1
|
Maciag M, Doszyn O, Wnorowski A, Zmorzynska J, Budzynska B. Exploring the impact of MDMA and oxytocin ligands on anxiety and social responses: A comprehensive behavioural and molecular study in the zebrafish model. J Psychopharmacol 2025; 39:373-393. [PMID: 40129049 DOI: 10.1177/02698811251324596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
BACKGROUND Mental disorders, including anxiety and depression, impact nearly 1 billion people worldwide. Recent research has highlighted the potential of certain amphetamine compounds in the therapy of psychiatric disorders, with 3,4-methylenedioxymethamphetamine (MDMA) emerging as a promising candidate. AIM This study investigates the effects of MDMA on anxiety and social behaviours using 3-week-old zebrafish. Additionally, the role of oxytocin in regulating these behaviours was examined through the use of an oxytocin receptor agonist (WAY-267,464) and antagonist (L-368,899). METHODS Behavioural effects were assessed using the novel exploration test, light-dark preference test and social preference test. To explore the underlying mechanisms, changes in gene expression in serotonin, oxytocin and vasopressin systems and changes in AKT and EKR1/2 signalling pathways were analysed. RESULTS Acute MDMA exposure reduced thigmotactic behaviour and increased the social preference index, indicating anxiolytic and prosocial effects. However, these effects were biphasic - the lowest tested dose of 0.5 μM showed anxiogenic and prosocial effects. As the concentration increased, these effects reversed, with a peak at 2.5 μM. MDMA suppressed the expression of serotonin receptors (htr1b and htr2b) and transporter (scl6a4) genes while increasing oxytocin receptors (oxtra and oxtrb) genes, decreasing vasopressin receptor (avpr1aa) gene expression, and reducing AKT phosphorylation. The oxytocin receptor agonist mimicked MDMA's effects, while the antagonist had no significant effect on anxiety or social behaviour. CONCLUSIONS MDMA demonstrates therapeutic potential for treating anxiety disorders and social impairments. Moreover, 3-week-old zebrafish proved to be a valuable model for neurobehavioural research and high-throughput screening of psychiatric treatments.
Collapse
Affiliation(s)
- Monika Maciag
- Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| | - Olga Doszyn
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Justyna Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Budzynska
- Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Puligilla RD, Roos NJ, Bolten JS, Hopf NB, Zurich MG, Barulin N, Huwyler J. Zebrafish as a model to assess the neurotoxic potential of propylene glycol ethers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104678. [PMID: 40132735 DOI: 10.1016/j.etap.2025.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Propylene glycol ethers are increasingly used as organic solvents of choice in domestic products and industrial manufacturing. However, little is known about their potential neurotoxic effects. In the present study, we therefore evaluated the acute toxic and behavioral effects of propylene glycol ethers using zebrafish larvae as a vertebrate model. Studied endpoints included viability, motor behavior, larval photo and locomotor response, and blood-brain barrier permeability (BBB). We observed hyperactivity at lower concentrations and hypoactivity at higher concentrations. Impaired behavioral patterns in exposed larvae suggested an interaction with the nervous system. Mechanistic studies revealed an impact on BBB permeability since a significant increase in extracellular fluorescent tracer permeability into brain parenchyma was observed following exposure. We conclude that the zebrafish model is a predictive screening model to rank organic solvents with respect to their toxic potential. Experiments with ethanol as a reference correlate with literature findings in humans.
Collapse
Affiliation(s)
- Ramya Deepthi Puligilla
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland
| | - Noëmi Johanna Roos
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Jan Stephan Bolten
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Nancy B Hopf
- Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland; Unisanté, Center for Primary Care and Public Health & University of Lausanne, 1066 Epalinges, Switzerland
| | - Marie-Gabrielle Zurich
- Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland; Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne CH-1005, Switzerland
| | - Nikolai Barulin
- Department of Ichthyology and Aquaculture, Belarusian State Agricultural Academy, Michurinа 5, Gorki 213407, Belarus; Great Lakes Center, SUNY Buffalo State University, SAMC, 1300 Elmwood Avenue, Buffalo142, New York 22-1095, USA
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology, Basel, Missionsstrasse 64, Basel 4055, Switzerland.
| |
Collapse
|
3
|
Ranasinghe T, Seo Y, Park HC, Choe SK, Cha SH. Rotenone exposure causes features of Parkinson`s disease pathology linked with muscle atrophy in developing zebrafish embryo. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136215. [PMID: 39461288 DOI: 10.1016/j.jhazmat.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Parkinson's disease (PD) is associated with both genetic and environmental factors; however, sporadic forms of PD account for > 90 % of cases, and PD prevalence has doubled in the past 25 years. Depending on the importance of the environmental factors, various neurotoxins are used to induce PD both in vivo and in vitro. Unlike other neurodegenerative diseases, PD can be induced in vivo using specific neurotoxic chemicals. However, no chemically induced PD model is available because of the sporadic nature of PD. Rotenone is a pesticide that accelerates the induction of PD and exhibits the highest toxicity in fish, unlike other pesticides. Therefore, in this study, we aimed to establish a model exhibiting PD pathologies such as dysfunction of DArgic neuron, aggregation of ɑ-synuclein, and behavioral abnormalities, which are known features of PD pathology, by rotenone exposure at an environmentally relevant concentration (30 nM) in developing zebrafish embryos. Our results provide direct evidence for the association between PD and muscle degeneration by confirming rotenone-induced muscle atrophy. Therefore, we conclude that the rotenone-induced model presents non-motor and motor defects with extensive studies related to muscle atrophy.
Collapse
Affiliation(s)
- Thilini Ranasinghe
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; Sacopenia Total Solution Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea; Department of Aquatic Life Medicine, Hanseo University, Seosan-si 31962, Republic of Korea; Institute for International Fisheries Science, Hanseo University, Seosan-si 31962, Republic of Korea.
| |
Collapse
|
4
|
Li Z, Chen Y. Behavioral effects of polylactic acid microplastics on the tadpoles of Pelophylax nigromaculatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117146. [PMID: 39378648 DOI: 10.1016/j.ecoenv.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Polylactic acid microplastics (PLA-MPs), biobased plastics made from renewable resources, are considered to be a potential solution for alleviating the pollution pressure of plastics; however, the potential environmental risks of PLA-MPs must be further evaluated. In this study, the effects of PLA-MPs on the tadpoles of Pelophylax nigromaculatus were investigated by designing different PLA-MP exposure experiments. We found that PLA-MPs negatively affected the survival, growth and development of tadpoles. In addition, in open field tests, PLA-MPs also reduced tadpole locomotion while resulting in more repetitive searching behavior within a restricted area. This effect was more pronounced at higher concentrations of PLA-MPs (20 mg/mL) and in combination with the heavy metal Cd2+. In the tank tests, PLA-MPs increased tadpole aggregation, and their combined effect with Cd2+ resulted in a tendency for tadpole aggregation to increase and then decrease, with the distribution tending to favor aggregation in edge regions. PLA-MPs also strongly inhibited the spatiotemporal exploratory activities of tadpoles in the tanks. This study provides a more detailed investigation of the behavioral effects of PLA-MPs on tadpoles and provides a theoretical basis for subsequent ecotoxicological studies of PLA-MPs.
Collapse
Affiliation(s)
- Zihan Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
5
|
Huang M, Liu Y, Duan R, Yin J, Cao S. Effects of continuous and pulse lead exposure on the swimming behavior of tadpoles revealed by brain-gut axis analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133267. [PMID: 38150764 DOI: 10.1016/j.jhazmat.2023.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Lead (Pb) is present in aquatic environments with a continuous or pulse form due to the regular or irregular discharge of wastewater. These two modes of exposure result in different toxicological effects on aquatic animals. To compare the effects of Pb exposure mode on the swimming behavior of amphibian larvae, this study proposed a combination method to examine the brain-gut axis (gut bacteria, histopathology, metabolomics, and ethology) in order to evaluate the ecotoxic differences in Pelophylax nigromaculatus tadpoles (Gs 21-28) when exposed to continuous (CE100) versus pulse exposure (PE100) of environmental concentrations of Pb (100 μg/L). The results showed that: 1) CE100 significantly decreased the movement distance and swimming activity of the tadpoles compared to PE100 and the control, while there were no significant differences between the control group and PE100. 2) At the phyla level, compared to PE100, CE100 treatment significantly decreased the abundance of Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes and increased the abundance of Fusobacteria in the gut. At the genus level, compared to PE100, CE100 significantly increased the abundance of U114 and decreased the abundance of Anaerorhabdus, Exiguobacterium and Microbacterium. 3) Compared to PE100, CE100 changed the metabolites of the brain-gut axis pathway, such as quinolinic acid, L-valine, L-dopa, L-histidine, urocanic acid, L-threonine, γ-aminobutyric acid (GABA), L-glutamate (Glu), acetylcholine (Ach), L-tyrosine (Tyr), L-tryptophan (Trp), and levodopa (DOPA). 4) CE100 and PE100 played a repressive role in the histidine metabolism and tyrosine metabolism pathways and played a promoting role in the purine metabolism and pyrimidine metabolism pathways. This study provides a method for evaluating the toxic effects of heavy metal exposure via two different exposure modes (pulse versus continuous) which tadpoles may encounter in the natural environment from a combined study examining the brain-gut axis.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China.
