1
|
Song M, Wang Q, He X, Liu K, Han Y, Zhang Y, Li H, Huang Z, Wang N, Liu D. Grape seed polyphenol water-in-oil emulsion: preparation and application in functional cookies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40448499 DOI: 10.1002/jsfa.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND The study aimed to address the characteristics of grape seed polyphenols (GSPs), such as high hydrophilicity and poor stability in fats and oils, as well as the poor digestive properties of traditional cookies due to their high fat content. A GSP delivery system based on water-in-oil (W/O) emulsion technology was innovatively developed, aiming at solving the difficult problem of the limited application of GSPs in high-fat cookie systems. In this study, we explored the potential application of GSPs in functional cookie products by constructing a GSP-tea seed oil stabilized emulsion system. RESULTS Emulsion systems prepared by high-speed shear emulsification demonstrate superior performance (water-oil ratio of 2:8, polyglyceryl ricinoleate concentration of 50 g kg-1, sucrose concentration of 30 g kg-1, with 0.1% GSP added). The emulsion had an emulsification index of <1%, a zeta potential of 44.2 ± 0.5 mV and remained stable for many days after storage at 4 °C. Confocal laser scanning microscopy confirmed that the emulsion possessed a typical W/O structure, and GSP improved the thermal stability of the emulsion by 0.8 °C through the formation of a three-dimensional hydrogen bonding network, achieving a DPPH radical scavenging rate of 99.63%. After application in biscuit products, the shelf-life was extended by 37.32%, and the rapidly digestible starch (RDS) decreased to 41.17%. CONCLUSION We successfully constructed a GSP-enhanced functional emulsion system and elucidated its mechanism of action in improving product quality through a dual mechanism of amylase inhibition and antioxidant activity. This technology provides a new solution for developing healthy bakery products, although its industrial application still requires further work to address stability issues under extreme conditions. The findings of this study offer important guidance for applying plant polyphenols in food colloidal systems. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meiyu Song
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Qing Wang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Xinyi He
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Kaiyue Liu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Ying Han
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Yumeng Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Hang Li
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Zonghai Huang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Na Wang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, China
| | - Dan Liu
- Tianjin Jianfeng Natural Product Research and Development Co. Ltd, Tianjin, China
| |
Collapse
|
2
|
Sun X, Lang X, Liu S, Zhao J, Lan W. Impaired cellular barriers and blocked metabolic pathways contribute to inhibition of carvacrol-loaded nanoemulsions stabilized by soy protein isolate / chitooligosaccharide conjugate on S. putrefaciens. Food Chem 2025; 475:143356. [PMID: 39954651 DOI: 10.1016/j.foodchem.2025.143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/25/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
In this study, soy isolate protein / chitooligosaccharide (SPI/COS) glycosylated conjugates was prepared and employed as an emulsifier to stabilize carvacrol-loaded nanoemulsions (CNE-SPI/COS). The antibacterial properties and mechanism of CNE-SPI/COS against S. putrefaciens was investigated. The results of microbial growth curves and confocal laser scanning microscopy (CLSM) results showed that CNE-SPI/COS effectively inhibited the growth of S. putrefaciens and the killing effect of CNE-SPI/COS on S. putrefaciens was concentration-dependent. Field emission scanning electron microscopy (FESEM) images showed that CNE-SPI/COS caused folds, shrinkage, rupture and even lysis of S. putrefaciens. The results showed that CNE-SPI/COS inhibited the growth and reproduction of S. putrefaciens mainly through three targets: (i) the reduction of alkaline phosphatase (AKP) activity and protein leakage indicated that CNE-SPI/COS disrupted the integrity of cell wall and cell membrane; (ii) the reduction of intracellular protein and ATP content indicated that CNE-SPI/COS interfered the synthesis of intracellular nutrient and synthesis of energy-supplying substances; (iii) changes in the activities of succinate dehydrogenase, pyruvate kinase, and glucose 6-phosphate dehydrogenase indicated that CNE-SPI/COS impeded the normal cellular metabolic pathways such as the tricarboxylic acid cycle, the glycolytic pathway, and the pentose phosphate pathway, and the decrease in superoxide dismutase activity indicated that CNE-SPI/COS disrupted the defense system against oxidative stress. In conclusion, the encapsulation of carvacrol into the nanoemulsion system can provide theoretical support and methodological guidance for the application of nanoemulsions in microbial decontamination of aquatic products.
Collapse
Affiliation(s)
- Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Xiaoxiao Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shucheng Liu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaxin Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
3
|
Sun Y, Cong K, Wang T, Li X, Li T, Fan G, Zhou D, Wu C. Quercetin-Loaded Ginkgo Starch Nanoparticles: A Promising Strategy to Improve Bioactive Delivery and Cellular Homeostasis in Functional Foods. Foods 2025; 14:1890. [PMID: 40509418 PMCID: PMC12155164 DOI: 10.3390/foods14111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/21/2025] [Accepted: 05/24/2025] [Indexed: 06/16/2025] Open
Abstract
Quercetin (Qc) is a natural bioactive compound derived from plants, with strong anti-inflammatory and antioxidant properties. However, its extreme water insolubility limits its bioavailability and practical utility. To address this, quercetin was encapsulated in ginkgo-derived starch nanoparticles (SNPs) to enhance solubility and stability. In this study, the bioactivity and cellular effects of the SNPs/Qc system were evaluated. Results showed excellent biocompatibility with no toxicity or adverse effects observed in experimental mice. At 25 µg/mL, SNPs/Qc significantly promoted early apoptosis in 3LL cells (33%) and blocked the cell cycle at G1 and G2 phases. The system demonstrated a dose-dependent inhibitory effect on abnormal cell proliferation, with significant activity observed 6 h (hour) post-treatment. Compared with free quercetin, the SNPs/Qc system has dual advantages in improving the bioavailability of quercetin and tumor targeted penetration. After 15 days of ingestion, the survival rate of mice in the SNPs/Qc group increased by 20%, and the tumor volume was only 239 mm3, corresponding to a 49.4% decrease. At the same time, specific damage to the cell structure of tumor cells and higher intensity fluorescence accumulation were observed. This study reveals the potential of the SNPs/Qc system as a biocompatible and efficient delivery platform for natural bioactive compounds, particularly in health promotion and functional food applications.
Collapse
Affiliation(s)
- Yanyu Sun
- National Key Laboratory for the Development and Utilization of Forest Food Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiping Cong
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi 315300, China
| | - Tao Wang
- College of Food Science, Xuzhou University of Technology, Xuzhou 221008, China
| | - Xiaojing Li
- National Key Laboratory for the Development and Utilization of Forest Food Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- National Key Laboratory for the Development and Utilization of Forest Food Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gongjian Fan
- National Key Laboratory for the Development and Utilization of Forest Food Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Zhou
- National Key Laboratory for the Development and Utilization of Forest Food Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caie Wu
- National Key Laboratory for the Development and Utilization of Forest Food Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Rodrigues ACDSS, Paz IA, Nascimento NRFD, Oliveira GDFS, Gondim ACS, Lopes LGDF, Sousa EHSD. Lipid nanoformulations as a platform for antihypertensive applications of a ruthenium nitrosyl compound. Int J Pharm 2025; 678:125695. [PMID: 40350002 DOI: 10.1016/j.ijpharm.2025.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Nitric oxide (NO) and derivatives play key roles in immunomodulation and blood pressure regulation. Nitrosyl ruthenium complexes are studied as vasorelaxant agents with potential applications in cardiovascular and parasitic diseases. Lipid nanoemulsions enhance their stability and bioavailability. Nanoemulsions were prepared using Pluronic F-127 or Tween 80 as surfactants and oleic acid in the oil phase, incorporating the complex cis-[Ru(bpy)2(SO3)(NO)](PF6) (RuNO). Two optimized formulations were selected: NanoPluNO (Dh = 235.0 nm, PdI = 0.094, ζ = -24.7 mV) and NanoTwNO (Dh = 163.0 nm, PdI = 0.138, ζ = -33.5 mV), both stable for at least 90 days. The nitrosyl complex exhibited prolonged release following the Peppas-Sahlin model, suggesting anomalous mass transport. HSA studies indicated protein conformational changes, possibly linked to protein corona formation. NanoTwNO demonstrated superior vasorelaxant efficacy over free RuNO in isolated aorta from hypertensive (SHR) versus normotensive (WKY) rats. In vivo, NanoTwNO induced significant dose-dependent hypotension (0.06-1.8 mg/kg) in SHR rats, whereas RuNO had only a mild effect. These findings highlight the enhanced therapeutic potential of nanoemulsified RuNO.
