1
|
Eslami A, Hajizadeh Moghaddam A, Khanjani Jelodar S, Ranjbar M. Quercetin-loaded nanophytosome ameliorates early life stress-induced hippocampal oxido-inflammatory damages. IBRO Neurosci Rep 2025; 18:491-497. [PMID: 40177702 PMCID: PMC11964764 DOI: 10.1016/j.ibneur.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Phytosome-based nanocarriers have emerged as innovative drug delivery systems in recent years, demonstrating significant potential in the treatment of neurodegenerative disorders. This study aimed to evaluate the therapeutic efficacy of quercetin-loaded nanophytosome (QNP) in modulating the oxido-inflammatory response in a rat model of early life stress (ELS) induced by maternal isolation (MI). To establish the ELS model, male rat pups were isolated from their dam for 3 hours daily from postnatal days 1-9. Following the lactation period (postpartum days 1-21), treatments with quercetin (10 and 40 mg/kg) and QNP (10 and 40 mg/kg) were administered continuously for 21 days. Cognitive behaviors, oxidative stress markers, hippocampal dopamine levels, and mRNA expression of TNF-α and IL-6 were assessed after ELS induction. Treatment with QNP (40 mg/kg) significantly improved cognitive function (P < 0.01), increased hippocampal dopamine levels (P < 0.001), and reduced oxidative stress (P < 0.01) as well as the expression of TNF-α (P < 0.001) and IL-6 (P < 0.001). In conclusion, QNP demonstrates potent hippocampal anti-oxidoinflammatory effects, making it a promising therapeutic candidate for mitigating the adverse effects of maternal isolation-induced early life stress.
Collapse
Affiliation(s)
- Ali Eslami
- Department of Animal Sciences, Faculty of Sciences, University of Mazandaran, Babolsar, Iran
| | | | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
2
|
Geertsema J, Juncker HG, Wilmes L, Burchell GL, de Rooij SR, van Goudoever JB, O'Riordan KJ, Clarke G, Cryan JF, Korosi A. Nutritional interventions to counteract the detrimental consequences of early-life stress. Mol Psychiatry 2025:10.1038/s41380-025-03020-1. [PMID: 40289212 DOI: 10.1038/s41380-025-03020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Exposure to stress during sensitive developmental periods comes with long term consequences for neurobehavioral outcomes and increases vulnerability to psychopathology later in life. While we have advanced our understanding of the mechanisms underlying the programming effects of early-life stress (ES), these are not yet fully understood and often hard to target, making the development of effective interventions challenging. In recent years, we and others have suggested that nutrition might be instrumental in modulating and possibly combatting the ES-induced increased risk to psychopathologies and neurobehavioral impairments. Nutritional strategies are very promising as they might be relatively safe, cheap and easy to implement. Here, we set out to comprehensively review the existing literature on nutritional interventions aimed at counteracting the effects of ES on neurobehavioral outcomes in preclinical and clinical settings. We identified eighty six rodent and ten human studies investigating a nutritional intervention to ameliorate ES-induced impairments. The human evidence to date, is too few and heterogeneous in terms of interventions, thus not allowing hard conclusions, however the preclinical studies, despite their heterogeneity in terms of designs, interventions used, and outcomes measured, showed nutritional interventions to be promising in combatting ES-induced impairments. Furthermore, we discuss the possible mechanisms involved in the beneficial effects of nutrition on the brain after ES, including neuroinflammation, oxidative stress, hypothalamus-pituitary-adrenal axis regulation and the microbiome-gut-brain axis. Lastly, we highlight the critical gaps in our current knowledge and make recommendations for future research to move the field forward.
Collapse
Affiliation(s)
- Jorine Geertsema
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hannah G Juncker
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Aging and Later Life, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - J B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Aniko Korosi
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Jasemi E, Razmi A, Vaseghi S, Amiri S, Najafi SMA. The effect of Psilocybe cubensis alkaloids on depressive-like behavior in mice exposed to maternal separation with respect to hippocampal gene expression and DNA methylation of Slc6a4 and Nr3c1. Behav Pharmacol 2025; 36:115-126. [PMID: 39969076 DOI: 10.1097/fbp.0000000000000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Maternal separation as an early life stress can lead to long-lasting deleterious effects on cognitive and behavioral functions, and the mood state. On the other hand, Psilocybe cubensis (as one of the most well-known magic mushrooms) may be beneficial in the improvement or the treatment of neuropsychiatric disorders. In the present study, we aimed to investigate the effect of P. cubensis extract (PCE) on depressive-like and anxiety-like behaviors, and locomotor activity in mice exposed to early maternal separation. Also, we assessed the expression and methylation level of Slc6a4 and Nr3c1 in the hippocampus. Maternal separation was done in postnatal days (PNDs) 2-18. PCE was intraperitoneally injected at the dose of 20 mg/kg at PND 60, and our tests were done at days 1, 3, and 10, of administration. The results showed that maternal separation significantly induced depressive-like behavior in the forced swim test and anxiety-like behavior in the open field test (OFT). Also, maternal separation decreased locomotor activity in the OFT. In addition, maternal separation decreased the expression and increased the methylation level of both Slc6a4 and Nr3c1 in the hippocampus. However, PCE significantly reversed all these effects. In conclusion, it seems that P. cubensis affects serotonergic signaling via altering Slc6a4 expression and methylation level in the hippocampus of mice. The effect of P. cubensis on Nr3c1 expression and methylation level may also lead to alter the function of the hypothalamus-pituitary-adrenal axis and the stress response in mice exposed to maternal separation.
Collapse
Affiliation(s)
- Eghbal Jasemi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran
| |
Collapse
|
4
|
Vlaikou AM, Nussbaumer M, Iliou A, Papageorgiou MP, Komini C, Theodoridou D, Benaki D, Mikros E, Gikas E, Syrrou M, Filiou MD. Early Life Stress Induces Brain Mitochondrial Dynamics Changes and Sex-Specific Adverse Effects in Adulthood. J Neurosci Res 2025; 103:e70023. [PMID: 40195806 DOI: 10.1002/jnr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 04/09/2025]
Abstract
Early life stress exposure exerts detrimental effects in adulthood and is a risk factor for psychiatric disorders. Studies addressing the molecular mechanisms of early life stress have primarily focused on hormones and stress circuits. However, little is known on how mitochondria and mitochondrial dynamics (i.e., the orchestration of mitochondrial fission, fusion, mitophagy, and biogenesis) modulate early life stress responses. Here, we used a maternal separation with early weaning (MSEW) paradigm to investigate the behavioral and molecular early life stress-elicited effects in male and female C57BL/6 mice in adulthood. We first applied a behavioral test battery to assess MSEW-driven, anxiety-related and stress-coping alterations. We then looked for MSEW-induced, mitochondria-centered changes in cingulate cortex, hippocampus and cerebellum, as well as in plasma by combining protein, mRNA, mitochondrial DNA copy number (mtDNAcn) and metabolomics analyses. We found that MSEW mice are more anxious, show decreased antioxidant capacity in the cingulate cortex and have higher mRNA levels of the fission regulator Fis1 and the mitophagy activator Pink1 in the hippocampus, indicating a shift towards mitochondrial degradation. Hippocampal mRNA level alterations of apoptotic markers further suggest an MSEW-driven activation of apoptosis accompanied by a dysregulation of purine catabolism in the cerebellum in MSEW mice. Sex-specific analysis revealed distinct MSEW-induced changes in male and female mice at the molecular level. Our work reveals a previously unexplored role of mitochondrial dynamics in regulating early life stress effects and highlights a mitochondria-centered dysregulation as a persistent outcome of early life stress in adulthood.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Aikaterini Iliou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitra Benaki
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emmanuel Mikros
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Evangelos Gikas
- Section of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina, University of Ioannina, Ioannina, Greece
| |
Collapse
|
5
|
Mohammadi S, Bashghareh A, Karimi-Zandi L, Mokhtari T. Understanding Role of Maternal Separation in Depression, Anxiety,and Pain Behaviour: A Mini Review of Preclinical Research With Focus on Neuroinflammatory Pathways. Int J Dev Neurosci 2025; 85:e70002. [PMID: 39895419 PMCID: PMC11838919 DOI: 10.1002/jdn.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Contact between mother and child is essential for the proper development of an infant's physiological systems, brain maturation and behavioural outcomes. Early life stress (ELS), which includes factors such as inadequate parental care and childhood abuse, significantly increases the risk of developing neuropsychiatric disorders, including anxiety and depression. This review examines the impact of maternal separation (MS) on depression, anxiety and pain behaviour, with a particular emphasis on neuroinflammatory pathways. Experiences of ELS can adversely affect the maturation of neurotransmitter systems and associated neural circuits that are crucial for processing painful stimuli and regulating anxiety and depression. Stressful experiences trigger inflammatory processes in the brain, initiating immune responses in neural cells and stimulating the production of pro-inflammatory cytokines. In mammals, MS serves as a significant stressor that activates the hypothalamic-pituitary-adrenal (HPA) axis and other stress-related systems, leading to increased immune challenges and heightened pain sensitivity in adulthood due to systemic inflammation. Key inflammatory mediators, such as IL-1β, IL-6 and TNF-α, play critical roles in the development of pathological pain, while the activation of microglia releases inflammatory mediators that contribute to neurological dysfunction and the pathophysiology of stress, depression and anxiety. Moreover, therapeutics targeting oxidative stress and inflammation have shown promise in alleviating affective disorders following MS. This review discusses potential pathways, with a primary focus on neuroinflammatory mechanisms and the therapeutic strategies that may mitigate the adverse effects of MS. There is a pressing need for further research to elucidate the underlying pathways and identify effective interventions to improve mental health outcomes in individuals affected by MS.
