1
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Piscitelli F, Di Marzo V, Starowicz K. The emerging role of endocannabinoid system modulation in human fibroblast-like synoviocytes: Exploring new biomarkers and potential therapeutic targets. Biomed Pharmacother 2025; 186:118040. [PMID: 40215649 DOI: 10.1016/j.biopha.2025.118040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Human fibroblast-like synoviocytes (HFLS) are the predominant cellular component of the joint synovium. Their inflammation, known as synovitis, may contribute to the development of osteoarthritis (OA). HFLS secrete signaling factors that regulate joint function in response to mechanical trauma or OA progression. Among these factors, prostaglandin E2 (PGE2) is a key pro-inflammatory mediator, whereas prostamides, such as prostamide E2 (PME2), are synthesized from anandamide (AEA) by the same enzymes that produce PGE2. HFLS were isolated from both control subjects and OA patients (HFLS-OA) and stimulated with lipopolysaccharide (LPS, 10 ng/mL). Liquid chromatography-tandem mass spectrometry (LC-MS) was used to analyze PGE2 and PME2 secretion. Additionally, transcriptome and miRNA sequencing were conducted to identify changes in gene expression between HFLS and HFLS-OA cells. Five endocannabinoid-related genes were further validated by qPCR. Baseline PGE2 secretion differed between HFLS and HFLS-OA, with OA-related cells showing increased levels, while control cells primarily produced PME2. Upon pro-inflammatory stimulation, both cell types secreted PGE2. Changes in endocannabinoid levels and expression of endocannabinoid-related genes were observed in HFLS-OA following stimulation. miRNA sequencing revealed significant differences in miRNA expression between HFLS and HFLS-OA. Notably, HFLS-OA exhibited upregulation of Diacylglycerol lipase B (DAGLB) and downregulation of Fatty Acid-Binding Protein 4 and 5 (FABP4 and FABP5) gene expression compared to controls. The study suggests a reorganization of the endocannabinoid system in HFLS from OA patients, leading to altered cellular responses to pro-inflammatory stimuli. The molecular changes observed may drive or regulate the inflammatory response in OA synoviocytes, highlighting potential therapeutic targets. These findings provide insights into the potential mechanisms underlying OA pathogenesis and support the hypothesis of altered endocannabinoid system reactivity in HFLS in the context of inflammation.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland; Neuroplasticity and Metabolism Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Québec City, Canada
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
2
|
Khan S, Tao F. Mechanisms for Orofacial Pain: Roles of Immunomodulation, Metabolic Reprogramming, Oxidative Stress and Epigenetic Regulation. Biomedicines 2025; 13:434. [PMID: 40002847 PMCID: PMC11853523 DOI: 10.3390/biomedicines13020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Objectives: Orofacial pain corresponds to pain sensitization originating from the facial and oral regions, often accompanied by diagnostic complexity due to a multitude of contributory factors, leading to significant patient distress and impairment. Here, we have reviewed current mechanistic pathways and biochemical aspects of complex orofacial pain pathology, highlighting recent advancements in understanding its multifactorial regulation and signaling and thus providing a holistic approach to challenging it. Materials and Methods: Studies were identified from an online search of the PubMed database without any search time range. Results: We have discussed neuron-glia interactions and glial cell activation in terms of immunomodulatory effects, metabolism reprogramming effects and epigenetic modulatory effects, in response to orofacial pain sensitization comprising different originating factors. We have highlighted the fundamental role of oxidative stress affecting significant cellular pathways as well as cellular machinery, which renders pain pathology intricate and multidimensional. Emerging research on the epigenetic modulation of pain regulatory genes in response to molecular and cellular environmental factors is also discussed, alongside updates on novel diagnostic and treatment approaches. Conclusions: This review deliberates the integrative perspectives and implications of modulation in the immune system, glucose metabolism, lipid metabolism and redox homeostasis accompanied by mitochondrial dysfunction as well as epigenetic regulation accommodating the effect of dysregulated non-coding RNAs for an interdisciplinary understanding of pain pathology at the molecular level, aiming to improve patient outcomes with precise diagnosis offering improved pain management and treatment.
Collapse
Affiliation(s)
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA;
| |
Collapse
|
3
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
4
|
Turnbull J, Chapman V. Targeting the soluble epoxide hydrolase pathway as a novel therapeutic approach for the treatment of pain. Curr Opin Pharmacol 2024; 78:102477. [PMID: 39197248 DOI: 10.1016/j.coph.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
Chronic pain is a major burden and the complexities of chronic pain pathophysiology, including both peripheral and central sensitisation mechanisms, involves multiple cell types (neuronal, immune, neuroimmune, and vascular) which substantially complicates the development of new effective analgesic treatments. The epoxy fatty acids (EpFAs), including the epoxyeicosatrienoic acids (EETs), are derived from the metabolism of polyunsaturated fatty acids (PUFAs) via the cytochrome P450 enzymatic pathway and act to shut-down inflammatory signalling and provide analgesia. The EpFAs are rapidly metabolised by the enzyme soluble epoxide hydrolase (sEH) into their corresponding diol metabolites, which recent studies suggest are pro-inflammatory and pro-nociceptive. This review discusses clinical and mechanistic evidence for targeting the sEH pathway for the treatment of pain.
Collapse
Affiliation(s)
- James Turnbull
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Lötsch J, Gasimli K, Malkusch S, Hahnefeld L, Angioni C, Schreiber Y, Trautmann S, Wedel S, Thomas D, Ferreiros Bouzas N, Brandts CH, Schnappauf B, Solbach C, Geisslinger G, Sisignano M. Machine learning and biological validation identify sphingolipids as potential mediators of paclitaxel-induced neuropathy in cancer patients. eLife 2024; 13:RP91941. [PMID: 39347767 PMCID: PMC11444680 DOI: 10.7554/elife.91941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a serious therapy-limiting side effect of commonly used anticancer drugs. Previous studies suggest that lipids may play a role in CIPN. Therefore, the present study aimed to identify the particular types of lipids that are regulated as a consequence of paclitaxel administration and may be associated with the occurrence of post-therapeutic neuropathy. Methods High-resolution mass spectrometry lipidomics was applied to quantify d=255 different lipid mediators in the blood of n=31 patients drawn before and after paclitaxel therapy for breast cancer treatment. A variety of supervised statistical and machine-learning methods was applied to identify lipids that were regulated during paclitaxel therapy or differed among patients with and without post-therapeutic neuropathy. Results Twenty-seven lipids were identified that carried relevant information to train machine learning algorithms to identify, in new cases, whether a blood sample was drawn before or after paclitaxel therapy with a median balanced accuracy of up to 90%. One of the top hits, sphinganine-1-phosphate (SA1P), was found to induce calcium transients in sensory neurons via the transient receptor potential vanilloid 1 (TRPV1) channel and sphingosine-1-phosphate receptors.SA1P also showed different blood concentrations between patients with and without neuropathy. Conclusions Present findings suggest a role for sphinganine-1-phosphate in paclitaxel-induced biological changes associated with neuropathic side effects. The identified SA1P, through its receptors, may provide a potential drug target for co-therapy with paclitaxel to reduce one of its major and therapy-limiting side effects. Funding This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG, Grants SFB1039 A09 and Z01) and by the Fraunhofer Foundation Project: Neuropathic Pain as well as the Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD). This work was also supported by the Leistungszentrum Innovative Therapeutics (TheraNova) funded by the Fraunhofer Society and the Hessian Ministry of Science and Arts. Jörn Lötsch was supported by the Deutsche Forschungsgemeinschaft (DFG LO 612/16-1).