Collapse
Affiliation(s)
| | - Iury Araújo Paz
- Superior Institute of Biomedical Sciences, State University of Ceara, 60714-903 Fortaleza, CE, Brazil
| | | | | | - Ana Claudia Silva Gondim
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, 60440-900 Fortaleza, CE, Brazil
| | | | | |
Collapse
|
5
|
Chatzidaki MD, Mitsou E. Advancements in Nanoemulsion-Based Drug Delivery Across Different Administration Routes. Pharmaceutics 2025; 17:337. [PMID: 40143001 PMCID: PMC11945362 DOI: 10.3390/pharmaceutics17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Nanoemulsions (NEs) have emerged as effective drug delivery systems over the past few decades due to their multifaceted nature, offering advantages such as enhanced bioavailability, protection of encapsulated compounds, and low toxicity. In the present review, we focus on advancements in drug delivery over the last five years across (trans)dermal, oral, ocular, nasal, and intra-articular administration routes using NEs. Rational selection of components, surface functionalization, incorporation of permeation enhancers, and functionalization with targeting moieties are explored for each route discussed. Additionally, apart from NEs, we explore NE-based drug delivery systems (e.g., NE-based gels) while highlighting emerging approaches such as vaccination and theranostic applications. The growing interest in NEs for drug delivery purposes is reflected in clinical trials, which are also discussed. By summarizing the latest advances, exploring new strategies, and identifying critical challenges, this review focuses on developments for efficient NE-based therapeutic approaches.
Collapse
Affiliation(s)
- Maria D. Chatzidaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Institute for Bio-Innovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Evgenia Mitsou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 6100 Rehovot, Israel
| |
Collapse
|
6
|
Sampieri-Morán JM, Bravo-Alfaro DA, Uribe-Lam E, Luna-Barcenas G, Montiel-Sánchez M, Velasco-Rodríguez LDC, Acosta-Osorio AA, Ferrer M, García HS. Delivery of Magnolia bark extract in nanoemulsions formed by high and low energy methods improves the bioavailability of Honokiol and Magnolol. Eur J Pharm Biopharm 2025; 208:114627. [PMID: 39761833 DOI: 10.1016/j.ejpb.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/23/2025]
Abstract
Honokiol (HK) and Magnolol (MG), isomers found in Magnolia officinalis bark extract (MBE), possess bioactive properties attributed to their biphenolic structure. However, their low polarity results in poor oral absorption, limiting their bioavailability. To enhance their systemic absorption after passing through the digestive tract, efficient carrier systems are essential. Nanoemulsions (NE) have been suggested to enhance their solubility in the oily core and enable passive diffusion through absorptive cells. Surfactants ensure stability by reducing surface tension between hydrophobic and hydrophilic compounds. In this study we report the preparation of NE containing HK and MG using high and low-energy methods (SNEDDS); we aimed to improve their absorption after oral administration. Results demonstrated that NE enhanced their bioavailability significantly. Compared to the free forms, HK bioavailability increased by 3.47 times, and MG by 3.03 times. SNEDDS further increased HK bioavailability by 3.98 times and MG by 7.97 times compared to their free forms.
Collapse
Affiliation(s)
- Jessica M Sampieri-Morán
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Diego A Bravo-Alfaro
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Esmeralda Uribe-Lam
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Gabriel Luna-Barcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, Mexico
| | - Mara Montiel-Sánchez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Luz Del C Velasco-Rodríguez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Andrés A Acosta-Osorio
- CONAHCYT-Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, UAM, Madrid, Spain.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico.
| |
Collapse
|
7
|
Li Z, Duan M, Dai Y, Jin Y, Liu Y, Zhang Y, Li X, Yang F. Pharmacokinetics of Milbemycin Oxime in Pekingese Dogs after Single Oral and Intravenous Administration. Vet Med Sci 2025; 11:e70312. [PMID: 40104878 PMCID: PMC11920723 DOI: 10.1002/vms3.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE This study aimed to characterize the pharmacokinetic profiles of milbemycin oxime in Pekingese dogs following a single oral (PO) and intravenous (IV) dose. Six clinically healthy Pekingese dogs, with an average body weight (BW) of 4.75 kg, were included. Each dog received an IV injection of milbemycin oxime solution and PO doses of both milbemycin oxime tablets and nanoemulsion, all administered at 1 mg/kg BW. METHODS Blood samples (∼0.6 mL) were collected at various time points, and milbemycin oxime concentrations were measured using a validated high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection. Pharmacokinetic parameters were obtained through non-compartmental analysis (NCA) using WinNonLin software. RESULTS Oral administration of milbemycin oxime tablets resulted in a peak concentration (Cmax) of 0.33 ± 0.07 µg/mL at 2.47 ± 1.90 h, with a mean residence time (MRT) of 21.96 ± 14.43 h and an absolute bioavailability of 51.44% ± 21.76%. In contrast, the nanoemulsion achieved a significantly higher Cmax of 8.87 ± 1.88 µg/mL, with a much quicker time to peak concentration (Tmax) at 0.33 ± 0.13 h, an MRT of 21.74 ± 18.21 h, and an absolute bioavailability of 99.26% ± 12.14%. After IV administration, total clearance (Cl) and steady-state volume of distribution (VSS) were 0.13 ± 0.06 mL/kg/h and 2.36 ± 0.73 mL/kg, respectively. CONCLUSIONS These findings demonstrate that the milbemycin oxime nanoemulsion is absorbed more rapidly and completely, with significantly higher bioavailability than the tablet form. This suggests that the nanoemulsion could effectively overcome the issues of poor diffusion and low bioavailability associated with tablet formulations, positioning it as a promising alternative to traditional milbemycin oxime tablets.
Collapse
Affiliation(s)
- Ze‐En Li
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| | - Ming‐Hui Duan
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| | - Yan Dai
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| | - Yang‐Guang Jin
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| | - Yue Liu
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| | - Yan‐Ni Zhang
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| | - Xing‐Ping Li
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| | - Fan Yang
- College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
| |
Collapse
|
8
|
Milinčić DD, Stanisavljević NS, Pešić MM, Kostić AŽ, Stanojević SP, Pešić MB. The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview. Foods 2025; 14:607. [PMID: 40002051 PMCID: PMC11854561 DOI: 10.3390/foods14040607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Grape-derived phenolic compounds possess many health benefits, but their biological effectiveness and their effects on human health depend directly on bioaccessibility. Different physiological conditions, interactions with food compounds (proteins, lipids, and carbohydrates), and/or microbial transformations affect the solubilization and stability of phenolic compounds, thus altering their bioaccessibility and biological activity. Previously published review articles on grape-derived phenolic compounds have focused on characterization, transformation during winemaking, various applications, and health benefits, but the literature lacks a comprehensive overview of the bioaccessibility of these compounds during gastrointestinal digestion. In this context, models of gastrointestinal digestion and factors affecting the bioaccessibility of phenolic compounds were considered to understand the behavior of grape-derived phenolic compounds during digestion in the absence or presence of different food matrices. Finally, this review should enable the development of novel food products with targeted bioaccessibility of grape-derived phenolic compounds.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Nemanja S. Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O. Box 23, 11010 Belgrade, Serbia;
| | - Milica M. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Aleksandar Ž. Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Slađana P. Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| | - Mirjana B. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (M.M.P.); (A.Ž.K.); (S.P.S.)