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
6
|
Luz TMD, Guimarães ATB, Matos SGDS, de Souza SS, Gomes AR, Rodrigues ASDL, Durigon EL, Charlie-Silva I, Freitas ÍN, Islam ARMT, Rahman MM, Silva AM, Malafaia G. Exposure of adult zebrafish (Danio rerio) to SARS-CoV-2 at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163269. [PMID: 37028679 PMCID: PMC10076041 DOI: 10.1016/j.scitotenv.2023.163269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
While the multifaceted social, economic, and public health impacts associated with the COVID-19 pandemic are known, little is known about its effects on non-target aquatic ecosystems and organisms. Thus, we aimed to evaluate the potential ecotoxicity of SARS-CoV-2 lysate protein (SARS.CoV2/SP02.2020.HIAE.Br) in adult zebrafish (Danio rerio) at predicted environmentally relevant concentrations (0.742 and 2.226 pg/L), by 30 days. Although our data did not show locomotor alterations or anxiety-like or/and anxiolytic-like behavior, we noticed that exposure to SARS-CoV-2 negatively affected habituation memory and social aggregation of animals in response to a potential aquatic predator (Geophagus brasiliensis). An increased frequency of erythrocyte nuclear abnormalities was also observed in animals exposed to SARS-CoV-2. Furthermore, our data suggest that such changes were associated with a redox imbalance [↑ROS (reactive oxygen species), ↑H2O2 (hydrogen peroxide), ↓SOD (superoxide dismutase), and ↓CAT (catalase)], cholinesterasic effect [↑AChE (acetylcholinesterase) activity], as well as the induction of an inflammatory immune response [↑NO (nitric oxide), ↑IFN-γ (interferon-gamma), and ↓IL-10 (interleukin-10)]. For some biomarkers, we noticed that the response of the animals to the treatments was not concentration-dependent. However, principal component analysis (PCA) and the "Integrated Biomarker Response" index (IBRv2) indicated a more prominent ecotoxicity of SARS-CoV-2 at 2.226 pg/L. Therefore, our study advances knowledge about the ecotoxicological potential of SARS-CoV-2 and reinforces the presumption that the COVID-19 pandemic has negative implications beyond its economic, social, and public health impacts.
Collapse
Affiliation(s)
- Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Sindoval Silva de Souza
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) - Campus Araraquara, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
7
|
Azbazdar Y, Poyraz YK, Ozalp O, Nazli D, Ipekgil D, Cucun G, Ozhan G. High-fat diet feeding triggers a regenerative response in the adult zebrafish brain. Mol Neurobiol 2023; 60:2486-2506. [PMID: 36670270 DOI: 10.1007/s12035-023-03210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a range of liver conditions ranging from excess fat accumulation to liver failure. NAFLD is strongly associated with high-fat diet (HFD) consumption that constitutes a metabolic risk factor. While HFD has been elucidated concerning its several systemic effects, there is little information about its influence on the brain at the molecular level. Here, by using a high-fat diet (HFD)-feeding of adult zebrafish, we first reveal that excess fat uptake results in weight gain and fatty liver. Prolonged exposure to HFD induces a significant increase in the expression of pro-inflammation, apoptosis, and proliferation markers in the liver and brain tissues. Immunofluorescence analyses of the brain tissues disclose stimulation of apoptosis and widespread activation of glial cell response. Moreover, glial activation is accompanied by an initial decrease in the number of neurons and their subsequent replacement in the olfactory bulb and the telencephalon. Long-term consumption of HFD causes activation of Wnt/β-catenin signaling in the brain tissues. Finally, fish fed an HFD induces anxiety, and aggressiveness and increases locomotor activity. Thus, HFD feeding leads to a non-traumatic brain injury and stimulates a regenerative response. The activation mechanisms of a regeneration response in the brain can be exploited to fight obesity and recover from non-traumatic injuries.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Yusuf Kaan Poyraz
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Department of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland
| | - Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Dogac Ipekgil
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Gokhan Cucun
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 3640 76021, Karlsruhe, Postfach, Germany
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey.
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey.
| |
Collapse
|
8
|
Agues-Barbosa T, de Souza AM, de Lima JNG, Luchiari AC. Long-term behavioral alterations following embryonic alcohol exposure in three zebrafish populations. Neurotoxicology 2023; 96:174-183. [PMID: 37120037 DOI: 10.1016/j.neuro.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Fetal alcohol exposure may lead to a condition known as fetal alcohol spectrum disorder (FASD), which comprises a set of consequences, including cognitive and behavioral impairments. Although zebrafish has been applied as a reliable model for studying FASD, there is no approach to the disorder's ontogeny and population differences. Here, we evaluated the behavioral outcomes of AB, Outbred (OB), and Tübingen (TU) zebrafish populations embryonically exposed to alcohol throughout the development to the adult stage. We exposed 24hpf eggs to 0%, 0.5%, or 1.0% alcohol for 2h. Fish were let grow and locomotor and anxiety-like behaviors were tested in a novel tank at larval - 6dpf, juvenile - 45dpf, and adult- 90dpf stages. At 6dpf, both AB and OB treated with 1.0% alcohol showed hyperactivity, while 0.5% and 1.0% TU fish exhibited hypolocomotion. At 45dpf, AB and TU fish maintained the larval pattern of locomotion. At the adult stage - 90dpf, both AB and TU populations showed increased locomotor activity and anxiogenic responses, while the OB population did not show altered behavior. Our results show for the first time that zebrafish populations exhibit behavioral differences in response to embryonic alcohol exposure and that it varies along animals' ontogeny. AB fish showed the most consistent behavioral pattern through developmental stages, TU fish showed behavioral changes only in adulthood, and OB population showed high interindividual variability. These data reinforce that different populations of zebrafish are better adapted to translational studies, offering reliable results in contrast to domesticated OB populations obtained from farms, which exhibit more variable genomes.
Collapse
Affiliation(s)
- Thaís Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
9
|
Zebrafish, a biological model for pharmaceutical research for the management of anxiety. Mol Biol Rep 2023; 50:3863-3872. [PMID: 36757551 DOI: 10.1007/s11033-023-08263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
The zebrafish (Danio rerio) is a valuable animal model rapidly becoming more commonly used in pharmaceutical studies. Due to its low-cost maintenance and high breeding potential, the zebrafish is a suitable substitute for most adult rodents (mice and rats) in neuroscience research. It is widely used in various anxiety models. This species has been used to develop a conceptual framework for anxiety behavior studies with broad applications in the laboratory, including the study of herbal and chemical drugs. This review discusses the latest studies of anxiety-related behavior in the zebrafish model.
Collapse
|
10
|
Freitas ÍN, Dourado AV, Araújo APDC, Souza SSD, Luz TMD, Guimarães ATB, Gomes AR, Islam ARMT, Rahman MM, Arias AH, Mubarak Ali D, Ragavendran C, Kamaraj C, Malafaia G. Toxicity assessment of SARS-CoV-2-derived peptides in combination with a mix of pollutants on zebrafish adults: A perspective study of behavioral, biometric, mutagenic, and biochemical toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159838. [PMID: 36343805 PMCID: PMC9635251 DOI: 10.1016/j.scitotenv.2022.159838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2023]
Abstract
The dispersion of SARS-CoV-2 in aquatic environments via the discharge of domestic and hospital sewage has been confirmed in different locations. Thus, we aimed to evaluate the possible impacts of zebrafish (Danio rerio) exposure to SARS-CoV-2 peptide fragments (PSPD-2001, 2002, and 2003) alone and combined with a mix of emerging pollutants. Our data did not reveal the induction of behavioral, biometric, or mutagenic changes. But we noticed an organ-dependent biochemical response. While nitric oxide and malondialdehyde production in the brain, gills, and muscle did not differ between groups, superoxide dismutase activity was reduced in the "PSPD", "Mix", and "Mix+PSPD" groups. An increase in catalase activity and a reduction in DPPH radical scavenging activity were observed in the brains of animals exposed to the treatments. However, the "Mix+PSPD" group had a higher IBRv2 value, with NO levels (brain), the reduction of acetylcholinesterase activity (muscles), and the DPPH radical scavenging activity (brain and muscles), the most discriminant factors for this group. The principal component analysis (PCA) and hierarchical clustering analysis indicated a clear separation of the "Mix+PSPD" group from the others. Thus, we conclude that exposure to viral fragments, associated with the mix of pollutants, induced more significant toxicity in zebrafish adults than in others.
