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Christopher Torrens
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
| | - Karen A. Lillycrop
- Faculty of Natural and Environmental Sciences, University of Southampton, Hampshire, United Kingdom
| | - Philip C. Calder
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
| | - Geraldine F. Clough
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
| | - Mark A. Hanson
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
| | - Graham C. Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Senadheera SD, Turchini GM, Thanuthong T, Francis DS. Effects of dietary vitamin B6 supplementation on fillet fatty acid composition and fatty acid metabolism of rainbow trout fed vegetable oil based diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2343-2353. [PMID: 22335789 DOI: 10.1021/jf204963w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B(6)) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.
Collapse
Affiliation(s)
- Shyamalie D Senadheera
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria 3280, Australia
| | | | | | | |
Collapse
|
37
|
Banz WJ, Davis JE, Clough RW, Cheatwood JL. Stearidonic acid: is there a role in the prevention and management of type 2 diabetes mellitus? J Nutr 2012; 142:635S-640S. [PMID: 22279133 DOI: 10.3945/jn.111.146829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obesity and its related comorbidities are major public health concerns in the United States with over two-thirds of adults and one-third of children classified as overweight or obese. The prevalence of type 2 diabetes mellitus (T2DM) has similarly risen to an estimated 25.8 million, which accounts for a staggering $174 billion in annual healthcare costs. Identification of dietary interventions that protect against the development of T2DM would markedly reduce the medical and economic consequences of the disease. Hence, we review current evidence supporting a role of (n-3) PUFA in T2DM and explore potential therapeutic implications of stearidonic acid (SDA). The low consumption of fish in the US along with a reduced efficiency to interconvert most plant (n-3) PUFA highlights a need to find alternative sources of (n-3) PUFA. The efficient biological conversion of SDA to EPA underscores the potential implications of SDA as a source of (n-3) PUFA. The full therapeutic efficacy of SDA remains to be further determined. However, recent data have suggested a protective role of SDA consumption on markers of dyslipidemia and inflammation. The AHA recommends that healthy individuals consume oily fish at least twice per week and individuals with a history of cardiovascular disease consume 1 g of EPA+DHA/d. These goals will likely not be met by the typical American diet. Therefore, SDA may represent a sustainable alternative to marine-based (n-3) PUFA and may have novel therapeutic efficacy regarding the development of T2DM.
Collapse
Affiliation(s)
- William J Banz
- Department of Animal Science, Southern Illinois University, School of Medicine, Carbondale, IL, USA.
| | | | | | | |
Collapse
|
38
|
Qin L, Sun L, Ye L, Shi J, Zhou L, Yang J, Du B, Song Z, Yu Y, Xie L. A case-control study between the gene polymorphisms of polyunsaturated fatty acids metabolic rate-limiting enzymes and coronary artery disease in a Chinese Han population. Prostaglandins Leukot Essent Fatty Acids 2011; 85:329-333. [PMID: 21917437 DOI: 10.1016/j.plefa.2011.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/20/2011] [Accepted: 08/25/2011] [Indexed: 01/13/2023]
Abstract
To investigate the association between the polymorphisms of fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and elongation of very long chain fatty acids like 2 (ELOVL2) gene and coronary artery disease (CAD) in a Chinese Han population. Three single nucleotide polymorphisms (SNPs) from these genes were genotyped using PCR-based restriction fragment length polymorphism analysis in 199 CAD cases and 192 controls of Han Chinese origin. rs174556 in the FADS1 gene showed allelic (P=0.002) and genotypic (P=0.030) association with the disease, while there was no disease association for the other two SNPs. The frequency of rs174556 minor allele (T) was significantly higher in the case group than the control group. The trans phase gene-gene interaction analysis showed that the combined genotype of rs174556 (T/T) and rs3756963 (T/T) was weakly associated with the disease (P=0.043). rs174556 in the FADS1 gene is very likely to be associated with CAD in the Chinese Han population.