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Khayal Gasimli
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Nerea Ferreiros Bouzas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Christian H Brandts
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University, University Cancer Center Frankfurt (UCT), Goethe University Hospital, Frankfurt, Germany
| | | | - Christine Solbach
- Goethe University, Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
6
|
Liu Y, Zhang G, Zhu C, Yao X, Wang W, Shen L, Wang H, Lin N. The analgesic effects of Yu-Xue-Bi tablet (YXB) on mice with inflammatory pain by regulating LXA4-FPR2-TRPA1 pathway. Chin Med 2024; 19:104. [PMID: 39107849 PMCID: PMC11302111 DOI: 10.1186/s13020-024-00975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Oxylipins including lipoxin A4 (LXA4) facilitate the resolution of inflammation and possess analgesic properties by inhibiting macrophage infiltration and transient receptor potential (TRP) protein expression. Yu-Xue-Bi Tablet (YXB) is a traditional Chinese patent medicine used to relieve inflammatory pain. Our previous research has shown that the analgesic effect of YXB is related to inhibiting peripheral inflammation and regulating macrophage infiltration, but the mechanism is not yet clear. The purpose of this study is to explore the mechanisms of YXB on mice models with Complete Freund's Adjuvant (CFA)-induced inflammatory pain from the perspective at the resolution of inflammation. METHODS Mechanical allodynia thresholds and heat hypersensitivity were measured using the Von Frey test and the hot plate test respectively. The open field test and the tail suspension test were employed to measure anxiety and depressive behaviors respectively. The expression of CD68+ and the proportion of F4/80+CD11b+ cells were measured by immunofluorescence staining and flow cytometry. The expression of transient receptor potential ankyrin 1(TRPA1) was measured by immunofluorescence staining and western blotting. Oxylipins omics analysis provided quantitative data on oxylipins in the paws, and enzyme linked immunosorbent assay (ELISA) was used to measure the levels of LXA4 there. Immunofluorescence staining was used to perform the expression of Leukotriene A4 hydroxylase (LTA4H) in the paws of mice. The impact of injecting the formyl peptide receptor 2(FPR2) antagonist WRW4 and the TRPA1 agonist AITC into the left paws was observed, focusing on the expression of mechanical allodynia thresholds, the expression of CD68+, TRPA1 in the paws, and Calcitonin gene-related peptide (CGRP) in the L5 spinal dorsal horn. RESULTS YXB elevated mechanical allodynia thresholds, alleviated heat hypersensitivity and anxiety and depressive behaviors in CFA mice. It significantly reduced the number of CD68+ and proportion of F4/80+CD11b+ within the paws, thereby decreasing macrophage infiltration. Additionally, it diminished the expression of TRPA1 in the paws and TRPV1 in the DRG, leading to an inhibition of peripheral sensitization. Through quantitative analysis, it was found that YXB could modulate DHA-derived oxylipins and LXA4. ELISA results indicated that YXB elevated the levels of LXA4 and inhibited the expression of LAT4H in the paws. Furthermore, the pro-resolution and analgesic effects of YXB were hindered after administration of the FPR2 antagonist. Compared with the AITC group, YXB showed no significant improvement in anti-inflammatory and analgesic effects. CONCLUSIONS YXB can regulate the oxylipins of paws in CFA mice to promote the resolution of inflammation. The LXA4-FPR2-TRPA1 pathway is a key mechanism for the resolution of inflammation and analgesic effects.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xuemin Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Shen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Turnbull J, Jha RR, Gowler PRW, Ferrands-Bentley R, Kim DH, Barrett DA, Sarmanova A, Fernandes GS, Doherty M, Zhang W, Walsh DA, Valdes AM, Chapman V. Serum levels of hydroxylated metabolites of arachidonic acid cross-sectionally and longitudinally predict knee pain progression: an observational cohort study. Osteoarthritis Cartilage 2024; 32:990-1000. [PMID: 38648876 DOI: 10.1016/j.joca.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To examine associations between serum oxylipins, which regulate tissue repair and pain signalling, and knee pain/radiographic osteoarthritis (OA) at baseline and knee pain at 3 year follow-up. METHOD Baseline, and 3 year follow-up, knee pain phenotypes were assessed from 154 participants in the Knee Pain in the Community (KPIC) cohort study. Serum and radiographic Kellgren and Lawrence (KL) and Nottingham line drawing atlas OA scores were collected at baseline. Oxylipin levels were quantified using liquid chromatography coupled with mass spectrometry. Associations were measured by linear regression and receiver operating characteristics (ROC). RESULTS Serum levels of 8,9-epoxyeicosatrienoic acid (EET) (β(95% confidence intervals (CI)) = 1.809 (-0.71 to 2.91)), 14,15-dihydroxyeicosatrienoic acid (DHET) (β(95%CI) = 0.827 (0.34-1.31)), and 12-hydroxyeicosatetraenoic acid (HETE) (β(95%CI) = 4.090 (1.92-6.26)) and anandamide (β(95%CI) = 3.060 (1.35-4.77)) were cross-sectionally associated with current self-reported knee pain scores (numerical rating scale (NRS) item 3, average pain). Serum levels of 9- (β(95%CI) = 0.467 (0.18-0.75)) and 15-HETE (β(95%CI) = 0.759 (0.29-1.22)), 14-hydroxydocosahexaenoic acid (β(95%CI) = 0.483(0.24-0.73)), and the ratio of 8,9-EET:DHET (β(95%CI) = 0.510(0.19-0.82)) were cross-sectionally associated with KL scores. Baseline serum concentrations of 8,9-EET (β(95%CI) = 2.166 (0.89-3.44)), 5,6-DHET (β(95%CI) = 152.179 (69.39-234.97)), and 5-HETE (β(95%CI) = 1.724 (0.677-2.77) showed positive longitudinal associations with follow-up knee pain scores (NRS item 3, average pain). Combined serum 8,9-EET and 5-HETE concentration showed the strongest longitudinal association (β(95%CI) = 1.156 (0.54-1.77) with pain scores at 3 years, and ROC curves distinguished between participants with no pain and high pain scores at follow-up (area under curve (95%CI) = 0.71 (0.61-0.82)). CONCLUSIONS Serum levels of a combination of hydroxylated metabolites of arachidonic acid may have prognostic utility for knee pain, providing a potential novel approach to identify people who are more likely to have debilitating pain in the future.
Collapse
Affiliation(s)
- James Turnbull
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Rakesh R Jha
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - Peter R W Gowler
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Rose Ferrands-Bentley
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Dong-Hyun Kim
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - David A Barrett
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - Aliya Sarmanova
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Gwen S Fernandes
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Michael Doherty
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Weiya Zhang
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - David A Walsh
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Ana M Valdes
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|
8
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
9
|
Bekauri T, Fischer S, Honn KV, Maddipati KR, Love T, Little C, Wood RW, Bonham AD, Linder MA, Yule DI, Emanuelle C, Falsetta ML. Inflammation, lipid dysregulation, and transient receptor potential cation channel subfamily V member 4 signaling perpetuate chronic vulvar pain. Pain 2024; 165:820-837. [PMID: 37889581 PMCID: PMC10949218 DOI: 10.1097/j.pain.0000000000003088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Localized provoked vulvodynia is characterized by chronic vulvar pain that disrupts every aspect of the patient's life. Pain is localized to the vulvar vestibule, a specialized ring of tissue immediately surrounding the vaginal opening involved in immune defense. In this article, we show inflammation is the critical first step necessary for the generation of pain signals in the vulva. Inflammatory stimuli alone or combined with the transient receptor potential cation channel subfamily V member 4 (TRPV4) agonist 4α-phorbol 12,13-didecanoate stimulate calcium flux into vulvar fibroblast cells. Activity is blocked by the TRPV4 antagonist HC067047, denoting specificity to TRPV4. Using lipidomics, we found pro-resolving lipids in the vulvar vestibule were dysregulated, characterized by a reduction in pro-resolving mediators and heightened production of inflammatory mediators. We demonstrate specialized pro-resolving mediators represent a potential new therapy for vulvar pain, acting on 2 key parts of the disease mechanism by limiting inflammation and acutely inhibiting TRPV4 signaling.
