1
|
Lin L, Liang A, Wen G, Jiang Z. A new difunctional nanopolypropylene surface molecularly imprinted polyacrylamide catalytic probe for determination of trace sulfadiazine with resonance Rayleigh scattering technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125487. [PMID: 39612532 DOI: 10.1016/j.saa.2024.125487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/22/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
A new nanopolypropylene (PP) surface molecularly imprinted polyacrylamide (PP@MIP) probe was synthesized facilely for the Resonance Rayleigh Scattering (RRS) determination of trace sulfadiazine (SDZ), using PP as nanosubstrate, SDZ as template molecule, and the acrylamide as functional monomer. The catalytic effect of PP@MIP on the reduction of HAuCl4 by hydrazine hydrate to form AuNP, a nano-indicated reaction, was investigated. The generated AuNPs had a strong RRS effect, and the addition of SDZ resulted in the selective formation of PP@MIP-SDZ complex, which further promoted the generation of AuNP and increased the RRS signal. Therefore, there was developed a novel RRS assay platform for rapid, selective and sensitive detection of SDZ with a linearity range of 0.0125-0.150 nmol/L and limit of detection of 0.004 nmol/L. The recoveries were in the range of 93.3-109.9 % with the relative standard deviations (RSDs) in the range of 2.55-9.14 % in the real sample analysis.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China.
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China.
| |
Collapse
|
2
|
Long W, Apitius L, Lenz P, Jakob F, Ruff AJ, Schwaneberg U. Secretory Production of Heterologous Antimicrobial Peptides in Corynebacterium glutamicum. Eng Life Sci 2025; 25:e70008. [PMID: 39974332 PMCID: PMC11835761 DOI: 10.1002/elsc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Antimicrobial peptides (AMPs) are host defense peptides that act against a broad spectrum of microorganisms. AMPs are of high interest as medicinal products, antimicrobial coatings, and for controlling biofilm formation. Applications and research of many AMPs are still hampered by insufficient titers and lack of production platforms that can tolerate high titers of AMPs. Corynebacterium glutamicum is an excellent microbial host for protein secretion and has been barely explored as a host for AMP production. Here, we report the successful production and secretion of two AMPs (amounts of up to 130 mg/L for liquid chromatography peak I [LCI] and 54 mg/L for Psoriasin) by C. glutamicum with low amounts of secreted byproducts.
Collapse
Affiliation(s)
- Wei Long
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
| | - Lina Apitius
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
- DWI – Leibniz‐Institut für Interaktive MaterialienAachenGermany
| | - Patrick Lenz
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
| | - Felix Jakob
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
- DWI – Leibniz‐Institut für Interaktive MaterialienAachenGermany
| | - Anna Joёlle Ruff
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
| | - Ulrich Schwaneberg
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
- Bioeconomy Science Center (BioSC)c/o Research Center JülichJülichGermany
- DWI – Leibniz‐Institut für Interaktive MaterialienAachenGermany
| |
Collapse
|
3
|
Wu S, Hooks D, Brightwell G. Current Understanding on the Heterogenous Expression of Plastic Depolymerising Enzymes in Pichia pastoris. Bioengineering (Basel) 2025; 12:68. [PMID: 39851342 PMCID: PMC11760480 DOI: 10.3390/bioengineering12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Enzymatic depolymerisation is increasingly recognised as a reliable and environmentally friendly method. The development of this technology hinges on the availability of high-quality enzymes and associated bioreaction systems for upscaling biodegradation. Microbial heterologous expression systems have been studied for meeting this demand. Among these systems, the Pichia pastoris expression system has emerged as a widely used platform for producing secreted heterologous proteins. This article provides an overview of studies involving the recombinant expression of polymer-degrading enzymes using the P. pastoris expression system. Research on P. pastoris expression of interested enzymes with depolymerising ability, including cutinase, lipase, and laccase, are highlighted in the review. The key factors influencing the heterologous expression of polymer-degrading enzymes in P. pastoris are discussed, shedding light on the challenges and opportunities in the development of depolymerising biocatalysts through the P. pastoris expression system.