| |
Collapse
|
9
|
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel) 2025; 14:200. [PMID: 40002386 PMCID: PMC11851925 DOI: 10.3390/antiox14020200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols (PPs) are recognized as bioactive compounds and antimicrobial agents, playing a critical role in enhancing food safety, preservation, and extending shelf life. The antimicrobial effectiveness of PPs has different molecular and biological reasons, predominantly linked to their hydroxyl groups and electron delocalization, which interact with microbial cell membranes, proteins, and organelles. These interactions may reduce the efficiency of metabolic pathways, cause destructive damage to the cell membrane, or they may harm the proteins and nucleic acids of the foodborne bacteria. Moreover, PPs exhibit a distinctive ability to form complexes with metal ions, further amplifying their antimicrobial activity. This narrative review explores the complex and multifaceted interactions between PPs and foodborne pathogens, underlying the correlation of their chemical structures and mechanisms of action. Such insights shed light on the potential of PPs as innovative natural preservatives within food systems, presenting an eco-friendly and sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Luca De Rossi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Annalisa Rebecchi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| |
Collapse
|
10
|
Silva MDEFODA, Santos-Magnabosco AR, Farias CKDAS, Torres SMDE, Alves AJ, Cadena PG, Silva Júnior VADA. Nanoemulsions with cannabidiol reduced autistic-like behaviors and reversed decreased hippocampus viable cells and cerebral cortex neuronal death in a prenatal valproic acid rat model. AN ACAD BRAS CIENC 2025; 97:e20240607. [PMID: 39936657 DOI: 10.1590/0001-3765202520240607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/08/2024] [Indexed: 02/13/2025] Open
Abstract
The highly lipophilic nature and low aqueous solubility of cannabidiol (CBD) limit its oral bioavailability, resulting in poor intestinal absorption. To overcome these limitations, we proposed the production of a nanoemulsion with CBD to be included in the therapeutic treatment of autism spectrum disorder. The current study aimed to evaluate the effect of CBD-rich corn oil nanoemulsion treatment in male rats born to females exposed to valproic acid (VPA) during pregnancy on autistic-like behaviors and hippocampal histology. Offspring rats were treated orally twice daily with CBD nanoemulsions at different doses (1 and 2 mg/animal). The endpoints evaluated were anxiety, grooming time, exploratory activity, sociability, the social preference index, and hippocampal and cerebral cortex histology. All formulations were characterized as nanoemulsions and showed a reduced vesicle size (107.6 - 72.6 nm), low PDI (0.290-0.432), negative zeta potential (-40.6 mv), and good stability. Prenatal exposure to VPA increased anxiety and grooming time, and reduced exploratory activity, sociability, and the social preference index in the animals. Furthermore, VPA-exposed animals exhibited elevated neuronal death and a reduction in viable cells in the hippocampus. In conclusion, CBD nanoemulsion treatment reversed autistic-like behaviors, potentially by protecting against hippocampal neuronal death. The highly lipophilic nature and low aqueous solubility of cannabidiol (CBD) limit its oral bioavailability, resulting in poor intestinal absorption. To overcome these limitations, we proposed the production of a nanoemulsion with CBD to be included in the therapeutic treatment of autism spectrum disorder. The current study aimed to evaluate the effect of CBD-rich corn oil nanoemulsion treatment in male rats born to females exposed to valproic acid (VPA) during pregnancy on autistic-like behaviors and hippocampal histology. Offspring rats were treated orally twice daily with CBD nanoemulsions at different doses (1 and 2 mg/animal). The endpoints evaluated were anxiety, grooming time, exploratory activity, sociability, the social preference index, and hippocampal and cerebral cortex histology. All formulations were characterized as nanoemulsions and showed a reduced vesicle size (107.6 - 72.6 nm), low PDI (0.290-0.432), negative zeta potential (-40.6 mv), and good stability. Prenatal exposure to VPA increased anxiety and grooming time, and reduced exploratory activity, sociability, and the social preference index in the animals. Furthermore, VPA-exposed animals exhibited elevated neuronal death and a reduction in viable cells in the hippocampus. In conclusion, CBD nanoemulsion treatment reversed autistic-like behaviors, potentially by protecting against hippocampal neuronal death.
Collapse
Affiliation(s)
- Mariana DE F O DA Silva
- Universidade Federal Rural de Pernambuco, Departamento de Medicina Veterinária (DMV), Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Amanda R Santos-Magnabosco
- Universidade Federal Rural de Pernambuco, Departamento de Morfologia e Fisiologia Animal (DMFA), Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Cláudia Kathariny DA S Farias
- Universidade Federal Rural de Pernambuco, Departamento de Medicina Veterinária (DMV), Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Sandra Maria DE Torres
- Universidade Federal Rural de Pernambuco, Departamento de Medicina Veterinária (DMV), Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Antônio José Alves
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Av. Prof. Artur de Sá, s/n, Cidade Universitária, 50740-521 Recife, PE, Brazil
| | - Pabyton G Cadena
- Universidade Federal Rural de Pernambuco, Departamento de Morfologia e Fisiologia Animal (DMFA), Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Valdemiro A DA Silva Júnior
- Universidade Federal Rural de Pernambuco, Departamento de Medicina Veterinária (DMV), Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
11
|
Renggli D, Doyle PS. Thermogelation of nanoemulsions stabilized by a commercial pea protein isolate: high-pressure homogenization defines gel strength. SOFT MATTER 2025; 21:652-669. [PMID: 39751842 PMCID: PMC11698122 DOI: 10.1039/d4sm00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters. Bright-field and laser scanning confocal fluorescence microscopy reveals a diverse microstructure of the aqueous PPI dispersions, with a large amount of insoluble protein particles, cell-wall debris particles, and lipid inclusions. Sedimentation of particulates is prevented by HPH treatment and leads to a loss of the dispersion's thermogelation properties. The non-gelling PPI dispersion stabilizes nanoemulsions and the insoluble components of the PPI dispersions persist throughout the HPH processing. We perform a systematic rheological investigation of the effect of HPH processing on thermogelation and demonstrate that the number of HPH passes n and HPH pressure P control the average nanoemulsion droplet size measured by DLS at a 90° scattering angle. We show that the droplet size defines the final gel strength with a strong inverse dependence of the elastic modulus on droplet size. Furthermore, processing can lead to heterogeneously structured gels that yield over a large strain amplitude range.
Collapse
Affiliation(s)
- Damian Renggli
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Alehosseini E, McSweeney PLH, Miao S. Recent updates on plant protein-based dairy cheese alternatives: outlook and challenges. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39819182 DOI: 10.1080/10408398.2025.2452356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In response to population growth, ethical considerations, and the environmental impacts of animal proteins, researchers are intensifying efforts to find alternative protein sources that replicate the functionality and nutritional profile of animal proteins. In this regard, plant-based cheese alternatives are becoming increasingly common in the marketplace, as one of the emerging dairy-free products. However, the dairy industry faces challenges in developing dairy-free products alternatives that meet the demands of customers with specific lifestyles or diets, ensure sustainability, and retain traditional customers. These challenges include food neophobia, the need to mimic the physicochemical, sensory, functional, and nutritional properties of dairy products, the inefficient conversion factor of plant-based proteins into animal proteins, and high production expenses. Given the distinct nature of plant-based milks, understanding their differences from cow's milk is crucial for formulating alternatives with comparable properties. Designing dairy-free cheese analogs requires overcoming electrostatic repulsion energy barriers among plant proteins to induce gelation and curd formation. Innovative approaches have substantially enhanced the physicochemical and sensory properties of these alternatives. Researchers are exploring the application of microalgae as a plant protein source and investigating new microbial fermentation methods to increase protein content in dairy-free products.
Collapse
Affiliation(s)
| | - Paul L H McSweeney
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
13
|
Harikrishnan S, Kaushik D, Kumar M, Kaur J, Oz E, Proestos C, Elobeid T, Karakullukcu OF, Oz F. Vitamin B12: prevention of human beings from lethal diseases and its food application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:10-18. [PMID: 38922926 DOI: 10.1002/jsfa.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Vitamin B12, a water-soluble essential micronutrient, plays a pivotal role in numerous physiological processes in the human body. This review meticulously examines the structural complexity and the diverse mechanisms through which vitamin B12 exerts its preventive effects against a spectrum of health conditions, including pernicious anaemia, neurological disorders, obesity, diabetes, dyslipidaemia and complications in foetal development. The selection of articles for this review was conducted through a systematic search across multiple scientific databases, including PubMed, Scopus and Web of Science. Criteria for inclusion encompassed relevance to the biochemical impact of vitamin B12 on health, peer-reviewed status and publication within the last decade. Exclusion criteria were non-English articles and studies lacking empirical evidence. This stringent selection process ensured a comprehensive analysis of vitamin B12's multifaceted impact on health, covering its structure, bioavailable forms and mechanisms of action. Clinical studies highlighting its therapeutic potential, applications in food fortification and other utilizations are also discussed, underscoring the nutrient's versatility. This synthesis aims to provide a clear understanding of the integral role of vitamin B12 in maintaining human health and its potential in clinical and nutritional applications. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- S Harikrishnan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Jasjit Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, Athens, Greece
| | - Tahra Elobeid
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Omur Fatih Karakullukcu
- Republic of Türkiye, Ministry National Education, General Directorate of Support Services, Ankara, Turkey
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
14
|
Wang X, Cao Z, Su J, Ge X, Zhou Z. Oral barriers to food-derived active peptides and nano-delivery strategies. J Food Sci 2025; 90:e17672. [PMID: 39828408 DOI: 10.1111/1750-3841.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Food-derived bioactive peptides are a class of peptides from natural protein. It may have biological effects on the human body and play a significant role in protecting human physiological health and regulating physiological metabolism, such as lowering blood pressure, lowering cholesterol, antioxidant, antibacterial, regulating immune activity, and so on. However, most of the natural food-derived functional peptides need to overcome a variety of barriers in the body to enter the blood circulation system and target to specific tissues to generate physiological activity. During this process, the bioavailability of the functional peptides will be reduced. The nano-delivery system can offer the feasibility to overcome these obstacles and improve the stability and bioavailability of food-derived active peptides by nanoencapsulation. This work summarizes the application of food-derived bioactive peptides and the obstacles during the delivery pathway in vivo. Moreover, the different nano-delivery systems used for bioactive peptides and their application were summarized, which could provide ideas for oral delivery of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhiyong Zhou
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, P. R. China
| |
Collapse
|
15
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
16
|
Chen Y, Tang Y, Li Y, Rui Y, Zhang P. Enhancing the Efficacy of Active Pharmaceutical Ingredients in Medicinal Plants through Nanoformulations: A Promising Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1598. [PMID: 39404324 PMCID: PMC11478102 DOI: 10.3390/nano14191598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This article explores the emerging field of nanomedicine as a drug delivery system, aimed at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The traditional methods of applying medicinal plants present several limitations, such as low bioavailability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting. Nanoformulations represent an innovative approach in drug preparation that employs nanotechnology to produce nanoscale particles or carriers, which are designed to overcome these limitations. Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability of drugs, particularly for the poorly soluble components of medicinal plants. These formulations effectively enhance solubility, thereby facilitating better absorption and utilization by the human body, which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery, ensuring precise administration to the lesion site and minimizing side effects on healthy tissues. Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic action, and enhance the stability of treatment effects. However, nanoformulations present certain limitations and potential risks; their stability and safety require further investigation, particularly regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate substantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants, offering novel approaches and methodologies for their development and application.