Collapse
Affiliation(s)
- Tamari Bekauri
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Sarah Fischer
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Kenneth V. Honn
- Pathology Department, Wayne State University, Detroit, MI, United States
- Lipidomics Core Facility and Bioactive Lipids Research Program, Wayne State University, Detroit, MI, United States
| | - Krishna Rao Maddipati
- Pathology Department, Wayne State University, Detroit, MI, United States
- Lipidomics Core Facility and Bioactive Lipids Research Program, Wayne State University, Detroit, MI, United States
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Chantelle Little
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Ronald W. Wood
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Adrienne D. Bonham
- OB/GYN Department, Oregon Health Sciences University, Portland, OR, United States
| | - Mitchell A. Linder
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - David I. Yule
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| | - Chrysilla Emanuelle
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| | - Megan L. Falsetta
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| |
Collapse
|
10
|
Shao J, Lai C, Zheng Q, Luo Y, Li C, Zhang B, Sun Y, Liu S, Shi Y, Li J, Zhao Z, Guo L. Effects of dietary arsenic exposure on liver metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116147. [PMID: 38460405 DOI: 10.1016/j.ecoenv.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong 510176, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guangdong Province 527300, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jinglin Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
11
|
Birkic N, Visentin D, Svedružić Ž, Reynolds CA. Binding interactions of fatty acyl lipid mediators within the vanilloid pocket of TRPV1: A molecular dynamics study. Prostaglandins Other Lipid Mediat 2023; 169:106771. [PMID: 37657597 PMCID: PMC10841302 DOI: 10.1016/j.prostaglandins.2023.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is a ligand-gated, nonselective cation channel expressed in primary sensory neurons, which has a role in nociception. The channel is activated by noxious heat, pH, capsaicin and other endogenous vanilloids, including lipid mediators (LMs) enzymatically derived from polyunsaturated fatty acids (PUFA). Although capsaicin binding to TRPV1 has been well characterized, the molecular mechanism by which endogenous LM ligands bind the channel is not well understood. In this study, we characterized the binding interactions for 13 endogenous LM ligands, within the vanilloid pocket of TRPV1 using a molecular dynamics (MD) approach. We observed that LM ligands can be grouped based on their structure and affinity for the vanilloid pocket. Furthermore, the position as well as the number of the polar groups on the LM ligand directly impact binding stability through various polar interactions with the protein. As an additional control we performed docking experiments of the PUFA precursor molecules linoleic acid and arachidonic acid which failed to form stable interactions within the vanilloid pocket. While LM ligands with similar structures displayed similar binding interactions, there were notable exceptions in the case of 20-HETE, 9-HODE, and 9,10-DiHOME. Our study offers new insights into the mechanisms involved in TRPV1 activation by endogenous LM ligands. The observed binding interactions may assist in the interpretation of in vivo and in vitro pharmacodynamics studies.
Collapse
Affiliation(s)
- Nada Birkic
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Visentin
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Željko Svedružić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Christian A Reynolds
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Dai Y, Chen Y, Gu R, Zhang C, Jiang R. Causal association of polyunsaturated fatty acids with chronic pain: a two-sample Mendelian randomization study. Front Nutr 2023; 10:1265928. [PMID: 37743908 PMCID: PMC10512421 DOI: 10.3389/fnut.2023.1265928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background Observational studies have indicated an association between polyunsaturated fatty acids (PUFAs) and chronic pain, but the potential causal link remains controversial. Here, we aimed to investigate whether a causal relationship exists between the concentration of circulating PUFAs and chronic pain as well as the direction of this association. Methods We collected statistical data from relevant genome-wide association studies to explore the causal link between four PUFAs, along with the ratio of omega-6 fatty acids (FAs) to omega-3 FAs (omega-6:3 ratio), and chronic pain in eight specific body parts. We used the inverse-variance weighting (IVW) method for two-sample Mendelian randomization (MR) analysis and conducted supplementary analyses using four other methods (MR-Egger, weighted median, weighted mode, and simple mode). To verify the robustness of the MR study, we performed multiple sensitivity analyses. Results The results revealed a negative correlation between omega-3 FAs [IVW, OR 95% CI: 0.952 (0.914, 0.991), p = 0.017] and docosahexaenoic acid (DHA) [IVW, OR 95% CI: 0.935 (0.893, 0.978), p = 0.003] with abnormal and pelvic pain. Furthermore, a positive correlation was observed between the omega-6:3 ratio [IVW, OR 95% CI: 1.057 (1.014, 1.101), p = 0.009] with abdominal and pelvic pain. Additionally, we found a negative correlation between omega-3 FAs [IVW, OR 95% CI: 0.947 (0.902, 0.994), p = 0.028] and lower back pain or sciatica. However, no causal relationship was found between the concentration of circulating PUFAs and pain in other body parts, including the face, throat and chest, joints, limbs, lower back, and gynecological parts. The robustness of these MR results was verified through multi-validity and retention method analyses. Conclusion Our analysis suggests that higher circulating concentrations of omega-3 FAs and DHA and a lower omega-6:3 ratio are associated with a reduced risk of abdominal and pelvic pain. Additionally, a higher concentration of circulating omega-3 FAs is linked to a reduced risk of lower back pain and/or sciatica. These findings have major implications for the targeted prevention and treatment of chronic pain using PUFAs.
Collapse
Affiliation(s)
- Yuxuan Dai
- Department of Plastic Surgery, The Third Bethune Hospital of Jilin University, Changchun, China
| | - Yu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Gu
- Department of Orthopedics, The Third Bethune Hospital of Jilin University, Changchun, China
| | - Chao Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Rui Jiang
- Department of Orthopedics, The Third Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Falsetta ML, Maddipati KR, Honn KV. Inflammation, lipids, and pain in vulvar disease. Pharmacol Ther 2023; 248:108467. [PMID: 37285943 PMCID: PMC10527276 DOI: 10.1016/j.pharmthera.2023.108467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Localized provoked vulvodynia (LPV) affects ∼14 million people in the US (9% of women), destroying lives and relationships. LPV is characterized by chronic pain (>3 months) upon touch to the vulvar vestibule, which surrounds the vaginal opening. Many patients go months or years without a diagnosis. Once diagnosed, the treatments available only manage the symptoms of disease and do not correct the underlying problem. We have focused on elucidating the underlying mechanisms of chronic vulvar pain to speed diagnosis and improve intervention and management. We determined the inflammatory response to microorganisms, even members of the resident microflora, sets off a chain of events that culminates in chronic pain. This agrees with findings from several other groups, which show inflammation is altered in the painful vestibule. The vestibule of patients is acutely sensitive to inflammatory stimuli to the point of being deleterious. Rather than protect against vaginal infection, it causes heightened inflammation that does not resolve, which coincides with alterations in lipid metabolism that favor production of proinflammatory lipids and not pro-resolving lipids. Lipid dysbiosis in turn triggers pain signaling through the transient receptor potential vanilloid subtype 4 receptor (TRPV4). Treatment with specialized pro-resolving mediators (SPMs) that foster resolution reduces inflammation in fibroblasts and mice and vulvar sensitivity in mice. SPMs, specifically maresin 1, act on more than one part of the vulvodynia mechanism by limiting inflammation and acutely inhibiting TRPV4 signaling. Therefore, SPMs or other agents that target inflammation and/or TRPV4 signaling could prove effective as new vulvodynia therapies.