Collapse
Affiliation(s)
- Shima Mohammadi
- Department of Neuroscience, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Karimi-Zandi
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tahmineh Mokhtari
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| |
Collapse
|
6
|
Amini-Khoei H, Taei N, Dehkordi HT, Lorigooini Z, Bijad E, Farahzad A, Madiseh MR. Therapeutic Potential of Ocimum basilicum L. Extract in Alleviating Autistic-Like Behaviors Induced by Maternal Separation Stress in Mice: Role of Neuroinflammation and Oxidative Stress. Phytother Res 2025; 39:64-76. [PMID: 39496541 DOI: 10.1002/ptr.8360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
A confluence of genetic, environmental, and epigenetic factors shapes autism spectrum disorder (ASD). Early-life stressors like MS play a contributing role in this multifaceted neurodevelopmental disorder. This research was to explore the efficacy of Ocimum basilicum L. (O.B.) extract in mitigating behaviors reminiscent of autism prompted by maternal separation (MS) stress in male mice, focusing on its impact on neuroinflammation and oxidative stress. MS mice were treated with O.B. extract at varying dosages (20, 40, and 60 mg/kg) from postnatal days (PND) 51-53 to PND 58-60. Behavioral experiments, including the Morris water maze, three-chamber test, shuttle box, and resident-intruder test, were conducted post-treatment. The method of maternal separation involved separating the pups from their mothers for 3 h daily, from PND 2 to PND 14. Molecular analysis of hippocampal tissue was performed to assess gene expression of Toll-like receptor 4 (TLR4), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Hippocampal and serum malondialdehyde (MDA) levels and total antioxidant capacity (TAC) were measured. O.B. extract administration resulted in the amelioration of autistic-like behaviors in MS mice, as evidenced by improved spatial and passive avoidance memories and social interactions, as well as reduced aggression in behavioral tests. O.B. extract attenuated oxidative stress and neuroinflammation, as indicated by decreased MDA and increased TAC levels, as well as downregulation of TLR4, TNF-α, and IL-1β expression in the hippocampus. O.B. extract may offer a novel therapeutic avenue for ASD, potentially mediated through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nafiseh Taei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Zhang Y, Wang S, Hei M. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull 2024; 217:111058. [PMID: 39197670 DOI: 10.1016/j.brainresbull.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The establishment of positive early parent-infant relationships provide essential nourishment and social stimulation for newborns. During the early stages of postnatal brain development, events such as synaptogenesis, neuronal maturation and glial differentiation occur in a highly coordinated manner. Maternal separation, as an early-life stress introducer, can disrupt the formation of parent-child bonds and exert long-term adverse effects throughout life. When offspring are exposed to maternal separation, the body regulates the stress of maternal separation through multiple mechanisms, including neuroinflammatory responses, neuroendocrinology, and neuronal electrical activity. In adulthood, early maternal separation has long-term effects, such as the induction of neuropsychiatric disorders such as anxiety, depression, and cognitive dysfunction. This review summarized the application of maternal separation models and the mechanisms of stress system response in neuropsychiatric disorders, serving as both a reminder and inspiration for approaches to improve neonatal care, "from bench to bedside".
Collapse
Affiliation(s)
- Yuan Zhang
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China.
| |
Collapse
|
8
|
Andressa Caetano R, Alves J, Smaniotto TA, Daroda Dutra F, de Assis EZB, Soares Pedroso L, Peres A, Machado AG, Krolow R, Maciel August P, Matté C, Seady M, Leite MC, Machado BG, Marques C, Saraiva L, de Lima RMS, Dalmaz C. Impacts of linseed oil diet on anxiety and memory extinction after early life stress: A sex-specific analysis of mitochondrial dysfunction, astrocytic markers, and inflammation in the amygdala. Brain Res 2024; 1846:149268. [PMID: 39374840 DOI: 10.1016/j.brainres.2024.149268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Early exposure to stressors affects how the organism reacts to stimuli, its emotional state throughout life, and how it deals with emotional memories. Consequently, it may affect susceptibility to psychopathology later in life. We used an animal model of early stress by maternal separation to study its potential impact on the extinction of aversive memories and anxiety-like behavior in adulthood, as well as its effects on mitochondrial functionality, inflammatory and astrocytic markers in the amygdala. We also assessed whether a diet enriched with linseed oil, known for its high content in omega-3 fats, could be used to attenuate the behavioral and neurochemical effects of early stress. Litters of Wistar rats were divided into controls (intact) or subjected to maternal separation (MS). They were subdivided into two groups receiving isocaloric diets enriched in soy or linseed oils at weaning. In adulthood, the animals were exposed to the open field and the elevated plus maze, to evaluate exploratory activity and anxiety-like behavior. They were also trained in a context of fear conditioning, and afterward subjected to an extinction session, followed by a test session to evaluate the extinction memory. Amygdalae were evaluated for inflammatory cytokines (interleukin (IL)-1beta, IL-6, and tumor-necrose factor (TNF)-alpha), mitochondrial functionality, and astrocyte markers (glial fibrillary acidic protein - GFAP, S100B, and glutamine synthetase activity). MS induced anxiety-like behavior in the elevated plus-maze, which was reversed by a diet enriched in linseed oil offered from weaning. When testing the memory of an extinction session of fear conditioning, MS animals showed more freezing behavior. MS males receiving a linseed oil-enriched diet had lower functional mitochondria in the amygdala. In addition, MS led to increased inflammatory cytokines, particularly IL-1beta, and the diet enriched in linseed oil further increased these levels in MS animals. MS also increased S100B levels. These results point to a higher emotionality presented by MS animals, with higher levels of inflammatory cytokines and S100B. While a diet enriched in linseed oil attenuated anxiety-like behavior, it further altered amygdala IL-1beta and reduced mitochondria functionality, particularly in males. MS also increased glutamine synthetase activity in the amygdala, and this effect was higher when the animals received a diet enriched in linseed oil, particularly in females. In conclusion, these results point to MS effects on emotional behavior, and neurochemical alterations in the amygdala, with sex-specific effects. Although a diet enriched in linseed oil appears to be able to reverse some of MS behavioral effects, these results must be considered with caution, since biochemical parameters could be worsened in MS animals receiving a linseed oil-enriched diet. This knowledge is important for the understanding of mechanisms of action of strategies aiming to reverse early stress effects, and future studies are warranted to determine possible interventions to promote resilience.
Collapse
Affiliation(s)
- Regina Andressa Caetano
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Joelma Alves
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Thiago A Smaniotto
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Francisco Daroda Dutra
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Eduardo Z B de Assis
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Luisa Soares Pedroso
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Ariadni Peres
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Alessandra G Machado
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Pauline Maciel August
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Marina Seady
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Marina C Leite
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Brenda G Machado
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carolina Marques
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Laura Saraiva
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Randriely Merscher Sobreira de Lima
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Chen Y, Wang R, Li X, Wang Z, Cao B, Du J, Deng T, Han J, Yang M. Progress of research on the treatment of depression by traditional Chinese medicine prescriptions. Heliyon 2024; 10:e34970. [PMID: 39157399 PMCID: PMC11328063 DOI: 10.1016/j.heliyon.2024.e34970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Depression is a common psychiatric disorder that belongs to the category of "Depression Syndrome" in traditional Chinese medicine (TCM), and its etiology and pathogenesis are complex and unclear. It is characterized by high prevalence, high disability rate, and high recurrence rate, which seriously affect human health, and its treatment has become a research hotspot worldwide. At present, the antidepressants commonly used in the clinic are mainly Western medicine (WM), but there are problems such as frequent side effects and poor efficacy. Studies have found that the use of TCM prescriptions in the treatment of depression can achieve the same effect as WM; and when TCM prescriptions are combined with WM, the efficacy can be enhanced while the adverse effects of WM can be reduced. Pharmacological studies related to the treatment of depression with traditional Chinese medicine prescriptions (TCMPs) have focused on the neurobiochemical system, gut microbes, and energy metabolism in mitochondria. No one has yet reviewed the pharmacological mechanism of TCMPs for depression. So, this paper reviews the pharmacological mechanism of TCMPs for depression from the perspective of TCMPs, introduces the progress of research on classical TCMPs for depression and their antidepressant mechanism. This article aims to promote the application of TCMPs in the clinic and provide a new therapeutic idea for the clinical treatment of depression.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Ruyu Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiying Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxiang Han
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Kingsbury MA. The intertwining of oxytocin's effects on social affiliation and inflammation. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100239. [PMID: 38784104 PMCID: PMC11112266 DOI: 10.1016/j.cpnec.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
•Oxytocin is an ancient adaptive hormone that promotes social affiliation to maximize fitness and longevity.•Oxytocin is a multifaceted hormone that regulates stress responses at all levels of cellular organization within individuals.•Oxytocin's dual actions on sociability and inflammation highlight its powerful capacity as a modulator of human health.