Collapse
Affiliation(s)
- Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Amanda Vieira Dourado
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Sindoval Silva de Souza
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW Bahía Blanca, Argentina
| | - Davoodbasha Mubarak Ali
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| |
Collapse
|
11
|
Li D, Sun W, Lei H, Li X, Hou L, Wang Y, Chen H, Schlenk D, Ying GG, Mu J, Xie L. Cyclophosphamide alters the behaviors of adult Zebrafish via neurotransmitters and gut microbiota. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106246. [PMID: 35917676 DOI: 10.1016/j.aquatox.2022.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Cyclophosphamide, one of the earliest prescribed alkylating anticancer drugs, has been frequently detected in aquatic environments. However, its effects on fish behavior and associated mechanisms remain largely unknown. In this study, the behaviors, neurochemicals, and gut microbiota of adult zebrafish were investigated after 2 months of exposure to CP at 0.05, 0.5, 5, and 50 µg/L. Behavioral assays revealed that CP increased locomotion and anxiety, and decreased the cognition of zebrafish. The alteration of neurotransmitters and related gene expressions in the dopamine and gamma-aminobutyric acid pathways induced by CP may be responsible for the observed changes in locomotion and cognition of adult zebrafish. Meanwhile, CP increased the anxiety of adult zebrafish through the serotonin, acetylcholine, and histamine pathways in the brain. In addition, increased abundances of Fusobacteriales, Reyanellales, Staphylococcales, Rhodobacterals, and Patescibateria in the intestine at the CP-50 treatment were observed. The study has demonstrated that CP affects the locomotion, anxiety, and cognition in zebrafish, which might be linked with the dysfunction of neurochemicals in the brain. This study further suggests that the gut-brain axis might interact to modulate fish behaviors upon exposure to CP (maybe other organic pollutants). Further research is warranted to test this hypothesis.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yongzhuang Wang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jingli Mu
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
12
|
Kitson JE, Ord J, Watt PJ. Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring. Biomolecules 2022; 12:biom12081143. [PMID: 36009037 PMCID: PMC9405564 DOI: 10.3390/biom12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In humans, prenatal alcohol exposure can cause serious health issues in children, known collectively as Foetal Alcohol Spectrum Disorders (FASD). Despite the high prevalence of FASD and a lack of effective treatments, the underlying mechanisms causing the teratogenic action of ethanol are still obscure. The limitations of human studies necessitate the use of animal models for identifying the underlying processes, but few studies have investigated the effects of alcohol in the female germline. Here, we used the zebrafish Danio rerio to investigate the effects of chronic (repeated for seven days) exposure to alcohol. Specifically, we tested whether the offspring of females chronically exposed to ethanol during oogenesis exhibited hormonal abnormalities when subjected to a stressor (alarm cue) as larvae, and if they exhibited anxiety-like behaviours as adults. Exposure to alarm cue increased whole-body cortisol in control larvae but not in those of ethanol-treated females. Furthermore, adult offspring of ethanol-treated females showed some reduced anxiety-like behaviours. These findings suggest that the offspring of ethanol-treated females had reduced stress responses. This study is the first to investigate how maternal chronic ethanol exposure prior to fertilisation influences hormonal and behavioural effects in a non-rodent model.
Collapse
Affiliation(s)
- Juliet E. Kitson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James Ord
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
| | - Penelope J. Watt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
13
|
Gatto E, Dadda M, Bruzzone M, Chiarello E, De Russi G, Maschio MD, Bisazza A, Lucon‐Xiccato T. Environmental enrichment decreases anxiety‐like behavior in zebrafish larvae. Dev Psychobiol 2022; 64:e22255. [PMID: 35312057 PMCID: PMC9313885 DOI: 10.1002/dev.22255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Elia Gatto
- Department of Chemical Pharmaceutical and Agricultural Science University of Ferrara Ferrara Italy
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Marco Dadda
- Department of General Psychology University of Padova Padova Italy
| | - Matteo Bruzzone
- Padua Neuroscience Center–PNC University of Padova Padova Italy
| | | | - Gaia De Russi
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Marco Dal Maschio
- Padua Neuroscience Center–PNC University of Padova Padova Italy
- Department of Biomedical Sciences University of Padua Padova Italy
| | - Angelo Bisazza
- Department of General Psychology University of Padova Padova Italy
- Padua Neuroscience Center–PNC University of Padova Padova Italy
| | - Tyrone Lucon‐Xiccato
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| |
Collapse
|
14
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Cararo JH, Rico EP. Long-lasting implications of embryonic exposure to alcohol: Insights from zebrafish research. Dev Neurobiol 2021; 82:29-40. [PMID: 34687497 DOI: 10.1002/dneu.22855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
The harmful consumption of ethanol is associated with significant health problems and social burdens. This drug activates a complex network of reward mechanisms and habit formation learning that is supposed to contribute to the consumption of increasingly high and frequent amounts, ultimately leading to addiction. In the context of fetal alcohol spectrum disorders, fetal alcohol syndrome (FAS) is a consequence of the harmful use of alcohol during pregnancy, which affects the embryonic development of the fetus. FAS can be easily reproduced in zebrafish by exposing the embryos to different concentrations of ethanol in water. In this regard, the aim of the present review is to discuss the late pathological implications in zebrafish exposed to ethanol at the embryonic stage, providing information in the context of human fetal alcoholic spectrum disorders. Experimental FAS in zebrafish is associated with impairments in the metabolic, morphological, neurochemical, behavioral, and cognitive domains. Many of the pathways that are affected by ethanol in zebrafish have at least one ortholog in humans, collaborating with the wider adoption of zebrafish in studies on alcohol disorders. In fact, zebrafish present validities required for the study of these conditions, which contributes to the use of this species in research, in addition to studies with rodents.
Collapse
Affiliation(s)
- José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
16
|
Malyshev AV, Sukhanova IA, Zlobin AS, Gedzun VR, Pavshintsev VV, Vasileva EV, Zalevsky AO, Doronin II, Mitkin NA, Golovin AV, Lovat ML, Kovalev GI, Zolotarev YA, Kuchumov AR, Babkin GA, Luscher B. In silico Screening and Behavioral Validation of a Novel Peptide, LCGA-17, With Anxiolytic-Like Properties. Front Neurosci 2021; 15:705590. [PMID: 34421525 PMCID: PMC8372404 DOI: 10.3389/fnins.2021.705590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of the study was to develop better anxiolytics and antidepressants. We focused on GABAA receptors and the α2δ auxiliary subunit of V-gated Ca2+ channels as putative targets because they are established as mediators of efficacious anxiolytics, antidepressants, and anticonvulsants. We further focused on short peptides as candidate ligands because of their high safety and tolerability profiles. We employed a structural bioinformatics approach to develop novel tetrapeptides with predicted affinity to GABAA receptors and α2δ. In silico docking studies of one of these peptides, LCGA-17, showed a high binding score for both GABAA receptors and α2δ, combined with anxiolytic-like properties in a Danio rerio behavioral screen. LCGA-17 showed anxiolytic-like effects in the novel tank test, the light–dark box, and the social preference test, with efficacy comparable to fluvoxamine and diazepam. In binding assays using rat brain membranes, [3H]-LCGA-17 was competed more effectively by gabapentinoid ligands of α2δ than ligands of GABAA receptors, suggesting that α2δ represents a likely target for LCGA-17. [3H]-LCGA-17 binding to brain lysates was unaffected by competition with ligands for GABAB, glutamate, dopamine, serotonin, and other receptors, suggesting specific interaction with α2δ. Dose-finding studies in mice using acute administration of LCGA-17 (i.p.) demonstrated anxiolytic-like effects in the open field test, elevated plus maze, and marble burying tests, as well as antidepressant-like properties in the forced swim test. The anxiolytic effects were effectively blocked by bicuculline. Therefore, LCGA-17 is a novel candidate anxiolytic and antidepressant that may act through α2δ, with possible synergism by GABAA receptors.
Collapse
Affiliation(s)
| | | | - Alexander S Zlobin
- Lactocore, Inc., Plymouth, MI, United States.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| | - Vasilina R Gedzun
- Lactocore, Inc., Plymouth, MI, United States.,Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Ekaterina V Vasileva
- Federal State Budgetary Institution, Research Zakusov Institute of Pharmacology, Moscow, Russia
| | - Arthur O Zalevsky
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | | | - Andrey V Golovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| | - Maxim L Lovat
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Georgy I Kovalev
- Federal State Budgetary Institution, Research Zakusov Institute of Pharmacology, Moscow, Russia
| | - Yurii A Zolotarev
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | | | | | - Bernhard Luscher
- Department of Biology, The Pennsylvania State University, University Park, PA, United States.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
17
|
Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari AC. Embryonic Exposure to Ethanol Increases Anxiety-Like Behavior in Fry Zebrafish. Alcohol Alcohol 2021; 55:581-590. [PMID: 32886092 DOI: 10.1093/alcalc/agaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol (Eth) exposure during embryonic development, including several conditions from malformation to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain disorders and drug screening studies due to its genetic and physiology homology to humans added to its transparent eggs and fast development. In this study, we investigated how early ethanol exposure affects zebrafish behavior during the initial growth phase. METHODS Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization. Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance protocol to inquire about morphology and behavioral alterations. RESULTS Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morphological malformations and did not impair associative learning but increased anxiety-like behavior responses and lower exploratory behavior when compared to the control. CONCLUSION Our results demonstrate that one can detect behavioral abnormalities in the zebrafish induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases anxious behavior during young development in zebrafish.
Collapse
Affiliation(s)
| | - Thais Agues-Barbosa
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| |
Collapse
|
18
|
Chagas TQ, Freitas ÍN, Montalvão MF, Nobrega RH, Machado MRF, Charlie-Silva I, Araújo APDC, Guimarães ATB, Alvarez TGDS, Malafaia G. Multiple endpoints of polylactic acid biomicroplastic toxicity in adult zebrafish (Danio rerio). CHEMOSPHERE 2021; 277:130279. [PMID: 34384178 DOI: 10.1016/j.chemosphere.2021.130279] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of conventional microplastic types (i.e., petroleum derivatives) in different organisms is already known, knowledge about the effects of alternative biopolymers on aquatic vertebrates remains incipient. Thus, the aim of the present study is to test the hypothesis that the exposure of adult Danio rerio individuals to this pollutant for 30 days is enough to cause polylactic acid biomicroplastics (BioMPs of PLA) accumulation in their bodies, which leads to behavioral/neurotoxic, biochemical, and morphological changes. Based on our results, PLA BioMPs at concentrations of 2.5 and 5 mg/L accumulated in the liver, brain, gills and carcass of the assessed animals. However, such an accumulation was not able to cause locomotor damages or to trigger anxiety-like behavior in them. On the other hand, it was enough to cause behavioral changes (in shoal) predictive of co-specific social interaction and anti-predatory defensive response deficit likely related to cholinergic changes inferred by increased acetylcholinesterase activity and REDOX imbalance. This imbalance was featured by increased production of reactive species. We observed that the treatments have affected animals' pigmentation pattern. Therefore, our study highlights the toxicological potential of the herein assessed biopolymer, and this finding puts in check the innocuousness of this material, as well as expands our knowledge about how PLA BioMPs can affect the ichthyofauna in freshwater environments.