Collapse
Affiliation(s)
- Megan L Falsetta
- University of Rochester, OB/GYN Research Division, Rochester, NY, United States of America; University of Rochester, Pharmacology and Physiology Department, Rochester, NY, United States of America.
| | - Krishna Rao Maddipati
- Wayne State University, Pathology Department, Detroit, MI, United States of America; Wayne State University, Lipidomics Core Facility and Bioactive Lipids Research Program, Detroit, MI, United States of America
| | - Kenneth V Honn
- Wayne State University, Pathology Department, Detroit, MI, United States of America; Wayne State University, Lipidomics Core Facility and Bioactive Lipids Research Program, Detroit, MI, United States of America
| |
Collapse
|
14
|
Kasuya J, Johnson W, Chen HL, Kitamoto T. Dietary Supplementation with Milk Lipids Leads to Suppression of Developmental and Behavioral Phenotypes of Hyperexcitable Drosophila Mutants. Neuroscience 2023; 520:1-17. [PMID: 37004908 PMCID: PMC10200772 DOI: 10.1016/j.neuroscience.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Dietary modifications often have a profound impact on the penetrance and expressivity of neurological phenotypes that are caused by genetic defects. Our previous studies in Drosophila melanogaster revealed that seizure-like phenotypes of gain-of-function voltage-gated sodium (Nav) channel mutants (paraShu, parabss1, and paraGEFS+), as well as other seizure-prone "bang-sensitive" mutants (eas and sda), were drastically suppressed by supplementation of a standard diet with milk whey. In the current study we sought to determine which components of milk whey are responsible for the diet-dependent suppression of their hyperexcitable phenotypes. Our systematic analysis reveals that supplementing the diet with a modest amount of milk lipids (0.26% w/v) mimics the effects of milk whey. We further found that a minor milk lipid component, α-linolenic acid, contributed to the diet-dependent suppression of adult paraShu phenotypes. Given that lipid supplementation during the larval stages effectively suppressed adult paraShu phenotypes, dietary lipids likely modify neural development to compensate for the defects caused by the mutations. Consistent with this notion, lipid feeding fully rescued abnormal dendrite development of class IV sensory neurons in paraShu larvae. Overall, our findings demonstrate that milk lipids are sufficient to ameliorate hyperexcitable phenotypes in Drosophila mutants, providing a foundation for future investigation of the molecular and cellular mechanisms by which dietary lipids modify genetically induced abnormalities in neural development, physiology, and behavior.
Collapse
Affiliation(s)
- Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 1-376 BSB, 51 Newton Road, Iowa City, IA 52242, United States.
| | - Wayne Johnson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, United States; Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States.
| | - Hung-Lin Chen
- Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States.
| |
Collapse
|
15
|
Wheeler JJ, Domenichiello AF, Jensen JR, Keyes GS, Maiden KM, Davis JM, Ramsden CE, Mishra SK. Endogenous Derivatives of Linoleic Acid and their Stable Analogs Are Potential Pain Mediators. JID INNOVATIONS 2023; 3:100177. [PMID: 36876220 PMCID: PMC9982331 DOI: 10.1016/j.xjidi.2022.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022] Open
Abstract
Psoriasis is characterized by intense pruritus, with a subset of individuals with psoriasis experiencing thermal hypersensitivity. However, the pathophysiology of thermal hypersensitivity in psoriasis and other skin conditions remains enigmatic. Linoleic acid is an omega-6 fatty acid that is concentrated in the skin, and oxidation of linoleic acid into metabolites with multiple hydroxyl and epoxide functional groups has been shown to play a role in skin barrier function. Previously, we identified several linoleic acid‒derived mediators that were more concentrated in psoriatic lesions, but the role of these lipids in psoriasis remains unknown. In this study, we report that two such compounds-9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate-are present as free fatty acids and induce nociceptive behavior in mice but not in rats. By chemically stabilizing 9,10-epoxy-13-hydroxy-octadecenoate and 9,10,13-trihydroxy-octadecenoate through the addition of methyl groups, we observed pain and hypersensitization in mice. The nociceptive responses suggest an involvement of the TRPA1 channel, whereas hypersensitive responses induced by these mediators may require both TRPA1 and TRPV1 channels. Furthermore, we showed that 9,10,13-trihydroxy-octadecenoate‒induced calcium transients in sensory neurons are mediated through the Gβγ subunit of an unidentified G-protein coupled receptor (GPCR). Overall, mechanistic insights from this study will guide the development of potential therapeutic targets for the treatment of pain and hypersensitivity.
Collapse
Key Words
- 9,10,13-THL, 9,10,13-trihydroxy-octadecenoate
- 9,13-EHL, 13-hydroxy-9,10-epoxy octadecenoate
- CFA, complete Freund’s adjuvant
- DRG, dorsal root ganglia
- GPCR, G-protein coupled receptor
- HODE, hydroxyoctadecenoate
- KO, knockout
- LA, linoleic acid
- LC-MS/MS, liquid chromatography‒tandem mass spectrometry
- PGE2, prostaglandin E2
- TRP, transient receptor potential
Collapse
Affiliation(s)
- Joshua J. Wheeler
- Department of Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Anthony F. Domenichiello
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer R. Jensen
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Gregory S. Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Kristen M. Maiden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
- Obstetrics-Gynecology Program, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John M. Davis
- Department of Psychiatry, Psychiatry College of Medicine, University of Illinois at Chicago, Chicago, Ilinois, USA
| | - Christopher E. Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Santosh K. Mishra
- Department of Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
- Correspondence: Santosh K. Mishra, Department of Biomedical Sciences, College of Veterinary Medicine, NC State University, 1060 William Moore Drive, RB 242, Raleigh 27607, North Carolina, USA.
| |
Collapse
|
16
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
17
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
18
|
Birkic N, Azar T, Maddipati KR, Minic Z, Reynolds CA. Excessive dietary linoleic acid promotes plasma accumulation of pronociceptive fatty acyl lipid mediators. Sci Rep 2022; 12:17832. [PMID: 36284115 PMCID: PMC9596689 DOI: 10.1038/s41598-022-21823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 01/20/2023] Open
Abstract
Various fatty acyl lipid mediators are derived from dietary polyunsaturated fatty acids (PUFAs) and modulate nociception. The modern diet is rich in linoleic acid, which is associated with nociceptive hypersensitivities and may present a risk factor for developing pain conditions. Although recommendations about fatty acid intake exist for some diseases (e.g. cardiovascular disease), the role of dietary fatty acids in promoting pain disorders is not completely understood. To determine how dietary linoleic acid content influences the accumulation of pro- and anti-nociceptive fatty acyl lipid mediators, we created novel rodent diets using custom triglyceride blends rich in either linoleic acid or oleic acid. We quantified the fatty acyl lipidome in plasma of male and female rats fed these custom diets from the time of weaning through nine weeks of age. Dietary fatty acid composition determined circulating plasma fatty acyl lipidome content. Exposure to a diet rich in linoleic acid was associated with accumulation of linoleic and arachidonic acid-derived pro-nociceptive lipid mediators and reduction of anti-nociceptive lipid mediators derived from the omega-3 PUFAs. Our findings provide mechanistic insights into exaggerated nociceptive hypersensitivity associated with excessive dietary linoleic acid intake and highlight potential biomarkers for pain risk stratification.