Collapse
Affiliation(s)
- Shuyan Wu
- AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand; (D.H.); (G.B.)
| | - David Hooks
- AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand; (D.H.); (G.B.)
| | - Gale Brightwell
- AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand; (D.H.); (G.B.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
4
|
Retnadhas S, Ducat DC, Hegg EL. Nature-Inspired Strategies for Sustainable Degradation of Synthetic Plastics. JACS AU 2024; 4:3323-3339. [PMID: 39328769 PMCID: PMC11423324 DOI: 10.1021/jacsau.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Synthetic plastics have become integral to our daily lives, yet their escalating production, limited biodegradability, and inadequate waste management contribute to environmental contamination. Biological plastic degradation is one promising strategy to address this pollution. The inherent chemical and physical properties of synthetic plastics, however, pose challenges for microbial enzymes, hindering the effective degradation and the development of a sustainable biological recycling process. This Perspective explores alternative, nature-inspired strategies designed to overcome some key limitations in currently available plastic-degrading enzymes. Nature's refined degradation pathways for natural polymers, such as cellulose, present a compelling framework for the development of efficient technologies for enzymatic plastic degradation. By drawing insights from nature, we propose a general strategy of employing substrate binding domains to improve targeting and multienzyme scaffolds to overcome enzymatic efficiency limitations. As one potential application, we outline a multienzyme pathway to upcycle polyethylene into alkenes. Employing nature-inspired strategies can present a path toward sustainable solution to the environmental impact of synthetic plastics.
Collapse
Affiliation(s)
- Sreeahila Retnadhas
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Kong D, Zhang H, Yuan Y, Wu J, Liu Z, Chen S, Zhang F, Wang L. Enhanced biodegradation activity toward polyethylene by fusion protein of anchor peptide and Streptomyces sp. strain K30 latex clearing protein. Int J Biol Macromol 2024; 264:130378. [PMID: 38428774 DOI: 10.1016/j.ijbiomac.2024.130378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Polyethylene is the most commonly used plastic product, and its biodegradation is a worldwide problem. Latex clearing protein derived from Streptomyces sp. strain K30 (LcpK30) has been reported to be able to break the carbon-carbon double bond inside oxidized polyethylene and is an effective biodegradation enzyme for polyethylene. However, the binding of the substrate to the enzyme was difficult due to the hydrophobic nature of polyethylene. Therefore, to further improve the efficiency of LcpK30, the effect of different anchor peptides on the binding capacity of LcpK30 to the substrate was screened in this study. The results of fluorescence confocal microscopy showed that the anchoring peptide LCI had the most significant improvement in effect and was finally selected for further application in a UV-irradiated PE degradation system. The degradation results showed that LCI was able to improve the degradation efficiency of LcpK30 by approximately 1.15 times in the presence of equimolar amounts of protein compared with wild-type. This study further improves the application of LcpK30 in the field of polyethylene degradation by modification.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. and Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd, Dongying 257335, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
7
|
Wang D, Ingram AA, Luka J, Mao M, Ahrens L, Bienstein M, Spaniol TP, Schwaneberg U, Okuda J. Engineered Anchor Peptide LCI with a Cobalt Cofactor Enhances Oxidation Efficiency of Polystyrene Microparticles. Angew Chem Int Ed Engl 2024; 63:e202317419. [PMID: 38251394 DOI: 10.1002/anie.202317419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A typical component of polymer waste is polystyrene (PS) used in numerous applications, but degraded only slowly in the environment due to its hydrophobic properties. To increase the reactivity of polystyrene, polar groups need to be introduced. Here, biohybrid catalysts based on the engineered anchor peptide LCI_F16C are presented, which are capable of attaching to polystyrene microparticles and hydroxylating benzylic C-H bonds in polystyrene microparticles using commercially available oxone as oxidant. LCI peptides achieve a dense surface coverage of PS through monolayer formation within minutes in aqueous solutions at ambient temperature. The catalytically active cobalt cofactor Co-L1 or Co-L2 with a modified NNNN macrocyclic TACD ligand (TACD=1,4,7,10-tetraazacyclododecane) is covalently bound to the anchor peptide LCI through a maleimide linker. Compared to the free cofactors, a 12- to 15-fold improvement in catalytic activity using biohybrid catalysts based on LCI_F16C was observed.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Julian Luka
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Maochao Mao
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Leon Ahrens
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Marian Bienstein
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
8
|
Zhou J, Hollmann F, He Q, Chen W, Ma Y, Wang Y. Continuous Fatty Acid Decarboxylation using an Immobilized Photodecarboxylase in a Membrane Reactor. CHEMSUSCHEM 2024; 17:e202301326. [PMID: 37985235 DOI: 10.1002/cssc.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well-established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane-associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavour resulted in creating an innovative assembled photoenzyme-membrane (protein load 5 mg cm-2 ), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme-membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6-C18). Following this, the membrane-flow mesoscale reactor attained a maximum space-time yield of 1.2 mmol L-1 h-1 (C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme-membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.