Collapse
Affiliation(s)
- Thales Quintão Chagas
- Post-Graduation Program in Cerrado Natural Resources Conservation, Goiano Federal University, Urutaí Campus, Urutaí, Brazil
| | | | - Mateus Flores Montalvão
- Post-Graduation Program in Ecology and Natural Resources Conservation, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rafael Henrique Nobrega
- Reproductive and Molecular Biology Group, Morphology Department, São Paulo State University, Botucatu, Brazil
| | - Monica Rodrigues Ferreira Machado
- Department of Biological Sciences, Zebrafish Research and Reproduction Laboratory (LABFISH), Federal University of Jataí, Jataí, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amanda Pereira da Costa Araújo
- Post-Graduation Program in Cerrado Natural Resources Conservation, Goiano Federal University, Urutaí Campus, Urutaí, Brazil; Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, Urutaí, Brazil
| | - Abraão Tiago Batista Guimarães
- Post-Graduation Program in Cerrado Natural Resources Conservation, Goiano Federal University, Urutaí Campus, Urutaí, Brazil; Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, Urutaí, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil
| | | | - Guilherme Malafaia
- Post-Graduation Program in Cerrado Natural Resources Conservation, Goiano Federal University, Urutaí Campus, Urutaí, Brazil; Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, Urutaí, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Federal University of Uberlândia, Uberlândia, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
19
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Zhou Y, Han X, Bao Y, Zhu Z, Huang J, Yang C, He C, Zuo Z. Chronic exposure to environmentally realistic levels of diuron impacts the behaviour of adult marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105917. [PMID: 34333370 DOI: 10.1016/j.aquatox.2021.105917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Diuron, a commonly used herbicide and antifouling biocide, has been frequently detected in seawater. The effects of diuron on fish behaviour are currently poorly understood. Herein, the marine medaka (Oryzias melastigma) was continuously exposed to environmentally realistic levels of diuron from the fertilised egg stage to the adult stage. Behavioural evaluation of adult marine medaka indicated that exposure to diuron increased anxiety in the light-dark test and increased predator avoidance. In addition, diuron exposure significantly reduced aggression, social interaction, shoaling, and learning and memory ability. However, only negligible variations in foraging behaviour and in behaviour in the novel tank test were observed. Marine medaka chronically exposed to diuron also showed decreased levels of dopamine in the brain, and changes were observed in the transcription of genes related to dopamine synthesis, degradation and receptors. Exposure to 5000 ng/L diuron caused significant downregulation of the expression of the genes of tyrosine hydroxylase and monoamine oxidase and significantly upregulated the expression of the genes of the D5 dopaminergic receptor. The relative expression of the D4 dopaminergic receptor was significantly upregulated in the 50, 500 and 5000 ng/L diuron-treated groups. These findings highlight the significant neurotoxic effects of diuron and the extent to which this may involve the dopaminergic system of the brain. More broadly, this study reveals the ecological risk associated with environmentally realistic levels of diuron in marine animals.
Collapse
Affiliation(s)
- Yixi Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xue Han
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuanyuan Bao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zihan Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiali Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
21
|
Alcohol and oxytocin: Scrutinizing the relationship. Neurosci Biobehav Rev 2021; 127:852-864. [PMID: 34102150 DOI: 10.1016/j.neubiorev.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The initial enthusiasm towards oxytocin (OXT) as a potential treatment for alcohol use disorder has been recently tempered by recognizing existing gaps in literature and the recent appearance of a relatively small number of clinical studies with negative outcomes. On the other hand, several new studies continue to support the OXT system's potential for such treatment. In this review, we thoroughly analyze existing literature assessing both alcohol's effects on the OXT system and OXT's effects on alcohol-related behaviors. Both rodent and clinical research is discussed. We identify areas that have been studied extensively and those that have been undeservingly understudied. OXT's potential effects on tolerance, withdrawal, craving, anxiety and social behaviors, and how these processes ultimately affect alcohol consumption, are critically explored. We conclude that while OXT can affect alcohol consumption in males and females, more comprehensive studies on OXT's effects on alcohol-related tolerance, withdrawal, craving, anxiety and social affiliations in subjects of both sexes and across several levels of analyses are needed.
Collapse
|
22
|
Zebrafish automatic monitoring system for conditioning and behavioral analysis. Sci Rep 2021; 11:9330. [PMID: 33927213 PMCID: PMC8085222 DOI: 10.1038/s41598-021-87502-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
Studies using zebrafish (Danio rerio) in neuro-behavioural research are growing. Measuring fish behavior by computational methods is one of the most efficient ways to avoid human bias in experimental analyses, extending them to various approaches. Sometimes, thorough analyses are difficult to do, as fish can behave unpredictably during an experimental strategy. However, the analyses can be implemented in an automated way, using an online strategy and video processing for a complete assessment of the zebrafish behavior, based on the detection and tracking of fish during an activity. Here, a fully automatic conditioning and detailed analysis of zebrafish behavior is presented. Microcontrolled components were used to control the delivery of visual and sound stimuli, in addition to the concise amounts of food after conditioned stimuli for adult zebrafish groups in a conventional tank. The images were captured and processed for automatic detection of the fish, and the training of the fish was done in two evaluation strategies: simple and complex. In simple conditioning, the zebrafish showed significant responses from the second attempt, learning that the conditioned stimulus was a predictor of food presentation in a specific space of the tank, where the food was dumped. When the fish were subjected to two stimuli for decision-making in the food reward, the zebrafish obtained better responses to red light stimuli in relation to vibration. The behavior change was clear in stimulated fish in relation to the control group, thus, the distances traveled and the speed were greater, while the polarization was lower in stimulated fish. This automated system allows for the conditioning and assessment of zebrafish behavior online, with greater stability in experiments, and in the analysis of the behavior of individual fish or fish schools, including learning and memory studies.
Collapse
|
23
|
Schaidhauer FG, Caetano HA, da Silva GP, da Silva RS. Contributions of Zebrafish Studies on the Behavioural Consequences of Early Alcohol Exposure: A Systematic Review. Curr Neuropharmacol 2021; 20:579-593. [PMID: 33913405 DOI: 10.2174/1570159x19666210428114317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The consequences of mild to severe exposure to alcohol during brain development is still a matter of debate and scientific investigation. The long-term behavioural effects of ethanol exposure have been related to impaired social skills and cognition. Zebrafish have become a suitable animal model to investigate the effects of early ethanol exposure because it is very feasible to promote drug delivery during early development. OBJECTIVE The goal of the current report is to review existing behavioural studies addressing the impact of early alcohol exposure using zebrafish to determine whether these models resemble the behavioural effects of early alcohol exposure in humans. METHODS A comprehensive search of biomedical databases was performed using the operation order: "ZEBRAFISH AND BEHAV* AND (ETHANOL OR ALCOHOL)". The eligibility of studies was determined using the PICOS strategy, contemplating the population as zebrafish, intervention as exposure to ethanol, comparison with a non-exposed control animal, and outcomes as behavioural parameters. RESULTS The systematic search returned 29 scientific articles as eligible. The zebrafish is presented as a versatile animal model that is useful to study FASD short and long-term behaviour impairments, such as anxiety, impaired sociability, aggressiveness, learning problems, memory impairment, seizure susceptibility, sleep disorders, motivational problems, and addiction. CONCLUSION This systematic review serves to further promote the use of zebrafish as a model system to study the pathophysiological and behavioural consequences of early alcohol exposure.
Collapse
Affiliation(s)
- Flávia Gheller Schaidhauer
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Higor Arruda Caetano
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Pietro da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Pinheiro-da-Silva J, Araujo-Silva H, Luchiari AC. Does early ethanol exposure increase seeking-like behavior in zebrafish? Int J Dev Neurosci 2021; 81:416-427. [PMID: 33837569 DOI: 10.1002/jdn.10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 01/22/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common cause of birth defects. The severe variations are in fetal alcohol syndrome (FAS) but the most frequent cases are alcohol-related neurodevelopmental disorder (ARND), which is of a difficult diagnosis. ARND characteristics include impaired social behavior, anxiety and depression prevalence, cognitive deficits, and an increased chance for drug addiction. Here, we aimed to test whether early alcohol exposure leads to later alcohol preference. We hypothesize that early alcohol exposure increases the reinforcing effects on later experiences, raising the chance of addiction in adult life. Lately, the zebrafish has been a valuable model on alcohol research, allowing embryonic exposure and the study of the ontogenetic effects. For this, embryos were exposed to three different alcohol treatments: 0.0%, 0.25% and 0.5%, for 2 hr, at 24-hr post-fertilization. Then we evaluated the effects of embryonic alcohol exposure on conditioned place preference in two developmental stage: fry (10 days post-fertilization (dpf)) and young (90 dpf) zebrafish. Results show that control fish presented alcohol associative learning, which means, changes in place preference due to alcohol exposure, at both ontogenetic phases. However, zebrafish exposed to 0.25 and 0.5% alcohol during embryogenesis did not show conditioning response at any evaluated stage. These results suggest perception and cognitive deficits due to embryonic alcohol exposure that can alter alcohol responsiveness throughout a lifetime. Although low alcohol doses do not provoke malformation, it has been shown to induce several neurological and behavioral changes that are termed as Alcohol-Related Neurodevelopmental Disorders. These results may contribute to future investigations on how embryonic exposure affects the neurocircuitry related to perception and associative learning processing.
