1
|
Tao H, Wang C, Zou C, Zhu H, Zhang W. Unraveling the potential of neuroinflammation and autophagy in schizophrenia. Eur J Pharmacol 2025; 997:177469. [PMID: 40054715 DOI: 10.1016/j.ejphar.2025.177469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Schizophrenia (SCZ) is a complex and chronic psychiatric disorder that affects a significant proportion of the global population. Although the precise etiology of SCZ remains uncertain, recent studies have underscored the involvement of neuroinflammation and autophagy in its pathogenesis. Neuroinflammation, characterized by hyperactivated microglia and markedly elevated pro-inflammatory cytokines, has been observed in postmortem brain tissues of SCZ patients and is closely associated with disease severity. Autophagy, a cellular process responsible for eliminating damaged components and maintaining cellular homeostasis, is believed to play a pivotal role in neuronal health and the onset of SCZ. This review explores the roles and underlying mechanisms of neuroinflammation and autophagy in SCZ, with a particular focus on their intricate interplay. Additionally, we provide an overview of potential therapeutic strategies aimed at modulating neuroinflammation and autophagy, including nutritional interventions, anti-inflammatory drugs, antipsychotics, and plant-derived natural compounds. The review also addresses the dual effects of antipsychotics on autophagy. Our objective is to translate these insights into clinical practice, expanding the therapeutic options available to improve the overall health and well-being of individuals with SCZ.
Collapse
Affiliation(s)
- Hongxia Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Congyin Wang
- Department of Emergency Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Chuan Zou
- Department of General Practice, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hongru Zhu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Lappas AS, Ioannou M, Christodoulou NG. Histopathological evidence of cellular alterations in the dentate gyrus is associated with aberrant RB1CC1-ATG16L1 expression in the hippocampus among older adults with chronic schizophrenia: A pilot post-mortem study. Schizophr Res 2025; 275:14-24. [PMID: 39612766 DOI: 10.1016/j.schres.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Recent evidence brings autophagy, and specifically the RB1CC1 gene into sharp focus as aetiologically relevant to Schizophrenia. Our understanding of whether and how these genetic signatures translate to cellular functions remains limited. MATERIAL AND METHODS Post-mortem study of 10 individuals with Schizophrenia and 18 individuals without any neurological/psychiatric disorder, matched for age, sex, post-mortem-interval, pH and BRAAK score. Formalin-fixed, paraffin-embedded, 6 μm sections cut through segments of the anterior, middle and posterior left or right hippocampus were examined for histopathological differences and immunohistochemical expression of RB1CC1 and ATG16L1 proteins. RESULTS Dentate gyrus (DG) granule cells area (p = 0.005) and circularity (p = 0.012) were significantly lower among Schizophrenia vs. controls. Antipsychotics were associated with lower circularity (p = 0.007). RB1CC1 and ATG16L1 immunoexpression were positively correlated (p < 0.001) and significantly lower in the CA1 (p = 0.047, p = 0.005, respectively). RB1CC1 immunoexpression was significantly higher in the DG among Schizophrenia vs. controls (p = 0.047,). The latter was more pronounced among donors treated with antipsychotics. Lower ATG16L1 CA1 immunoreactivity was correlated with lower granule cell area (p < 0.001). CONCLUSIONS For the first time, we present histopathological evidence of morphological alterations in the DG of the human brain in Schizophrenia. We propose that these changes indicate DG developmental arrest, which is associated with diminished RB1CC1-ATG16L1-mediated autophagy initiation in the CA1. We suggest that this is a pathological process, whereas RB1CC1-ATG16L1 upregulation in the DG, and possibly in the CA4, may represent a compensatory/restorative mechanism. Antipsychotics may upregulate RB1CC1-ATG16L1 autophagy initiation. Larger studies are required to validate these findings and explore clinical correlations.
Collapse
Affiliation(s)
- Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece; Aneurin Bevan University Health Board, United Kingdom.
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| |
Collapse
|
3
|
Varalda M, Venetucci J, Nikaj H, Kankara CR, Garro G, Keivan N, Bettio V, Marzullo P, Antona A, Valente G, Gentilli S, Capello D. Second-Generation Antipsychotics Induce Metabolic Disruption in Adipose Tissue-Derived Mesenchymal Stem Cells Through an aPKC-Dependent Pathway. Cells 2024; 13:2084. [PMID: 39768174 PMCID: PMC11674800 DOI: 10.3390/cells13242084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT. While second-generation antipsychotics (SGAs) have significantly improved treatments for mental health disorders, their chronic use is associated with an increased risk of MetS. In this study, we explored the impact of SGAs on ADSCs to better understand their role in MetS and identify potential therapeutic targets. Our findings reveal that olanzapine disrupts lipid droplet formation during adipogenic differentiation, impairing insulin receptor endocytosis, turnover, and signaling. SGAs also alter the endolysosomal compartment, leading to acidic vesicle accumulation and increased lysosomal biogenesis through TFEB activation. PKCζ is crucial for the SGA-induced nuclear translocation of TFEB and acidic vesicle formation. Notably, inhibiting PKCζ restored insulin receptor tyrosine phosphorylation, normalized receptor turnover, and improved downstream signaling following olanzapine treatment. This activation of PKCζ by olanzapine is driven by increased phosphatidic acid synthesis via phospholipase D (PLD), following G protein-coupled receptor (GPCR) signaling activation. Overall, olanzapine and clozapine disrupt endolysosomal homeostasis and insulin signaling in a PKCζ-dependent manner. These findings highlight SGAs as valuable tools for uncovering cellular dysfunction in vWAT during MetS and may guide the development of new therapeutic strategies to mitigate the metabolic side effects of these drugs.