Collapse
Affiliation(s)
- Nada Birkic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Toni Azar
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zeljka Minic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christian A Reynolds
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
19
|
Minic Z, O’Leary DS, Reynolds CA. Spinal Reflex Control of Arterial Blood Pressure: The Role of TRP Channels and Their Endogenous Eicosanoid Modulators. Front Physiol 2022; 13:838175. [PMID: 35283783 PMCID: PMC8904930 DOI: 10.3389/fphys.2022.838175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
The spinal cord is an important integrative center for blood pressure control. Spinal sensory fibers send projections to sympathetic preganglionic neurons of the thoracic spinal cord and drive sympathetically-mediated increases in blood pressure. While these reflexes responses occur in able-bodied individuals, they are exaggerated following interruption of descending control - such as occurs following spinal cord injury. Similar reflex control of blood pressure may exist in disease states, other than spinal cord injury, where there is altered input to sympathetic preganglionic neurons. This review primarily focuses on mechanisms wherein visceral afferent information traveling via spinal nerves influences sympathetic nerve activity and blood pressure. There is an abundance of evidence for the widespread presence of this spinal reflex arch originating from virtually every visceral organ and thus having a substantial role in blood pressure control. Additionally, this review highlights specific endogenous eicosanoid species, which modulate the activity of afferent fibers involved in this reflex, through their interactions with transient receptor potential (TRP) cation channels.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian A. Reynolds
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
20
|
Development, validation, and application of an HPLC-MS/MS method for quantification of oxidized fatty acids in plants. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123006. [PMID: 34775259 DOI: 10.1016/j.jchromb.2021.123006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Oxylipins constitute a huge class of compounds produced by oxidation of long-chain unsaturated fatty acids either chemically (by radicals such as reactive oxygen species, ROS) or enzymatically (by lipoxygenases, LOX; cyclooxygenases, COX; or cytochrome P450 pathways). This process generates fatty acids peroxides, which can then be further modified in a broad range to epoxy, hydroxy, keto, ether fatty acids, and also hydrolyzed to generate small aldehydes and alcohols. In general, oxylipins are present in almost all living organisms and have a wide range of signaling, metabolic, physiological, and ecological roles depending on the particular organism and on their structure. In plants, oxylipins have been extensively studied over the past 35 years. However, these studies have focused mainly on the jasmonates and so-called green leaves volatiles. The function of early LOX products (like keto and hydroxy fatty acids) is yet not well understood in plants, where they are mainly analyzed by indirect methods or by GC-MS what requires a laborious sample preparation. Here, we developed and validated a straightforward, precise, accurate, and sensitive method for quantifying oxylipins in plant tissues using HPLC-MS/MS, with a one-step extraction procedure using low amount of plant tissues. We successfully applied this method to quantify the oxylipins in different plant species and Arabidopsis thaliana plants treated with various biotic and abiotic stress conditions.
Collapse
|
21
|
Hamers A, Primus CP, Whitear C, Kumar NA, Masucci M, Montalvo Moreira SA, Rathod K, Chen J, Bubb K, Colas R, Khambata RS, Dalli J, Ahluwalia A. 20-HETE is a pivotal endogenous ligand for TRPV1-mediated neurogenic inflammation in the skin. Br J Pharmacol 2021; 179:1450-1469. [PMID: 34755897 DOI: 10.1111/bph.15726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential cation channel subfamily V member 1 (TRPV1) is localised to sensory C-fibres and its opening leads to membrane depolarization, resulting in neuropeptide release and neurogenic inflammation. However, the identity of the endogenous activator of TRPV1 in this setting is unknown. The arachidonic acid (AA) metabolites 12-hydroperoxyeicosatetraenoyl acid (12-HpETE) and 20-hydroxyeicosatetraenoic acid (20-HETE) have emerged as potential endogenous activators of TRPV1 however, whether these lipids underlie TRPV1-mediated neurogenic inflammation remains unknown. EXPERIMENTAL APPROACH we analysed human cantharidin-induced blister samples and inflammatory responses in TRPV1 transgenic mice. KEY RESULTS In a human cantharidin-blister model the potent TRPV1 activators 20-HETE but not 12-HETE (stable metabolite of 12-HpETE) correlated with AA levels. Similarly, in mice levels of 20-HETE (but not 12-HETE) and AA were strongly positively correlated within the inflammatory milieu. Furthermore, LPS-induced oedema formation and neutrophil recruitment were substantially and significantly attenuated by pharmacological block or genetic deletion of TRPV1 channels, inhibition of 20-HETE formation or SP receptor neurokinin 1 (NK1 ) blockade. LPS treatment also increased cytochrome-P450 ώ-hydroxylase gene expression, the enzyme responsible for 20-HETE production. CONCLUSIONS AND IMPLICATIONS Taken together, our findings suggest that endogenously generated 20-HETE activates TRPV1 causing C-fibre activation and consequent oedema formation. These findings identify a novel pathway that may be useful in the therapeutics of diseases/conditions characterized by a prominent neurogenic inflammation, as in several skin diseases.
Collapse
Affiliation(s)
- Alexander Hamers
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Christopher P Primus
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Charlotte Whitear
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Nitin Ajit Kumar
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Michael Masucci
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Shanik A Montalvo Moreira
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Krishnaraj Rathod
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Jianmin Chen
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Kristen Bubb
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Romain Colas
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Jesmond Dalli
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London
| |
Collapse
|
22
|
Castor K, Dawlaty J, Arakaki X, Gross N, Woldeamanuel YW, Harrington MG, Cowan RP, Fonteh AN. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol Neurosci 2021; 14:691733. [PMID: 34531722 PMCID: PMC8438335 DOI: 10.3389/fnmol.2021.691733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. Methods We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. Results Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. Conclusions Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.
Collapse
Affiliation(s)
- Katherine Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Jessica Dawlaty
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noah Gross
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Robert P Cowan
- Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Sundar M, Suresh S, Lingakumar K. Influence of Caralluma adscendens Var. attenuata cold cream on UV-B damaged skin epidermal cells: a novel approach. 3 Biotech 2021; 11:155. [PMID: 33747705 PMCID: PMC7930170 DOI: 10.1007/s13205-021-02694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet radiation-induced sunburns are characterized by pigmented, wrinkled, and dried skin, with rashes and red spots. Chemical sunscreen lotion shows beneficial effects, but it shows the adverse side effect while in continuous usage. Natural substances of plant origin are deemed a possible cause of UV radiation through sunscreen resources. On this basis, we formulated the cold cream from the Caralluma adscendens Var. attenuata (CAVA) plant extract. The phytocompounds were studied by using GC-MS. The antioxidant potential of the plant extract was determined, and the CAVA showed cytotoxicity on A375 skin melanoma cells determined by MTT assay. The FT-IR spectra analysis confirmed the chemical nature of crude and crosslinking between cold creams. The cream was applied topically to rats pre-exposed to UV-B radiation (32,800 J/m2) four times/week (on alternate days). UV-B exposed without any treatment rats showed increased red spots or wrinkles (5 cm2). In contrast, the cold cream treatment application on irradiated skin has significantly reduced the size of rashes and red spots and the wound was contracted in a dose-dependent manner. Furthermore, histopathology of the experimental rat skin confirmed that CAVA cream treatment significantly reduced the epidermal thickening, damage in dermis and epidermis layers, and restructured the hair follicles. This study suggests that the cream formulated using CAVA can alleviate the damages caused by the UV-B-irradiation at a high level and safeguard the skin tissues. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02694-y.
Collapse
Affiliation(s)
- Madasamy Sundar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Sudan Suresh
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Krishnasamy Lingakumar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
| |
Collapse
|
24
|
Field R, Pourkazemi F, Turton J, Rooney K. Dietary Interventions Are Beneficial for Patients with Chronic Pain: A Systematic Review with Meta-Analysis. PAIN MEDICINE 2020; 22:694-714. [DOI: 10.1093/pm/pnaa378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
The standard Western diet is high in processed hyperpalatable foods that displace nutrient-dense whole foods, leading to inflammation and oxidative stress. There is limited research on how these adverse metabolic drivers may be associated with maladaptive neuroplasticity seen in chronic pain and whether this could be attenuated by a targeted nutritional approach. The aim of this study was to review the evidence for whole-food dietary interventions in chronic pain management.