Collapse
Affiliation(s)
- Marcy A. Kingsbury
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
11
|
Joushi S, Taherizadeh Z, Eghbalian M, Esmaeilpour K, Sheibani V. Boosting decision-making in rat models of early-life adversity with environmental enrichment and intranasal oxytocin. Psychoneuroendocrinology 2024; 165:107050. [PMID: 38677097 DOI: 10.1016/j.psyneuen.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Impaired decision-making constitutes a fundamental issue in numerous psychiatric disorders. Extensive research has established that early life adversity (ELA) increases vulnerability to psychiatric disorders later in life. ELA in human neonates is associated with changes in cognitive, emotional, as well as reward-related processing. Maternal separation (MS) is an established animal model of ELA and has been shown to be associated with decision-making deficits. On the other hand, enriched environment (EE) and intranasal oxytocin (OT) administration have been demonstrated to have beneficial effects on decision-making in humans or animals. Given these considerations, our investigation sought to explore the impact of brief exposure to EE and intranasal OT administration on the decision-making abilities of adolescent rats that had experienced MS during infancy. The experimental protocol involved subjecting rat pups to the MS regimen for 180 min per day from postnatal day (PND) 1 to PND 21. Then, from PND 22 to PND 34, the rats were exposed to EE and/or received intranasal OT (2 μg/μl) for seven days. The assessment of decision-making abilities, using a rat gambling task (RGT), commenced during adolescence. Our findings revealed that MS led to impaired decision-making and a decreased percentage of advantageous choices. However, exposure to brief EE or intranasal OT administration mitigated the deficits induced by MS and improved the decision-making skills of maternally-separated rats. Furthermore, combination of these treatments did not yield additional benefits. These results suggest that EE and OT may hold promise as therapeutic interventions to enhance certain aspects of cognitive performance.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Taherizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Eghbalian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Avgana H, Toledano RS, Akirav I. Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD. Pharmaceuticals (Basel) 2024; 17:846. [PMID: 39065697 PMCID: PMC11279644 DOI: 10.3390/ph17070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA's therapeutic effects on extinction and freezing behavior. In conclusion, MDMA's therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA's effects on extinction and anxiety may be mediated by oxytocinergic signaling.
Collapse
Affiliation(s)
- Haron Avgana
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Roni Shira Toledano
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
13
|
Baud O, Knoop M. [Oxytocin as a neuroprotective strategy in neonates: concept and preclinical evidence]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024; 52:418-424. [PMID: 38145743 DOI: 10.1016/j.gofs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Prematurity and intra-uterine growth retardation are responsible for brain damage associated with various neurocognitive and behavioral disorders in more than 9 million children each year. Most pharmacological strategies aimed at preventing perinatal brain injury have not demonstrated substantial clinical benefits so far. In contrast, enrichment of the newborn's environment appears to have positive effects on brain structure and function, influences newborn hormonal responses, and has lasting neurobehavioral consequences during infancy and adulthood. Oxytocin (OT), a neuropeptide released by the hypothalamus, may represent the hormonal basis for these long-term effects. METHOD This review of the literature summarizes the knowledge concerning the effect of OT in the newborn and the preclinical data supporting its neuroprotective effect. RESULTS OT plays a role during the perinatal period, in parent-child attachment and in social behavior. Furthermore, preclinical studies strongly suggest that endogenous and synthetic OT is capable of regulating the inflammatory response of the central nervous system in response to situations of prematurity or more generally insults to the developing brain. The long-term effect of synthetic OT administration during labor is also discussed. CONCLUSION All the conceptual and experimental data converge to indicate that OT would be a promising candidate for neonatal neuroprotection, in particular through the regulation of neuroinflammation.
Collapse
Affiliation(s)
- Olivier Baud
- Laboratoire du développement, Université de Genève, Genève, Suisse; Inserm U1141, Université Paris Cité, Paris, France; Service de Soins Intensifs Pédiatriques et Néonatologie, Hôpitaux Universitaires de Genève, Genève, Suisse.
| | - Marit Knoop
- Laboratoire du développement, Université de Genève, Genève, Suisse
| |
Collapse
|
14
|
Zhang Y, Wang H, Liu L, Mo X, He D, Chen X, Xiao R, Cheng Q, Fatima M, Du Y, Xie P. Maternal separation regulates sensitivity of stress-induced depression in mice by affecting hippocampal metabolism. Physiol Behav 2024; 279:114530. [PMID: 38552706 DOI: 10.1016/j.physbeh.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Depression is a serious mental illness. Previous studies found that early life stress (ELS) plays a vital role in the onset and progression of depression. However, relevant studies have not yet been able to explain the specific effects of early stress on stress-induced depression sensitivity and individual behavior during growth. Therefore, we constructed a maternal separation (MS) model and administered chronic social frustration stress at different stages of their growth while conducting metabolomics analysis on the hippocampus of mice. Our results showed that the immobility time of mice in the forced swimming test was significantly reduced at the end of MS. Meanwhile, mice with MS experience significantly decreased total movement distance in the open field test and sucrose preference ratio in the sucrose preference test when subjected to chronic social defeat stress (CSDS) during adolescence. In adulthood, the results were the opposite. In addition, we found that level changes in metabolites such as Beta-alanine, l-aspartic acid, 2-aminoadipic acid, and Glycine are closely related to behavioral changes. These metabolites are mainly enriched in Pantothenate, CoA biosynthesis, and Beta Alanine metabolism pathways. Our experiment revealed that the effects of ELS vary across different age groups. It will increase an individual's sensitivity to depression when facing CSDS in adolescence, but it will reduce their sensitivity to depression when facing CSDS in adulthood. This may be achieved by regulating the hippocampus's Pantothenate and CoA biosynthesis and Beta Alanine metabolism pathways represented by Beta-alanine, l-Aspartic acid, 2-aminoadipic acid, and Glycine metabolites.
Collapse
Affiliation(s)
- Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Xiaolong Mo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Qisheng Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Madiha Fatima
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yamei Du
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
15
|
Rostami-Faradonbeh N, Amini-Khoei H, Zarean E, Bijad E, Lorigooini Z. Anethole as a promising antidepressant for maternal separation stress in mice by modulating oxidative stress and nitrite imbalance. Sci Rep 2024; 14:7766. [PMID: 38565927 PMCID: PMC10987547 DOI: 10.1038/s41598-024-57959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.
Collapse
Affiliation(s)
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Zarean
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Psychiatry, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Buemann B. Does activation of oxytocinergic reward circuits postpone the decline of the aging brain? Front Psychol 2023; 14:1250745. [PMID: 38222845 PMCID: PMC10786160 DOI: 10.3389/fpsyg.2023.1250745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Oxytocin supports reproduction by promoting sexual- and nursing behavior. Moreover, it stimulates reproductive organs by different avenues. Oxytocin is released to the blood from terminals of oxytocinergic neurons which project from the hypothalamus to the pituitary gland. Concomitantly, the dendrites of these neurons discharge oxytocin into neighboring areas of the hypothalamus. At this location it affects other neuroendocrine systems by autocrine and paracrine mechanisms. Moreover, sensory processing, affective functions, and reward circuits are influenced by oxytocinergic neurons that reach different sites in the brain. In addition to its facilitating impact on various aspects of reproduction, oxytocin is revealed to possess significant anti-inflammatory, restoring, and tranquilizing properties. This has been demonstrated both in many in-vivo and in-vitro studies. The oxytocin system may therefore have the capacity to alleviate detrimental physiological- and mental stress reactions. Thus, high levels of endogenous oxytocin may counteract inadequate inflammation and malfunctioning of neurons and supportive cells in the brain. A persistent low-grade inflammation increasing with age-referred to as inflammaging-may lead to a cognitive decline but may also predispose to neurodegenerative diseases such as Alzheimer's and Parkinson. Interestingly, animal studies indicate that age-related destructive processes in the body can be postponed by techniques that preserve immune- and stem cell functions in the hypothalamus. It is argued in this article that sexual activity-by its stimulating impact on the oxytocinergic activity in many regions of the brain-has the capacity to delay the onset of age-related cerebral decay. This may also postpone frailty and age-associated diseases in the body. Finally, oxytocin possesses neuroplastic properties that may be applied to expand sexual reward. The release of oxytocin may therefore be further potentiated by learning processes that involves oxytocin itself. It may therefore be profitable to raise the consciousness about the potential health benefits of sexual activity particularly among the seniors.
Collapse
|
17
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
18
|
Zhang S, Zhang YD, Shi DD, Wang Z. Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders. Cell Biosci 2023; 13:216. [PMID: 38017588 PMCID: PMC10683256 DOI: 10.1186/s13578-023-01173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
Oxytocin (OXT), produced and secreted in the paraventricular nucleus and supraoptic nucleus of magnocellular and parvocellular neurons. The diverse presence and activity of oxytocin suggests a potential for this neuropeptide in the pathogenesis and treatment of stress-related neuropsychiatric disorders (anxiety, depression and post-traumatic stress disorder (PTSD)). For a more comprehensive understanding of the mechanism of OXT's anti-stress action, the signaling cascade of OXT binding to targeting stress were summarized. Then the advance of OXT treatment in depression, anxiety, PTSD and the major projection region of OXT neuron were discussed. Further, the efficacy of endogenous and exogenous OXT in stress responses were highlighted in this review. To augment the level of OXT in stress-related neuropsychiatric disorders, current biological strategies were summarized to shed a light on the treatment of stress-induced psychiatric disorders. We also conclude some of the major puzzles in the therapeutic uses of OXT in stress-related neuropsychiatric disorders. Although some questions remain to be resolved, OXT has an enormous potential therapeutic use as a hormone that regulates stress responses.
Collapse
Affiliation(s)
- Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Marazziti D. A long and winding road: My personal journey to oxytocin with no return. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100198. [PMID: 38108036 PMCID: PMC10724735 DOI: 10.1016/j.cpnec.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 12/19/2023] Open
Abstract
The present paper is the personal narration of the author reviewing her scientific pathways that led her toward the study of oxytocin. My work began with a pioneering study showing a decreased number of the serotonin transporter proteins in romantic lovers. This unexpected finding promoted my interest in the neurobiology of human emotions and feelings, and significantly shifted my research focus from diseases to physiological states that underlie "love." During this time increasing experimental data broadened the spectrum of activities of oxytocin from female functions, such as parturition and lactation, to modulation of the stress and immune system. The literature also began to reveal an important role for oxytocin in a sense of safety and wellbeing, processes that are critical to both love and survival. I suggest here that future studies should disentangle different emerging questions regarding the exact role of oxytocin within human nature, as well as its possible therapeutic applications in different physiological conditions and pathological states. Understanding these, in turn, holds the potential to improve the lives of both individuals and societies.