Collapse
Affiliation(s)
- Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Herald Nikaj
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
| | - Chaitanya Reddy Kankara
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Giulia Garro
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nazanin Keivan
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Valentina Bettio
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- Pathology Unity, Ospedale “Sant’Andrea”, 13100 Vercelli, Italy
| | - Sergio Gentilli
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
4
|
Sfera A, Thomas KA, Anton J. Cytokines and Madness: A Unifying Hypothesis of Schizophrenia Involving Interleukin-22. Int J Mol Sci 2024; 25:12110. [PMID: 39596179 PMCID: PMC11593724 DOI: 10.3390/ijms252212110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Schizophrenia is a severe neuropsychiatric illness of uncertain etiopathogenesis in which antipsychotic drugs can attenuate the symptoms, but patients rarely return to the premorbid level of functioning. In fact, with each relapse, people living with schizophrenia progress toward disability and cognitive impairment. Moreover, our patients desire to live normal lives, to manage their daily affairs independently, date, get married, and raise and support a family. Those of us who work daily with schizophrenia patients know that these objectives are rarely met despite the novel and allegedly improved dopamine blockers. We hypothesize that poor outcomes in schizophrenia reflect the gray matter volume reduction, which continues despite antipsychotic treatment. We hypothesize further that increased gut barrier permeability, due to dysfunctional aryl hydrocarbon receptor (AhR), downregulates the gut barrier protectors, brain-derived neurotrophic factor (BDNF), and interleukin-22 (IL-22), facilitating microbial translocation into the systemic circulation, eventually reaching the brain. Recombinant human IL-22 could ameliorate the outcome of schizophrenia by limiting bacterial translocation and by initiating tissue repair. This short review examines the signal transducer and transcription-three (STAT3)/AhR axis and downregulation of IL-22 and BDNF with subsequent increase in gut barrier permeability. Based on the hypothesis presented here, we discuss alternative schizophrenia interventions, including AhR antagonists, mitochondrial transplant, membrane lipid replacement, and recombinant human IL-22.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA (J.A.)
| | | | | |
Collapse
|
5
|
Lee J, Huh S, Park K, Kang N, Yu HS, Park HG, Kim YS, Kang UG, Won S, Kim SH. Behavioral and transcriptional effects of repeated electroconvulsive seizures in the neonatal MK-801-treated rat model of schizophrenia. Psychopharmacology (Berl) 2024; 241:817-832. [PMID: 38081977 DOI: 10.1007/s00213-023-06511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Electroconvulsive therapy (ECT) is an effective treatment modality for schizophrenia. However, its antipsychotic-like mechanism remains unclear. OBJECTIVES To gain insight into the antipsychotic-like actions of ECT, this study investigated how repeated treatments of electroconvulsive seizure (ECS), an animal model for ECT, affect the behavioral and transcriptomic profile of a neurodevelopmental animal model of schizophrenia. METHODS Two injections of MK-801 or saline were administered to rats on postnatal day 7 (PN7), and either repeated ECS treatments (E10X) or sham shock was conducted daily from PN50 to PN59. Ultimately, the rats were divided into vehicle/sham (V/S), MK-801/sham (M/S), vehicle/ECS (V/E), and MK-801/ECS (M/E) groups. On PN59, prepulse inhibition and locomotor activity were tested. Prefrontal cortex transcriptomes were analyzed with mRNA sequencing and network and pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) analyses were subsequently conducted. RESULTS Prepulse inhibition deficit was induced by MK-801 and normalized by E10X. In M/S vs. M/E model, Egr1, Mmp9, and S100a6 were identified as center genes, and interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF) signaling pathways were identified as the three most relevant pathways. In the V/E vs. V/S model, mitophagy, NF-κB, and receptor for advanced glycation end products (RAGE) pathways were identified. qPCR analyses demonstrated that Igfbp6, Btf3, Cox6a2, and H2az1 were downregulated in M/S and upregulated in M/E. CONCLUSIONS E10X reverses the behavioral changes induced by MK-801 and produces transcriptional changes in inflammatory, insulin, and mitophagy pathways, which provide mechanistic insight into the antipsychotic-like mechanism of ECT.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seonghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Nuree Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- RexSoft Inc., Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
7
|
Nury C, Merg C, Eb-Levadoux Y, Bovard D, Porchet M, Maranzano F, Loncarevic I, Tavalaei S, Lize E, Demenescu RL, Yepiskoposyan H, Hoeng J, Ivanov NV, Renggli K, Titz B. Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods 2022:1-10. [PMID: 36482696 DOI: 10.1080/15376516.2022.2156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Yvan Eb-Levadoux
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Matthieu Porchet
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Fabio Maranzano
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Isidora Loncarevic
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Shahrzad Tavalaei
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Eleonore Lize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Hasmik Yepiskoposyan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Kasper Renggli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
8
|
Su C, Ren X, Yang F, Li B, Wu H, Li H, Nie F. Ultrasound-sensitive siRNA-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC. Drug Deliv 2022; 29:99-110. [PMID: 34964410 PMCID: PMC8725955 DOI: 10.1080/10717544.2021.2021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/26/2022] Open
Abstract
Due to the lack of safe, effective, and gene-targeted delivery technology. In this study, we have prepared nanobubbles loaded PDLIM5 siRNA (PDLIM5siRNA-NBs) to investigate the transfection efficiency and their antagonism in drug resistance in combination with ultrasound irradiation for non-small-cell lung cancer (NSCLC). Research results show that the PDLIM5 siRNA are effectively bound to the shell of NBs with a mean diameter of 191.6 ± 0.50 nm and a Zeta potential of 11.8 ± 0.68 mV. And the ultrasonic imaging indicated that the PDLIM5 siRNA NBs maintain the same signals as the microbubbles (SonoVue). Under the optimized conditions of 0.5 W/m2 ultrasound intensity and 1 min irradiation duration, the highest transfection efficiency of PC9GR cells was 90.23 ± 1.45%, which resulted in the inhibition of PDLIM5 mRNA and protein expression. More importantly, the anti-tumor effect of fabricated PDLIM5siRNA-NBs with the help of ultrasound irradiation has been demonstrated to significantly inhibit tumor cell growth and promote apoptosis. Therefore, NBs carrying PDLIM5siRNA may have the potential to act as gene vectors combined with ultrasound irradiation to antagonize drug resistance for NSCLC.