Collapse
Affiliation(s)
- Ling Qin
- Department of Cardiology, First Hospital, Jilin University, Changchun 130031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Aghdassi E, Ma DWL, Morrison S, Hillyer LM, Clarke S, Gladman DD, Urowitz MB, Fortin PR. Alterations in circulating fatty acid composition in patients with systemic lupus erythematosus: a pilot study. JPEN J Parenter Enteral Nutr 2011; 35:198-208. [PMID: 21378249 DOI: 10.1177/0148607110386378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Circulating fatty acids (FAs) may play a role in the disease pathogenesis of patients with systemic lupus erythematosus (SLE). OBJECTIVES To compare red blood cell (RBC) and plasma FA composition: (1) between female SLE patients and age-matched healthy female (HF) controls and in SLE with history of cardiovascular disease (CVD) and those with no history (SLE+CVD vs SLE-CVD); and (2) between SLE patients who were or were not receiving prednisone treatment at the time of blood sampling. METHODS This cross-sectional study consisted of 33 female patients with SLE (11 SLE+CVD, 22 SLE-CVD) and 20 HF controls. Demographics, CVD risk, medication profile, blood biochemistry, and FA composition of RBC and plasma total lipids were determined. RESULTS Waist circumference and body mass index were higher in SLE patients than in HF controls. These variables along with serum triglycerides, blood glucose, and systolic blood pressure were higher in SLE+CVD than SLE-CVD patients. RBC FA composition showed lower eicosapentaenoic acid (EPA, ω-3 active metabolite) and ω-3 index (EPA+ docosahexaenoic acid) in SLE patients compared with HF controls. The ratio of the RBC inflammatory metabolite, arachidonic acid, to the anti-inflammatory metabolite EPA was also significantly higher in SLE patients than in HF controls. No differences were seen in plasma FA between SLE and HF groups. However, SLE-CVD patients had a more favorable lipid profile than SLE+CVD patients. In SLE patients, the use of prednisone resulted in alteration of both RBC and plasma FA composition. CONCLUSION SLE patients, regardless of their history of CVD, have altered plasma and RBC FA composition favoring inflammation. The use of prednisone was associated with differences in FA profile.
Collapse
Affiliation(s)
- Elaheh Aghdassi
- Division of Health Care and Outcome Research, Toronto Western Research Institute, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen Q, Nimal J, Li W, Liu X, Cao W. Delta-6 desaturase from borage converts linoleic acid to gamma-linolenic acid in HEK293 cells. Biochem Biophys Res Commun 2011; 410:484-8. [DOI: 10.1016/j.bbrc.2011.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 06/01/2011] [Indexed: 11/16/2022]
|
41
|
Sekiguchi F, Ohi A, Maeda Y, Takaoka K, Sekimoto T, Nishikawa H, Kawabata A. Delayed production of arachidonic acid contributes to the delay of proteinase-activated receptor-1 (PAR1)-triggered prostaglandin E2 release in rat gastric epithelial RGM1 cells. J Cell Biochem 2011; 112:909-15. [PMID: 21328464 DOI: 10.1002/jcb.23005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteinase-activated receptor-1 (PAR1), upon activation, exerts prostanoid-dependent gastroprotection, and increases prostaglandin E(2) (PGE(2)) release through cyclooxygenase-2 (COX-2) upregulation in rat gastric mucosal epithelial RGM1 cells. However, there is a big time lag between the PAR1-triggered PGE(2) release and COX-2 upregulation in RGM1 cells; that is, the former event takes 18 h to occur, while the latter