Collapse
Affiliation(s)
- Yuhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
- Tangshan Jinhai New Material Co., Ltd., Tangshan 063000, China
- Faculty of Resources and Environment, China Agricultural University, Shanghe County Baiqiao Town Science and Technology Courtyard, Jinan 250100, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Fernandes JM, Araújo JF, Gonçalves RFS, Vicente AA, Pinheiro AC. Emulsions vs excipient emulsions as α-tocopherol delivery systems: Formulation optimization and behaviour under in vitro digestion. Food Res Int 2024; 192:114743. [PMID: 39147549 DOI: 10.1016/j.foodres.2024.114743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Oil-in-water emulsions (EM) have been extensively used for the encapsulation of lipophilic bioactive compounds and posterior incorporation into food matrices to obtain functional foods. Conversely, novel excipient oil-in-water emulsions (EXC) present identical composition and structure as EM, albeit are not bioactive by themselves since no bioactive compound is encapsulated. Instead, EXC aims at improving the bioavailability of foods' natural bioactive compounds upon co-ingestion with nutrient-rich foods. In this work, EM and EXC were produced and their stability and functionality as delivery systems for α-tocopherol compared. Emulsions were formulated with corn oil and lecithin, and their composition was optimized using experimental designs. Formulations produced with 3 % lecithin and 5 % oil attained smallest particles sizes with the lowest polydispersity index of all tested formulations and remained stable up to 60 days. Encapsulation of α-tocopherol did not have a significative impact on the structural properties of the particles produced with the same composition. α-tocopherol stability during in vitro digestion was superior in EM regardless the processing methodology (EM stability < 50 %, EXC stability < 29 %), indicating that EM offered greater protection against the digestive environment. α-tocopherol's bioaccessibility was significantly increased when encapsulated or when digested with added excipient emulsions (82-92 % and 87-90 % for EM and EXC, respectively). In conclusion, EM were more efficient vehicles for the selected bioactive compound, however, the good results obtained with EXC imply that excipient emulsions have a great potential for applications on foods to improve their natural bioactive compounds' bioavailability without the need of further processing.
Collapse
Affiliation(s)
- J M Fernandes
- Centre of Biological Engineering, University of Minho Braga, Portugal.
| | - J F Araújo
- Centre of Biological Engineering, University of Minho Braga, Portugal
| | - R F S Gonçalves
- Centre of Biological Engineering, University of Minho Braga, Portugal
| | - A A Vicente
- Centre of Biological Engineering, University of Minho Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - A C Pinheiro
- Centre of Biological Engineering, University of Minho Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
18
|
Li M, Li W, Dong Y, Zhan C, Tao T, Kang M, Zhang C, Liu Z. Advances in metabolism pathways of theaflavins: digestion, absorption, distribution and degradation. Crit Rev Food Sci Nutr 2024:1-9. [PMID: 39096025 DOI: 10.1080/10408398.2024.2384647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Theaflavins, a major kind of component in black tea, have been reported to show a variety of biological activities and health effects. However, the unstable chemical properties, low bioavailability and unclear metabolism pathways of theaflavins have left much to be desired in terms of its specific efficacy and applications. This paper provides a comprehensive knowledge on the digestion, absorption, metabolism, distribution and excretion of theaflavins. We find that pH-dependent stability, efflux transport proteins are closely related to the low absorption rate and low bioavailability of theaflavins. When pass through the gastrointestinal tract, TFDG, TF2A and TF2B are gradually degraded to TF1, and release gallic acid. Then, the theaflavins skeleton are degraded into small molecular phenolic substances under the action of enzymes and microorganisms. In addition, theaflavins are widely distributed in the human body including brain, lung, heart, kidney, liver, blood tissue in a low content and can be excreted through feces. However, the influence of digestive enzymes barrier and gut microbial barrier on theaflavins are still unclear. Importantly, most findings are reported by in vitro methods and animal experiments, the metabolites and metabolic pathways of theaflavins in human body are not fully understood and need to be further investigated. We hope to lay a theoretical basis for exploring methods to improve the bioavailability of theaflavins and expanding the application of theaflavins in health foods as well as pharmaceuticals.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Wenlan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yunxia Dong
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Cai Zhan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Tiantian Tao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Manjun Kang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
19
|
Hu Y, Sun Y, Zhou C, Zeng X, Du L, Xia Q, Pan D, Wang W. Goose liver protein emulsion with enhanced interfacial stabilization by facile core-shell curcumin complexation. Int J Biol Macromol 2024; 274:133324. [PMID: 38908636 DOI: 10.1016/j.ijbiomac.2024.133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The role of facile curcumin dispersion and its hydrophobic complexation onto GLP, in the form of shell (GLPC-E), core (GLPE-C) and with synergy (GLP-ECE), on the protein interfacial and emulsion stabilization was investigated. Turbiscan instability index, microrheological elasticity, viscosity and solid-liquid balance values showed that the O/W emulsion stability was in the order of GLP-E < GLPC-E < GLPE-C < GLP-ECE. GLP-ECE also gave the most reduced D [4, 3] (8.11 ± 0.14 μm) with lowest indexes of flocculation (2.80 ± 0.05 %) and coalescence (2.83 ± 0.10 %) at day 5. Interfacial shear rheology suggested the GLP-curcumin complexation fortified the GLP interfacial gelling and then the efficiency as steric stabilizer, especially of core-shell complexation (14.2 mN/m) that showed the most sufficient in-plane protein interaction against strain. Dilatational elasticity and desorption observation revealed the synergistic curcumin complexation facilitated GLP unfolding and macromolecular association at O/W interface, as was also verified from SEM image and surface hydrophobicity (from 36.23 to 76.04). Overall, this study firstly reported the facile curcumin bi-physic dispersion and GLP complexation in improving the emulsion stabilizing efficiency of the protein by advancing its interfacial stabilization.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu university, Chengdu, 610106, China
| |
Collapse
|
20
|
Gill R, Al-Badr M, Alghouti M, Mohamed NA, Abou-Saleh H, Rahman MM. Revolutionizing Cardiovascular Health with Nano Encapsulated Omega-3 Fatty Acids: A Nano-Solution Approach. Mar Drugs 2024; 22:256. [PMID: 38921567 PMCID: PMC11204627 DOI: 10.3390/md22060256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) offer diverse health benefits, such as supporting cardiovascular health, improving cognitive function, promoting joint and musculoskeletal health, and contributing to healthy aging. Despite their advantages, challenges like oxidation susceptibility, low bioavailability, and potential adverse effects at high doses persist. Nanoparticle encapsulation emerges as a promising avenue to address these limitations while preserving stability, enhanced bioavailability, and controlled release. This comprehensive review explores the therapeutic roles of omega-3 fatty acids, critically appraising their shortcomings and delving into modern encapsulation strategies. Furthermore, it explores the potential advantages of metal-organic framework nanoparticles (MOF NPs) compared to other commonly utilized nanoparticles in improving the therapeutic effectiveness of omega-3 fatty acids within drug delivery systems (DDSs). Additionally, it outlines future research directions to fully exploit the therapeutic benefits of these encapsulated omega-3 formulations for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Richa Gill
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| | - Mohammad Alghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nura Adam Mohamed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (M.A.-B.)
| |
Collapse
|
21
|
Mancim-Imbriani MJ, Duarte JL, Di Filippo LD, Durão LPL, Chorilli M, Palomari Spolidorio DM, Maquera-Huacho PM. Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis. Pharmaceutics 2024; 16:698. [PMID: 38931821 PMCID: PMC11206411 DOI: 10.3390/pharmaceutics16060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Alternative therapies associating natural products and nanobiotechnology show new perspectives on controlled drug release. In this context, nanoemulsions (NEs) present promising results for their structural design and properties. Hesperetin (HT), a flavonoid mainly found in citrus fruits, presents highlighted bone benefits. In this context, we developed a hesperetin-loaded nanoemulsion (HT-NE) by sonication method and characterized it by dynamic light scattering, analyzing its encapsulation efficiency, and cumulative release. The biocompatibility in human osteoblasts Saos-2-like was evaluated by the cytotoxicity assay and IC50. Then, the effects of the HT-NE on osteogenesis were evaluated by the cellular proliferation, calcium nodule formation, bone regulators gene expression, collagen quantification, and alkaline phosphatase activity. The results showed that the formulation presented ideal values of droplet size, polydispersity index, and zeta potential, and the encapsulation efficiency was 74.07 ± 5.33%, showing a gradual and controlled release. Finally, HT-NE was shown to be biocompatible and increased cellular proliferation, and calcium nodule formation, regulated the expression of Runx2, ALPL, and TGF-β genes, and increased the collagen formation and alkaline phosphatase activity. Therefore, the formulation of this NE encapsulated the HT appropriately, allowing the increasing of its effects on mechanisms to improve or accelerate the osteogenesis process.