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, China
| | - XiaoJun Ren
- Department of Pediatric Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Bin Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Hao Wu
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
10
|
Fukuyama K, Motomura E, Okada M. Brexpiprazole Reduces 5-HT7 Receptor Function on Astroglial Transmission Systems. Int J Mol Sci 2022; 23:ijms23126571. [PMID: 35743014 PMCID: PMC9223571 DOI: 10.3390/ijms23126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Several atypical antipsychotics exert mood-stabilising effects via the modulation of various monoamine receptors and intracellular signallings. Recent pharmacodynamic studies suggested that tripartite synaptic transmission can contribute to the pathophysiology of schizophrenia and mood disorders, their associated cognitive impairment, and several adverse reactions to atypical antipsychotics. Therefore, to explore the mechanisms underlying the antidepressive mood-stabilising and antipsychotic effects of brexpiprazole (Brex), we determined the effects of subchronic administration of therapeutically relevant concentrations/doses of Brex on the protein expression of 5-HT receptors, connexin43, cAMP levels, and intracellular signalling in cultured astrocytes and rat hypothalamus using ultra-high-pressure liquid chromatography with mass spectrometry and capillary immunoblotting systems. Subchronic administration of a therapeutically relevant concentration of Brex (300 nM) downregulated both 5-HT1A (5-HT1AR) and 5-HT7 (5-HT7R) receptors, in addition to phosphorylated Erk (pErk), without affecting phosphorylated Akt in the astroglial plasma membrane. Subchronic administration of 300 nM Brex decreased and increased phosphorylated AMPK and connexin43, respectively, in the astroglial cytosol fraction. A therapeutically relevant concentration of Brex acutely decreased the astroglial cAMP level, whereas, under the inhibition of 5-HT1AR, Brex did not affect astroglial cAMP levels. However, the 5-HT7R-agonist-induced increased astroglial cAMP level was inhibited by Brex. In contrast to the in vitro study, systemic subchronic administration of effective doses of Brex (3 and 10 mg/kg/day for 14 days) increased the cAMP level but did not affect phosphorylated AMPK in the rat hypothalamus. These results suggest several complicated pharmacological features of Brex. Partial 5-HT1AR agonistic action predominates in the low range of therapeutically relevant concentrations of Brex, whereas in the high range, 5-HT7R inverse agonist-like action is overlapped on the 5-HT1A agonistic action. These unique suppressive effects of Brex on 5-HT7R play important roles in the clinical features of Brex regarding its antidepressive mood-stabilising actions.
Collapse
|
11
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
12
|
Attenuation of ischemia-reperfusion injury by intracoronary chelating agent administration. Sci Rep 2022; 12:2050. [PMID: 35136090 PMCID: PMC8825805 DOI: 10.1038/s41598-022-05479-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Ischemia–reperfusion (IR) injury accelerates myocardial injury sustained during the myocardial ischemic period and thus abrogates the benefit of reperfusion therapy in patients with acute myocardial infarction. We investigated the efficacy of intracoronary ethylenediaminetetraacetic acid (EDTA) administration as an adjunctive treatment to coronary intervention to reduce IR injury in a swine model. We occluded the left anterior descending artery for 1 h. From the time of reperfusion, we infused 50 mL of EDTA-based chelating agent via the coronary artery in the EDTA group and normal saline in the control group. IR injury was identified by myocardial edema on echocardiography. Tetrazolium chloride assay revealed that the infarct size was significantly lower in the EDTA group than in the control group, and the salvage percentage was higher. Electron microscopy demonstrated that the mitochondrial loss in the cardiomyocytes of the infarcted area was significantly lower in the EDTA group than in the control group. Echocardiography after 4 weeks showed that the remodeling of the left ventricle was significantly less in the EDTA group than in the control group: end-diastolic dimension 38.8 ± 3.3 mm vs. 43.9 ± 3.7 mm (n = 10, p = 0.0089). Left ventricular ejection fraction was higher in the EDTA group (45.3 ± 10.3 vs. 34.4 ± 11.8, n = 10, respectively, p = 0.031). In a swine model, intracoronary administration of an EDTA chelating agent reduced infarct size, mitochondrial damage, and post-infarct remodeling. This result warrants further clinical study evaluating the efficacy of the EDTA chelating agent in patients with ST-segment elevation myocardial infarction.
Collapse
|
13
|
Kim YK, Hong HK, Yoo HS, Park SP, Park KH. AICAR upregulates ABCA1/ABCG1 expression in the retinal pigment epithelium and reduces Bruch's membrane lipid deposit in ApoE deficient mice. Exp Eye Res 2021; 213:108854. [PMID: 34808137 DOI: 10.1016/j.exer.2021.108854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022]
Abstract
The etiology of age-related macular degeneration (AMD) is diverse; however, recent evidence suggests that the lipid metabolism-cholesterol pathway might be associated with the pathophysiology of AMD. The ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1, are essential for the formation of high-density lipoprotein (HDL) and the regulation of macrophage cholesterol efflux. The failure of retinal or retinal pigment epithelium (RPE) cholesterol efflux to remove excess intracellular lipids causes morphological and functional damage to the retina. In this study, we investigated whether treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMP-activated protein kinase (AMPK) activator, improves RPE cholesterol efflux and Bruch's membrane (BM) lipid deposits. The protein and mRNA levels of ABCA1 and ABCG1 in ARPE-19 cells and retinal and RPE/choroid tissue from apolipoprotein E-deficient (ApoE-/-) mice were evaluated after 24 weeks of AICAR treatment. The cholesterol efflux capacity of ARPE-19 cells and the cholesterol-accepting capacity of apoB-depleted serum from mice were measured. The thickness of the BM and the degree of lipid deposition were evaluated using electron microscopy. AICAR treatment increased the phosphorylation of AMPK and the protein and mRNA expression of ABCA1 and ABCG1 in vitro. It promoted cholesterol efflux from ARPE-19 cells and upregulated the protein and mRNA levels of ABCA1 and ABCG1 in the retina and RPE in vivo. ApoB-depleted serum from the AICAR-treated group showed enhanced cholesterol-accepting capacity. Long-term treatment with AICAR reduced BM thickening and lipid deposition in ApoE-/- mice. In conclusion, AICAR treatment increased the expression of lipid transporters in the retina and RPE in vivo, facilitated intracellular cholesterol efflux from the RPE in vitro, and improved the functionality of HDL to accept cholesterol effluxed from the cell, possibly via AMPK activation. Collectively, these effects might contribute to the improvement of early age-related pathologic changes in the BM. Pharmacological improvement of RPE cholesterol efflux via AMPK activation may be a potential treatment strategy for AMD.