Collapse
Affiliation(s)
| | - Heloysa Araujo-Silva
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
25
|
Guimarães ATB, Estrela FN, Rodrigues ASDL, Chagas TQ, Pereira PS, Silva FG, Malafaia G. Nanopolystyrene particles at environmentally relevant concentrations causes behavioral and biochemical changes in juvenile grass carp (Ctenopharyngodon idella). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123864. [PMID: 33264938 DOI: 10.1016/j.jhazmat.2020.123864] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
The biometric, behavioral and biochemical toxicity of polystyrene nanoplastics (PS NPs) in aquatic freshwater vertebrates and in environmentally relevant concentrations remains poorly known. Thus, using different toxicity biomarkers we tested the hypothesis that the exposure of Ctenopharyngodon idella juveniles to small PS NPs concentrations (0.04 ng/L, 34 ng/L and 34 μg/L), for a short period-of-time, may affect their growth/development, individual and collective behavior, and biochemical parameters. Animals exposed to NPs did not show increased biometric parameters (i.e.: body biomass, total and standard length, peduncle height, head height and visceral somatic and hepatosomatic indices). Despite the lack of damage on the locomotor (open field test) and visual (visual stimulus test) abilities of the evaluated fish, the expected increase in locomotor activity during the vibratory stimulus test was not evident in animals exposed to NPs. Non-exposed animals were the only ones showing increased activity/locomotion time in the presence of the predatory stimulus during the individual anti-predatory response test. The behavior of animals directly confronted with a potential predator has evidenced the influence of NPs on shoals' aggregation and on the distance kept by individuals from the predatory stimulus. These changes were associated with PS NPs accumulation in animals' brains, oxidative stress and increased acetylcholinesterase activity (hepatic and cerebral). Therefore, the current study has confirmed the initial hypothesis and showed that, even at low concentrations, PS NPs can affect the health of C. idella individuals at early life stage.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil; Laboratório de Pesquisas Biológicas, Instituto Federal Goiano- Campus Urutaí, Urutaí, Brazil
| | - Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil; Laboratório de Pesquisas Biológicas, Instituto Federal Goiano- Campus Urutaí, Urutaí, Brazil
| | - Aline Sueli de Lima Rodrigues
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano- Campus Urutaí, Urutaí, Brazil
| | - Thales Quintão Chagas
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano- Campus Urutaí, Urutaí, Brazil
| | - Paulo Sérgio Pereira
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Fabiano Guimarães Silva
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil; Laboratório de Pesquisas Biológicas, Instituto Federal Goiano- Campus Urutaí, Urutaí, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano- Campus Urutaí, Urutaí, Brazil.
| |
Collapse
|
26
|
da Costa Araújo AP, de Andrade Vieira JE, Malafaia G. Toxicity and trophic transfer of polyethylene microplastics from Poecilia reticulata to Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140217. [PMID: 32623154 DOI: 10.1016/j.scitotenv.2020.140217] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The potential transfer of microplastics (MPs) between vertebrates belonging to the same taxonomic group, and the impact of such a transfer on higher trophic levels remains little explored. An experimental food chain with two fish species was installed to test the hypothesis that polyethylene MPs (PE MPs) can accumulate in animals and cause behavioral, mutagenic and cytotoxic changes at upper trophic levels. Poecilia reticulata fry were exposed to MPs for 48 h and, subsequently, offered (as food) to Danio rerio adults for 10 days to simulate an upper level food chain. PE MPs quantification in fry and in different Danio rerio tissues evidenced their accumulation at the two assessed trophic levels. This finding suggested their absorption, adherence and translocation from one organism to another. The accumulation seen in D. rerio directly exposed to MPs was associated with behavioral disorders at upper trophic level. These animals presented behavior suggestive of anti-predatory response deficit when they were confronted with a potential aquatic predator (Geophagus brasiliensis). This finding was inferred through lower school cohesion, shallower school depth and shorter distance from the potential predator. In addition, animals exposed to MPs recorded higher nuclear abnormality rates and changes in the size and shape of erythrocytes and in their nuclei; this outcome has suggested mutagenic and cytotoxic effects, respectively. Based on the current results, MPs are transferred through a food chain that only involves two vertebrates. MPs enter the vertebrates' organs, change their behavior and induce mutagenic and cytotoxic processes in animals, which can cause significant ecological consequences in freshwater ecosystems.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
27
|
Facciol A, Gerlai R. Zebrafish Shoaling, Its Behavioral and Neurobiological Mechanisms, and Its Alteration by Embryonic Alcohol Exposure: A Review. Front Behav Neurosci 2020; 14:572175. [PMID: 33100980 PMCID: PMC7546311 DOI: 10.3389/fnbeh.2020.572175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Social cognition and social behaviors are complex phenomena that involve numerous brain areas and underlying neurobiological mechanisms. Embryonic alcohol exposure may lead to the development of Fetal Alcohol Spectrum Disorder (FASD), a disorder that manifests with varying symptoms including abnormal social behavior and other cognitive deficits. Animal models have been utilized to mimic aspects of the disease and to study potential underlying mechanisms. The zebrafish is a relative newcomer in this field but has been suggested as an optimal compromise between system complexity and practical simplicity for modeling FASD. Importantly, due to external fertilization and development of the embryo outside the mother and subsequent lack of parental care, this species allows precise control of the timing and dose of alcohol delivery during embryonic development. Furthermore, the zebrafish is a highly social species and thus may be particularly appropriate for the analysis of embryonic alcohol-induced alterations in this context. Here, we provide a succinct review focusing on shoaling, a prominent form of social behavior, in zebrafish. We summarize what is known about its behavioral mechanisms and underlying neurobiological processes, and how it is altered by exposure to ethanol during embryonic development. Lastly, we briefly consider possible future directions of research that would help us better understand the relationship between the behavioral expression and molecular basis of embryonic ethanol-induced social deficits in fish and humans.
Collapse
Affiliation(s)
- Amanda Facciol
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
28
|
Zanandrea R, Wiprich MT, Altenhofen S, Rubensam G, Dos Santos TM, Wyse ATS, Bonan CD. Withdrawal Effects Following Methionine Exposure in Adult Zebrafish. Mol Neurobiol 2020; 57:3485-3497. [PMID: 32533465 DOI: 10.1007/s12035-020-01970-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Methionine (Met) has important functions for homeostasis of various species, including zebrafish. However, the increased levels of this amino acid in plasma, a condition known as hypermethioninemia, can lead to cell alterations. Met is crucial for the methylation process and its excesses interfere with the cell cycle, an effect that persists even after the removal of this amino acid. Some conditions may lead to a transient increase of this amino acid with unexplored persistent effects of Met exposure. In the present study, we investigated the behavioral and neurochemical effects after the withdrawal of Met exposure. Zebrafish were divided into two groups: control and Met-treated group (3 mM) for 7 days and after maintained for 8 days in tanks containing only water. In the eighth day post-exposure, we evaluated locomotion, anxiety, aggression, social interaction, and memory, as well as oxidative stress parameters, amino acid, and neurotransmitter levels in the zebrafish brain. Our results showed that 8 days after Met exposure, the treated group showed decreased locomotion and aggressive responses, as well as impaired aversive memory. The Met withdrawal did not change thiobarbituric acid reactive substances, reactive oxygen species, and nitrite levels; however, we observed a decrease in antioxidant enzymes superoxide dismutase, catalase, and total thiols. Epinephrine and cysteine levels were decreased after the Met withdrawal whereas carnitine and creatine levels were elevated. Our findings indicate that a transient increase in Met causes persistent neurotoxicity, observed by behavioral and cognitive changes after Met withdrawal and that the mechanisms underlying these effects are related to changes in antioxidant system, amino acid, and neurotransmitter levels.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rubensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
30
|
Araújo APDC, Malafaia G. Can short exposure to polyethylene microplastics change tadpoles' behavior? A study conducted with neotropical tadpole species belonging to order anura (Physalaemus cuvieri). JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122214. [PMID: 32044637 DOI: 10.1016/j.jhazmat.2020.122214] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The scientific knowledge about toxicological impacts of polyethylene microplastics (PE MPs) on different organisms has significantly improved in recent years. However, the effects of these pollutants on animal species such as amphibians remain poorly known. Thus, the aim of the current study is to investigate whether the short exposure (7 days) of Physalaemus cuvieri tadpoles to PE MPs (60 mg/L) can change their behavior. Collected data have shown that PE MP accumulation in tadpoles was associated with different behavioral changes observed in them; this outcome has confirmed the behavioral toxicity of these micropollutants in the investigated species. Tadpoles subjected to PE MPs presented locomotion issues, anxiogenic effect symptoms, as well as anti-predatory defensive response deficit when they were exposed to predators (Cyprinus carpio). Data analysis enabled inferring to what extent these pollutants can affect individuals, and their natural predators living in contaminated areas. Based on the biological viewpoint, these changes can affect their defensive response to predators, as well as their social behavior. To the best of our knowledge, the present study was pioneer in reporting PE MPs-induced behavioral toxicity in representatives of amphibian groups.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
31
|