Collapse
Affiliation(s)
- Donatella Marazziti
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Via Roma 67, 56100, Pisa, Italy
- Saint Camillus International University of Health and Medical Sciences – UniCamillus, Rome, Italy
| |
Collapse
|
20
|
Jiang J, Zou Y, Xie C, Yang M, Tong Q, Yuan M, Pei X, Deng S, Tian M, Xiao L, Gong Y. Oxytocin alleviates cognitive and memory impairments by decreasing hippocampal microglial activation and synaptic defects via OXTR/ERK/STAT3 pathway in a mouse model of sepsis-associated encephalopathy. Brain Behav Immun 2023; 114:195-213. [PMID: 37648002 DOI: 10.1016/j.bbi.2023.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction, characterized by cognitive and memory impairments closely linked to hippocampal dysfunction. Though it is well-known that SAE is a diffuse brain dysfunction with microglial activation, the pathological mechanisms of SAE are not well established and effective clinical interventions are lacking. Oxytocin (OXT) is reported to have anti-inflammatory and neuroprotective roles. However, the effects of OXT on SAE and the underlying mechanisms are not clear. METHODS SAE was induced in adult C57BL/6J male mice by cecal ligation and perforation (CLP) surgery. Exogenous OXT was intranasally applied after surgery. Clinical score, survivor rate, cognitive and memory behaviors, and hippocampal neuronal and non-neuronal functions were evaluated. Cultured microglia challenged with lipopolysaccharide (LPS) were used to investigate the effects of OXT on microglial functions, including inflammatory cytokines release and phagocytosis. The possible intracellular signal pathways involved in the OXT-induced neuroprotection were explored with RNA sequencing. RESULTS Hippocampal OXT level decreases, while the expression of OXT receptor (OXTR) increases around 24 h after CLP surgery. Intranasal OXT application at a proper dose increases mouse survival rate, alleviates cognitive and memory dysfunction, and restores hippocampal synaptic function and neuronal activity via OXTR in the SAE model. Intraperitoneal or local administration of the OXTR antagonist L-368,899 in hippocampal CA1 region inhibited the protective effects of OXT. Moreover, during the early stages of sepsis, hippocampal microglia are activated, while OXT application reduces microglial phagocytosis and the release of inflammatory cytokines, thereby exerting a neuroprotective effect. OXT may improve the SAE outcomes via the OXTR-ERK-STAT3 signaling pathway. CONCLUSION Our study uncovers the dysfunction of the OXT signal in SAE and shows that intranasal OXT application at a proper dose can alleviate SAE outcomes by reducing microglial overactivation, suggests that OXT may be a promising therapeutic approach in managing SAE patients.
Collapse
Affiliation(s)
- Junliang Jiang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yue Zou
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Chuantong Xie
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mimi Yuan
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Li Y, Du W, Liu R, Zan G, Ye B, Li Q, Sheng Z, Yuan Y, Song Y, Liu J, Liu Z. Paraventricular nucleus-central amygdala oxytocinergic projection modulates pain-related anxiety-like behaviors in mice. CNS Neurosci Ther 2023; 29:3493-3506. [PMID: 37248645 PMCID: PMC10580334 DOI: 10.1111/cns.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
AIMS Anxiety disorders associated with pain are a common health problem. However, the underlying mechanisms remain poorly understood. We aimed to investigate the role of paraventricular nucleus (PVN)-central nucleus of the amygdala (CeA) oxytocinergic projections in anxiety-like behaviors induced by inflammatory pain. METHODS After inflammatory pain induction by complete Freund's adjuvant (CFA), mice underwent elevated plus maze, light-dark transition test, and marble burying test to examine the anxiety-like behaviors. Chemogenetic, optogenetic, and fiber photometry recordings were used to modulate and record the activity of the oxytocinergic projections of the PVN-CeA. RESULTS The key results are as follows: inflammatory pain-induced anxiety-like behaviors in mice accompanied by decreased activity of PVN oxytocin neurons. Chemogenetic activation of PVN oxytocin neurons prevented pain-related anxiety-like behaviors, whereas inhibition of PVN oxytocin neurons induced anxiety-like behaviors in naïve mice. PVN oxytocin neurons projected directly to the CeA, and microinjection of oxytocin into the CeA blocked anxiety-like behaviors. Inflammatory pain also decreased the activity of CeA neurons, and optogenetic activation of PVNoxytocin -CeA circuit prevented anxiety-like behavior in response to inflammatory pain. CONCLUSION The results of our study suggest that oxytocin has anti-anxiety effects and provide novel insights into the role of PVNoxytocin -CeA projections in the regulation of anxiety-like behaviors induced by inflammatory pain.
Collapse
Affiliation(s)
- Yu‐Jie Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wei‐Jia Du
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Rui Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Gui‐Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Bing‐Lu Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhi‐Hao Sheng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ya‐Wei Yuan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yu‐Jie Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jing‐Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Zhi‐Qiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
22
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
23
|
Hirschel J, Carlhan-Ledermann A, Ferraz C, Brand LA, Filippa M, Gentaz E, Lejeune F, Baud O. Maternal Voice and Tactile Stimulation Modulate Oxytocin in Mothers of Hospitalized Preterm Infants: A Randomized Crossover Trial. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1469. [PMID: 37761430 PMCID: PMC10528509 DOI: 10.3390/children10091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
Prematurity is a major risk factor for perinatal stress and neonatal complications leading to systemic inflammation and abnormal mother-infant interactions. Oxytocin (OT) is a neuropeptide regulating the inflammatory response and promoting mother-infant bonding. The release of this hormone might be influenced by either vocal or tactile stimulation. The main objective of the current randomized, crossover, clinical trial was to assess the salivary OT/cortisol balance in mothers following the exposure of their baby born preterm to two types of sensorial interventions: maternal voice without or with contingent tactile stimulation provided by the mother to her infant. Among the 26 mothers enrolled, maternal voice intervention alone had no effect on OT and cortisol levels in the mothers, but when associated with tactile stimulation, it induced a significant increase in maternal saliva oxytocin (38.26 ± 30.26 pg/mL before vs 53.91 ± 48.84 pg/mL after, p = 0.02), particularly in the mothers who delivered a female neonate. Maternal voice intervention induced a significant reduction in cortisol and an increase in OT levels in mothers when the maternal voice with a tactile stimulation intervention was performed first. In conclusion, exposure to the maternal voice with a contingent tactile stimulation was associated with subtle changes in the maternal hormonal balance between OT and cortisol. These findings need to be confirmed in a larger sample size and may ultimately guide caregivers in providing the best intervention to reduce parental stress following preterm delivery.
Collapse
Affiliation(s)
- Jessica Hirschel
- Division of Neonatology and Pediatric Intensive Care, Children’s University Hospital of Geneva, University of Geneva, 1205 Geneva, Switzerland; (J.H.); (A.C.-L.); (C.F.); (L.-A.B.)
| | - Audrey Carlhan-Ledermann
- Division of Neonatology and Pediatric Intensive Care, Children’s University Hospital of Geneva, University of Geneva, 1205 Geneva, Switzerland; (J.H.); (A.C.-L.); (C.F.); (L.-A.B.)
| | - Céline Ferraz
- Division of Neonatology and Pediatric Intensive Care, Children’s University Hospital of Geneva, University of Geneva, 1205 Geneva, Switzerland; (J.H.); (A.C.-L.); (C.F.); (L.-A.B.)
| | - Laure-Anne Brand
- Division of Neonatology and Pediatric Intensive Care, Children’s University Hospital of Geneva, University of Geneva, 1205 Geneva, Switzerland; (J.H.); (A.C.-L.); (C.F.); (L.-A.B.)
| | - Manuela Filippa
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Department of Psychology and Educational Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Edouard Gentaz
- Sensorimotor, Affective and Social Development Unit, Faculty of Psychology, University of Geneva, 1211 Geneva, Switzerland; (E.G.); (F.L.)
| | - Fleur Lejeune
- Sensorimotor, Affective and Social Development Unit, Faculty of Psychology, University of Geneva, 1211 Geneva, Switzerland; (E.G.); (F.L.)
| | - Olivier Baud
- Division of Neonatology and Pediatric Intensive Care, Children’s University Hospital of Geneva, University of Geneva, 1205 Geneva, Switzerland; (J.H.); (A.C.-L.); (C.F.); (L.-A.B.)
- Inserm U1141, University of Paris, Paris 75019, France
| |
Collapse
|
24
|
Cruz KLO, Salla DH, Oliveira MP, Silva LE, Vedova LMD, Mendes TF, Bressan CBC, Silva MR, Santos SML, Soares HJ, Mendes RL, Vernke CN, Silva MG, Laurentino AOM, Medeiros FD, Vilela TC, Lemos I, Bitencourt RM, Réus GZ, Streck EL, Mello AH, Rezin GT. Energy metabolism and behavioral parameters in female mice subjected to obesity and offspring deprivation stress. Behav Brain Res 2023; 451:114526. [PMID: 37271313 DOI: 10.1016/j.bbr.2023.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.