Collapse
Affiliation(s)
- Maria Júlia Mancim-Imbriani
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Letícia Pereira Lima Durão
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Patricia Milagros Maquera-Huacho
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| |
Collapse
|
22
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024; 65:2765-2784. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Torres Neto L, Monteiro MLG, da Silva BD, Machado MAM, Mutz YDS, Conte-Junior CA. Ultrasound-Assisted Nanoemulsion Loaded with Optimized Antibacterial Essential Oil Blend: A New Approach against Escherichia coli, Staphylococcus aureus, and Salmonella Enteritidis in Trout ( Oncorhynchus mykiss) Fillets. Foods 2024; 13:1569. [PMID: 38790870 PMCID: PMC11120578 DOI: 10.3390/foods13101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to obtain and characterize an oil-in-water nanoemulsion (NE) loaded with an in vitro optimized bactericidal essential oil blend of 50% oregano, 40% thyme, and 10% lemongrass and to evaluate its potential at three different concentrations (0.5%, 1%, and 2%) in the inactivation of Escherichia coli, Staphylococcus aureus, and Salmonella enterica serotype Enteritidis inoculated in rainbow trout fillets stored at 4 °C for 9 days. Regarding the NE, the nanometric size (<100 nm) with low polydispersion (0.17 ± 0.02) was successfully obtained through ultrasound at 2.09 W/cm2. Considering the three concentrations used, S. Enteritidis was the most susceptible. On the other hand, comparing the concentrations used, the NE at 2% showed better activity, reducing S. Enteritidis, E. coli, and S. aureus by 0.33, 0.20, and 0.73 log CFU/g, respectively, in the trout fillets. Thus, this data indicates that this is a promising eco-friendly alternative to produce safe fish for consumption and reduce public health risks.
Collapse
Affiliation(s)
- Luiz Torres Neto
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (M.L.G.M.); (B.D.d.S.); (M.A.M.M.); (Y.d.S.M.); (C.A.C.-J.)
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Maria Lucia Guerra Monteiro
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (M.L.G.M.); (B.D.d.S.); (M.A.M.M.); (Y.d.S.M.); (C.A.C.-J.)
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
| | - Bruno Dutra da Silva
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (M.L.G.M.); (B.D.d.S.); (M.A.M.M.); (Y.d.S.M.); (C.A.C.-J.)
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Maxsueli Aparecida Moura Machado
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (M.L.G.M.); (B.D.d.S.); (M.A.M.M.); (Y.d.S.M.); (C.A.C.-J.)
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Yhan da Silva Mutz
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (M.L.G.M.); (B.D.d.S.); (M.A.M.M.); (Y.d.S.M.); (C.A.C.-J.)
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (M.L.G.M.); (B.D.d.S.); (M.A.M.M.); (Y.d.S.M.); (C.A.C.-J.)
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
24
|
Xu F, Shi Y, Li B, Liu C, Zhang Y, Zhong J. Characterization, Stability and Antioxidant Activity of Vanilla Nano-Emulsion and Its Complex Essential Oil. Foods 2024; 13:801. [PMID: 38472915 DOI: 10.3390/foods13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
As a natural flavoring agent, vanilla essential oil has a special aroma and flavor, but its volatility and instability limit its value. Therefore, in this study, vanilla essential oil was compounded with cinnamon essential oil to prepare nano-emulsions (composite nano-emulsions called C/VT and C/VM), and the stability of the composite essential oil emulsions was investigated. Transmission electron microscopy (TEM) images showed that the nano-emulsions were spherical in shape and some flocs were observed in C/VM and C/VT. The results showed that the average droplet sizes of C/VM and C/VT increased only by 14.99% and 15.01% after heating at 100 °C for 20 min, and the average droplet sizes were less than 120 nm after 24 days of storage at 25 °C. Possibly due to the presence of reticulated flocs, which have a hindering effect on the movement of individual droplets, the instability indices of C/VM and C/VT were reduced by 34.9% and 39.08%, respectively, in comparison to the instability indices of C/VM and C/VT. In addition, the results of antioxidant experimental studies showed that the presence of composite essential oil flocs had no significant effect on the antioxidant capacity. These results indicate that the improved stability of the composite essential oil nano-emulsions is conducive to broadening the application of vanilla essential oil emulsions.
Collapse
Affiliation(s)
- Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Yucong Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Bin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Junzhen Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
25
|
McClements DJ. Designing healthier and more sustainable ultraprocessed foods. Compr Rev Food Sci Food Saf 2024; 23:e13331. [PMID: 38517032 DOI: 10.1111/1541-4337.13331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
The food industry has been extremely successful in creating a broad range of delicious, affordable, convenient, and safe food and beverage products. However, many of these products are considered to be ultraprocessed foods (UPFs) that contain ingredients and are processed in a manner that may cause adverse health effects. This review article introduces the concept of UPFs and briefly discusses food products that fall into this category, including beverages, baked goods, snacks, confectionary, prepared meals, dressings, sauces, spreads, and processed meat and meat analogs. It then discusses correlations between consumption levels of UPFs and diet-related chronic diseases, such as obesity and diabetes. The different reasons for the proposed ability of UPFs to increase the risk of these chronic diseases are then critically assessed, including displacement of whole foods, high energy densities, missing phytochemicals, contamination with packaging chemicals, hyperpalatability, harmful additives, rapid ingestion and digestion, and toxic reaction products. Then, potential strategies to overcome the current problems with UPFs are presented, including reducing energy density, balancing nutritional profile, fortification, increasing satiety response, modulating mastication and digestion, reengineering food structure, and precision processing. The central argument is that it may be possible to reformulate and reengineer many UPFs to improve their healthiness and sustainability, although this still needs to be proved using rigorous scientific studies.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
26
|
Iskandar B, Mei HC, Liu TW, Lin HM, Lee CK. Evaluating the effects of surfactant types on the properties and stability of oil-in-water Rhodiola rosea nanoemulsion. Colloids Surf B Biointerfaces 2024; 234:113692. [PMID: 38104466 DOI: 10.1016/j.colsurfb.2023.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Different types and ratios of surfactant, co-surfactant, and oil phase, have a greater impact on nanoemulsion preparation. The presence of surfactants in the nanoemulsion can reduce surface tension and characteristic stability. In this study, four groups of oil-in-water (O/W) nanoemulsions (NEs) with different ratios of surfactant and co-surfactant, and two oils were formulated as carriers of Rhodiola rosea. The variable optimization was investigated and then indicated as optimization group A (Opt A) with the formula of 10% of transcutol, 16.63% of tween 80, Opt B with 10% of tween 80, 29.87% of span 80, Opt C with 28.42% of transcutol, 30% of labrasol, and Opt D with 30% of transcutol, 30% of tween 80. Labrafac and soybean oil were used as the oil phase. The optimized formula using the response surface method (RSM) by design expert software showed the ideal conditions with a higher desirability score. Desirability score are 0.72% (Opt A), 0.81% (Opt B), 0.76% (Opt C) and 0.98% (Opt D), the desirability rating close to 1 indicates a high possibility that the projected values would closely match the experimental results for the optimum formula. All of the optimized formulation were also checked for the characteristics of nanoemulsion including particle size, polydispersity index (PDI), zeta potential, viscosity, encapsulation efficiency, transmission electron microscope (TEM), antioxidant activity, skin irritation test and stability studies. Our study provides a promising combination of surfactant-co-surfactant and oil phases to produce a stable nanoemulsion that can be used in pharmaceuticals and cosmetics in the future.
Collapse
Affiliation(s)
- Benni Iskandar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmaceutical Technology, Riau College of Pharmaceutical Sciences (STIFAR), Pekanbaru 28292, Riau, Indonesia
| | - Hui-Ching Mei
- Department of Science Education, National Taipei University of Education, Taipei 106, Taiwan
| | - Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
27
|
Dhayalan M, Wang W, Riyaz SUM, Dinesh RA, Shanmugam J, Irudayaraj SS, Stalin A, Giri J, Mallik S, Hu R. Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications. 3 Biotech 2024; 14:57. [PMID: 38298556 PMCID: PMC10825110 DOI: 10.1007/s13205-023-03901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Since Doxil's first clinical approval in 1995, lipid nanoparticles have garnered great interest and shown exceptional therapeutic efficacy. It is clear from the licensure of two RNA treatments and the mRNA-COVID-19 vaccination that lipid nanoparticles have immense potential for delivering nucleic acids. The review begins with a list of lipid nanoparticle types, such as liposomes and solid lipid nanoparticles. Then it moves on to the earliest lipid nanoparticle forms, outlining how lipid is used in a variety of industries and how it is used as a versatile nanocarrier platform. Lipid nanoparticles must then be functionally modified. Various approaches have been proposed for the synthesis of lipid nanoparticles, such as High-Pressure Homogenization (HPH), microemulsion methods, solvent-based emulsification techniques, solvent injection, phase reversal, and membrane contractors. High-pressure homogenization is the most commonly used method. All of the methods listed above follow four basic steps, as depicted in the flowchart below. Out of these four steps, the process of dispersing lipids in an aqueous medium to produce liposomes is the most unpredictable step. A short outline of the characterization of lipid nanoparticles follows discussions of applications for the trapping and transporting of various small molecules. It highlights the use of rapamycin-coated lipid nanoparticles in glioblastoma and how lipid nanoparticles function as a conjugator in the delivery of anticancer-targeting nucleic acids. High biocompatibility, ease of production, scalability, non-toxicity, and tailored distribution are just a meager of the enticing allowances of using lipid nanoparticles as drug delivery vehicles. Due to the present constraints in drug delivery, more research is required to utterly realize the potential of lipid nanoparticles for possible clinical and therapeutic purposes.