rapidly develops and reaches a plateau in 6 h. The present study thus aimed at clarifying mechanisms for the delay of PGE(2) release after PAR1 activation in RGM1 cells. Although a PAR1-activating peptide, TFLLR-NH(2), alone caused PGE(2) release at 18 h, but not 6 h, TFLLR-NH(2) in combination with arachidonic acid dramatically enhanced PGE(2) release even for 1-6 h. TFLLR-NH(2) plus linoleic acid caused a similar rapid response. CP-24879, a Δ(5)/Δ(6)-desaturase inhibitor, abolished the PGE(2) release induced by TFLLR-NH(2) plus linoleic acid, but not by TFLLR-NH(2) alone. The TFLLR-NH(2)-induced PGE(2) release was not affected by inhibitors of cytosolic phospholipase A(2) (cPLA(2)), Ca(2+)-independent PLA(2) (cPLA(2)) or secretory PLA(2) (sPLA(2)), but was abolished by their mixture or a pan-PLA(2) inhibitor. Among PLA(2) isozymes, mRNA of group IIA sPLA(2) (sPLA(2)-IIA) was upregulated following PAR1 stimulation for 6-18 h, whereas protein levels of PGE synthases were unchanged. These data suggest that the delay of PGE(2) release after COX-2 upregulation triggered by PAR1 is due to the poor supply of free arachidonic acid at the early stage in RGM1 cells, and that plural isozymes of PLA(2) including sPLA(2)-IIA may complementarily contribute to the liberation of free arachidonic acid.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Erythrocyte membrane phospholipid polyunsaturated fatty acids are related to plasma C-reactive protein and adiponectin in middle-aged German women and men. Eur J Nutr 2011; 50:625-36. [PMID: 21301856 DOI: 10.1007/s00394-011-0169-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/17/2011] [Indexed: 01/23/2023]
Abstract
PURPOSE Modulation of circulating inflammatory markers and adiponectin may link PUFA to risk of diabetes and cardiovascular diseases. We investigated erythrocyte n-6 and n-3 PUFA in relation to plasma C-reactive protein (CRP) and adiponectin, and whether the Pro12Ala polymorphism in the PPARγ2 gene (PPARG2) modified these associations. METHODS We conducted a cross-sectional analysis among 1,222 women and 758 men participating in the EPIC-Potsdam study. RESULTS Most notably, in both sexes, higher linoleic acid (LA) was related to lower CRP (geometric mean outcome [mg/L], quintile 1, quintile 5, p for trend ≤ 0.01 unless otherwise stated: 0.95, 0.61 [women], 0.67, 0.51 [men]) and higher adiponectin (7.9, 9.1 [women], 5.3, 6.1 [men]), whereas higher γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA) were related to higher CRP (GLA: 0.63, 0.92 [women], 0.55, 0.70, p = 0.08 [men], DGLA: 0.55, 1.07 [women], 0.52, 0.76 [men]) and lower adiponectin (GLA: 8.6, 8.0 [women], 5.8, 5.4, p = 0.08 [men], DGLA: 9.2, 7.9 [women], 5.9, 5.4, p = 0.08 [men]) adjusting for age and lifestyle. The associations mostly did neither strongly nor significantly vary by PPARG2 genotype. In women, Pro12Ala appeared to interact with arachidonic acid on CRP (p = 0.04), as well as with docosatetraenoic acid on CRP (p = 0.08) and adiponectin (p = 0.02). CONCLUSIONS Our findings suggest that erythrocyte PUFA, particularly LA and n-6 higher unsaturated fatty acids, are related to circulating CRP and adiponectin. They do not indicate that PUFA strongly interact with the PPARG2 Pro12Ala variant on these risk markers.
Collapse
|
43
|
Toufektsian MC, Salen P, Laporte F, Tonelli C, de Lorgeril M. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J Nutr 2011; 141:37-41. [PMID: 21068183 DOI: 10.3945/jn.110.127225] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.