Collapse
Affiliation(s)
- Jianle Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Qi He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co. Ltd, Foshan, Guangdong, 528200, China
| |
Collapse
|
9
|
Liu L, Ma H, Xing B. Aging and characterization of disposable polypropylene plastic cups based microplastics and its adsorption for methylene blue. CHEMOSPHERE 2024; 349:140976. [PMID: 38114021 DOI: 10.1016/j.chemosphere.2023.140976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Microplastics (MPs) as emerging pollutants are of increasing concern, due to their ubiquitous, uncertain, and complex environmental impacts. Different from the standard spherical MPs without additives, here polypropylene microplastics (PP-MPs) in flake derived from the disposable plastic cup in food-grade in daily life were studied. The characterization of PP-MPs demonstrated that the carbonyl index represented the aging degree was enhanced from 0.26 significantly to 0.82 after 10 days, and the aging process fitted well with pseudo-first-order kinetic. Moreover, the crystallinity degree, polarity and surface negative charges were enhanced, while the hydrophobicity was decreased. The adsorption behavior of PP-MPs toward methylene blue (MB), and the impacts of various pHs, salinities, and humic acid in aquatic environments were also explored. The pseudo-second-order kinetic, Henry and Sips isotherm models provided a good correlation with the experimental data, indicating that the rate-limiting step was closely related with the complex surface adsorption, and the hydrophobic partitioning, polar interaction, electrostatic attraction, and hydrogen bonding were possibly involved in the adsorption. These exhaustive experiments aim to provide a theoretical basis for assessing and better understanding the environmental behavior of disposable PP plastic cups in nature.
Collapse
Affiliation(s)
- Lili Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
10
|
Amalia L, Chang CY, Wang SSS, Yeh YC, Tsai SL. Recent advances in the biological depolymerization and upcycling of polyethylene terephthalate. Curr Opin Biotechnol 2024; 85:103053. [PMID: 38128200 DOI: 10.1016/j.copbio.2023.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Polyethylene terephthalate (PET) is favored for its exceptional properties and widespread daily use. This review highlights recent advancements that enable the development of biological tools for PET decomposition, transforming PET into valuable platform chemicals and materials in upcycling processes. Enhancing PET hydrolases' catalytic activity and efficiency through protein engineering strategies is a priority, facilitating more effective PET waste management. Efforts to create novel PET hydrolases for large-scale PET depolymerization continue, but cost-effectiveness remains challenging. Hydrolyzed monomers must add additional value to make PET recycling economically attractive. Valorization of hydrolysis products through the upcycling process is expected to produce new compounds with different values and qualities from the initial polymer, making the decomposed monomers more appealing. Advances in synthetic biology and enzyme engineering hold promise for PET upcycling. While biological depolymerization offers environmental benefits, further research is needed to make PET upcycling sustainable and economically feasible.
Collapse
Affiliation(s)
- Lita Amalia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
11
|
Lu Y, Hintzen KW, Kurkina T, Ji Y, Schwaneberg U. Directed Evolution of Material Binding Peptide for Polylactic Acid-specific Degradation in Mixed Plastic Wastes. ACS Catal 2023; 13:12746-12754. [PMID: 37822861 PMCID: PMC10564037 DOI: 10.1021/acscatal.3c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Indexed: 10/13/2023]
Abstract
In order to preserve our livelihood for future generations, responsible use of plastics in a climate-neutral and circular economy has to be developed so that plastics can be used in an environmentally friendly way by future generations. The prerequisite is that bioplastic polymers such as polylactic acid (PLA) can be efficiently recycled from petrochemical based plastic. Here, a concept in which accelerated PLA degradation in the mixed suspension of PLA and polystyrene (PS) nanoparticles has been achieved through an engineered material binding peptide. After comparison of twenty material binding peptides, Cg-Def is selected due to its PLA binding specificity. Finally, a suitable high-throughput screening system is developed for enhancing material-specific binding toward PLA in presence of PS. Through KnowVolution campaign, a variant Cg-Def YH (L9Y/S19H) with 2.0-fold improved PLA binding specificity compared to PS is generated. Contact angle and surface plasmon resonance measurements validated higher surface coverage of Cg-Def YH on PLA surface and the fusion of Cg-Def YH with PLA degrading enzyme confirmed the accelerated PLA depolymerization (two times higher than only enzyme) in mixed PLA/PS plastics.