Collapse
Affiliation(s)
- Yong-Kyu Kim
- Department of Ophthalmology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyo Soon Yoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Sung Pyo Park
- Department of Ophthalmology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea.
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, Lum PT, Subramaniyan V, Wu YS, Fuloria NK, Fuloria S. Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. BREAST CANCER-TARGETS AND THERAPY 2021; 13:471-503. [PMID: 34548817 PMCID: PMC8448164 DOI: 10.2147/bctt.s316667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, 42610, Malaysia
| | | | | |
Collapse
|
15
|
Jeong SH, Kim YS. Challenges in Prescribing Clozapine in the Era of COVID-19: A Review Focused on Immunological Implications. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:411-422. [PMID: 34294611 PMCID: PMC8316651 DOI: 10.9758/cpn.2021.19.3.411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023]
Abstract
The global COVID-19 pandemic has disrupted every aspect of the healthcare system. Apart from the issues surrounding COVID-19 itself, care for existing patients has met many challenges. One such challenge is caring for patients who are on clozapine treatment and have been confirmed positive for COVID-19. Schizophrenia has been considered to have a deep connection with the immune system, and clozapine can induce further changes in this system. COVID-19 can ravage the compromised immune system and aggravate tissue damage. The intricate relations between schizophrenia, clozapine, and COVID-19 make it difficult to predict the clinical course of COVID-19 in clozapine-treated patients. However, the rigid prohibition on using clozapine if COVID-19 is confirmed may harm patients. Patients who have to use clozapine are often refractory cases with no alternatives. Therefore, the decision to maintain or stop clozapine must be made after a comprehensive review of the patient’s unique situation. To do this, theoretical and practical issues surrounding the use of clozapine in COVID-19 should be reviewed and discussed. In this review, we gather useful information surrounding this issue and present an overview. Focusing on the immune system, various theoretical possibilities that could arise from schizophrenia, clozapine, and COVID-19 were carefully examined, and practical checklists for the care of these patients were explored. It is hoped that this review will convince many clinicians to pay attention to this momentous issue and facilitate more active sharing of clinical experiences.
Collapse
Affiliation(s)
- Seong Hoon Jeong
- Department of Neuropsychiatry, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Yong Sik Kim
- Department of Neuropsychiatry, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.,Institute of Clinical Psychopharmacology, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
16
|
Puglisi-Allegra S, Ruggieri S, Fornai F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl Psychiatry 2021; 11:366. [PMID: 34226487 PMCID: PMC8257731 DOI: 10.1038/s41398-021-01492-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries. Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD) characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular mechanisms are relevant to the therapeutic efficacy of Li+.
Collapse
Affiliation(s)
| | | | - Francesco Fornai
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy.
- Human Anatomy, Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa (PI), Italy.
| |
Collapse
|
17
|
Jeon JH, Oh TR, Park S, Huh S, Kim JH, Mai BK, Lee JH, Kim SH, Lee MJ. The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway. Neurotherapeutics 2021; 18:1768-1782. [PMID: 33884581 PMCID: PMC8608952 DOI: 10.1007/s13311-021-01039-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Although diverse antipsychotic drugs have been developed for the treatment of schizophrenia, most of their mechanisms of action remain elusive. Regulator of G-protein signaling 4 (RGS4) has been reported to be linked, both genetically and functionally, with schizophrenia and is a physiological substrate of the arginylation branch of the N-degron pathway (Arg/N-degron pathway). Here, we show that the atypical antipsychotic drug clozapine significantly inhibits proteasomal degradation of RGS4 proteins without affecting their transcriptional expression. In addition, the levels of Arg- and Phe-GFP (artificial substrates of the Arg/N-degron pathway) were significantly elevated by clozapine treatment. In silico computational model suggested that clozapine may interact with active sites of N-recognin E3 ubiquitin ligases. Accordingly, treatment with clozapine resulted in reduced polyubiquitylation of RGS4 and Arg-GFP in the test tube and in cultured cells. Clozapine attenuated the activation of downstream effectors of G protein-coupled receptor signaling, such as MEK1 and ERK1, in HEK293 and SH-SY5Y cells. Furthermore, intraperitoneal injection of clozapine into rats significantly stabilized the endogenous RGS4 protein in the prefrontal cortex. Overall, these results reveal an additional therapeutic mechanism of action of clozapine: this drug posttranslationally inhibits the degradation of Arg/N-degron substrates, including RGS4. These findings imply that modulation of protein post-translational modifications, in particular the Arg/N-degron pathway, may be a novel molecular therapeutic strategy against schizophrenia.
Collapse
Affiliation(s)
- Jun Hyoung Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Tae Rim Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Hyeon Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Se Hyun Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
18
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
19
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
20
|
Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:2020078118. [PMID: 34099564 DOI: 10.1073/pnas.2020078118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.