Method
A structured search of eight databases was performed up to December 2019. Two independent reviewers screened studies and evaluated risk of bias by using the National Institutes of Health assessment tool for controlled or pre–post studies and the Joanna Briggs checklist for case reports. A meta-analysis was performed in Review Manager.
Results
Forty-three studies reporting on 48 chronic pain groups receiving a whole-food dietary intervention were identified. These included elimination protocols (n = 11), vegetarian/vegan diets (n = 11), single-food changes (n = 11), calorie/macronutrient restriction (n = 8), an omega-3 focus (n = 5), and Mediterranean diets (n = 2). A visual analog scale was the most commonly reported pain outcome measure, with 17 groups reporting a clinically objective improvement (a two-point or 33% reduction on the visual analog scale). Twenty-seven studies reported significant improvement on secondary metabolic measures. Twenty-five groups were included in a meta-analysis that showed a significant finding for the effect of diet on pain reduction when grouped by diet type or chronic pain type.
Conclusion
There is an overall positive effect of whole-food diets on pain, with no single diet standing out in effectiveness. This suggests that commonalities among approaches (e.g., diet quality, nutrient density, weight loss) may all be involved in modulating pain physiology. Further research linking how diet can modulate physiology related to pain (such as inflammation, oxidative stress, and nervous system excitability) is required.
Collapse
Affiliation(s)
- Rowena Field
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Fereshteh Pourkazemi
- Discipline of Physiotherapy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Kieron Rooney
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Pizzinat N, Ong-Meang V, Bourgailh-Tortosa F, Blanzat M, Perquis L, Cussac D, Parini A, Poinsot V. Extracellular vesicles of MSCs and cardiomyoblasts are vehicles for lipid mediators. Biochimie 2020; 178:69-80. [PMID: 32835733 DOI: 10.1016/j.biochi.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023]
Abstract
Recent works reported the relevance of cellular exosomes in the evolution of different pathologies. However, most of these studies focused on the ability of exosomes to convey mi-RNA from cell to cell. The level of knowledge concerning the transport of lipid mediators by these nanovesicles is more than fragmented. The role of lipid mediators in the inflammatory signaling is fairly well described, in particular concerning the derivatives of the arachidonic acid (AA), called eicosanoïds or lipid mediators. The aim of the present work was to study the transport of these lipids within the extracellular vesicles of rat bone marrow mesenchymal stem cells (BM-MSC) and the cardiomyoblast cell line H9c2. We were able to characterize, for the first time, complete profiles of oxilipins within these nanovesicles. We studied also the impact on these profiles, of the polyunsaturated fatty acids (PUFAs) know to be precursors of the inflammatory signaling molecules (AA, eicosapentaenoic acid EPA and Docosahexaenoic acid DHA), at physiological concentrations. By growing the progenitor cells under PUFAs supplementation, we provide a comprehensive assessment of the beneficial effect of ω-3 PUFA therapy. Actually, our results tend to support the resolving role of the inflammation that stromal cell-derived extracellular vesicles can have within the cardiac microenvironment.
Collapse
Affiliation(s)
- Nathalie Pizzinat
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France
| | | | | | - Muriel Blanzat
- IMRCP, CNRS/UT3, 118 Route de Narbonne, 31062, Toulouse-Cedex, France
| | - Lucie Perquis
- IMRCP, CNRS/UT3, 118 Route de Narbonne, 31062, Toulouse-Cedex, France
| | - Daniel Cussac
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France
| | - Angelo Parini
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France
| | - Verena Poinsot
- I2MC, INSERM/UT3, 1av Jean Poulhès, BP84225, 31432, Toulouse-Cedex, France.
| |
Collapse
|
26
|
Hitomi S, Ujihara I, Ono K. Pain mechanism of oral ulcerative mucositis and the therapeutic traditional herbal medicine hangeshashinto. J Oral Biosci 2019; 61:12-15. [PMID: 30929796 DOI: 10.1016/j.job.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oral ulcerative mucositis causes severe pain during eating and speaking, resulting in poor quality of life for patients with cancer undergoing chemoradiotherapy. Recently, some basic and clinical studies demonstrated that hangeshashinto, a traditional Japanese herbal medicine, alleviated oral ulcerative mucositis-induced pain. Here, we review a recently revealed pain mechanism underlying oral ulcerative mucositis in a preclinical rat model and the pharmacological analgesic effect of hangeshashinto. HIGHLIGHT In a rat model of experimentally induced oral ulcerative mucositis, the mucosal surface of the ulcerative region is damaged, which increases oral bacterial loading in the mucosa and prostanoid production. Chemotherapeutic drugs exaggerate the pathological condition and cause severe pain. The pain-related TRP channels, TRPV1, TRPA1, and/or TRPV4, mediate spontaneous and mechanical pain in oral ulcerative mucositis models. Swab application of hangeshashinto had a prolonged localized analgesic effect on oral ulcerative mucositis, even in a chemotherapy-treated oral ulcer model. Two ingredients of hangeshashinto, gingerol and shogaol, strongly inhibit voltage-activated sodium channels (though they have agonistic effects on TRPV1 and TRPA1), which confers hyposensitivity to the oral mucosa. Their analgesic effects on oral ulcerative mucositis are accompanied by accelerated delivery of drugs (other saponin-containing herbal extracts) into the ulcerative region. CONCLUSION Elucidation of the pain mechanism of oral ulcerative mucositis and analgesic mechanism of hangeshashinto will allow identification of novel therapeutic approaches against oral ulcerative mucositis-induced pain in patients. The traditional Japanese herbal medicine hangeshashinto is a reliable drug with supporting scientific evidence.
Collapse
Affiliation(s)
- Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - Izumi Ujihara
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
27
|
Ito M, Ono K, Hitomi S, Nodai T, Sago T, Yamaguchi K, Harano N, Gunnjigake K, Hosokawa R, Kawamoto T, Inenaga K. Prostanoid-dependent spontaneous pain and PAR 2-dependent mechanical allodynia following oral mucosal trauma: involvement of TRPV1, TRPA1 and TRPV4. Mol Pain 2018; 13:1744806917704138. [PMID: 28381109 PMCID: PMC5407658 DOI: 10.1177/1744806917704138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract During dental treatments, intraoral appliances frequently induce traumatic ulcers in the oral mucosa. Such mucosal injury-induced mucositis leads to severe pain, resulting in poor quality of life and decreased cooperation in the therapy. To elucidate mucosal pain mechanisms, we developed a new rat model of intraoral wire-induced mucositis and investigated pain mechanisms using our proprietary assay system for conscious rats. A thick metal wire was installed in the rats between the inferior incisors for one day. In the mucosa of the mandibular labial fornix region, which was touched with a free end of the wire, traumatic ulcer and submucosal abscess were induced on day 1. The ulcer was quickly cured until next day and abscess formation was gradually disappeared until five days. Spontaneous nociceptive behavior was induced on day 1 only, and mechanical allodynia persisted over day 3. Antibiotic pretreatment did not affect pain induction. Spontaneous nociceptive behavior was sensitive to indomethacin (cyclooxygenase inhibitor), ONO-8711 (prostanoid receptor EP1 antagonist), SB-366791, and HC-030031 (TRPV1 and TRPA1 antagonists, respectively). Prostaglandin E2 and 15-deoxyΔ12,14-prostaglandin J2 were upregulated only on day 1. In contrast, mechanical allodynia was sensitive to FSLLRY-NH2 (protease-activated receptor PAR2 antagonist) and RN-1734 (TRPV4 antagonist). Neutrophil elastase, which is known as a biased agonist for PAR2, was upregulated on days 1 to 2. These results suggest that prostanoids and PAR2 activation elicit TRPV1- and TRPA1-mediated spontaneous pain and TRPV4-mediated mechanical allodynia, respectively, independently of bacterial infection, following oral mucosal trauma. The pathophysiological pain mechanism suggests effective analgesic approaches for dental patients suffering from mucosal trauma-induced pain.