Collapse
Affiliation(s)
- Yi Lu
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
| | - Kai-Wolfgang Hintzen
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
| | - Tetiana Kurkina
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
| | - Yu Ji
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
| |
Collapse
|
12
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
13
|
Bauten W, Nöth M, Kurkina T, Contreras F, Ji Y, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Plastibodies for multiplexed detection and sorting of microplastic particles in high-throughput. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160450. [PMID: 36435257 DOI: 10.1016/j.scitotenv.2022.160450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Sensitive high-throughput analytic methodologies are needed to quantify microplastic particles (MPs) and thereby enable routine monitoring of MPs to ultimately secure animal, human, and environmental health. Here we report a multiplexed analytical and flow cytometry-based high-throughput methodology to quantify MPs in aqueous suspensions. The developed analytic MPs-quantification platform provides a sensitive as well as high-throughput detection of MPs that relies on the material binding peptide Liquid Chromatography Peak I (LCI) conjugated to Alexa-fluorophores (LCIF16C-AF488, LCIF16C-AF594, and LCIF16C-AF647). These fluorescent material-binding peptides (also termed plastibodies) were used to fluorescently label polystyrene MPs, whereas Alexa-fluorophores alone exhibited a negligible background fluorescence. Mixtures of polystyrene MPs that varied in size (500 nm to 5 μm) and varied in labeled populations were analyzed and sorted into distinct populations reaching sorting efficiencies >90 % for 1 × 106 sorted events. Finally, a multiplexed quantification and sorting with up to three plastibodies was successfully achieved to validate that the combination of plastibodies and flow cytometry is a powerful and generally applicable methodology for multiplexed analysis, quantification, and sorting of microplastic particles.
Collapse
Affiliation(s)
- Wiwik Bauten
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Maximilian Nöth
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Miguel-Ángel Serra
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Douglas Gilliland
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany.
| |
Collapse
|
14
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
15
|
Han Y, Kinfu BM, Blombach F, Cackett G, Zhang H, Pérez-García P, Krohn I, Salomon J, Besirlioglu V, Mirzaeigarakani T, Schwaneberg U, Chow J, Werner F, Streit WR. A novel metagenome-derived viral RNA polymerase and its application in a cell-free expression system for metagenome screening. Sci Rep 2022; 12:17882. [PMID: 36284144 PMCID: PMC9596486 DOI: 10.1038/s41598-022-22383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 01/20/2023] Open
Abstract
The mining of genomes from non-cultivated microorganisms using metagenomics is a powerful tool to discover novel proteins and other valuable biomolecules. However, function-based metagenome searches are often limited by the time-consuming expression of the active proteins in various heterologous host systems. We here report the initial characterization of novel single-subunit bacteriophage RNA polymerase, EM1 RNAP, identified from a metagenome data set obtained from an elephant dung microbiome. EM1 RNAP and its promoter sequence are distantly related to T7 RNA polymerase. Using EM1 RNAP and a translation-competent Escherichia coli extract, we have developed an efficient medium-throughput pipeline and protocol allowing the expression of metagenome-derived genes and the production of proteins in cell-free system is sufficient for the initial testing of the predicted activities. Here, we have successfully identified and verified 12 enzymes acting on bis(2-hydroxyethyl) terephthalate (BHET) in a completely clone-free approach and proposed an in vitro high-throughput metagenomic screening method.