Collapse
Affiliation(s)
- Manikandan Dhayalan
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- College of Public Health Sciences (CPHS), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330 Thailand
| | - Wei Wang
- Beidahuang Industry Group General Hospital, Harbin, 150001 China
| | - S. U. Mohammed Riyaz
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- PG & Research Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi, Tamil Nadu 635752 India
| | - Rakshi Anuja Dinesh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072 Australia
| | - Jayashree Shanmugam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu India
| | | | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA USA
| | - Ruifeng Hu
- Department of Neurology, Harvard Medical School, Boston, MA USA
| |
Collapse
|
28
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
29
|
Panwar A, Kumar V, Dhiman A, Thakur P, Sharma V, Sharma A, Kumar S. Nanoemulsion based edible coatings for quality retention of fruits and vegetables-decoding the basics and advancements in last decade. ENVIRONMENTAL RESEARCH 2024; 240:117450. [PMID: 37875173 DOI: 10.1016/j.envres.2023.117450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Fruits and vegetables (F&V) are highly perishable and have important contributions to nutritional and economic sustainability. Although the developing nations have shown an immense increase in the production of horticultural commodities, the post-harvest losses are significant and have an adverse impact on the resources, economy, and environment as well. Nanoemulsion-based carriers are recognized for their diversity, natural origin, and immense potential to restrict losses while boosting the functional attributes of produce. The recent findings attest to nanoemulsions potential for extending the shelf life, managing quality, and reducing the losses of the perishables for sustainable livelihood of the farmers. However, further studies are required to evaluate the biological fate, safety, or potential toxicity of the nanoemulsion-based edible coatings. This review precisely focuses on various matrices used in the production of nanoemulsions, fabrication methods, characterization techniques, and the use of natural emulsifiers instead of chemicals. The future research focus stresses on developing low-cost fabrication techniques for nanoemulsion, improvement of the transmission properties i. e gas transmission rate (GTR), water vapor transmission rate (WVTR), and enhancing the performance of monolayer, bilayer, and other composite nanoemulsion base films. This beyond reducing the postharvest losses shall also restrict burden of the food waste management and related environmental issues at the same time.
Collapse
Affiliation(s)
- Anika Panwar
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India
| | - Vikas Kumar
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana. Punjab, 141027, India
| | - Atul Dhiman
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana. Punjab, 141027, India
| | - Priyanka Thakur
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India
| | - Vishal Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan (HP), 173229, India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur, Hamirpur, HP, 176041, India
| | - Satish Kumar
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India.
| |
Collapse
|
30
|
Azevedo MA, Teixeira JA, Pastrana L, Cerqueira MA. Rhamnolipids: A biosurfactant for the development of lipid-based nanosystems for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13252. [PMID: 38284602 DOI: 10.1111/1541-4337.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024]
Abstract
Biosurfactants (surfactants synthesized by microorganisms) are produced by microorganisms and are suitable for use in different areas. Among biosurfactants, rhamnolipids are the most studied and popular, attracting scientists, and industries' interest. Due to their unique characteristics, the rhamnolipids have been used as synthetic surfactants' alternatives and explored in food applications. Besides the production challenges that need to be tackled to guarantee efficient production and low cost, their properties need to be adjusted to the final application, where the pH instability needs to be considered. Moreover, regulatory approval is needed to start being used in commercial applications. One characteristic of interest is their capacity to form oil-in-water nanosystems. Some of the most explored have been nanoemulsions, solid-lipid nanoparticles and nanostructured lipid carriers. This review presents an overview of the main properties of rhamnolipids, asserts the potential and efficiency of rhamnolipids to replace the synthetic surfactants in the development of nanosystems, and describes the rhamnolipids-based nanosystems used in food applications. It also discusses the main characteristics and methodologies used for their characterization and in the end, some of the main challenges are highlighted.
Collapse
Affiliation(s)
- Maria A Azevedo
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
31
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
32
|
de Souza RL, Opretzka LCF, de Morais MC, Melo CDO, de Oliveira BEG, de Sousa DP, Villarreal CF, Oliveira EE. Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate. Pharmaceuticals (Basel) 2023; 17:17. [PMID: 38276002 PMCID: PMC10821396 DOI: 10.3390/ph17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Carvacryl acetate (CA) is a monoterpene obtained from carvacrol, which exhibits anti-inflammatory activity. However, its low solubility in aqueous media limits its application and bioavailability. Herein, we aimed to develop a carvacryl acetate nanoemulsion (CANE) and assess its anti-inflammatory potential in preclinical trials. The optimized nanoemulsion was produced by ultrasound, and stability parameters were characterized for 90 days using dynamic light scattering after hydrophilic-lipophilic balance (HLB) assessment. To evaluate anti-inflammatory activity, a complete Freund's adjuvant-induced inflammation model was established. Paw edema was measured, and local interleukin (IL)-1β levels were quantified using ELISA. Toxicity was assessed based on behavioral changes and biochemical assays. The optimized nanoemulsion contained 3% CA, 9% surfactants (HLB 9), and 88% water and exhibited good stability over 90 days, with no signs of toxicity. The release study revealed that CANE followed zero-order kinetics. Dose-response curves for CA were generated for intraperitoneal and oral administration, demonstrating anti-inflammatory effects by both routes; however, efficacy was lower when administered orally. Furthermore, CANE showed improved anti-inflammatory activity when compared with free oil, particularly when administered orally. Moreover, daily treatment with CANE did not induce behavioral or biochemical alterations. Overall, these findings indicate that nanoemulsification can enhance the anti-inflammatory properties of CA by oral administration.
Collapse
Affiliation(s)
- Rafael Limongi de Souza
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | - Luíza Carolina França Opretzka
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Mayara Castro de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Camila de Oliveira Melo
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Cristiane Flora Villarreal
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Elquio Eleamen Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| |
Collapse
|
33
|
Zhao J, Lan W, Xie J. Recent developments in nanoemulsions against spoilage in cold-stored fish: A review. Food Chem 2023; 429:136876. [PMID: 37481985 DOI: 10.1016/j.foodchem.2023.136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Nanoemulsion-based technology is developing rapidly in the food industry, especially in the design of delivery systems for bioactive compounds. This review presents an in-depth understanding of the composition, function, antibacterial mechanism and successful application of nanoemulsions as preservative agents against fish spoilage. The results showed that the inclusion of bioactive substances in the food-grade nanoemulsions encapsulation system could improve its stability, control its release, inhibit the microbial growth and reproduction through a variety of targets. These nanoemulsions can inhibit fish spoilage via reducing microbial load and retarding the oxidation of proteins and lipids, thereby maintaining quality attributes of fish. In addition, nanoemulsions could be coupled with vacuum package for enhancing microbial destruction, retaining nutritional value and extending the shelf-life of fish. Accordingly, nanoemulsions are suggested as a promising strategy to inhibit fish spoilage.