Collapse
|
28
|
Specific oxylipins enhance vertebrate hematopoiesis via the receptor GPR132. Proc Natl Acad Sci U S A 2018; 115:9252-9257. [PMID: 30139917 DOI: 10.1073/pnas.1806077115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based β-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure-activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.
Collapse
|
29
|
Yuan ZX, Majchrzak-Hong S, Keyes GS, Iadarola MJ, Mannes AJ, Ramsden CE. Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2018; 410:6009-6029. [PMID: 30074088 DOI: 10.1007/s00216-018-1222-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Oxylipins are bioactive mediators that play diverse roles in (patho)physiology. We developed a sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous profiling of 57 targeted oxylipins derived from five major n-6 and n-3 polyunsaturated fatty acids (PUFAs) that serve as oxylipin precursors, including linoleic (LA), arachidonic (AA), alpha-linolenic (ALA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The targeted oxylipin panel provides broad coverage of lipid mediators and pathway markers generated from cyclooxygenases, lipoxygenases, cytochrome P450 epoxygenases/hydroxylases, and non-enzymatic oxidation pathways. The method is based on combination of protein precipitation and solid-phase extraction (SPE) for sample preparation, followed by UPLC-MS/MS. This is the first methodology to incorporate four hydroxy-epoxy-octadecenoic acids and four keto-epoxy-octadecenoic acids into an oxylipin profiling network. The novel method achieves excellent resolution and allows in-depth analysis of isomeric and isobaric species of oxylipin extracts in biological samples. The method was quantitatively characterized in human plasma with good linearity (R = 0.990-0.999), acceptable reproducibility (relative standard deviation (RSD) < 20% for the majority of analytes), accuracy (67.8 to 129.3%) for all analytes, and recovery (66.8-121.2%) for all analytes except 5,6-EET. Ion enhancement effects for 28% of the analytes in tested concentrations were observed in plasma, but were reproducible with RSD < 17.2%. Basal levels of targeted oxylipins determined in plasma and serum are in agreement with those previously reported in literature. The method has been successfully applied in clinical and preclinical studies.
Collapse
Affiliation(s)
- Zhi-Xin Yuan
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging/NIH, Baltimore, MD, USA.
| | - Sharon Majchrzak-Hong
- Section of Nutritional Neuroscience, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism/NIH, Bethesda, MD, USA
| | - Gregory S Keyes
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging/NIH, Baltimore, MD, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Christopher E Ramsden
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging/NIH, Baltimore, MD, USA.,Section of Nutritional Neuroscience, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism/NIH, Bethesda, MD, USA.,Department of Physical Medicine and Rehabilitation, School of Medicine, Chapel Hill, NC, USA.,School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Jensen JR, Pitcher MH, Yuan ZX, Ramsden CE, Domenichiello AF. Concentrations of oxidized linoleic acid derived lipid mediators in the amygdala and periaqueductal grey are reduced in a mouse model of chronic inflammatory pain. Prostaglandins Leukot Essent Fatty Acids 2018; 135:128-136. [PMID: 30103924 PMCID: PMC6269101 DOI: 10.1016/j.plefa.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
Chronic pain is both a global public health concern and a serious source of personal suffering for which current treatments have limited efficacy. Recently, oxylipins derived from linoleic acid (LA), the most abundantly consumed polyunsaturated fatty acid in the modern diet, have been implicated as mediators of pain in the periphery and spinal cord. However, oxidized linoleic acid derived mediators (OXLAMs) remain understudied in the brain, particularly during pain states. In this study, we employed a mouse model of chronic inflammatory pain followed by a targeted lipidomic analysis of the animals' amygdala and periaqueductal grey (PAG) using LC-MS/MS to investigate the effect of chronic inflammatory pain on oxylipin concentrations in these two brain nuclei known to participate in pain sensation and perception. From punch biopsies of these brain nuclei, we detected twelve OXLAMs in both the PAG and amygdala and one arachidonic acid derived mediator, 15-HETE, in the amygdala only. In the amygdala, we observed an overall decrease in the concentration of the majority of OXLAMs detected, while in the PAG the concentrations of only the epoxide LA derived mediators, 9,10-EpOME and 12,13-EpOME, and one trihydroxy LA derived mediator, 9,10,11-TriHOME, were reduced. This data provides the first evidence that OXLAM concentrations in the brain are affected by chronic pain, suggesting that OXLAMs may be relevant to pain signaling and adaptation to chronic pain in pain circuits in the brain and that the current view of OXLAMs in nociception derived from studies in the periphery is incomplete.
Collapse
Affiliation(s)
- J R Jensen
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - M H Pitcher
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, United States
| | - Z X Yuan
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - C E Ramsden
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, United States
| | - A F Domenichiello
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
31
|
Morales-Prieto N, Ruiz-Laguna J, Sheehan D, Abril N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:150-167. [PMID: 29554563 DOI: 10.1016/j.envpol.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julia Ruiz-Laguna
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - David Sheehan
- College of Arts and Science, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
32
|
Zimmer B, Angioni C, Osthues T, Toewe A, Thomas D, Pierre SC, Geisslinger G, Scholich K, Sisignano M. The oxidized linoleic acid metabolite 12,13-DiHOME mediates thermal hyperalgesia during inflammatory pain. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:669-678. [PMID: 29625231 DOI: 10.1016/j.bbalip.2018.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 01/08/2023]
Abstract
Eicosanoids play a crucial role in inflammatory pain. However, there is very little knowledge about the contribution of oxidized linoleic acid metabolites in inflammatory pain and peripheral sensitization. Here, we identify 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME), a cytochrome P450-derived linoleic acid metabolite, as crucial mediator of thermal hyperalgesia during inflammatory pain. We found 12,13-DiHOME in increased concentrations in peripheral nervous tissue during acute zymosan- and complete Freund's Adjuvant-induced inflammatory pain. 12,13-DiHOME causes calcium transients in sensory neurons and sensitizes the transient receptor potential vanilloid 1 (TRPV1)-mediated intracellular calcium increases via protein kinase C, subsequently leading to enhanced TRPV1-dependent CGRP-release from sensory neurons. Peripheral injection of 12,13-DiHOME in vivo causes TRPV1-dependent thermal pain hypersensitivity. Finally, application of the soluble epoxide hydrolase (sEH)-inhibitor TPPU reduces 12,13-DiHOME concentrations in nervous tissue and reduces zymosan- and CFA-induced thermal hyperalgesia in vivo. In conclusion, we identify a novel role for the lipid mediator 12,13-DiHOME in mediating thermal hyperalgesia during inflammatory pain and propose a novel mechanism that may explain the antihyperalgesic effects of sEH inhibitors in vivo.
Collapse
Affiliation(s)
- Béla Zimmer
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Tabea Osthues
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Andy Toewe
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Sandra C Pierre
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Oladosu FA, Tu FF, Hellman KM. Nonsteroidal antiinflammatory drug resistance in dysmenorrhea: epidemiology, causes, and treatment. Am J Obstet Gynecol 2018; 218:390-400. [PMID: 28888592 DOI: 10.1016/j.ajog.2017.08.108] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 11/25/2022]
Abstract
Although nonsteroidal antiinflammatory drugs can alleviate menstrual pain, about 18% of women with dysmenorrhea are unresponsive, leaving them and their physicians to pursue less well-studied strategies. The goal of this review is to provide a background for treating menstrual pain when first-line options fail. Research on menstrual pain and failure of similar drugs in the antiplatelet category suggested potential mechanisms underlying nonsteroidal antiinflammatory drug resistance. Based on these mechanisms, alternative options may be helpful for refractory cases. This review also identifies key pathways in need of further study to optimize menstrual pain treatment.