Collapse
Affiliation(s)
- Marie-Claire Toufektsian
- Laboratoire Cœur et Nutrition, TIMC-IMAG CNRS UMR 5525, Faculté de Médecine, Université Joseph Fourier, 38000 Grenoble, France
| | | | | | | | | |
Collapse
|
44
|
Das UN. A defect in Δ6 and Δ5 desaturases may be a factor in the initiation and progression of insulin resistance, the metabolic syndrome and ischemic heart disease in South Asians. Lipids Health Dis 2010; 9:130. [PMID: 21062475 PMCID: PMC2987992 DOI: 10.1186/1476-511x-9-130] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/09/2010] [Indexed: 02/03/2023] Open
Abstract
The high incidence of insulin resistance and the metabolic syndrome in South Asians remains unexplained. I propose that a defect in the activity of Δ6 and Δ5 desaturases and consequent low plasma and tissue concentrations of polyunsaturated fatty acids such as γ-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and formation of their anti-inflammatory products prostaglandin E1 (PGE1), prostacyclin (PGI2), PGI3, lipoxins, resolvins, protectins, maresins and nitrolipids could be responsible for the high incidence of insulin resistance, the metabolic syndrome and ischemic heart disease (IHD) in South Asians. This proposal is supported by the observation that South Asian Indians have lower plasma and tissue concentrations of GLA, DGLA, AA, EPA and DHA, the precursors of PGE1, PGI2, PGI3, lipoxins, resolvins, protectins, and nitrolipids, the endogenous molecules that prevent platelet aggregation, vasoconstriction, thrombus formation, leukocyte activation and possess anti-inflammatory action and thus, are capable of preventing the development of insulin resistance, atherosclerosis, hypertension, type 2 diabetes mellitus and premature ischemic heart disease. Genetic predisposition, high carbohydrate intake, lack of exercise, tobacco use and low birth weight due to maternal malnutrition suppress the activity of Δ6 and Δ5 desaturases that leads to low plasma and tissue concentrations of polyunsaturated fatty acids and their products. This implies that adequate provision of polyunsaturated fatty acids and co-factors needed for their metabolism, and efforts to enhance the formation of their beneficial metabolites PGE1, PGI2, PGI3, lipoxins, resolvins, protectins, maresins and nitrolipids could form a novel approach in the prevention and management of these diseases in this high-risk population.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
45
|
Kwak JH, Paik JK, Kim OY, Jang Y, Lee SH, Ordovas JM, Lee JH. FADS gene polymorphisms in Koreans: association with ω6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis 2010; 214:94-100. [PMID: 21040914 DOI: 10.1016/j.atherosclerosis.2010.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/26/2010] [Accepted: 10/04/2010] [Indexed: 01/28/2023]
Abstract
OBJECTIVE We investigated the association of polymorphisms in FADS genes with polyunsaturated fatty acids (PUFAs) in serum phospholipids, lipid peroxides, and coronary artery disease (CAD) in Koreans. METHODS In this case-control study, CAD patients (n=756, 40-79 years) and healthy controls (n=890) were genotyped for rs174537 near FADS1 (FEN1 rs174537G>T), FADS2 (rs174575, rs2727270), and FADS3 (rs1000778). We calculated the odds ratios (ORs) for CAD risk and measured serum PUFA composition and lipid peroxide. RESULTS Among four SNPs, only rs174537G>T differed in allele frequencies between controls and CAD patients after adjustment for age, BMI, cigarette smoking, alcohol consumption, hypertension, diabetes mellitus, and hyperlipidemia (P=0.017). The minor T allele was associated with a lower risk of CAD [OR 0.75 (95%CI 0.61-0.92), P=0.006] after adjustment. rs174537T carriers had a significantly higher proportion of linoleic acid (LA, 18:2ω6), lower arachidonic acid (AA, 20:4ω6), and lower ratios of AA/dihomo-γ-linolenic acid (DGLA, 20:3ω6) and AA/LA than G/G subjects in both control and CAD groups. In the control group, 174537T carriers had significantly lower levels of total- and LDL-cholesterol, malondialdehyde, and ox-LDL. In CAD patients, rs174537T carriers showed a larger LDL particle size than G/G subjects. The proportion of AA in serum phospholipids positively correlated with LDL-cholesterol, ox-LDL, and malondialdehyde in controls and with 8-epi-prostaglandin F(2α) in both control and CAD groups. CONCLUSION The rs174537T is associated with a lower proportion of AA in serum phospholipids and reduced CAD risk, in association with reduced total- and LDL-cholesterol and lipid peroxides.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Interdisciplinary Course of Science for Aging, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Park JY, Paik JK, Kim OY, Chae JS, Jang Y, Lee JH. Interactions between the APOA5 -1131T>C and the FEN1 10154G>T polymorphisms on ω6 polyunsaturated fatty acids in serum phospholipids and coronary artery disease. J Lipid Res 2010; 51:3281-8. [PMID: 20802161 DOI: 10.1194/jlr.m010330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We determined the contribution of the combination of FEN1 10154G>T with the most significant association in the analysis of plasma arachidonic acid (AA, 20:4ω6) and the APOA5-1131T>C on phospholipid ω6PUFA and coronary artery disease (CAD). Patients with CAD (n = 807, 27-81 years of age) and healthy controls (n = 1123) were genotyped for FEN1 10154G>T and APOA5-1131T>C. We found a significant interaction between these two genes for CAD risk (P = 0.007) adjusted for confounding factors. APOA5-1131C allele carriers had a higher CAD risk [odds ratio (OR):1.484, 95% confidence interval (CI):1.31-1.96; P = 0.005] compared with APOA5-1131TT individuals in the FEN1 10154GG genotype group but not in the FEN1 10154T allele group (OR:1.096, 95%CI:0.84-1.43; P = 0.504). Significant interactions between these two genes were also observed for the AA proportion (P = 0.04) and the ratio of AA/linoleic acid (LA, 18:2ω6) (P = 0.004) in serum phospholipids of controls. The APOA5-1131C allele was associated with lower AA (P = 0.027) and AA/LA (P = 0.014) only in controls carrying the FEN1 10154T allele. In conclusion, the interaction between these genes suggests that the FEN1 10154T variant allele decreases AA and AA/LA in the serum phospholipids of carriers of the APOA5-1131C allele, but contributes no significant increase in CAD risk for this population subset despite their increased triglylcerides and decreased apoA5.