Collapse
|
21
|
Wang X, Fang Y, Huang Q, Xu P, Lenahan C, Lu J, Zheng J, Dong X, Shao A, Zhang J. An updated review of autophagy in ischemic stroke: From mechanisms to therapies. Exp Neurol 2021; 340:113684. [PMID: 33676918 DOI: 10.1016/j.expneurol.2021.113684] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Stroke is a leading cause of mortality and morbidity worldwide. Understanding the underlying mechanisms is important for developing effective therapies for treating stroke. Autophagy is a self-eating cellular catabolic pathway, which plays a crucial homeostatic role in the regulation of cell survival. Increasing evidence shows that autophagy, observed in various cell types, plays a critical role in brain pathology after ischemic stroke. Therefore, the regulation of autophagy can be a potential target for ischemic stroke treatment. In the present review, we summarize the recent progress that research has made regarding autophagy and ischemic stroke, including common signaling pathways, the role of autophagic subtypes (e.g. mitophagy, pexophagy, aggrephagy, endoplasmic reticulum-phagy, and lipophagy) in ischemic stroke, as well as the current methods for autophagy detection and potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Silva VR, Neves SP, Santos LDS, Dias RB, Bezerra DP. Challenges and Therapeutic Opportunities of Autophagy in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12113461. [PMID: 33233671 PMCID: PMC7699739 DOI: 10.3390/cancers12113461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a physiological process characterized by the degradation of the cell components through lysosomes due to stimuli/stress. In this study, we review the challenges and therapeutic opportunities that autophagy presents in the treatment of cancer. We discussed the results of several studies that evaluated autophagy as a therapeutic strategy in cancer, both through the modulation of therapeutic resistance and the death of cancer cells. Moreover, we discussed the role of autophagy in the biology of cancer stem cells and the inhibition of this process as a strategy to overcome resistance and progression of cancer stem cells. Abstract Autophagy is a physiological cellular process that is crucial for development and can occurs in response to nutrient deprivation or metabolic disorders. Interestingly, autophagy plays a dual role in cancer cells—while in some situations, it has a cytoprotective effect that causes chemotherapy resistance, in others, it has a cytotoxic effect in which some compounds induce autophagy-mediated cell death. In this review, we summarize strategies aimed at autophagy for the treatment of cancer, including studies of drugs that can modulate autophagy-mediated resistance, and/or drugs that cause autophagy-mediated cancer cell death. In addition, the role of autophagy in the biology of cancer stem cells has also been discussed.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Clozapine has recently been described as a novel cause of secondary antibody deficiency (SAD), associated with long-term therapy. Here we critically review the evidence linking clozapine use to an increased infection risk, describe immunological alterations, and discuss potential mechanisms. RECENT FINDINGS Individuals with schizophrenia are at two to five times more likely to develop pneumonia than the general population, in particular, when receiving clozapine. Delayed-onset distinguishes clozapine-associated hypogammaglobulinaemia from agranulocytosis or neutropenia that occur at lesser frequency. Biomarker searches in treatment-resistant schizophrenia highlight an immune signature associated with long-term clozapine use. This includes reduction in class-switched memory B cells, echoing common variable immunodeficiency. Recent identification of a role for dopamine in T follicular helper-B cell interactions may inform future clinical studies. SUMMARY The detrimental impact of the increased infection risk associated with clozapine necessitates a re-evaluation of the current monitoring strategies as well as further studies to better understand the underlying mechanisms of SAD in this setting. On the basis of available evidence, we suggest simple modifications to clozapine monitoring including integration of routine vaccination, smoking cessation, and assessment of humoral immunity. Further studies are required to understand the role of clozapine in neuroinflammation as well as other potentially autoantibody-mediated diseases.
Collapse
|
24
|
Liu W, Fu R, Wang Z, Liu S, Tang C, Li L, Yin D. Regular Aerobic Exercise-Alleviated Dysregulation of CAMKIIα Carbonylation to Mitigate Parkinsonism via Homeostasis of Apoptosis With Autophagy. J Neuropathol Exp Neurol 2020; 79:46-61. [PMID: 31750928 DOI: 10.1093/jnen/nlz106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated carbonylation of proteins with oxidative modification profiling in the striatum of aging and Parkinson disease (PD) rats, as well as the long-term effects of regular aerobic exercise on the carbonylation process and the damaging effects of PD vs habitual sedentary behavior. Regular aerobic exercise improved the PD rats' rotational behavior, increased tyrosine hydroxylase expression in both the striatum and substantia nigra pars compacta, and decreased α-synuclein expression significantly. Interestingly, apoptotic nuclei and autophagosomes were increased in the aerobic exercise PD rat striatum. Carbonylated protein Ca2+/calmodulin-dependent protein kinase alpha (CAMKIIα) was present in the middle-aged and aged groups but only in the sedentary, not the exercise, PD rat striatum. Notably, CAMKIIα was characterized by a 4-hydroxynonenal adduct. Regular aerobic exercise upregulated CAMKIIα expression level, activated the CAMK signaling pathway, and promoted the expression of autophagy markers Beclin1 and microtubule-associated proteins 1 A/1B light chain 3II. Aberrant carbonylation of CAMKII initiated age-related changes and might be useful as a potential biomarker of PD. Regular aerobic exercise alleviated protein carbonylation modification of CAMKIIα and regulated the CAMK signaling pathway, thereby affecting and regulating the homeostasis of apoptosis and autophagy in the striatum to alleviate the neurodegenerative process of PD lesions.
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Rang Fu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Shaopeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Li Li
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Dazhong Yin
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| |
Collapse
|
25
|
Yang Y, Xu L. Autophagy and Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:195-209. [PMID: 32671748 DOI: 10.1007/978-981-15-4272-5_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schizophrenia (SCZ) is characterized by abnormal thoughts, behaviors and speech, along with a decreased perception of reality that can included visual or auditory hallucinations, withdrawal of social activity and lack of motivation, etc. Many hypotheses related to the causes of SCZ have been proposed, but the underlying neuropathological mechanism remains unclear. Recent studies have suggested that there is an association between autophagy and SCZ. The strongest evidence for this comes from the expression of ATGs in the BA22 of postmortem samples from SCZ patients, coinciding with some of the brain imaging studies and certain hypotheses about SCZ in interpreting the positive symptoms. Autophagy dysfunction in the hippocampus, especially in the CA2 region, may relate to deficits of social communication and interaction in SCZ patients. mTOR regulation of autophagy is also potentially a piece of strong supporting evidence for the autophagic neuropathogenesis of SCZ. In vitro studies show that antipsychotics often induce autophagy through distinct mechanisms of drug action, but they may all share common features as autophagy inducers and antagonists of dopamine receptors.