Collapse
|
34
|
Nodai T, Hitomi S, Ono K, Masaki C, Harano N, Morii A, Sago-Ito M, Ujihara I, Hibino T, Terawaki K, Omiya Y, Hosokawa R, Inenaga K. Endothelin-1 Elicits TRP-Mediated Pain in an Acid-Induced Oral Ulcer Model. J Dent Res 2018. [PMID: 29518348 DOI: 10.1177/0022034518762381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oral ulcer is the most common oral disease and leads to pain during meals and speaking, reducing the quality of life of patients. Recent evidence using animal models suggests that oral ulcers induce cyclooxygenase-dependent spontaneous pain and cyclooxygenase-independent mechanical allodynia. Endothelin-1 is upregulated in oral mucosal inflammation, although it has not been shown to induce pain in oral ulcers. In the present study, we investigated the involvement of endothelin-1 signaling with oral ulcer-induced pain using our proprietary assay system in conscious rats. Endothelin-1 was significantly upregulated in oral ulcers experimentally induced by topical acetic acid treatment, while endothelin-1 production was suppressed by antibacterial pretreatment. Spontaneous nociceptive behavior in oral ulcer model rats was inhibited by swab applications of BQ-788 (ETB receptor antagonist), ONO-8711 (prostanoid receptor EP1 antagonist), and HC-030031 (TRPA1 antagonist). Prostaglandin E2 production in the ulcers was suppressed by BQ-788. Mechanical allodynia in the model was inhibited not only by BQ-788 and HC-030031 but also by BQ-123 (ETA receptor antagonist), SB-366791 (TRPV1 antagonist), and RN-1734 (TRPV4 antagonist). In naive rats, submucosal injection of endothelin-1 caused mechanical allodynia that was sensitive to HC-030031 and SB-366791 but not to RN-1734. These results suggest that endothelin-1 production following oral bacterial invasion via ulcerative regions elicits TRPA1-mediated spontaneous pain. This pain likely occurs through an indirect route that involves ETB receptor-accelerated prostanoid production. Endothelin-1 elicits directly TRPA1- and TRPV1-mediated mechanical allodynia via both ETA and ETB receptors on nociceptive fibers. The TRPV4-mediated allodynia component seems to be independent of endothelin signaling. These findings highlight the potential of endothelin signaling blockers as effective analgesic approaches for oral ulcer patients.
Collapse
Affiliation(s)
- T Nodai
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan.,2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - S Hitomi
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - K Ono
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - C Masaki
- 2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - N Harano
- 3 Division of Dental Anesthesiology, Kyushu Dental University, Fukuoka, Japan
| | - A Morii
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan.,4 Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - M Sago-Ito
- 4 Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - I Ujihara
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - T Hibino
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - K Terawaki
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Y Omiya
- 5 Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - R Hosokawa
- 2 Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - K Inenaga
- 1 Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
35
|
Ramsden CE, Domenichiello AF, Yuan ZX, Sapio MR, Keyes GS, Mishra SK, Gross JR, Majchrzak-Hong S, Zamora D, Horowitz MS, Davis JM, Sorokin AV, Dey A, LaPaglia DM, Wheeler JJ, Vasko MR, Mehta NN, Mannes AJ, Iadarola MJ. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch. Sci Signal 2017; 10:eaal5241. [PMID: 28831021 PMCID: PMC5805383 DOI: 10.1126/scisignal.aal5241] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy- or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene-related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber-mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 21224, USA.
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20814, USA
- Department of Physical Medicine and Rehabilitation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Anthony F Domenichiello
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 21224, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zhi-Xin Yuan
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 21224, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD 20814, USA
| | - Gregory S Keyes
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 21224, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, NC State College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Jacklyn R Gross
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD 20814, USA
| | - Sharon Majchrzak-Hong
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20814, USA
| | - Daisy Zamora
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 21224, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Mark S Horowitz
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 21224, USA
| | - John M Davis
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 21224, USA
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander V Sorokin
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Amit Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Danielle M LaPaglia
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD 20814, USA
| | - Joshua J Wheeler
- Department of Molecular Biomedical Sciences, NC State College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD 20814, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD 20814, USA
| |
Collapse
|
36
|
Manjoo R, Deepa S, Yadav AK, Singh NK. Isolation and Characterization of Fusarium verticillioides NKF1 for Unsaturated Fatty Acid Production. Curr Microbiol 2017; 74:1301-1305. [PMID: 28779356 DOI: 10.1007/s00284-017-1317-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Polyunsaturated fatty acid helps to prevent diseases like cardiovascular, inflammation, and cognitive abilities for developmental disorders. The main objective of this research is the screening of polyunsaturated fatty acid producing fungi from soil samples of mangrove from the seashore coastal areas in India. Fusarium verticillioides species showed the presence of saturated and unsaturated fatty acid in the starch yeast-extract medium. Among the representative isolate, F. verticillioides NKF1 was found to grow in a YEP broth medium and produce the maximum lipid. The gas chromatography was used to identify the fatty acids present in fungal strain. Saturated fatty acid such as palmitic acid (C16:0) 0.14/100 g, stearic acid (C18:0) 0.09/100 g, and monounsaturated fatty acid such as oleic acid (C18:1) 0.08/100 g and polyunsaturated fatty acid such as linolenic acid (C18:3ω3) 0.08/100 g were present in significant amount in the fungal strain. Fungal strain F. verticillioides NKF1 was characterized by SEM and molecular characterization by 18S rRNA. The internal transcribed spacer (ITS) sequences were analyzed by 18S rRNA and ITS4 sequences of related fungi were sequenced, and then the data were compared with NCBI database. This newly isolated F. verticillioides NKF1 was found to be a promising culture for the development of an economical method for commercial production of linolenic acid (ω-3 fatty acid).
Collapse
Affiliation(s)
- R Manjoo
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - S Deepa
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Alok K Yadav
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Nand K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India.
| |
Collapse
|
37
|
Devassy JG, Yamaguchi T, Monirujjaman M, Gabbs M, Ravandi A, Zhou J, Aukema HM. Distinct effects of dietary flax compared to fish oil, soy protein compared to casein, and sex on the renal oxylipin profile in models of polycystic kidney disease. Prostaglandins Leukot Essent Fatty Acids 2017; 123:1-13. [PMID: 28838555 DOI: 10.1016/j.plefa.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
Oxylipins are bioactive lipids derived from polyunsaturated fatty acids (PUFA) that are important regulators of kidney function and health. Targeted lipidomic analyses of renal oxylipins from four studies of rodent models of renal disease were performed to investigate the differential effects of dietary flax compared to fish oil, soy protein compared to casein, and sex. Across all studies, dietary fish oil was more effective than flax oil in reducing n-6 PUFA derived oxylipins and elevating eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived oxylipins, whereas dietary flax oil resulted in higher α-linolenic acid (ALA) oxylipins. Dietary soy protein compared to casein resulted in higher linoleic acid (LA) derived oxylipins. Kidneys from females had higher levels of arachidonic acid (AA) oxylipins, but similar or lower levels of oxylipins from other PUFA. Modulation of the oxylipin profile by diet and sex may help elucidate their effects on renal physiology and health.
Collapse
Affiliation(s)
- Jessay G Devassy
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada
| | - Tamio Yamaguchi
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada; Department of Clinical Nutrition, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Md Monirujjaman
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada
| | - Melissa Gabbs
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Jing Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard, Medical School, Boston, MA, United States
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital, Research Centre, Canada; Manitoba Institute of Child Health, Winnipeg, MB, Canada.
| |
Collapse
|
38
|
Disrupting sensitization of TRPV4. Neuroscience 2017; 352:1-8. [DOI: 10.1016/j.neuroscience.2017.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
|