Collapse
Affiliation(s)
- Ju Yeon Park
- National Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Genetic variation of the FADS1 FADS2 gene cluster and n-6 PUFA composition in erythrocyte membranes in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Br J Nutr 2010; 104:1748-59. [PMID: 20691134 DOI: 10.1017/s0007114510002916] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Delta-5 (D5D) and delta-6 (D6D) desaturases are key enzymes in PUFA metabolism. Several factors (e.g. hyperglycaemia, hypertension, blood lipids, statins and fatty acids in diet and biological tissues) may influence desaturase activity. The goals were to evaluate the associations between variation in genes encoding these desaturases (FADS1 and FADS2) and blood concentrations of n-6 PUFA and estimated D5D and D6D activities (evaluated as product/precursor ratio), and to investigate whether other factors influencing the activity of desaturases modify these associations. A random sample of 2066 participants from the European Prospective Investigation into Cancer and Nutrition-Potsdam study (n 27 548) was utilised in the analyses. Crude and adjusted associations between rs174546 genotypes (reflecting genetic variation in the FADS1 FADS2 gene cluster), n-6 PUFA in erythrocytes and estimated desaturase activities were evaluated using multiple linear regression. Potential effect modification was determined by performing stratified analyses and evaluating interaction terms. We found rs174546 genotypes to be related to linoleic (r² 0·060), γ-linolenic (r² 0·041), eicosadienoic (r² 0·034), arachidonic (r² 0·026), docosatetraenoic acids (r² 0·028), estimated D6D activity (r² 0·052) and particularly strongly to dihomo-γ-linolenic acid (DGLA, r² 0·182) and D5D activity (r² 0·231). We did not observe effect modifications with regard to the estimated D5D activity, DGLA and arachidonic acid (AA) for most of the factors evaluated; however, the genetic effect on D5D activity and DGLA may be modified by the dietary n-6:n-3-ratio (P-values for interaction: 0·008 and 0·002), and the genetic effect on DGLA and AA may be modified by lipid-lowering medication (P-values for interaction: 0·0004 and 0·006). In conclusion, genetic variation in the FADS1 FADS2 gene cluster affects n-6 PUFA profiles in erythrocytes reflecting altered D5D activity.