Fontana BD, Gibbon AJ, Cleal M, Sudwarts A, Pritchett D, Miletto Petrazzini ME, Brennan CH, Parker MO. Moderate early life stress improves adult zebrafish (Danio rerio) working memory but does not affect social and anxiety-like responses. Dev Psychobiol 2020; 63:54-64. [PMID: 32497270 DOI: 10.1002/dev.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Early life stress (ELS) is defined as a short or chronic period of trauma, environmental or social deprivation, which can affect different neurochemical and behavioral patterns during adulthood. Zebrafish (Danio rerio) have been widely used as a model system to understand human neurodevelopmental disorders and display translationally relevant behavioral and stress-regulating systems. In this study, we aimed to investigate the effects of moderate ELS by exposing young animals (6-weeks postfertilization), for 3 consecutive days, to three stressors, and analyzing the impact of this on adult zebrafish behavior (16-week postfertilization). The ELS impact in adults was assessed through analysis of performance on tests of unconditioned memory (free movement pattern Y-maze test), exploratory and anxiety-related task (novel tank diving test), and social cohesion (shoaling test). Here, we show for the first time that moderate ELS increases the number of alternations in turn-direction compared to repetitions in the unconditioned Y-maze task, suggesting increased working memory, but has no effect on shoal cohesion, locomotor profile, or anxiety-like behavior. Overall, our data suggest that moderate ELS may be linked to adaptive flexibility which contributes to build "resilience" in adult zebrafish by improving working memory performance.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Alistair J Gibbon
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - David Pritchett
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | | | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University London, London, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
32
|
Weeks O, Bossé GD, Oderberg IM, Akle S, Houvras Y, Wrighton PJ, LaBella K, Iversen I, Tavakoli S, Adatto I, Schwartz A, Kloosterman D, Tsomides A, Charness ME, Peterson RT, Steinhauser ML, Fazeli PK, Goessling W. Fetal alcohol spectrum disorder predisposes to metabolic abnormalities in adulthood. J Clin Invest 2020; 130:2252-2269. [PMID: 32202514 PMCID: PMC7190939 DOI: 10.1172/jci132139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Prenatal alcohol exposure (PAE) affects at least 10% of newborns globally and leads to the development of fetal alcohol spectrum disorders (FASDs). Despite its high incidence, there is no consensus on the implications of PAE on metabolic disease risk in adults. Here, we describe a cohort of adults with FASDs that had an increased incidence of metabolic abnormalities, including type 2 diabetes, low HDL, high triglycerides, and female-specific overweight and obesity. Using a zebrafish model for PAE, we performed population studies to elucidate the metabolic disease seen in the clinical cohort. Embryonic alcohol exposure (EAE) in male zebrafish increased the propensity for diet-induced obesity and fasting hyperglycemia in adulthood. We identified several consequences of EAE that may contribute to these phenotypes, including a reduction in adult locomotor activity, alterations in visceral adipose tissue and hepatic development, and persistent diet-responsive transcriptional changes. Taken together, our findings define metabolic vulnerabilities due to EAE and provide evidence that behavioral changes and primary organ dysfunction contribute to resultant metabolic abnormalities.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriel D. Bossé
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Akle
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yariv Houvras
- Department of Surgery and
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Paul J. Wrighton
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle LaBella
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabelle Iversen
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sahar Tavakoli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Arkadi Schwartz
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daan Kloosterman
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Tsomides
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, USA
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Matthew L. Steinhauser
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Pouneh K. Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Parolini M, Ghilardi A, De Felice B, Del Giacco L. Environmental concentration of fluoxetine disturbs larvae behavior and increases the defense response at molecular level in zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34943-34952. [PMID: 31659707 DOI: 10.1007/s11356-019-06619-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Fluoxetine (FLX) is one of the main antidepressants used worldwide. After human use, FLX enters the aquatic ecosystems, where it has commonly detected in the high ng/L concentration range. Several investigations have shown that exposure to different concentrations of FLX caused different adverse effects towards a number of aquatic species. However, the information on the onset and the relationship between molecular and behavioral FLX-induced effects remains scant. The aim of this study was to assess the effects induced by two FLX concentrations, namely 50 ng/L and 500 ng/L, on swimming activity of zebrafish (Danio rerio) larvae at 96-h post-fertilization (hpf) and to investigate if such behavioral effects were related to modulation of the expression of oxidative stress-related (sod1, sod2, cat, gpxa, and gst), stress- and anxiety-related (oxtl, prl2, npy, and ucn3l) genes, and genes encoding for the transporters of the main neurotransmitters (slc6a3, slc6a4a, slc6a4b, slc6a11). Fluoxetine exposure altered the swimming behavior of larvae, as shown by the reduction of the distance traveled by treated larvae in response to an external stimulus. Such behavioral change was related, at molecular level, to an enhanced expression of sod1, cat, and gpxa, suggesting an overproduction of pro-oxidant molecules. In addition, FLX modulated the expression of oxtl, slc6a4a, slc6a4b, and slc6a11, suggesting its capability to affect anxiety- and neurotransmitter-related genes.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, 20133, Milan, Italy.
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, 20133, Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
34
|
Kappaun K, Martinelli AHS, Broll V, Zambelli B, Lopes FC, Ligabue-Braun R, Fruttero LL, Moyetta NR, Bonan CD, Carlini CR, Ciurli S. Soyuretox, an Intrinsically Disordered Polypeptide Derived from Soybean (Glycine Max) Ubiquitous Urease with Potential Use as a Biopesticide. Int J Mol Sci 2019; 20:E5401. [PMID: 31671552 PMCID: PMC6862595 DOI: 10.3390/ijms20215401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.
Collapse
Affiliation(s)
- Karine Kappaun
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Anne H S Martinelli
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Fernanda C Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Leonardo L Fruttero
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Natalia R Moyetta
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Carla D Bonan
- Department of Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 91501-970, RS, Brazil.
| | - Celia R Carlini
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
35
|
Liu Y, Liu X, Wang Y, Yi C, Tian J, Liu K, Chu J. Protective effect of lactobacillus plantarum on alcoholic liver injury and regulating of keap-Nrf2-ARE signaling pathway in zebrafish larvae. PLoS One 2019; 14:e0222339. [PMID: 31509586 PMCID: PMC6738915 DOI: 10.1371/journal.pone.0222339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
This research investigated the protective effect of lactobacillus plantarum against alcohol-induced liver injury and the regulatory mechanism of Keap-Nrf2-ARE signal pathway in zebrafish. Firstly, a zebrafish alcoholic liver injury model was established using1.0mM of ethanol concentration, then two forms of lactobacillus plantarum treatment were designed to perform repair, including a lactobacillus plantarum thallus suspension (LPS) and a lactobacillus plantarum thallus breaking solution (LPBS). After 24h of alcohol injury, lactobacillus plantarum concentrations of 0, 1.0×105, 1.0×106, 1.0×107 and 1.5×107 cfu/mL were added to protect zebrafish larvae. Then with the treatment of lactobacillus plantarum after 48h, activities of alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase (SOD) and malondialdehyde (MDA) in zebrafish tissue homogenate were respectively determined. Keap-Nrf2-ARE signal pathway related gene expression conditions were also analyzed, including nuclear factor (erythroid-derived 2)-like 2(Nrf2), Kelch like ECH associated protein 1(Keap1), catalase(CAT), hemooxygenase1(HO1) and Glutathione S-Transferase Kappa 1(gstk1). Results showed that: in comparison with the control group, the LPBS with dosage of 1.0×107 cfu/mL remarkably improved the activities of SOD, CAT, HO1and gstk1 in zebrafish larvae liver (P<0.05), resulting in significant increase of the protein expression level of Nrf2 (225.78%) and suppression of Keap1 gene expression (73.67%)(P<0.01). As confirmed by the results, lactobacillus plantarum activated the Keap-Nrf2-ARE signal pathway from the level of transcription, the up-regulation of the expression quantity of Nrf2 protected the organism from oxidative stress and maximally reduced liver injury.
Collapse
Affiliation(s)
- Yaping Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
- School of Medical Instrument and Food Engineering, University of Shanhai for Science and Technology, Shanghai, China
| | - Xiaoqian Liu
- Department of General Practice of Shandong Provincial Qianfoshan Hospital, Ji’nan, Shandong, China
| | - Ying Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Cao Yi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Jiahui Tian
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Jie Chu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| |
Collapse
|
36
|
de Campos RP, Chagas TQ, da Silva Alvarez TG, Mesak C, de Andrade Vieira JE, Paixão CFC, de Lima Rodrigues AS, de Menezes IPP, Malafaia G. Analysis of ZnO nanoparticle-induced changes in Oreochromis niloticus behavior as toxicity endpoint. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:561-571. [PMID: 31128370 DOI: 10.1016/j.scitotenv.2019.05.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of zinc oxide nanoparticles (ZnO NPs) has been investigated in different animal models. However, concentrations tested in most studies are often much higher than the ones potentially identified in the environment. Therefore, such toxicity limits the application of these studies to evaluate ecotoxicological risks posed by these nanopollutants. Thus, the aim of the current study is to evaluate the impacts of ZnO NPs (at environmentally relevant concentrations - 760 μg/L and 76,000 μg/L, for 72 h) on the behavioral responses of Oreochromis niloticus (Nile tilapia) exposed to it. Results did not evidence harmful effects of NPs on animals' locomotor abilities (evaluated through open-field and light-dark transition tests), or anxiety-predictive behavior. On the other hand, Zn bioaccumulation in the body tissues of the analyzed tilapias was correlated to changes in eating behavior (motivated by ration pellets), as well as to deficits in antipredatory defensive behavior (under individual and collective conditions). Tilapia exposed to ZnO NPs recorded lower avoidance, flight and territorialist behavior rates when they were individually confronted with potential predators (Salminus brasiliensis). However, collectively exposed animals were unable to recognize their predators, as well as to differentiate them from artificial baits ("false predators"). The present study is the first to report biological impacts resulting from the short exposure of fish-group representatives to ZnO NPs. Thus, we believe that it may be relevant to improve the knowledge about ecotoxicological risks posed by these pollutants.