Collapse
Affiliation(s)
- Jiaxin Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
34
|
He WS, Wang Q, Zhao L, Li J, Li J, Wei N, Chen G. Nutritional composition, health-promoting effects, bioavailability, and encapsulation of tree peony seed oil: a review. Food Funct 2023; 14:10265-10285. [PMID: 37929791 DOI: 10.1039/d3fo04094a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Tree peony is cultivated worldwide in large quantities due to its exceptional ornamental and medicinal value. In recent years, the edible value of tree peony seed oil (TPSO) has garnered significant attention for its high content of alpha-linolenic acid (ALA, >40%) and other beneficial minor components, including phytosterols, tocopherols, squalene, and phenolics. This review provides a systematic summary of the nutritional composition and health-promoting effects of TPSO, with a specific focus on its digestion, absorption, bioavailability, and encapsulation status. Additionally, information on techniques for extracting and identifying adulteration of TPSO, as well as its commercial applications and regulated policies, is included. Thanks to its unique nutrients, TPSO offers a wide range of health benefits, such as hypolipidemic, anti-obesity, cholesterol-lowering, antioxidant and hypoglycemic activities, and regulation of the intestinal microbiota. Consequently, TPSO shows promising potential in the food and cosmetic industries and should be cultivated in more countries. However, the application of TPSO is hindered by its low bioavailability, poor stability, and limited water dispersibility. Therefore, it is crucial to develop effective delivery strategies, such as microencapsulation and emulsion, to overcome these limitations. In conclusion, this review provides a comprehensive understanding of the nutritional value of TPSO and emphasizes the need for further research on its nutrition and product development.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Qingzhi Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Liying Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Junjie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Na Wei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
35
|
Yousefpoor Y, Esnaashari SS, Baharifar H, Mehrabi M, Amani A. Current challenges ahead in preparation, characterization, and pharmaceutical applications of nanoemulsions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1920. [PMID: 37558229 DOI: 10.1002/wnan.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
Nanoemulsions (NEs) are emulsions with particle size of less than around 100 nm. Reviewing the literature, several reports are available on NEs, including preparation, characterization, and applications of them. This review aims to brief challenges that researchers or formulators may encounter when working with NEs. For instance, when selecting NE components and identifying their concentrations, stability and safety of the preparation should be evaluated. When preparing an NE, issues over scale-up of the preparation as well as possible effects of the preparation process on the active ingredient need to be considered. When characterizing the NEs, the two major concerns are accuracy of the method and accessibility of the characterizing instrument. Also a highly efficient NE for clinical use to deliver the active ingredient to the target tissue with maximum safety profile is commonly sought. Throughout the review we also have tried to suggest approaches to overcome the challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical, Torbat Heydariyeh, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
36
|
Reis CA, Gomes A, do Amaral Sobral PJ. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications-A Review. Foods 2023; 12:3602. [PMID: 37835255 PMCID: PMC10573032 DOI: 10.3390/foods12193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The rising consumer demand for safer, healthier, and fresher-like food has led to the emergence of new concepts in food packaging. In addition, the growing concern about environmental issues has increased the search for materials derived from non-petroleum sources and biodegradable options. Thus, active films based on biopolymers loaded with natural active compounds have great potential to be used as food packaging. However, several lipophilic active compounds are difficult to incorporate into aqueous film-forming solutions based on polysaccharides or proteins, and the hydrophilic active compounds require protection against oxidation. One way to incorporate these active compounds into film matrices is to encapsulate them in emulsions, such as microemulsions, nanoemulsions, Pickering emulsions, or double emulsions. However, emulsion characteristics can influence the properties of active films, such as mechanical, barrier, and optical properties. This review addresses the advantages of using emulsions to encapsulate active compounds before their incorporation into biopolymeric matrices, the main characteristics of these emulsions (emulsion type, droplet size, and emulsifier nature), and their influence on active film properties. Furthermore, we review the recent applications of the emulsion-charged active films in food systems.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
37
|
Csuti A, Zheng B, Zhou H. Post pH-driven encapsulation of polyphenols in next-generation foods: principles, formation and applications. Crit Rev Food Sci Nutr 2023; 64:12892-12906. [PMID: 37722872 DOI: 10.1080/10408398.2023.2258214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
To meet the needs of a growing global population (∼10 billion by 2050), there is an urgent demand for sustainable, healthy, delicious, and affordable next-generation foods. Natural polyphenols, which are abundant in edible plants, have emerged as promising food additives due to their potential health benefits. However, incorporating polyphenols into food products presents various challenges, including issues related to crystallization, low water-solubility, limited bioavailability, and chemical instability. pH-driven or pH-shifting approaches have been proposed to incorporate polyphenols into the delivery systems. Nevertheless, it is unclear whether they can be generally used for the encapsulation of polyphenols into next-generation foods. Here, we highlight a post pH-driven (PPD) approach as a viable solution. The PPD approach inherits several advantages, such as simplicity, speed, and environmental friendliness, as it eliminates the need for heat, organic solvents, and complex equipment. Moreover, the PPD approach can be widely applied to different polyphenols and food systems, enhancing its versatility while also potentially contributing to reducing food waste. This review article aims to accelerate the implementation of the PPD approach in the development of polyphenol-fortified next-generation foods by providing a comprehensive understanding of its fundamental principles, encapsulation techniques, and potential applications in plant-based foods.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Bingjing Zheng
- Research and Development, GNT Group, Dallas, North Carolina, USA
| | - Hualu Zhou
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
38
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
39
|
Tran VN, Strnad O, Šuman J, Veverková T, Sukupová A, Cejnar P, Hynek R, Kronusová O, Šach J, Kaštánek P, Ruml T, Viktorová J. Cannabidiol nanoemulsion for eye treatment - Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int J Pharm 2023; 643:123202. [PMID: 37406946 DOI: 10.1016/j.ijpharm.2023.123202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Ondřej Strnad
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jáchym Šuman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Tereza Veverková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Adéla Sukupová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Pavel Cejnar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Olga Kronusová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Josef Šach
- Department of Pathology, Third Faculty of Medicine, Teaching Hospital Královské Vinohrady Prague, Šrobárova 50, 100 34 Prague 10, Czech Republic
| | - Petr Kaštánek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic.
| |
Collapse
|
40
|
Martínez-Olivo AO, Zamora-Gasga VM, Medina-Torres L, Pérez-Larios A, Sáyago-Ayerdi SG, Sánchez-Burgos JA. Biofunctionalization of natural extracts, trends in biological activity and kinetic release. Adv Colloid Interface Sci 2023; 318:102938. [PMID: 37329675 DOI: 10.1016/j.cis.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The health benefits provided by plant matrices is due to the presence of certain compounds that, in studies carried out in vitro and in vivo, have shown to have biological activity in certain conditions, not only as a natural treatment against various conditions, but also for the quality of preventing chronic diseases, these compounds, already identified and studied, they can increase their biological function by undergoing structural chemical modifications or by being incorporated into polymer matrices that allow, in the first instance, to protect said compound and increase its bioaccessibility, as well as to preserve or increase the biological effects. Although the stabilization of compounds is an important aspect, it is also the study of the kinetic parameters of the system that contains them, since, due to these studies, the potential application to these systems can be designated. In this review we will address some of the work focused on obtaining compounds with biological activity from plant sources, the functionalization of extracts through double emulsions and nanoemulsions, as well as their toxicity and finally the pharmacokinetic aspects of entrapment systems.
Collapse
Affiliation(s)
- Abraham Osiris Martínez-Olivo
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Víctor Manuel Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico
| | - Alejandro Pérez-Larios
- Universidad de Guadalajara, Centro Universitario de los Altos, División de Ciencias Agropecuarias e Ingenierías, Laboratorio de Materiales, Agua y Energía, Av. Rafael Casillas Aceves 1200, C.P. 47600, Tepatitlán de Morelos, Mexico
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico.
| |
Collapse
|
41
|
Feng K, Duan Y, Zhang H, Xiao J, Ho CT, Huang Q, Cao Y. Influence of 1,3-diacylglycerol on physicochemical and digestion properties of nanoemulsions and its enhancement of encapsulation and bioaccessibility of hydrophobic nobiletin. Food Funct 2023; 14:6212-6225. [PMID: 37345830 DOI: 10.1039/d3fo00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Lipid-based delivery systems are commonly used to encapsulate hydrophobic bioactive compounds for enhancing their bioaccessibility and bioavailability, especially for triacylglycerol (TAG) oil-based delivery systems. However, studies on the development of 1,3-diacylglycerol (DAG) oil-based delivery systems are rather limited. Herein, the influence of 1,3-DAG oil as a carrier oil on the properties of nanoemulsions and the bioaccessibility of encapsulated hydrophobic nobiletin (NOB) were investigated. High-purity 1,3-DAG (over 93% pure) was prepared by a combination of enzymatic esterification and ethanol crystallization. 1,3-DAG oil as a carrier oil could be used to formulate nanoemulsions with smaller droplet size, narrower size distribution and similar stability compared to TAG oil. Importantly, 1,3-DAG oil could efficiently encapsulate high-loading NOB (1.45 mg g-1) in nanoemulsions and significantly improve the bioaccessibility of NOB (above 80%), which is attributable to its massive lipolysis and higher encapsulation capacity than TAG oil. Moreover, the addition of the 1,3-DAG component in TAG oil significantly improved the properties of nanoemulsions and the loading and bioaccessibility of NOB, especially as the 1,3-DAG content was not less than 50%. The structure of lipids (DAG versus TAG) influenced the nanoemulsion properties and the bioaccessibility of encapsulated NOB. Based on the good properties of 1,3-DAG oil coupled with its health benefits, 1,3-DAG oil-based nanoemulsion delivery systems have great prospects for improving and extending emulsion properties and bioactivity as well as bioaccessibility enhancement.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yashan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Huiting Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
42
|
Xu J, Zhu X, Zhang J, Li Z, Kang W, He H, Wu Z, Dong Z. Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series. ULTRASONICS SONOCHEMISTRY 2023; 97:106451. [PMID: 37257207 DOI: 10.1016/j.ultsonch.2023.106451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools.