Collapse
Affiliation(s)
- Yuchen Han
- grid.9026.d0000 0001 2287 2617Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Birhanu M. Kinfu
- grid.9026.d0000 0001 2287 2617Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Present Address: Institute for General Microbiology, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Fabian Blombach
- grid.83440.3b0000000121901201Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Gwenny Cackett
- grid.83440.3b0000000121901201Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Hongli Zhang
- grid.9026.d0000 0001 2287 2617Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Pablo Pérez-García
- grid.9026.d0000 0001 2287 2617Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Ines Krohn
- grid.9026.d0000 0001 2287 2617Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jesper Salomon
- grid.10582.3e0000 0004 0373 0797Novozymes A/S, Microbial Discovery, Bagsværd, Denmark
| | - Volkan Besirlioglu
- grid.1957.a0000 0001 0728 696XChair of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany
| | - Tayebeh Mirzaeigarakani
- grid.1957.a0000 0001 0728 696XChair of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- grid.1957.a0000 0001 0728 696XChair of Biotechnology, RWTH Aachen, Worringerweg 3, 52074 Aachen, Germany
| | - Jennifer Chow
- grid.9026.d0000 0001 2287 2617Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Finn Werner
- grid.83440.3b0000000121901201Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Wolfgang R. Streit
- grid.9026.d0000 0001 2287 2617Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| |
Collapse
|
16
|
Ruan Y, Sohail M, Zhao J, Hu F, Li Y, Wang P, Zhang L. Applications of Material-Binding Peptides: A Review. ACS Biomater Sci Eng 2022; 8:4738-4750. [PMID: 36229413 DOI: 10.1021/acsbiomaterials.2c00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Material-binding peptides (MBPs) are functionalized adhesive materials consisting of a few to several dozen amino acids. This affinity between MBPs and materials is regulated by multiple interactions, including hydrogen bonding, electrostatic, hydrophobic interactions, and π-π stacking. They show selective binding and high affinity to a diverse range of inorganic and organic materials, such as silicon-based materials, metals, metal compounds, carbon materials, and polymers. They are used to improve the biocompatibility of materials, increase the efficiency of material synthesis, and guide the controlled synthesis of nanomaterials. In addition, these can be used for precise targeting of proteins by conjugating to target biomolecules. In this review, we summarize the main designs and applications of MBPs in recent years. The discussions focus on more efficient and functional peptides, including evolution and overall design of MBPs. We have also highlighted the recent applications of MBPs, such as functionalization of material surfaces, synthesis of nanomaterials, drug delivery, cancer therapy, and plastic degradation. Besides, we also discussed the development trend of MBPs. This interpretation will accelerate future investigations to bottleneck the drawbacks of available MBPs, promoting their commercial applications.
Collapse
Affiliation(s)
- Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jindi Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Panlin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
17
|
Alvisi N, Zheng C, Lokker M, Boekestein V, de Haas R, Albada B, de Vries R. Design of Polypeptides Self-Assembling into Antifouling Coatings: Exploiting Multivalency. Biomacromolecules 2022; 23:3507-3516. [PMID: 35952369 PMCID: PMC9472226 DOI: 10.1021/acs.biomac.2c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose to exploit multivalent binding of solid-binding peptides (SBPs) for the physical attachment of antifouling polypeptide brushes on solid surfaces. Using a silica-binding peptide as a model SBP, we find that both tandem-repeated SBPs and SBPs repeated in branched architectures implemented via a multimerization domain work very well to improve the binding strength of polypeptide brushes, as compared to earlier designs with a single SBP. At the same time, for many of the designed sequences, either the solubility or the yield of recombinant production is low. For a single design, with the domain structure B-M-E, both solubility and yield of recombinant production were high. In this design, B is a silica-binding peptide, M is a highly thermostable, de novo-designed trimerization domain, and E is a hydrophilic elastin-like polypeptide. We show that the B-M-E triblock polypeptide rapidly assembles into highly stable polypeptide brushes on silica surfaces, with excellent antifouling properties against high concentrations of serum albumin. Given that SBPs attaching to a wide range of materials have been identified, the B-M-E triblock design provides a template for the development of polypeptides for coating many other materials such as metals or plastics.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Chuanbao Zheng
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Meike Lokker
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Victor Boekestein
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Robbert de Haas
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
18
|
Dittrich J, Brethauer C, Goncharenko L, Bührmann J, Zeisler-Diehl V, Pariyar S, Jakob F, Kurkina T, Schreiber L, Schwaneberg U, Gohlke H. Rational Design Yields Molecular Insights on Leaf-Binding of Anchor Peptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28412-28426. [PMID: 35604777 DOI: 10.1021/acsami.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted. To date, rainfastness of plant protection products has been achieved by adding polymeric adjuvants to the agrochemicals. However, polymeric adjuvants will be regarded as microplastics in the future, and environmentally friendly alternatives are needed. Anchor peptides (APs) are promising biobased and biodegradable adhesion promoters. Although the adhesion of anchor peptides to artificial surfaces, such as polymers, has already been investigated in theory and experimentally, exploiting the adhesion to biological surfaces remains challenging. The complex nature and composition of biological surfaces such as plant leaves and fruit surfaces complicate the generation of accurate models. Here, we present the first detailed three-layered atomistic model of the surface of apple leaves and use it to compute free energy profiles of the adhesion and desorption of APs to and from that surface. Our model is validated by a novel fluorescence-based microtiter plate (MTP) assay that mimics these complex processes and allows for quantifying them. For the AP Macaque Histatin, we demonstrate that aromatic and positively charged amino acids are essential for binding to the waxy apple leaf surface. The established protocols should generally be applicable for tailoring the binding properties of APs to biological interfaces.