Collapse
|
48
|
Rosenblat M, Volkova N, Roqueta-Rivera M, Nakamura MT, Aviram M. Increased macrophage cholesterol biosynthesis and decreased cellular paraoxonase 2 (PON2) expression in Δ6-desaturase knockout (6-DS KO) mice: Beneficial effects of arachidonic acid. Atherosclerosis 2010; 210:414-21. [DOI: 10.1016/j.atherosclerosis.2009.11.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 11/24/2022]
|
49
|
Ceylan-Isık A, Hünkar T, Aşan E, Kaymaz F, Arı N, Söylemezoǧlu T, Renda N, Soncul H, Bali M, Karasu Ç. Cod liver oil supplementation improves cardiovascular and metabolic abnormalities in streptozotocin diabetic rats. J Pharm Pharmacol 2010; 59:1629-41. [DOI: 10.1211/jpp.59.12.0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Abnormalities in the metabolism of essential fatty acids and the results of increased oxidative stress have been implicated in cardiovascular disorders observed in diabetes mellitus. This study, therefore, aimed to investigate the effects of cod liver oil (CLO, Lysi Ltd, Iceland), which comprises mainly an antioxidant vitamin A, n:3 polyunsaturated fatty acids (n:3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on cardiovascular abnormalities in streptozotocin (STZ)-diabetic rats. Two days after single STZ (55 mg kg−1, i.p.) or vehicle injection, diabetes was verified by increased blood glucose, and non-diabetic and diabetic rats were left untreated or treated with CLO (0.5 mL kg−1 daily, by intragastric probing) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic rats; CLO provided better weight gain, entirely prevented the plasma lipid abnormalities, but partially controlled the glycaemia in diabetic rats. In isolated aorta rings, diabetes resulted in increased phenylephrine-induced vasoconstriction and isoprenaline-induced vasorelaxation, impaired endothelium-dependent vasodilatation and unchanged responsiveness to sodium nitroprusside. CLO treatment completely prevented endothelial deficiency, partly corrected the phenylephrine-induced vasoconstriction and did not affect the responses to isoprenaline and sodium nitroprusside in diabetic aorta. Diabetes also produced a marked decrease in the rate of spontaneously beating right atria and a significant increase in basal contractile force of left ventricular papillary muscle. The responsiveness of right atria to the positive chronotropic effect of isoprenaline was significantly decreased in diabetic rats, and was increased in CLO-treated diabetic rats. The positive chronotropic effect of noradrenaline was markedly increased in diabetic atria, but prevented by CLO treatment. Diabetes also resulted in an increased positive inotropic response of papillary muscle to both noradrenaline and isoprenaline, which were prevented by CLO treatment. CLO treatment also resulted in lower tissue sensitivity (pD2) to these agonists in diabetic papillary muscle. Ventricular hydroxy-proline content was found to be unchanged among the experimental groups. The ultrastructure of diabetic myocardium displayed various degenerations (i.e. intracellular oedema, myofibrillar fragmentation, condensed pleomorphic mitochondria, thick capillary irregular basement membrane, swollen endothelial cells), which were partially prevented by CLO treatment. We conclude that the supplementation with CLO is effective in preventing cardiovascular disorders observed in experimental diabetes.
Collapse
Affiliation(s)
- Aslı Ceylan-Isık
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tuǧba Hünkar
- Institute of Forensic Medicine, Ankara University, Ankara, Turkey
| | - Esin Aşan
- Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Fugen Kaymaz
- Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nuray Arı
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Nurten Renda
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Halim Soncul
- Department of Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Musa Bali
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Çimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
50
|
Kitson AP, Stroud CK, Stark KD. Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids 2010; 45:209-24. [PMID: 20151220 DOI: 10.1007/s11745-010-3391-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/15/2010] [Indexed: 01/25/2023]
Abstract
Observational evidence suggests that in populations consuming low levels of n-3 highly unsaturated fatty acids, women have higher blood levels of docosahexaenoic acid (DHA; 22:3n-6) as compared with men. Increased conversion of alpha-linolenic acid (ALA; 18:3n-3) to DHA by females has been confirmed in fatty acid stable isotope studies. This difference in conversion appears to be associated with estrogen and some evidence indicates that the expression of enzymes involved in synthesis of DHA from ALA, including desaturases and elongases, is elevated in females. An estrogen-associated effect may be mediated by peroxisome proliferator activated receptor-alpha (PPARalpha), as activation of this nuclear receptor increases the expression of these enzymes. However, because estrogens are weak ligands for PPARalpha, estrogen-mediated increases in PPARalpha activity likely occur through an indirect mechanism involving membrane-bound estrogen receptors and estrogen-sensitive G-proteins. The protein kinases activated by these receptors phosphorylate and increase the activity of PPARalpha, as well as phospholipase A(2) and cyclooxygenase 2 that increase the intracellular concentration of PPARalpha ligands. This review will outline current knowledge regarding elevated DHA production in females, as well as highlight interactions between estrogen signaling and PPARalpha activity that may mediate this effect.
Collapse
Affiliation(s)
- Alex P Kitson
- Laboratory of Nutritional and Nutraceutical Research, Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|