Collapse
Affiliation(s)
- Yuexiong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Center for Excellence in Brain Science and Intelligence Technology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Center for Excellence in Brain Science and Intelligence Technology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
26
|
Elsaid FG, Alshehri MA, Shati AA, Al-Kahtani MA, Alsheri AS, Massoud EE, El-Kott AF, El-Mekkawy HI, Al-Ramlawy AM, Abdraboh ME. The anti-tumourigenic effect of ellagic acid in SKOV-3 ovarian cancer cells entails activation of autophagy mediated by inhibiting Akt and activating AMPK. Clin Exp Pharmacol Physiol 2020; 47:1611-1621. [PMID: 32415699 DOI: 10.1111/1440-1681.13338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023]
Abstract
This study investigated the effect of ellagic acid (EA) on SKOV-3 cell growth and invasiveness and tested if the underlying mechanism involves modulating autophagy. Cells were treated with EA in the presence or absence of chloroquine (CQ), an autophagy inhibitor, compound C (CC), an AMPK inhibitor, or an insulin-like growth factor-1 (IGF-1), a PI3K/Akt activator. EA, at an IC50 of 36.6 µmol/L, inhibited cell proliferation, migration, and invasion and induced cell apoptosis in SKOV-3 cells. These events were prevented by CQ. Also, EA increased levels of Beclin-1, ATG-5, LC3I/II, Bax, cleaved caspase-3/8 and reduced those of p62 and Bcl-2 in these cancer cells. Mechanistically, EA decreased levels of p-S6K1 (Thr389 ) and 4EBP-1 (Thr37/46 ), two downstream targets of mTORC1, and p-Akt (Thr308 ) but increased levels of AMPK (Thr172 ) and p-raptor (Ser792 ), a natural inhibitor of mTORC1. CC or IGF-1 alone partially prevented the effect of EA on cell survival, cell invasions, and levels of LDH, Beclin-1, and cleaved caspase-3. In conclusion, EA can inhibit SKOV-3 growth, migration, and invasion by activating cytotoxic autophagy mediated by inhibition of mTORC1 and Akt and activation of AMPK.
Collapse
Affiliation(s)
- Fahmy G Elsaid
- Biology Department, Science College, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed A Alshehri
- Biology Department, Science College, King Khalid University, Abha, Saudi Arabia
| | - Ali A Shati
- Biology Department, Science College, King Khalid University, Abha, Saudi Arabia
| | | | - Ali S Alsheri
- Biology Department, Science College, King Khalid University, Abha, Saudi Arabia
| | - Ehab E Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha, Saudi Arabia.,Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza, Egypt
| | - Attalla F El-Kott
- Biology Department, Science College, King Khalid University, Abha, Saudi Arabia.,Zoology Department,Faculty of Science, Damanhour University, Damanhour, Egypt
| | | | - Amira M Al-Ramlawy
- Mansoura Research Centre for Cord Stem Cell (MARC-CSC), Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mohamed E Abdraboh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
27
|
Kim SH, Yu HS, Park S, Park HG, Ahn YM, Kang UG, Kim YS. Electroconvulsive Seizures Induce Autophagy by Activating the AMPK Signaling Pathway in the Rat Frontal Cortex. Int J Neuropsychopharmacol 2020; 23:42-52. [PMID: 31678999 PMCID: PMC7442404 DOI: 10.1093/ijnp/pyz055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND It is uncertain how electroconvulsive therapy-induced generalized seizures exert their potent therapeutic effects on various neuropsychiatric disorders. Adenosine monophosphate-activated protein kinase (AMPK) plays a major role in maintaining metabolic homeostasis and activates autophagic processes via unc-51-like kinase (ULK1). Evidence supports the involvement of autophagy system in the action mechanisms of antidepressants and antipsychotics. The effect of electroconvulsive therapy on autophagy-related signaling requires further clarification. METHODS The effect of electroconvulsive seizure on autophagy and its association with the AMPK signaling pathway were investigated in the rat frontal cortex. Electroconvulsive seizure was provided once per day for 10 days (E10X), and compound C or 3-methyadenine was administered through an intracerebroventricular cannula. Molecular changes were analyzed with immunoblot, immunohistochemistry, and transmission electron microscopy analyses. RESULTS E10X increased p-Thr172-AMPKα immunoreactivity in rat frontal cortex neurons. E10X increased phosphorylation of upstream effectors of AMPK, such as LKB1, CaMKK, and TAK1, and of its substrates, ACC, HMGR, and GABABR2. E10X also increased p-Ser317-ULK1 immunoreactivity. At the same time, LC3-II and ATG5-ATG12 conjugate immunoreactivity increased, indicating activation of autophagy. An intracerebroventricular injection of the AMPK inhibitor compound C attenuated the electroconvulsive seizure-induced increase in ULK1 phosphorylation as well as the protein levels of LC3-II and Atg5-Atg12 conjugate. Transmission electron microscopy clearly showed an increased number of autophagosomes in the rat frontal cortex after E10X, which was reduced by intracerebroventricular treatment with the autophagy inhibitor 3-methyadenine and compound C. CONCLUSIONS Repeated electroconvulsive seizure treatments activated in vivo autophagy in the rat frontal cortex through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soyoung Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Zhuo C, Xun Z, Hou W, Ji F, Lin X, Tian H, Zheng W, Chen M, Liu C, Wang W, Chen C. Surprising Anticancer Activities of Psychiatric Medications: Old Drugs Offer New Hope for Patients With Brain Cancer. Front Pharmacol 2019; 10:1262. [PMID: 31695618 PMCID: PMC6817617 DOI: 10.3389/fphar.2019.01262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Despite decades of research and major efforts, malignant brain tumors remain among the deadliest of all cancers. Recently, an increasing number of psychiatric drugs has been proven to possess suppressing activities against brain tumors, and rapid progress has been made in understanding the potential mechanisms of action of these drugs. In particular, the traditional mood stabilizer valproic acid, the widely used antidepressants fluoxetine and escitalopram oxalate, and the atypical psychiatric drug aripiprazole have demonstrated promise for application in brain tumor treatment strategies through multiple lines of laboratory, preclinical, and clinical evidence. The unexpected discovery of the anticancer properties of these drugs has ignited interest in the repurposing of other psychiatric drugs to combat brain cancer. In this review, we synthesize recent progress in understanding the potential molecular mechanisms underlying the brain cancer-killing activities of representative psychiatric drugs. We also identify key limitations in the repurposing of these medications that must be overcome to enhance our ability to successfully prevent and treat brain cancer, especially in the most vulnerable groups of patients, such as children and adolescents, pregnant women, and those with unfavorable genetic variants. Moreover, we propose perspectives that may guide future research and provide long-awaited new hope to patients with brain cancer and their families.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Psychiatric Genetics Laboratory (PSYG-Lab), Jining Medical University, Jining, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of China-Canada Biological Psychiatry Lab, Xiamen Xianyue Hospital, Xiamen, China.,Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiyuan Xun