Collapse
Affiliation(s)
- Jonas Dittrich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Christin Brethauer
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Liudmyla Goncharenko
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Jens Bührmann
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | | | - Shyam Pariyar
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn 53115, Germany
| | - Felix Jakob
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Tetiana Kurkina
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | - Lukas Schreiber
- Department of Ecophysiology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Schwaneberg
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Holger Gohlke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
19
|
Hintzen KW, Simons C, Schaffrath K, Roessler G, Johnen S, Jakob F, Walter P, Schwaneberg U, Lohmann T. BioAdhere: tailor-made bioadhesives for epiretinal visual prostheses. Biomater Sci 2022; 10:3282-3295. [PMID: 35583519 DOI: 10.1039/d1bm01946e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Visual prostheses, i.e. epiretinal stimulating arrays, are a promising therapy in treating retinal dystrophies and degenerations. In the wake of a new generation of devices, an innovative method for epiretinal fixation of stimulator arrays is required. We present the development of tailor-made bioadhesive peptides (peptesives) for fixating epiretinal stimulating arrays omitting the use of traumatic retinal tacks. Materials and methods: Binding motifs on the stimulating array (poly[chloro-p-xylylene] (Parylene C)) and in the extracellular matrix of the retinal surface (collagens I and IV, laminin, fibronectin) were identified. The anchor peptides cecropin A (CecA), KH1, KH2 (author's initials) and osteopontin (OPN) were genetically fused to reporter proteins to assess their binding behavior to coated microtiter plates via fluorescence-based assays. Domain Z (DZ) of staphylococcal protein A was used as a separator to generate a bioadhesive peptide. Following ISO 10993 "biological evaluation of medical materials", direct and non-direct cytotoxicity testing (L-929 and R28 retinal progenitor cells) was performed. Lastly, the fixating capabilities of the peptesives were tested in proof-of-principle experiments. Results: The generation of the bioadhesive peptide required evaluation of the N- and C-anchoring of investigated APs. The YmPh-CecA construct showed the highest activity on Parylene C in comparison with the wildtype phytase without the anchor peptide. eGFP-OPN was binding to all four investigated ECM proteins (collagen I, laminin > collagen IV, fibronectin). The strongest binding to collagen I was observed for eGFP-KH1, while the strongest binding to fibronectin was observed for eGFP-KH2. The selectivity of binding was checked by incubating eGFP-CecA and eGFP-OPN on ECM proteins and on Parylene C, respectively. Direct and non-direct cytotoxicity testing of the peptide cecropin-A-DZ-OPN using L-929 and R28 cells showed good biocompatibility properties. Proof-of-concept experiments in post-mortem rabbit eyes suggested an increased adhesion of CecA-DZ-OPN-coated stimulating arrays. Conclusion: This is the first study to prove the applicability and biocompatibility of peptesives for the fixation of macroscopic objects.