Collapse
Affiliation(s)
- Raphael Pires de Campos
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | | | - Carlos Mesak
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | | | - Caroliny Fátima Chaves Paixão
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Ivandilson Pessoa Pinto de Menezes
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institution - Urutaí Campus, GO, Brazil.
| |
Collapse
|
37
|
Fernandes Y, Rampersad M, Jones EM, Eberhart JK. Social deficits following embryonic ethanol exposure arise in post-larval zebrafish. Addict Biol 2019; 24:898-907. [PMID: 30178621 PMCID: PMC6629526 DOI: 10.1111/adb.12649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Prenatal alcohol exposure is the leading cause of birth defects, collectively termed fetal alcohol spectrum disorders (FASD). In the United States and Canada, 1 in 100 children will be born with FASD. Some of the most commonly debilitating defects of FASD are in social behavior. Zebrafish are highly social animals, and embryonic ethanol exposure from 24 to 26 hours post-fertilization disrupts this social (shoaling) response in adult zebrafish. Recent findings have suggested that social behaviors are present in zebrafish larvae as young as 3 weeks, but how they relate to adult shoaling is unclear. We tested the same ethanol-exposed zebrafish for social impairments at 3 weeks then again at 16 weeks. At both ages, live conspecifics were used to elicit a social response. We did not find alcohol-induced differences in behavior in 3-week-old fish when they were able to see conspecifics. We do find evidence that control zebrafish are able to use nonvisual stimuli to detect conspecifics, and this behavior is disrupted in the alcohol-exposed fish. As adults, these fish displayed a significant decrease in social behavior when conspecifics are visible. This surprising finding demonstrates that the adult and larval social behaviors are, at least partly, separable. Future work will investigate the nature of these nonvisual cues and how the neurocircuitry differs between the larval and adult social behaviors.
Collapse
|
38
|
Haghani S, Karia M, Cheng RK, Mathuru AS. An Automated Assay System to Study Novel Tank Induced Anxiety. Front Behav Neurosci 2019; 13:180. [PMID: 31481885 PMCID: PMC6709859 DOI: 10.3389/fnbeh.2019.00180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/18/2019] [Indexed: 02/04/2023] Open
Abstract
New environments are known to be anxiogenic initially for many animals including the zebrafish. In the zebrafish, a novel tank diving (NTD) assay for solitary fish has been used extensively to model anxiety and the effect of anxiolytics. However, studies can differ in the conditions used to perform this assay. Here, we report the development of an efficient, automated toolset and optimal conditions for effective use of this assay. Applying these tools, we found that two important variables in previous studies, the direction of illumination of the novel tank and the age of the subject fish, both influence endpoints commonly measured to assess anxiety. When tanks are illuminated from underneath, several parameters such as the time spent at the bottom of the tank, or the transitions to the top half of the tank become poor measures of acclimation to the novel environment. Older fish acclimate faster to the same settings. The size of the novel tank and the intensity of the illuminating light can also influence acclimation. Among the parameters measured, reduction in the frequency of erratic swimming (darting) is the most reliable indicator of anxiolysis. Open source pipeline for automated data acquisition and systematic analysis generated here and available to other researchers will improve accessibility and uniformity in measurements. They can also be directly applied to study other fish. As this assay is commonly used to model anxiety phenotype of neuropsychiatric ailments in zebrafish, we expect our tools will further aid comparative and meta-analyses.
Collapse
Affiliation(s)
- Sara Haghani
- Yale-NUS College, Science Division, Singapore, Singapore
| | | | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, Science Division, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol Res 2019; 141:602-608. [DOI: 10.1016/j.phrs.2019.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
40
|
Alcohol exposure during embryonic development: An opportunity to conduct systematic developmental time course analyses in zebrafish. Neurosci Biobehav Rev 2019; 98:185-193. [PMID: 30641117 DOI: 10.1016/j.neubiorev.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
Abstract
Ethanol affects numerous neurobiological processes depending upon the developmental stage at which it reaches the vertebrate embryo. Exposure time dependency may explain the variable severity and manifestation of life-long symptoms observed in fetal alcohol spectrum disorder (FASD) patients. Characterization of behavioural deficits will help us understand developmental stage-dependency and its underlying biological mechanisms. Here we highlight pioneering studies that model FASD using zebrafish, including those that demonstrated developmental stage-dependency of alcohol effects on some behaviours. We also succinctly review the more expansive mammalian literature, briefly discuss potential developmental stage dependent biological mechanisms alcohol alters, and review some of the disadvantages of mammalian systems versus the zebrafish. We stress that the temporal control of alcohol administration in the externally developing zebrafish gives unprecedented precision and is a major advantage of this species over other model organisms employed so far. We also emphasize that the zebrafish is well suited for high throughput screening and will allow systematic exploration of embryonic-stage dependent alcohol effects via mutagenesis and drug screens.
Collapse
|
41
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Friend AJ, Bao W, Alekseeva PA, Lakstygal AM, Meshalkina DA, Demin KA, de Abreu MS, Rosemberg DB, Kalueff AV. Understanding zebrafish aggressive behavior. Behav Processes 2019; 158:200-210. [DOI: 10.1016/j.beproc.2018.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
42
|
Xi TF, Li DN, Li YY, Qin Y, Wang HH, Song NN, Zhang Q, Ding YQ, Shi XZ, Xie DP. Central 5-hydroxytryptamine (5-HT) mediates colonic motility by hypothalamus oxytocin-colonic oxytocin receptor pathway. Biochem Biophys Res Commun 2018; 508:959-964. [PMID: 30545636 DOI: 10.1016/j.bbrc.2018.11.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
Gut-derived 5-hydroxytryptamine (5-HT) is well known for its role in mediating colonic motility function. However, it is not very clear whether brain-derived 5-HT is involved in the regulation of colonic motility. In this study, we used central 5-HT knockout (KO) mice to investigate whether brain-derived 5-HT mediates colonic motility, and if so, whether it involves oxytocin (OT) production in the hypothalamus and OT receptor in the colon. Colon transit time was prolonged in KO mice. The OT levels in the hypothalamus and serum were decreased significantly in the KO mice compared to wild-type (WT) controls. OT increased colonic smooth muscle contraction in both KO and WT mice, and the effects were blocked by OT receptor antagonist and tetrodotoxin but not by hexamethonium or atropine. Importantly, the OT-induced colonic smooth muscle contraction was decreased significantly in the KO mice relative to WT. The OT receptor expression of colon was detected in colonic myenteric plexus of mice. Central 5-HT is involved in the modulation of colonic motility which may modulate through its regulation of OT synthesis in the hypothalamus. Our results reveal a central 5-HT - hypothalamus OT - colonic OT receptor axis, providing a new target for the treatment of brain-gut dysfunction.
Collapse
Affiliation(s)
- Tao-Fang Xi
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan-Ni Li
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Yian Li
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ying Qin
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hai-Hong Wang
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ning-Ning Song
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiong Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Dong-Ping Xie
- Department of Physiology and Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
43
|
Abstract
The measurement of multiple behavior endpoints in zebrafish can provide informative clues within neurobehavioral field. However, multiple behavior evaluations usually require complicated and costly instrumental settings. Here, we reported a versatile setting that applied ten acrylic tanks arranging into five vertical layers and two horizontal columns to perform multiple behavior assays simultaneously, such as the novel tank diving test, mirror-biting test, social interaction, shoaling, and predator escape assay. In total, ten behavioral performance were collected in a single video, and the XY coordination of fish locomotion can be tracked by using open source software of idTracker and ImageJ. We validated our setting by examining zebrafish behavioral changes after exposure to low dose ethanol (EtOH) for 96 h. Fish were observed staying longer time at bottom of the tank, less mirror biting interest, higher freezing time, less fear in predator test, and tight shoaling behaviors which indicated the anxiogenic effect was induced by low dosage exposure of EtOH in zebrafish. In conclusion, the setting in this study provided a simple, versatile and cost-effective way to assess multiple behavioral endpoints in zebrafish with high reliability and reproducibility for the first time.