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Weihong Hou
- Department of Biochemistry and Molecular Biology, Zhengzhou University, Zhengzhou, China.,Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Psychiatric Genetics Laboratory (PSYG-Lab), Jining Medical University, Jining, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Hongjun Tian
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Weifang Zheng
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Min Chen
- Department of Psychiatry, School of Mental Health, Psychiatric Genetics Laboratory (PSYG-Lab), Jining Medical University, Jining, China
| | - Chuanxin Liu
- Department of Psychiatry, School of Mental Health, Psychiatric Genetics Laboratory (PSYG-Lab), Jining Medical University, Jining, China
| | - Wenqiang Wang
- Department of China-Canada Biological Psychiatry Lab, Xiamen Xianyue Hospital, Xiamen, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
29
|
Liu W, Wang Z, Xia Y, Kuang H, Liu S, Li L, Tang C, Yin D. The balance of apoptosis and autophagy via regulation of the AMPK signal pathway in aging rat striatum during regular aerobic exercise. Exp Gerontol 2019; 124:110647. [PMID: 31255733 DOI: 10.1016/j.exger.2019.110647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
The objective was to analyze the effects of aerobic exercise on aging striatum stress resistance, and the adaptive mechanisms related to neurodegenerative diseases, and the occurrence, and development of neural degeneration. The 10-weeks of regular moderate-intensity aerobic exercise intervention were carried out in the aerobic exercise runner Sprague-Dawley rats. Apoptotic nuclei appeared in the striatum of aged rats, showing a tendency to relate to aging. The apoptotic index of the striatum in young, middle-aged, and old-aged rats of the aerobic exercise groups increased by 205.56%, 57%, and 68.24%. Autophagy markers Beclin l and LC 3-II expression, AMPKα1 and pAMPKα1 expression increased significantly in all age-exercise groups. The ratio of AMPKα1/pAMPKα1 increased after exercise, and the tendency of exercise to alter autophagy and cell apoptosis increased with aging. Then SirT2 mRNA was significantly upregulated in the aerobic exercise runner groups. In conclusion, we showed that the balance of autophagy and apoptosis were closely regulated by regular aerobic exercise, which affected the development of aging, and via regulation of the AMPK/SirT2 signaling pathway.
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan 410012, China; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan 410012, China
| | - Yan Xia
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan 410012, China
| | - Heyu Kuang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan 410012, China
| | - Shaopeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan 410012, China
| | - Li Li
- School of Health & Kinesiology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan 410012, China.
| | - Dazhong Yin
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan 410012, China; Qingyuan People's Hospital, the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511500, China.
| |
Collapse
|
30
|
Liu W, Xia Y, Kuang H, Wang Z, Liu S, Tang C, Yin D. Proteomic Profile of Carbonylated Proteins Screen the Regulation of Calmodulin-Dependent Protein Kinases-AMPK-Beclin1 in Aerobic Exercise-Induced Autophagy in Middle-Aged Rat Hippocampus. Gerontology 2019; 65:620-633. [PMID: 31242498 DOI: 10.1159/000500742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/04/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Carbonylation is an oxidative modification of the proteins and a marker of oxidative stress. The accumulation of toxic carbonylated proteins might be one of the onsets of pathogenesis in hippocampal aging or neurodegeneration. Enormous evidence indicates that regular aerobic exercise might alleviate the dysfunction of carbonylated proteins, but the adaptational mechanisms in response to exercise are unclear. OBJECTIVE This study explored the carbonyl stress mechanism in the hippocampus using proteomics and the role of calmodulin-dependent protein kinases (CAMK)-AMP-activated protein kinase (AMPK)-Beclin1 signaling pathways in alleviating aging or improving function with regular aerobic exercise. METHODS Twenty-four healthy 13-month-old male Sprague-Dawley rats (average 693.21 ± 68.85 g) were randomly divided into middle-aged sedentary control group (M-SED, n = 12) and middle-aged aerobic exercise runner group (M-EX, n = 12). The M-EX group participated in regular aerobic exercise - treadmill running - with exercise intensity increasing gradually from 50-55% to 65-70% of maximum oxygen consumption (V˙O2max) over 10 weeks. The targeted proteins of oxidative modification were profiled by avidin magnetic beads and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS). Western blots were used to test for molecular targets. RESULTS Regular aerobic exercise restores the intersessional habituation and rescues the hippocampus morphological structure in middle-aged rats. -ESI-Q-TOF-MS screened 56 carbonylated proteins only found in M-SED and 16 carbonylated proteins only found in M-EX, indicating aerobic exercise decreased carbonyl stress. Intriguingly, Ca2+/CAMK II alpha (CAMKIIα) was carbonylated only in the M-SED group at the oxidative modification site of 4-hydroxynonenal adducts, while regular aerobic exercise alleviated CAMKIIα carbonylation. Regular aerobic exercise significantly increased the expression and phosphorylated, active levels of CAMKIIα and AMPKα1. It also upregulated the expression of Beclin1 and microtubule-associated protein1-light chain 3 in the hippocampus. CONCLUSION Quantification of CAMKIIα carbonylation may be a potential biomarker of the hippocampal senescence. Additionally, regular aerobic exercise-induced autophagy via the activation of CAMK-AMPK-Beclin1 signaling pathway may mitigate the hippocampal neurodegeneration or pathological changes by alleviating protein carbonylation (carbonyl stress).