Collapse
Affiliation(s)
- Kenia L O Cruz
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Daniele H Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Larissa E Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil.
| | - Larissa M D Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Talita F Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Catarina B C Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariella R Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Sheila M L Santos
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Hevylin J Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rayane L Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Camila N Vernke
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Marina G Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Ana O M Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana D Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Rafael M Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, Brazil
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Aline H Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gislaine T Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| |
Collapse
|
25
|
Yoo J, Han J, Lim MH. Transition metal ions and neurotransmitters: coordination chemistry and implications for neurodegeneration. RSC Chem Biol 2023; 4:548-563. [PMID: 37547459 PMCID: PMC10398360 DOI: 10.1039/d3cb00052d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Neurodegeneration is characterized by a disturbance in neurotransmitter-mediated signaling pathways. Recent studies have highlighted the significant role of transition metal ions, including Cu(i/ii), Zn(ii), and Fe(ii/iii), in neurotransmission, thereby making the coordination chemistry of neurotransmitters a growing field of interest in understanding signal dysfunction. This review outlines the physiological functions of transition metal ions and neurotransmitters, with the metal-binding properties of small molecule-based neurotransmitters and neuropeptides. Additionally, we discuss the structural and conformational changes of neurotransmitters induced by redox-active metal ions, such as Cu(i/ii) and Fe(ii/iii), and briefly describe the outcomes arising from their oxidation, polymerization, and aggregation. These observations have important implications for neurodegeneration and emphasize the need for further research to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
26
|
Meng X, Bao B, Yue G. Global research trends on maternal separation paradigms as an early life stress model: A bibliometric analysis. Heliyon 2023; 9:e18469. [PMID: 37533990 PMCID: PMC10392086 DOI: 10.1016/j.heliyon.2023.e18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
Background Maternal separation (MS) is an early life stress model that is often studied to determine how early life stress affects brain development and psychopathological adaptation. As society has developed, public health problems have become increasingly prominent, and this research area has attracted significant attention. However, to date, there has been no systematic bibliometric study on MS. The aim of this study was to analyze the trends and frontiers in MS using bibliometrics and provide a scientific reference to researchers in the field. Methods Utilizing VOSviewer, CiteSpace, and Microsoft Excel, examined data obtained from the WoSCC, which encompasses the years 2002-2021. Results In this bibliometric study, we analyzed 6209 articles related to MS authored by 24,174 researchers across 121 countries and regions and published in 2219 journals. The United States had the most publications (2,232, 35.95%) and both the United States and the United Kingdom had the highest h-index. Institutions in the United States and France had the most published articles and citations. Keyword clustering analysis revealed associations between MS and adverse early life experiences, the hypothalamic-pituitary-adrenal (HPA) axis, stress, gene expression, and depression. Conclusions This bibliometric analysis highlights the current research focus on the long-term effects of MS on emotional cognition, the HPA axis, epigenetic changes, and their links to gut microbiome imbalances. Future research may expand on these findings to investigate the underlying mechanisms and broader health and societal implications of MS. These results provide a comprehensive overview of the current research landscape in MS and offer valuable insights for researchers to guide future investigations in this field.
Collapse
Affiliation(s)
- Xiaoying Meng
- Institute of Basic Theory for Chinese Medicine,China Academy of Chinese Medical Sciences, Beijing, China
| | - Binghao Bao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine,China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Farzan M, Farzan M, Amini-Khoei H, Shahrani M, Bijad E, Anjomshoa M, Shabani S. Protective effects of vanillic acid on autistic-like behaviors in a rat model of maternal separation stress: Behavioral, electrophysiological, molecular and histopathological alterations. Int Immunopharmacol 2023; 118:110112. [PMID: 37030116 DOI: 10.1016/j.intimp.2023.110112] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Compounds derived from herbs exhibit a range of biological properties, including anti-inflammatory, antioxidant, and neuroprotective properties. However, the exact mechanism of action of these compounds in various neurological disorders is not fully discovered yet. Herein, the present work detected the effect of Vanillic acid (VA), a widely-used flavoring agent derived from vanillin, on autistic-like behaviors to assess the probable underlying mechanisms that mediate behavioral, electrophysiological, molecular, and histopathological alterations in the rat model of maternal separation (MS) stress. Maternal separated rats were treated with VA (25, 50, and 100 mg/kg interperitoneally for 14 days). In addition, anxiety-like, autistic-like behaviors, and learning and memory impairment were evaluated using various behavioral tests. Hippocampus samples were assessed histopathologically by H&E staining. Levels of malondialdehyde (MDA) and antioxidant capacity (by the FRAP method), as well as nitrite levels, were measured in brain tissue. Moreover, gene expression of inflammatory markers (IL-1β, TLR-4, TNF-α, and NLRP3) was evaluated in the hippocampus. Electrophysiological alterations were also estimated in the hippocampus by long-term potentiation (LTP) assessments. Results showed that VA reversed the negative effects of MS on behavior. VA increased the diameter and decreased the percentage of dark neurons in the CA3 area. Accordingly, VA decreased MDA and nitrite levels and increased the antioxidant capacity in brain samples and decreased the expression of all inflammatory genes. VA treated rats showed significant improvements in all LTP parameters. This study provided evidence suggesting a possible role for VA in preventing autism spectrum disorder (ASD) by regulating immune signaling.
Collapse
Affiliation(s)
- Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mahan Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
28
|
Ülgen DH, Ruigrok SR, Sandi C. Powering the social brain: Mitochondria in social behaviour. Curr Opin Neurobiol 2023; 79:102675. [PMID: 36696841 DOI: 10.1016/j.conb.2022.102675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023]
Abstract
A central role of brain mitochondria in regulating and influencing social behaviour is emerging. In addition to its important roles as the "powerhouses" of the cell, mitochondria possess a plethora of cellular functions, such as regulating ion homeostasis, neurotransmitter levels, and lipid metabolism. Findings in the last decade are revealing an integral role for mitochondria in the regulation of behaviours, including those from the social domain. Here, we discuss recent evidence linking mitochondrial functions and dynamics to social behaviour and deficits, including examples in which social behaviours are modulated by stress in the context of mitochondrial changes, as well as potential therapeutic strategies and outstanding questions in the field.
Collapse
Affiliation(s)
- Doğukan Hazar Ülgen
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Silvie Rosalie Ruigrok
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
29
|
Moghaddam AH, Eslami A, Jelodar SK, Ranjbar M, Hasantabar V. Preventive effect of quercetin-Loaded nanophytosome against autistic-like damage in maternal separation model: The possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behav Brain Res 2023; 441:114300. [PMID: 36642103 DOI: 10.1016/j.bbr.2023.114300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
The autism is an abnormality in the neuronal advance which starts before age 3 recognized by defective behaviors. This study aimed to make quercetin-loaded nanophytosomes (QNP) on behavioral deficits, cerebellar oxidative stress and apoptosis in an autistic-like model caused by maternal separation (MS). The newborn rats are randomly categorized into seven groups, including control, positive control, disease, and diseases treated with quercetin (10 and 40 mg/kg) and QNP (10 and 40 mg/kg). Pups exposed to MS for 3 h per day from postnatal days (PND) 1-9 showed behavioral impairment in adult rats compared to control group. The oral administration of quercetin and QNP was constantly started after the lactation period (21 postnatal days) for three weeks. Autistic-like behaviors, antioxidant parameters, and Nrf2, Bax/Bcl-2, and Caspase-3 expressions were surveyed in the cerebellum. Quercetin (40 mg/kg) treated improved some behavioral disorders. Also, the improvement of oxidative stress parameters, Nrf2 and apoptotic factors gene expression was observed in the cerebellum of quercetin (40 mg/kg) treated (p < 0.01). QNP treatment (10 and 40 mg/kg) significantly ameliorated anxiety-like behaviors, line crossing, and grooming index (p < 0.001), lipid peroxidation (p < 0.001), and increased catalase (CAT) (p < 0.001), superoxide dismutase (SOD) (p < 0.001), glutathione peroxidase (GPx) (p < 0.001) activity, and glutathione (GSH) levels (p < 0.05). Moreover, QNP significantly reduced Caspase-3 and Bax expression (p < 0.001), but increased Bcl-2, and Nrf2 expressions (p < 0.001). These findings indicated that QNP due to its high bioavailability was more effective than quercetin can be reduced autistic-like behavior, oxidative and apoptotic damages in the model of MS rats.
Collapse
Affiliation(s)
| | - Ali Eslami
- Department of Animal Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Vahid Hasantabar
- Department of Organic Polymer Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
30
|
Hou W, Huang S, Li L, Guo X, He Z, Shang S, Jia Z, Zhang L, Qu Y, Huang C, Li Y, Li Y, Lv Z, Tai F. Oxytocin treatments or activation of the paraventricular nucleus-the shell of nucleus accumbens pathway reduce adverse effects of chronic social defeat stress on emotional and social behaviors in Mandarin voles. Neuropharmacology 2023; 230:109482. [PMID: 36893984 DOI: 10.1016/j.neuropharm.2023.109482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Chronic social stress can cause psychological disease. Although oxytocin (OT) has been showed to modulate effects of chronic social defeat stress (CSDS) on emotional and social behaviors, however, how OT circuits mediate effects of CSDS on emotional and social abnormalities remains unclear. Here, we found that repeated intraperitoneal OT administration in the process of CSDS buffered adverse effects of CSDS on emotional and social behaviors in mandarin voles (Microtus mandarinus) of both sexes except no effect on depression-like behavior of males. Repeated OT treatments during CSDS prevented decrease of oxytocin receptors in nucleus accumbens (NAc) in females, but produced no effects on males. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determined that the activation of the paraventricular nucleus (PVN)-the shell of NAc (NAcs) projections before social defeat during CSDS process significantly prevented the increase of the anxiety-like behaviors and social avoidance induced by CSDS in both sexes, and reversed the depressive-like behaviors induced by CSDS only in females. Besides, optogenetic activation of PVN-NAcs projections after CSDS reduced anxiety-like behaviors and increased levels of sociality. Collectively, we suggest that PVN-NAcs projections modulate emotional and social behaviors during or after the process of CSDS sex-specifically, although AAV viruses did not specifically infect OT neurons. These findings offer potential targets for preventing or treating emotional and social disorders induced by chronic stress.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shuying Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shufeng Shang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; College of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Ziyan Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
31
|
Baud O, Knoop M, Jacquens A, Possovre ML. [Oxytocin: a new target for neuroprotection?]. Biol Aujourdhui 2023; 216:145-153. [PMID: 36744980 DOI: 10.1051/jbio/2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 02/07/2023]
Abstract
Every year, 30 million infants worldwide are delivered after intra-uterine growth restriction (IUGR) and 15 million are born preterm. These two conditions are the leading causes of ante-/perinatal stress and brain injury responsible for neurocognitive and behavioral disorders affecting more than 9 million children each year. Most pharmacological candidates to prevent perinatal brain damage have failed to demonstrate substantial benefits. In contrast, environment enrichment based on developmental care, skin-to-skin contact and vocal/music exposure appear to exert positive effects on brain structure and function. However, mechanisms underlying these effects remain unknown. There is strong evidence that an adverse environment during pregnancy and the neonatal period can influence hormonal responses of the newborn with long-lasting neurobehavioral consequences in infancy and adulthood. In particular, excessive cortisol release in response to perinatal stress associated with prematurity or IUGR is recognized to induce brain-programming effects and neuroinflammation, a key predictor of subsequent neurological impairments. These deleterious effects are known to be balanced by oxytocin (OT), a neuropeptide released by the hypothalamus, which plays a role during the perinatal period and in social behavior. In addition, preclinical studies suggest that OT is able to regulate the central inflammatory response to injury in the adult brain. Using a rodent model of IUGR associated with developing white matter damage, we recently reported that carbetocin, a brain permeable OT receptor (OTR) agonist, induced a significant reduction of activated microglia, the primary immune cells of the brain. Moreover, this reduced microglia reactivity was associated with long-term neuroprotection. These findings make OT a promising candidate for neonatal neuroprotection through neuroinflammation regulation. However, the mechanisms linking endogenous OT and central inflammation response to injury have not yet been established. Further studies are needed to assess the protective role of OT in the developing brain through modulation of microglial activation, a key feature of brain injury observed in infants born preterm or growth-restricted. They are expected to have several impacts in the near future not only for improving knowledge of microglial cell physiology and reactivity during brain development, but also to design clinical trials testing interventions associated with endogenous OT release as a relevant strategy to alleviate neuroinflammation in neonates.