Collapse
|
44
|
Cleal M, Parker MO. Moderate developmental alcohol exposure reduces repetitive alternation in a zebrafish model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2018; 70:1-9. [PMID: 30201482 DOI: 10.1016/j.ntt.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022]
Abstract
The damaging effects of alcohol on a developing fetus are well known and cause a range of conditions known as fetal alcohol spectrum disorder (FASD). High levels of alcohol exposure lead to physical deformity and severe cognitive deficits, but more moderate exposure leads to a range of subtle cognitive effects such as reduced social behavior, higher propensity to develop addictions, and reduced spatial working memory. Previous studies have demonstrated that following exposure to relatively low levels of ethanol during early brain development (equivalent in humans to moderate exposure) zebrafish display a range of social and behavioral differences. Here, our aim was to test the hypothesis that moderate developmental ethanol exposure would affect aspects of learning and memory in zebrafish. In order to do this, we exposed zebrafish embryos to 20 mM [0.12% v/v] ethanol from 2 to 9 dpf to model the effects of moderate prenatal ethanol (MPE) exposure. At 3 months old, adult fish were tested for appetitive and aversive learning, and for spatial alternation in a novel unconditioned y-maze protocol. We found that MPE did not affect appetitive or aversive learning, but exposed-fish showed a robust reduction in repetitive alternations in the y-maze when compared to age matched controls. This study confirms that moderate levels of ethanol exposure to developing embryos have subtle effects on spatial working memory in adulthood. Our data thus suggest that zebrafish may be a promising model system for studying the effects of alcohol on learning and decision-making, but also for developing treatments and interventions to reduce the negative effects of prenatal alcohol.
Collapse
Affiliation(s)
- Madeleine Cleal
- School of Pharmacy and Biomedical Science, University of Portsmouth, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of Portsmouth, UK.
| |
Collapse
|
45
|
Fontana BD, Stefanello FV, Mezzomo NJ, Müller TE, Quadros VA, Parker MO, Rico EP, Rosemberg DB. Taurine modulates acute ethanol-induced social behavioral deficits and fear responses in adult zebrafish. J Psychiatr Res 2018; 104:176-182. [PMID: 30096615 DOI: 10.1016/j.jpsychires.2018.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/08/2023]
Abstract
Ethanol (EtOH) is a central nervous system (CNS) depressant drug that modifies various behavioral domains (i.e., sociability, aggressiveness, and memory) by promoting disinhibition of punished operant behavior and neurochemical changes. Taurine (TAU) is a β-amino sulfonic acid with pleiotropic roles in the brain. Although exogenous TAU is found in energy drinks and often mixed with alcohol in beverages, the putative risks of mixing TAU and EtOH are poorly explored. Here, we investigated whether TAU modulates social and fear responses by assessing shoaling behavior, preference for conspecifics, and antipredatory behavior of adult zebrafish acutely exposed to EtOH. Zebrafish shoals (4 fish per shoal) were exposed to water (control), TAU (42, 150, and 400 mg/L), 0.25% (v/v) EtOH alone or in association with TAU for 1 h, and their behaviors were analyzed at different time intervals (0-5 min, 30-35 min, and 55-60 min). The effects of TAU and EtOH were further tested in a social preference test and during exposure to a predator. Both EtOH and TAU co-treated fish showed a higher shoal dispersion, while TAU 400/EtOH group shoal area had a similar profile when compared to control. However, in the social preference test, TAU 400/EtOH impaired the seeking for conspecifics. Regarding fear-like behaviors, TAU-cotreated fish showed a prominent reduction in risk assessments when compared to EtOH alone. Overall, we demonstrate that TAU modulates EtOH-induced changes in different behavioral domains, suggesting a complex relationship between social and fear-like responses.
Collapse
Affiliation(s)
- Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Eduardo P Rico
- Graduate Program in Health Sciences, Laboratory of Neural Signaling and Psychopharmacology, Academic Unit of Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Universitária Avenue, Bloco S, Sala 6, Criciúma, SC, 88806-000, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|
46
|
Fernandes Y, Rampersad M, Eberhart JK. Social behavioral phenotyping of the zebrafish casper mutant following embryonic alcohol exposure. Behav Brain Res 2018; 356:46-50. [PMID: 30107225 DOI: 10.1016/j.bbr.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
The term Fetal Alcohol Spectrum Disorder (FASD) describes all the deleterious consequences of prenatal alcohol exposure. Impaired social behavior is a common symptom of FASD. The zebrafish has emerged as a powerful model organism with which to examine the effects of embryonic alcohol exposure on social behavior due to an innate strong behavior, called shoaling. The relative transparency of the embryo also makes zebrafish powerful for cellular analyses, such as characterizing neural circuitry. However, as zebrafish develop, pigmentation begins to obscure the brain and other tissues. Due to mutations disrupting pigmentation, the casper zebrafish strain remains relatively transparent throughout adulthood, potentially permitting researchers to image neural circuits in vivo, via epifluorescence, confocal and light sheet microscopy. Currently, however the behavioral profile of casper zebrafish post embryonic alcohol exposure has not been completed. We report that exposure to 1% alcohol from either 6 to 24, or 24 to 26 h postfertilization reduces the social behavior of adult casper zebrafish. Our findings set the stage for the use of this important zebrafish resource in studies of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- University of Texas at Austin, 2401 Speedway, Patterson Hall Room 522, Austin, TX 78712, United States of America.
| | - Mindy Rampersad
- University of Texas at Austin, 2401 Speedway, Patterson Hall Room 522, Austin, TX 78712, United States of America.
| | - Johann K Eberhart
- University of Texas at Austin, 2401 Speedway, Patterson Hall Room 522, Austin, TX 78712, United States of America.
| |
Collapse
|
47
|
Kohler SA, Parker MO, Ford AT. Shape and size of the arenas affect amphipod behaviours: implications for ecotoxicology. PeerJ 2018; 6:e5271. [PMID: 30065877 PMCID: PMC6064634 DOI: 10.7717/peerj.5271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/29/2018] [Indexed: 01/18/2023] Open
Abstract
The use of behaviour in ecotoxicology is expanding, however the lack of standardisation and validation of these assays currently presents a major drawback in moving forward in the development of behavioural assays. Furthermore, there is a current paucity of control data on test species, particularly invertebrate models. In this study we assessed a range of behaviours associated with spatial distribution and locomotion in relation to arena size and shape in two species of amphipod crustacean (Echinogammarus marinus and Gammarus pulex). Arena shape had significant effects on almost all behavioural parameters analysed. Increasing arena size resulted in an increased mean velocity and activity plus increased proportional use of the central zones. These results indicate that 'ceiling effects' may occur in some ecotoxicological studies resulting in potentially 'false' negative effects if careful consideration is not paid to experimental design. Differences in behaviours were observed between the two species of amphipod. For example, G. pulex spend approximately five times (∼20%) more of the available time crossing the central zones of the arenas compared to E. marinus (∼4%) which could have implications on assessing anxiolytic behaviours. The results of this study highlight several behaviours with potential for use in behavioural ecotoxicology with crustaceans but also underscore the need for careful consideration when designing these behavioural assays.
Collapse
Affiliation(s)
- Shanelle A. Kohler
- Institute of Marine Sciences, Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Matthew O. Parker
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Alex T. Ford
- Institute of Marine Sciences, Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
48
|
Araujo-Silva H, Pinheiro-da-Silva J, Silva PF, Luchiari AC. Individual differences in response to alcohol exposure in zebrafish (Danio rerio). PLoS One 2018; 13:e0198856. [PMID: 29879208 PMCID: PMC5991733 DOI: 10.1371/journal.pone.0198856] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023] Open
Abstract
Personality traits are related to many aspects of one's life, including risk taking, sociability, and behavioral changes caused by psychoactive substances. This study aimed to investigate individual differences and behavioral changes due to alcohol exposure in zebrafish (Danio rerio). To that end, adult animals were separated into two behavioral profiles: bold and shy, according to their risk taking behavior in an emergence test. Bold and shy fish were allowed to explore a 5-chamber tank and were tested for exploration and sociability (shoaling behavior) following alcohol exposure. The acute drug exposure treatments were 0.0%, 0.1% and 0.5% (v/v%) alcohol. The behavioral parameters evaluated were average and maximum swimming speed, total distance traveled, total time spent immobile, and time spent near a shoal or exploring the tank. For the groups that received no alcohol (0.0% alcohol), shy individuals spent more time near the shoal than bold fish. However, 0.5% alcohol increased bold fish responsiveness to the shoal, while both 0.1% and 0.5% alcohol diminished shoaling in shy fish. Our results show that the behavioral profiles of zebrafish are affected differently by alcohol, with shy animals seemingly more sensitive to behavioral change due to drug exposure. Moreover, we confirm zebrafish as a model for alcohol induced functional (exploration and social behavior) changes that could be useful in high throughput drug screens.
Collapse
Affiliation(s)
- Heloysa Araujo-Silva
- Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Priscila F. Silva
- Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana C. Luchiari
- Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
49
|
Fernandes Y, Buckley DM, Eberhart JK. Diving into the world of alcohol teratogenesis: a review of zebrafish models of fetal alcohol spectrum disorder. Biochem Cell Biol 2018; 96:88-97. [PMID: 28817785 PMCID: PMC7413215 DOI: 10.1139/bcb-2017-0122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The term fetal alcohol spectrum disorder (FASD) refers to the entire suite of deleterious outcomes resulting from embryonic exposure to alcohol. Along with other reviews in this special issue, we provide insight into how animal models, specifically the zebrafish, have informed our understanding of FASD. We first provide a brief introduction to FASD. We discuss the zebrafish as a model organism and its strengths for alcohol research. We detail how zebrafish has been used to model some of the major defects present in FASD. These include behavioral defects, such as social behavior as well as learning and memory, and structural defects, disrupting organs such as the brain, sensory organs, heart, and craniofacial skeleton. We provide insights into how zebrafish research has aided in our understanding of the mechanisms of ethanol teratogenesis. We end by providing some relatively recent advances that zebrafish has provided in characterizing gene-ethanol interactions that may underlie FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
| | - Desire M Buckley
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
| | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78713, USA
| |
Collapse
|
50
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|