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China, .,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA,
| | - Yan Xia
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Heyu Kuang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Shaopeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Dazhong Yin
- Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Li JR, Ou YC, Wu CC, Wang JD, Lin SY, Wang YY, Chen WY, Chen CJ. Ischemic preconditioning improved renal ischemia/reperfusion injury and hyperglycemia. IUBMB Life 2018; 71:321-329. [PMID: 30481400 DOI: 10.1002/iub.1972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/22/2018] [Indexed: 01/03/2023]
Abstract
Renal ischemia/reperfusion (I/R) is an alternation of renal hemodynamics, which results in diverse postischemic responses and eventually acute kidney injury. Although renal ischemic preconditioning (IPC) is known to protect the kidney from I/R injury, the precise renoprotective mechanisms are not completely understood. The multiple renoprotective effects of IPC underscore the importance in understanding molecular mechanisms and the targets of action involved. This study aimed to identify the biochemical changes in renal I/R injury and investigate the renoprotective mechanisms of IPC. Herein, renal I/R was produced in adult male Sprague-Dawley rats through the bilateral ligation of renal pedicles for 45 min, followed by reperfusion for 24 h. For the IPC group, rats were subjected to three cycles of 2-min ischemia, followed by a 5-min reperfusion, 15 min prior to renal I/R. Our data confirmed the beneficial effects that IPC has on renal I/R injury. IPC-mediated renoprotection was associated with the resolution of oxidative stress, inflammation, apoptosis, and hyperglycemia. Among the numerous signaling molecules involved in the renoprotective mechanisms of IPC, an elevated protein expression of Nrf2, HO-1, LC3 II conversion, along with Atg12 and protein phosphorylation of AMPK, as well as a decreased protein phosphorylation of ERK, p38 MAPK, and Akt and NF-κB DNA binding activity were identified. Importantly, the post renal I/R overproduction of counter-regulatory hormones, impaired hepatic insulin action, and augmented hepatic gluconeogenesis were improved through IPC. As counter-regulatory hormones have been implicated in the induction of oxidative stress, inflammation, apoptosis, impaired insulin action, hyperglycemia, and tissue destruction, our findings suggest that counter-regulatory hormones may well be valuable targets of IPC for combatting renal I/R injury. © 2018 IUBMB Life, 71(3):321-329, 2019.
Collapse
Affiliation(s)
- Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jiaan-Der Wang
- Department of Pediatrics & Child Health Care, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Vucicevic L, Misirkic-Marjanovic M, Harhaji-Trajkovic L, Maric N, Trajkovic V. Mechanisms and therapeutic significance of autophagy modulation by antipsychotic drugs. Cell Stress 2018; 2:282-291. [PMID: 31225453 PMCID: PMC6551804 DOI: 10.15698/cst2018.11.161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review we analyze the ability of antipsychotic medications to modulate macroautophagy, a process of controlled lysosomal digestion of cellular macromolecules and organelles. We focus on its molecular mechanisms, consequences for the function/survival of neuronal and other cells, and the contribution to the beneficial and side-effects of antipsychotics in the treatment of schizophrenia, neurodegeneration, and cancer. A wide range of antipsychotics was able to induce neuronal autophagy as a part of the adaptive stress response apparently independent of mammalian target of rapamycin and dopamine receptor blockade. Autophagy induction by antipsychotics could contribute to reducing neuronal dysfunction in schizophrenia, but also to the adverse effects associated with their long-term use, such as brain volume loss and weight gain. In neurodegenerative diseases, antipsychotic-stimulated autophagy might help to increase the clearance and reduce neurotoxicity of aggregated proteotoxins. However, the possibility that some antipsychotics might block autophagic flux and potentially contribute to proteotoxin-mediated neurodegeneration must be considered. Finally, the anticancer effects of autophagy induction by antipsychotics make plausible their repurposing as adjuncts to standard cancer therapy.
Collapse
Affiliation(s)
- Ljubica Vucicevic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | | | - Nadja Maric
- Clinic of Psychiatry, Clinical Centre of Serbia and School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
33
|
Ryskalin L, Limanaqi F, Frati A, Busceti CL, Fornai F. mTOR-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int J Mol Sci 2018; 19:ijms19082226. [PMID: 30061532 PMCID: PMC6121884 DOI: 10.3390/ijms19082226] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an ubiquitously expressed serine-threonine kinase, which senses and integrates several intracellular and environmental cues to orchestrate major processes such as cell growth and metabolism. Altered mTOR signalling is associated with brain malformation and neurological disorders. Emerging evidence indicates that even subtle defects in the mTOR pathway may produce severe effects, which are evident as neurological and psychiatric disorders. On the other hand, administration of mTOR inhibitors may be beneficial for a variety of neuropsychiatric alterations encompassing neurodegeneration, brain tumors, brain ischemia, epilepsy, autism, mood disorders, drugs of abuse, and schizophrenia. mTOR has been widely implicated in synaptic plasticity and autophagy activation. This review addresses the role of mTOR-dependent autophagy dysfunction in a variety of neuropsychiatric disorders, to focus mainly on psychiatric syndromes including schizophrenia and drug addiction. For instance, amphetamines-induced addiction fairly overlaps with some neuropsychiatric disorders including neurodegeneration and schizophrenia. For this reason, in the present review, a special emphasis is placed on the role of mTOR on methamphetamine-induced brain alterations.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy.
| |
Collapse
|