Collapse
Affiliation(s)
- Olivier Baud
- Laboratoire du développement, Université de Genève, Genève, Suisse - Inserm U1141, Université Paris Cité, 75019 Paris, France - Service de Soins Intensifs Pédiatriques et Néonatologie, Hôpitaux Universitaires de Genève, 30 boulevard de Cluse, 1205 Genève, Suisse
| | - Marit Knoop
- Laboratoire du développement, Université de Genève, Genève, Suisse
| | - Alice Jacquens
- Laboratoire du développement, Université de Genève, Genève, Suisse - Inserm U1141, Université Paris Cité, 75019 Paris, France
| | | |
Collapse
|
32
|
SCGN deficiency is a risk factor for autism spectrum disorder. Signal Transduct Target Ther 2023; 8:3. [PMID: 36588101 PMCID: PMC9806109 DOI: 10.1038/s41392-022-01225-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 01/03/2023] Open
Abstract
Autism spectrum disorder (ASD) affects 1-2% of all children and poses a great social and economic challenge for the globe. As a highly heterogeneous neurodevelopmental disorder, the development of its treatment is extremely challenging. Multiple pathways have been linked to the pathogenesis of ASD, including signaling involved in synaptic function, oxytocinergic activities, immune homeostasis, chromatin modifications, and mitochondrial functions. Here, we identify secretagogin (SCGN), a regulator of synaptic transmission, as a new risk gene for ASD. Two heterozygous loss-of-function mutations in SCGN are presented in ASD probands. Deletion of Scgn in zebrafish or mice leads to autism-like behaviors and impairs brain development. Mechanistically, Scgn deficiency disrupts the oxytocin signaling and abnormally activates inflammation in both animal models. Both ASD probands carrying Scgn mutations also show reduced oxytocin levels. Importantly, we demonstrate that the administration of oxytocin and anti-inflammatory drugs can attenuate ASD-associated defects caused by SCGN deficiency. Altogether, we identify a convergence between a potential autism genetic risk factor SCGN, and the pathological deregulation in oxytocinergic signaling and immune responses, providing potential treatment for ASD patients suffering from SCGN deficiency. Our study also indicates that it is critical to identify and stratify ASD patient populations based on their disease mechanisms, which could greatly enhance therapeutic success.
Collapse
|
33
|
Münz F, Wolfschmitt EM, Zink F, Abele N, Hogg M, Hoffmann A, Gröger M, Calzia E, Waller C, Radermacher P, Merz T. Porcine blood cell and brain tissue energy metabolism: Effects of "early life stress". Front Mol Biosci 2023; 10:1113570. [PMID: 37138659 PMCID: PMC10150084 DOI: 10.3389/fmolb.2023.1113570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Early Life Stress (ELS) may exert long-lasting biological effects, e.g., on PBMC energy metabolism and mitochondrial respiration. Data on its effect on brain tissue mitochondrial respiration is scarce, and it is unclear whether blood cell mitochondrial activity mirrors that of brain tissue. This study investigated blood immune cell and brain tissue mitochondrial respiratory activity in a porcine ELS model. Methods: This prospective randomized, controlled, animal investigation comprised 12 German Large White swine of either sex, which were weaned at PND (postnatal day) 28-35 (control) or PND21 (ELS). At 20-24 weeks, animals were anesthetized, mechanically ventilated and surgically instrumented. We determined serum hormone, cytokine, and "brain injury marker" levels, superoxide anion (O2 •¯) formation and mitochondrial respiration in isolated immune cells and immediate post mortem frontal cortex brain tissue. Results: ELS animals presented with higher glucose levels, lower mean arterial pressure. Most determined serum factors did not differ. In male controls, TNFα and IL-10 levels were both higher than in female controls as well as, no matter the gender in ELS animals. MAP-2, GFAP, and NSE were also higher in male controls than in the other three groups. Neither PBMC routine respiration and brain tissue oxidative phosphorylation nor maximal electron transfer capacity in the uncoupled state (ETC) showed any difference between ELS and controls. There was no significant relation between brain tissue and PBMC, ETC, or brain tissue, ETC, and PBMC bioenergetic health index. Whole blood O2 •¯ concentrations and PBMC O2 •¯ production were comparable between groups. However, granulocyte O2 •¯ production after stimulation with E. coli was lower in the ELS group, and this effect was sex-specific: increased O2 •¯ production increased upon stimulation in all control animals, which was abolished in the female ELS swine. Conclusion: This study provides evidence that ELS i) may, gender-specifically, affect the immune response to general anesthesia as well as O2 •¯ radical production at sexual maturity, ii) has limited effects on brain and peripheral blood immune cell mitochondrial respiratory activity, and iii) mitochondrial respiratory activity of peripheral blood immune cells and brain tissue do not correlate.
Collapse
Affiliation(s)
- Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nadja Abele
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Tamara Merz,
| |
Collapse
|
34
|
Motaghinejad M, Gholami M, Emanuele E. Constant romantic feelings and experiences can protect against neurodegeneration: Potential role of oxytocin-induced nerve growth factor/protein kinase B/Cyclic response element-binding protein and nerve growth factor/protein kinase B/Phospholipase C-Gamma signaling pathways. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_28_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
35
|
Kaplan GB, Dadhi NA, Whitaker CS. Mitochondrial dysfunction in animal models of PTSD: Relationships between behavioral models, neural regions, and cellular maladaptation. Front Physiol 2023; 14:1105839. [PMID: 36923289 PMCID: PMC10009692 DOI: 10.3389/fphys.2023.1105839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal, stress responses, insomnia and other symptoms. This review of rodent models of PTSD examines trauma effects on fear-related learning, cognition, and avoidance, emotional and arousal behaviors and on mitochondrial dysfunction in relevant neural pathways. The review focuses on research that includes four elements: consensus PTSD rodent models, behavioral phenotyping, mitochondrial dysfunction within key neural regions. This approach allows for the integration of behavioral, neural and cellular findings in PTSD models. The PTSD models reviewed include fear conditioning, predator/social stress, chronic restraint stress, single prolonged stress, social isolation, chronic unpredictable stress and early life stress. These models produce a variety of PTSD-related behaviors that include associative and non-associative fear- and stress-related responses, hyperarousal, avoidance behaviors, cognitive disturbances, social withdrawal, compulsive behaviors, anhedonia-, anxiety- and depression-related behaviors. Neural regions included fear- and stress-related regions of the prefrontal cortex, hippocampal, amygdala, nucleus accumbens and hypothalamus. PTSD models produced mitochondrial dysfunction that includes dysregulation of oxidative phosphorylation and other metabolic pathways including β-oxidation of fatty acids and the tricarboxylic acid pathway. These models generated neural reactive oxygen species that damage DNA, proteins, and lipids. Trauma models further altered mitochondrial structure and replication and affected neuroinflammatory responses, signal transduction and apoptosis. Antidepressant medications used for the treatment of PTSD reversed stress-induced changes in some PTSD-like behaviors and many elements of brain mitochondrial dysfunction. Future studies can develop PTSD models which are ecologically valid and result in a broader manifestation of PTSD-related behaviors as it is clinically defined. This review highlights mitochondrial mechanisms associated with PTSD-like behaviors that have been produced in an array of consensus PTSD models and identifies putative circuit-based targets for more effective treatment for this debilitating disorder.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, United States.,Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | | | | |
Collapse
|
36
|
Sex differences in addiction-relevant behavioral outcomes in rodents following early life stress. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37101684 PMCID: PMC10124992 DOI: 10.1016/j.addicn.2023.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans, exposure to early life stress (ELS) is an established risk factor for the development of substance use disorders (SUDs) during later life. Similarly, rodents exposed to ELS involving disrupted mother-infant interactions, such as maternal separation (MS) or adverse caregiving due to scarcity-adversity induced by limited bedding and nesting (LBN) conditions, also exhibit long-term alterations in alcohol and drug consumption. In both humans and rodents, there is a range of addiction-related behaviors that are associated with drug use and even predictive of subsequent SUDs. In rodents, these include increased anxiety-like behavior, impulsivity, and novelty-seeking, altered alcohol and drug intake patterns, as well as disrupted reward-related processes involving consummatory and social behaviors. Importantly, the expression of these behaviors often varies throughout the lifespan. Moreover, preclinical studies suggest that sex differences play a role in how exposure to ELS impacts reward and addiction-related phenotypes as well as underlying brain reward circuitry. Here, addiction-relevant behavioral outcomes and mesolimbic dopamine (DA) dysfunction resulting from ELS in the form of MS and LBN are discussed with a focus on age- and sex-dependent effects. Overall, these findings suggest that ELS may increase susceptibility for later life drug use and SUDs by interfering with the normal maturation of reward-related brain and behavioral function.