Collapse
Affiliation(s)
- Jiahong Xu
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Xiaojing Zhu
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China.
| | - Jie Zhang
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Zhipeng Li
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Wenjiang Kang
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Haibo He
- MoGe um-Flow Technology Co., Ltd., 515031 Shantou, China
| | - Zhilin Wu
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Zhengya Dong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China.
| |
Collapse
|
43
|
de Souza RL, Mengarda AC, Roquini DB, Melo CO, de Morais MC, C Espírito-Santo MC, de Sousa DP, Moraes JD, Oliveira EE. Enhancing the antischistosomal activity of carvacryl acetate using nanoemulsion. Nanomedicine (Lond) 2023; 18:331-342. [PMID: 37140262 DOI: 10.2217/nnm-2022-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: To formulate a carvacryl acetate nanoemulsion (CANE) and test its antischistosomal activity. Materials & methods: CANE was prepared and tested in vitro on Schistosoma mansoni adult worms and both human and animal cell lines. Next, CANE was administered orally to mice infected with either a prepatent infection or a patent infection of S. mansoni. Results: CANE was stable during 90 days of analysis. CANE showed in vitro anthelmintic activity, and no cytotoxic effects were observed. In vivo, CANE was more effective than the free compounds in reducing worm burden and egg production. Treatment with CANE was more effective for prepatent infections than praziquantel. Conclusion: CANE improves antiparasitic properties and may be a promising delivery system for schistosomiasis treatment.
Collapse
Affiliation(s)
- Rafael L de Souza
- Laboratory of Synthesis & Drug Delivery, State University of Paraíba, João Pessoa, 58071-160, Brazil
| | - Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07023-070, Brazil
| | - Daniel B Roquini
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07023-070, Brazil
| | - Camila O Melo
- Laboratory of Synthesis & Drug Delivery, State University of Paraíba, João Pessoa, 58071-160, Brazil
| | - Mayara C de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Maria Cristina C Espírito-Santo
- Laboratory of Immunopathology of Schistosomiasis (LIM-06), Department of Infectious & Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, 01246903, Brazil
- Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, 05403-000, Brazil
| | - Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07023-070, Brazil
| | - Elquio E Oliveira
- Laboratory of Synthesis & Drug Delivery, State University of Paraíba, João Pessoa, 58071-160, Brazil
| |
Collapse
|
44
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
45
|
Manzoor M, Sharma P, Murtaza M, Jaiswal AK, Jaglan S. Fabrication, characterization, and interventions of protein, polysaccharide and lipid-based nanoemulsions in food and nutraceutical delivery applications: A review. Int J Biol Macromol 2023; 241:124485. [PMID: 37076071 DOI: 10.1016/j.ijbiomac.2023.124485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The fabrication and application of nanoemulsions for incorporating and delivering diverse bioactive compounds, particularly hydrophobic substances, is becoming an increasing focus of research with the potential to improve the nutritional and health status of individuals. Constant advancements in nanotechnological approaches aid in the creation of nanoemulsions using diverse biopolymers such as proteins, peptides, polysaccharides, and lipids to improve the stability, bioactivity, and bioavailability of active hydrophilic and lipophilic compounds. This article provides a comprehensive overview of various techniques used to create and characterize nanoemulsions as well as theories for understanding their stability. The article also highlights the advancement of nanoemulsions in boosting the bioaccessibility of nutraceuticals to help advance their potential use in various food and pharmaceutical formulations.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India.
| | - Priyanshu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
46
|
Kuang Y, Xiao Q, Yang Y, Liu M, Wang X, Deng P, Wu K, Liu Y, Peng B, Jiang F, Li C. Investigation and Characterization of Pickering Emulsion Stabilized by Alkali-Treated Zein (AZ)/Sodium Alginate (SA) Composite Particles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3164. [PMID: 37110002 PMCID: PMC10146332 DOI: 10.3390/ma16083164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Pickering emulsions stabilized by food-grade colloidal particles have attracted increasing attention in recent years due to their "surfactant-free" nature. In this study, the alkali-treated zein (AZ) was prepared via restricted alkali deamidation and then combined with sodium alginate (SA) in different ratios to obtain AZ/SA composite particles (ZS), which were used to stabilize Pickering emulsion. The degree of deamidation (DD) and degree of hydrolysis (DH) of AZ were 12.74% and 6.58% respectively, indicating the deamidation occurred mainly in glutamine on the side chain of the protein. After the treatment with alkali, AZ particle size decreased significantly. Moreover, the particle size of ZS with different ratios was all less than 80 nm. when the AZ/SA ratio was 2:1(Z2S1) and 3:1(Z3S1), the three-phase contact angle (θo/w) were close to 90°, which was favorable for stabilizing the Pickering emulsion. Furthermore, at a high oil phase fraction (75%), Z3S1-stabilized Pickering emulsions showed the best long-term storage stability within 60 days. Confocal laser scanning microscope (CLSM) observations showed that the water-oil interface was wrapped by a dense layer of Z3S1 particles with non-agglomeration between independent oil droplets. At constant particle concentration, the apparent viscosity of the Pickering emulsions stabilized by Z3S1 gradually decreased with increasing oil phase fraction, and the oil-droplet size and the Turbiscan stability index (TSI) also gradually decreased, exhibiting solid-like behavior. This study provides new ideas for the fabrication of food-grade Pickering emulsions and will extend the future applications of zein-based Pickering emulsions as bioactive ingredient delivery systems.
Collapse
Affiliation(s)
- Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Qinjian Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yichen Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Menglong Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiaosa Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yi Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Bo Peng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Cao Li
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
47
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Impact of Operating Parameters on the Production of Nanoemulsions Using a High-Pressure Homogenizer with Flow Pattern and Back Pressure Control. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The main objective of this study was to establish the relative importance of the main operating parameters impacting the formation of food-grade oil-in-water nanoemulsions by high-pressure homogenization. The goal of this unit operation was to create uniform and stable emulsified products with small mean particle diameters and narrow polydispersity indices. In this study, we examined the performance of a new commercial high-pressure valve homogenizer, which has several features that provide good control over the particle size distribution of nanoemulsions, including variable homogenization pressures (up to 45,000 psi), nozzle dimensions (0.13/0.22 mm), flow patterns (parallel/reverse), and back pressures. The impact of homogenization pressure, number of passes, flow pattern, nozzle dimensions, back pressure, oil concentration, emulsifier concentration, and emulsifier type on the particle size distribution of corn oil-in-water emulsions was systematically examined. The droplet size decreased with increasing homogenization pressure, number of passes, back pressure, and emulsifier-to-oil ratio. Moreover, it was slightly smaller when a reverse rather than parallel flow profile was used. The emulsifying performance of plant, animal, and synthetic emulsifiers was compared because there is increasing interest in replacing animal and synthetic emulsifiers with plant-based ones in the food industry. Under fixed homogenization conditions, the mean particle diameter decreased in the following order: gum arabic (0.66 µm) > soy protein (0.18 µm) > whey protein (0.14 µm) ≈ Tween 20 (0.14 µm). The information reported in this study is useful for the optimization of the production of food-grade nanoemulsions using high-pressure homogenization.
Collapse
|
49
|
Sathiyaseelan A, Zhang X, Wang MH. Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Melaleuca alternifolia Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres. Nutrients 2023; 15:nu15061319. [PMID: 36986049 PMCID: PMC10051692 DOI: 10.3390/nu15061319] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, antibacterial and antioxidant molecules-rich Melaleuca alternifolia oil (tea tree oil (TTO)) loaded chitosan (CS) based nanoemulsions (NEMs) were prepared and encapsulated by sodium alginate (SA) microsphere for antibacterial wound dressing. CS-TTO NEMs were prepared by oil-in-water emulsion technique, and the nanoparticle tracking analysis (NTA) confirmed that the CS-TTO NEMs had an average particle size of 89.5 nm. Further, the SA-CS-TTO microsphere was confirmed through SEM analysis with an average particle size of 0.76 ± 0.10 µm. The existence of TTO in CS NEMs and SA encapsulation was evidenced through FTIR analysis. The XRD spectrum proved the load of TTO and SA encapsulation with CS significantly decreased the crystalline properties of the CS-TTO and SA-CS-TTO microsphere. The stability of TTO was increased by the copolymer complex, as confirmed through thermal gravimetric analysis (TGA). Furthermore, TTO was released from the CS-SA complex in a sustained manner and significantly inhibited the bacterial pathogens observed under confocal laser scanning microscopy (CLSM). In addition, CS-TTO (100 µg/mL) showed antioxidant potential (>80%), thereby increasing the DPPH and ABTS free radicals scavenging ability of SA-CS-TTO microspheres. Moreover, CS and SA-CS-TTO microsphere exhibited negligible cytotoxicity and augmented the NIH3T3 cell proliferation confirmed in the in vitro scratch assay. This study concluded that the SA-CS-TTO microsphere could be an antibacterial and antioxidant wound dressing.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
50
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|