Collapse
|
37
|
Maternal stress and vulnerability to depression: coping and maternal care strategies and its consequences on adolescent offspring. Transl Psychiatry 2022; 12:463. [PMID: 36333302 PMCID: PMC9636172 DOI: 10.1038/s41398-022-02220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Depressive mothers often find mother-child interaction to be challenging. Maternal stress may further impair mother-child attachment, which may increase the risk of negative developmental consequences. We used rats with different vulnerability to depressive-like behavior (Wistar and Kyoto) to investigate the impact of stress (maternal separation-MS) on maternal behavior and adolescent offspring cognition. MS in Kyoto dams increased pup-contact, resulting in higher oxytocin levels and lower anxiety-like behavior after weaning, while worsening their adolescent offspring cognitive behavior. Whereas MS in Wistar dams elicited higher quality of pup-directed behavior, increasing brain-derived neurotrophic factor (BDNF) in the offspring, which seems to have prevented a negative impact on cognition. Hypothalamic oxytocin seems to affect the salience of the social environment cues (negatively for Kyoto) leading to different coping strategies. Our findings highlight the importance of contextual and individual factors in the understanding of the oxytocin role in modulating maternal behavior and stress regulatory processes.
Collapse
|
38
|
Duque-Quintero M, Hooijmans CR, Hurowitz A, Ahmed A, Barris B, Homberg JR, Hen R, Harris AZ, Balsam P, Atsak P. Enduring effects of early-life adversity on reward processes: A systematic review and meta-analysis of animal studies. Neurosci Biobehav Rev 2022; 142:104849. [PMID: 36116576 PMCID: PMC10729999 DOI: 10.1016/j.neubiorev.2022.104849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/06/2023]
Abstract
Two-thirds of individuals experience adversity during childhood such as neglect, abuse or highly-stressful events. Early-life adversity (ELA) increases the life-long risk of developing mood and substance use disorders. Reward-related deficits has emerged as a key endophenotype of such psychiatric disorders. Animal models are invaluable for studying how ELA leads to reward deficits. However, the existing literature is heterogenous with difficult to reconcile findings. To create an overview, we conducted a systematic review containing multiple meta-analyses regarding the effects of ELA on reward processes overall and on specific aspects of reward processing in animal models. A comprehensive search identified 120 studies. Most studies omitted key details resulting in unclear risk of bias. Overall meta-analysis showed that ELA significantly reduced reward behaviors (SMD: -0.42 [-0.60; -0.24]). The magnitude of ELA effects significantly increased with longer exposure. When reward domains were analyzed separately, ELA only significantly dampened reward responsiveness (SMD: -0.525[-0.786; -0.264]) and social reward processing (SMD: -0.374 [-0.663; -0.084]), suggesting that ELA might lead to deficits in specific reward domains.
Collapse
Affiliation(s)
- Mariana Duque-Quintero
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hurowitz
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Afsana Ahmed
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Ben Barris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Rene Hen
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Alexander Z Harris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Peter Balsam
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands; Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
39
|
Deng D, Cui Y, Gan S, Xie Z, Cui S, Cao K, Wang S, Shi G, Yang L, Bai S, Shi Y, Liu Z, Zhao J, Zhang R. Sinisan alleviates depression-like behaviors by regulating mitochondrial function and synaptic plasticity in maternal separation rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154395. [PMID: 36103769 DOI: 10.1016/j.phymed.2022.154395] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sinisan (SNS) consists of four kinds of herbs, which is the core of antidepressant prescription widely used in traditional Chinese medicine clinic treatment for depression induced by early life stress. However, the role and precise mechanism of SNS antidepressant have not yet been elucidated. PURPOSE This study aimed to investigate the mechanism SNS on antidepressant of regulating mitochondrial function to improve hippocampal synaptic plasticity. METHODS 90 Sprague-Dawley (SD) rats male pups on Post-Natal Day (PND) 0 were randomly divided into Control group (ddH20), Model group (ddH20), Fluoxetine group (5.0 mg/kg fluoxetine), and SNS-L group (2.5 g/kg SNS), SNS-M group (5.0 g/kg SNS) and SNS-H group (10.0 g/kg SNS), 15 animals per group. Maternal separation (MS) from PND1 to PND21, drug intervention from PND60 to PND90, and behavior tests including sucrose preference test, open field test and forced swimming test from PND83 to PND90 were performed. Synaptic structure and mitochondrial structure were observed by TEM. The expression levels of PSD-95 and SYN were detected by immunohistochemistry and western blot test, the adenosine triphosphate (ATP) content in the hippocampus was detected by assay kits, and the expression levels of Mfn2, Drp1 and Fis1 protein were detected by western bolt test. RESULTS SNS can alleviate depression-like and anxiety-like behaviors in MS rats, improve the damage of synapses and mitochondria, reduce the decrease of ATP in hippocampus, and reverse the expression levels of PSD-95, SYN, Mfn2, Drp1, and Fis1 proteins. CONCLUSION SNS reduced the risk of early life stress induced depression disorder via regulating mitochondrial function and synaptic plasticity. Targeting mitochondrial may be a novel prospective therapeutic avenue for antidepressant.
Collapse
Affiliation(s)
- Di Deng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongfei Cui
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zedan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sainan Cui
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kerun Cao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanshan Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqi Shi
- School of Foreign Studies, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Bai
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinlan Zhao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Chen Q, Zhuang J, Zuo R, Zheng H, Dang J, Wang Z. Exploring associations between postpartum depression and oxytocin levels in cerebrospinal fluid, plasma and saliva. J Affect Disord 2022; 315:198-205. [PMID: 35917937 DOI: 10.1016/j.jad.2022.07.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Postpartum depression (PPD) is a serious mental health concern affecting approximately 17.22 % of new mothers worldwide. In addition to its obstetric effects, oxytocin (OXT) has also been considered to play a role in PPD. However, most previous studies exploring associations between PPD and OXT levels focus on easier accessible compartments such as blood or saliva. STUDY AIM To explore the possible association between PPD and OXT levels, and to assess the interaction between peripheral secretion and central release of OXT. METHODS In this study, we prospectively measured OXT concentrations in cerebrospinal fluid (CSF), plasma and saliva of 94 women with elective cesarean section by enzyme-linked immunosorbent assay (ELISA) kits. The participants were divided into the PPD group if the score of Edinburgh Postpartum Depression Scale (EPDS) ≥ 10 at 3 months postpartum, otherwise into the non-PPD (nPPD) group. RESULTS The incidence of PPD was 30.85 %. OXT concentrations in CSF (r = -0.518, p < 0.001), plasma (r = -0.240, p = 0.020) and saliva (r = -0.263, p = 0.010) were negatively correlated with EPDS score, and were valuable for the prediction of PPD, with AUC and 95%CI of 0.890 (0.809-0.945), 0.683 (0.579-0.775) and 0.699 (0.596-0.790), respectively. Moreover, OXT concentrations in plasma (r = 0.407, p < 0.001) and saliva (r = 0.624, p < 0.001) were positively correlated with CSF OXT concentrations. LIMITATIONS Only full-term pregnant women undergoing elective cesarean section were included in this study, which may affect study generalizability. CONCLUSIONS The central and peripheral release of OXT is coordinated, and OXT level measured prenatally in CSF, plasma, or saliva is valuable for the prediction of PPD.
Collapse
Affiliation(s)
- Qianmin Chen
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingwen Zhuang
- Department of Anesthesiology, The First People's Hospital of Changde City, Changde 415000, Hunan, China
| | - Ronghua Zuo
- Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Huiwen Zheng
- Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingjing Dang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
41
|
Nasehi L, Morassaei B, Ghaffari M, Sharafi A, Dehpour AR, Hosseini MJ. The impacts of vorinostat on NADPH oxidase and mitochondrial biogenesis gene expression in the heart of mice model of depression. Can J Physiol Pharmacol 2022; 100:1077-1085. [PMID: 36166834 DOI: 10.1139/cjpp-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The comorbidity of depression and high risk of cardiovascular diseases (CVD) have been reported as major health problems. Our previous study confirmed that fluoxetine (FLX) therapy had a significant influence on brain function but not on the heart in depression. In the present study, suberoyanilide hydroxamic acid (SAHA) was proposed as another therapeutic candidate for treatment of depression comorbid CVD in maternal separation model, following behavioral analyses and gene expression level in the heart. Our data demonstrated that SAHA significantly attenuates the NOX-4 gene expression level in treated mice with SAHA and FLX without significant change in NOX-2 expression level. SAHA decreased the gene expression level of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and nuclear respiratory factors (Nrf2) in heart tissues of maternally separated mice. It supposed that non-effectiveness of FLX on mitochondrial biogenesis and NOX gene expression level in the heart of depressed patient can be related to recurrence of depression. It revealed that SAHA not only reversed the depressive-like behavior similar to our previous data but also recovered the heart mitochondrial function via effect on NOX-2, NOX-4, and mitochondrial biogenesis genes' (PGC-1α, Nrf-2, and peroxisome proliferator-activated receptor-α (PPAR-α)) expression levels. We suggest performing more studies to confirm SAHA as a therapeutic candidate in depression comorbid CVD.
Collapse
Affiliation(s)
- Leila Nasehi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Morassaei
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Maryam Ghaffari
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| |
Collapse
|
42
|
Carter CS, Kingsbury MA. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life’. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210054. [PMID: 35856299 PMCID: PMC9272143 DOI: 10.1098/rstb.2021.0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and the OT receptor occupy essential roles in our current understanding of mammalian evolution, survival, sociality and reproduction. This narrative review examines the hypothesis that many functions attributed to OT can be traced back to conditions on early Earth, including challenges associated with managing life in the presence of oxygen and other basic elements, including sulfur. OT regulates oxidative stress and inflammation especially through effects on the mitochondria. A related nonapeptide, vasopressin, as well as molecules in the hypothalamic–pituitary–adrenal axis, including the corticotropin-releasing hormone family of molecules, have a broad set of functions that interact with OT. Interactions among these molecules have roles in the causes and consequence of social behaviour and the management of threat, fear and stress. Here, we discuss emerging evidence suggesting that unique properties of the OT system allowed vertebrates, and especially mammals, to manage over-reactivity to the ‘side effects’ of oxygen, including inflammation, oxidation and free radicals, while also supporting high levels of sociality and a perception of safety. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcy A. Kingsbury
- Lurie Center for Autism, Mass General Hospital for Children, Harvard University Medical School, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
43
|
Early life adversity drives sex-specific anhedonia and meningeal immune gene expression through mast cell activation. Brain Behav Immun 2022; 103:73-84. [PMID: 35339629 PMCID: PMC9149134 DOI: 10.1016/j.bbi.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- dura mater, arachnoid, and piamater - possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on sucrose preference behavior, dura mater expression of inflammatory markers and mast cell histology in adult male and female C57Bl/6 mice. We found that NMSEW alone does not affect sucrose preference behavior in males or females, but it increases the dura mater expression of the genes coding for mast cell protease CMA1 (cma1) and the inflammatory cytokine TNF alpha (tnf alpha) in females. When NMSEW is combined with an adult mild stress (that does not affect behavior or gene expression in NH animals) females show reduced sucrose preference and even greater increases in meningeal cma1 levels. Interestingly, systemic administration of the mast cell stabilizer Ketotifen before exposure to adult stress prevents both, reduction in sucrose preference an increases in cma1 expression in NMSEW females, but facilitates stress-induced sucrose anhedonia in NMSEW males and NH females. Finally, histological analyses showed that, compared to males, females have increased baseline activation levels of mast cells located in the transverse sinus of the dura mater, where the meningeal lymphatics run along, and that, in males and females exposed to adult stress, NMSEW increases the number of mast cells in the interparietal region of the dura mater and the levels of mast cell activation in the sagittal sinus regions of the dura mater. Together, our results indicate that ELA induces long-term meningeal immune gene changes and heightened sensitivity to adult stress-induced behavioral and meningeal immune responses and that these effects could mediated via mast cells.
Collapse
|
44
|
Baracz SJ, Robinson KJ, Wright AL, Turner AJ, McGregor IS, Cornish JL, Everett NA. Oxytocin as an adolescent treatment for methamphetamine addiction after early life stress in male and female rats. Neuropsychopharmacology 2022; 47:1561-1573. [PMID: 35581382 PMCID: PMC9206013 DOI: 10.1038/s41386-022-01336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Early life stress (ELS) is associated with perturbed neural development and augmented vulnerability to mental health disorders, including addiction. How ELS changes the brain to increase addiction risk is poorly understood, and there are no therapies which target this ELS-induced vulnerability. ELS disrupts the oxytocin system, which can modulate addiction susceptibility, suggesting that targeting the oxytocin system may be therapeutic in this ELS-addiction comorbidity. Therefore, we determined whether adolescent oxytocin treatment after ELS could: (1) reduce vulnerability to anxiety, social deficits, and methamphetamine-taking and reinstatement; and (2) restore hypothalamic oxytocin and corticotropin-releasing factor expressing neurons and peripheral oxytocin and corticosterone levels. Long Evans pups underwent maternal separation (MS) for either 15 min or 360 min on postnatal days (PND) 1-21. During adolescence (PNDs 28-42), rats received a daily injection of either oxytocin or saline. In Experiment 1, adult rats were assessed using the elevated plus-maze, social interaction procedure, and methamphetamine self-administration procedure, including extinction, and cue-, methamphetamine- and yohimbine-induced reinstatement. In Experiment 2, plasma for enzyme immunoassays and brain tissue for immunofluorescence were collected from adult rats after acute stress exposure. Adolescent oxytocin treatment ameliorated ELS-induced anxiety and reduced methamphetamine- and yohimbine-induced reinstatement in both sexes, and suppressed methamphetamine intake and facilitated extinction in males only. Additionally, adolescent oxytocin treatment after ELS restored oxytocin-immunoreactive cells and stress-induced oxytocin levels in males, and attenuated stress-induced corticosterone levels in both sexes. Adolescent oxytocin treatment reverses some of the ELS effects on later-life psychopathology and vulnerability to addiction.
Collapse
Affiliation(s)
- Sarah J Baracz
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia.
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Katherine J Robinson
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Amanda L Wright
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Anita J Turner
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Iain S McGregor
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia
- Lambert Initiative of Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jennifer L Cornish
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Nicholas A Everett
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
45
|
Effects of early life stress on brain cytokines: A systematic review and meta-analysis of rodent studies. Neurosci Biobehav Rev 2022; 139:104746. [PMID: 35716876 DOI: 10.1016/j.neubiorev.2022.104746] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 06/11/2022] [Indexed: 12/21/2022]
Abstract
Exposure to early life stress (ELS) may lead to long-lasting neurobiological and behavioral impairments. Alterations in the immune system and neuroinflammatory state induced by ELS exposure are considered risk factors for developing psychiatric disorders. Here, we performed a systematic review and meta-analysis of rodent studies investigating the short and long-term effects of ELS exposure on anti and pro-inflammatory cytokines in brain tissues. Our analysis shows that animals exposed to ELS present an increase in pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. On the other hand, no alteration was observed in the anti-inflammatory cytokine IL-10. Meta-regression revealed that alterations were more prominent in the hippocampus of adult animals that were exposed to more extended periods of ELS. These inflammatory effects were not permanent since few alterations were identified in aged animals. Our findings suggest that ELS exposure alters pro-inflammatory cytokines expression and may act as a primer for a secondary challenge that may induce lifelong immune alterations. Moreover, the actual evidence is insufficient to comprehend the relationship between anti-inflammatory cytokines and ELS fully.
Collapse
|
46
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
47
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
48
|
Ito N, Sasaki K, Hirose E, Nagai T, Isoda H, Odaguchi H. Preventive effect of a Kampo medicine, kososan, on recurrent depression in a mouse model of repeated social defeat stress. Gene 2022; 806:145920. [PMID: 34455026 DOI: 10.1016/j.gene.2021.145920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Depression is deemed a mood disorder characterized by a high rate of relapse. Therefore, overcoming of the recurrent depression is globally expecting. Kososan, a traditional Japanese herbal medicine, has been clinically used for mild depressive mood, and our previous studies have shown some evidence for its antidepressive-like efficacy in experimental animal models of depression. However, it remains unclear whether kososan has beneficial effects on recurrent depression. Here, we examined its effect using a mouse model of modified repeated social defeat stress (SDS) paradigm. Male BALB/c mice were exposed to a 5-min SDS from unfamiliar aggressive CD-1 mice for 5 days. Kososan extract (1.0 kg/kg/day) or an antidepressant milnacipran (60 mg/kg/day) was administered orally for 26 days (days 7-32) to depression-like mice with social avoidant behaviors on day 6. Single 5 min of SDS was subjected to mice recovered from the social avoidance on day 31, and then the recurrence of depression-like behaviors was evaluated on day 32. Hippocampal gene expression patterns were also assayed by DNA microarray analysis. Water- or milnacipran-administered mice resulted in a recurrence of depression-like behaviors by re-exposure of single SDS, whereas kososan-administered mice did not recur depression-like behaviors. Distinct gene expression patterns were also found for treating kososan and milnacipran. Collectively, this finding suggests that kososan exerts a preventive effect on recurrent depression-like behaviors in mice. Pretreatment of kososan is more useful for recurrent depression than that of milnacipran.
Collapse
Affiliation(s)
- Naoki Ito
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan.
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan
| | - Eiji Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Takayuki Nagai
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan; Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8572, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| |
Collapse
|
49
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
50
|
Horn AJ, Carter CS. Love and longevity: A Social Dependency Hypothesis. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 8:100088. [PMID: 35757670 PMCID: PMC9216627 DOI: 10.1016/j.cpnec.2021.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mammals, including humans, are reliant for survival and reproduction on adaptations associated with sociality and physiological investment, which can be linked to interactions with their parents or other bonded adult conspecifics. A wide range of evidence in human and non-human mammal species links social behaviors and relationships - including those characterized by what humans call "love" - to positive health and longevity. In light of this evidence, we propose a Social Dependency Hypothesis of Longevity, suggesting that natural selection has favored longer and healthier adult lives in species or in individuals exhibiting enhanced caregiver responsibilities contributing to the success of the next generation. In highlighting cellular, physiological, and behavioral effects of mammalian reproductive hormones, we examine the specific hypothesis that the neuropeptide oxytocin links longevity to the benefits of parental investment and associated relationships. Oxytocin is a pleiotropic molecule with anti-oxidant and anti-inflammatory properties, capable of regulating the hypothalamic-pituitary-adrenal axis, the parasympathetic nervous system and other systems associated with the management of various challenges, including chronic diseases and therefore may be crucial to establishing the maximum longevity potential of a species or an individual.
Collapse
Affiliation(s)
| | - C. Sue Carter
- University of Virginia and Indiana University, United States
| |
Collapse
|