Collapse
Affiliation(s)
- Kai-Wolfgang Hintzen
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Christian Simons
- DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Kim Schaffrath
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Gernot Roessler
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Tibor Lohmann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
20
|
Woo H, Kang SH, Kwon Y, Choi Y, Kim J, Ha DH, Tanaka M, Okochi M, Kim JS, Kim HK, Choi J. Sensitive and specific capture of polystyrene and polypropylene microplastics using engineered peptide biosensors. RSC Adv 2022; 12:7680-7688. [PMID: 35424716 PMCID: PMC8982333 DOI: 10.1039/d1ra08701k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/19/2022] [Indexed: 12/17/2022] Open
Abstract
Owing to increased environmental pollution, active research regarding microplastics circulating in the ocean has attracted significant interest in recent times. Microplastics accumulate in the bodies of living organisms and adversely affect them. In this study, a new method for the rapid detection of microplastics using peptides was proposed. Among the various types of plastics distributed in the ocean, polystyrene and polypropylene were selected. The binding affinity of the hydrophobic peptides suitable for each type of plastic was evaluated. The binding affinities of peptides were confirmed in unoxidized plastics and plasma-oxidized plastics in deionised or 3.5% saline water. Also, the detection of microplastics in small animals' intestine extracts were possible with the reported peptide biosensors. We expect plastic-binding peptides to be used in sensors to increase the detection efficiency of microplastics and potentially help separate microplastics from seawater.
Collapse
Affiliation(s)
- Hyunjeong Woo
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Seung Hyun Kang
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital Seoul 06973 Republic of Korea
| | - Yejin Kwon
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1-S1-24, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1-S1-24, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Jin Su Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences Seoul 01812 Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST) Seoul 01812 Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital Seoul 06973 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
21
|
Liu Z, Li G, Zhang F, Wu J. Enhanced biodegradation activity towards poly(ethyl acrylate) and poly(vinyl acetate) by anchor peptide assistant targeting. J Biotechnol 2022; 349:47-52. [DOI: 10.1016/j.jbiotec.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
|
22
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Feng L, Gao L, Sauer DF, Ji Y, Cui H, Schwaneberg U. Fe(III)-complex mediated bacterial cell surface immobilization of eGFP and enzymes. Chem Commun (Camb) 2021; 57:4460-4463. [PMID: 33949502 DOI: 10.1039/d1cc01575c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a facile and reversible method to immobilize a broad range of His6-tagged proteins on the E. coli cell surface through Fe(iii)-metal complexes. A His6-tagged eGFP and four His6-tagged enzymes were successfully immobilized on the cell surface. Additionally, a hydrogel sheath around E. coli cells was generated by immobilized His6-tagged HRP.
Collapse
Affiliation(s)
- Lilin Feng
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Liang Gao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Daniel F Sauer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany. and DWI - Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|
24
|
Söder D, Garay-Sarmiento M, Rahimi K, Obstals F, Dedisch S, Haraszti T, Davari MD, Jakob F, Heß C, Schwaneberg U, Rodriguez-Emmenegger C. Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings. Macromol Biosci 2021; 21:e2100158. [PMID: 34145970 DOI: 10.1002/mabi.202100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
Collapse
Affiliation(s)
- Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Fabian Obstals
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Dedisch
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Heß
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533, Kleve, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | | |
Collapse
|
25
|
Zhu B, Wang D, Wei N. Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends Biotechnol 2021; 40:22-37. [PMID: 33676748 DOI: 10.1016/j.tibtech.2021.02.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The drastically increasing amount of plastic waste is causing an environmental crisis that requires innovative technologies for recycling post-consumer plastics to achieve waste valorization while meeting environmental quality goals. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. A variety of plastic-degrading enzymes have been discovered from microbial sources. Meanwhile, protein engineering has been exploited to modify and optimize plastic-degrading enzymes. This review highlights the recent trends and up-to-date advances in mining novel plastic-degrading enzymes through state-of-the-art omics-based techniques and improving the enzyme catalytic efficiency and stability via various protein engineering strategies. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Dong Wang
- Department of Computer Science and Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
26
|
Nöth M, Zou Z, El-Awaad I, de Lencastre Novaes LC, Dilarri G, Davari MD, Ferreira H, Jakob F, Schwaneberg U. A peptide-based coating toolbox to enable click chemistry on polymers, metals, and silicon through sortagging. Biotechnol Bioeng 2021; 118:1520-1530. [PMID: 33404092 DOI: 10.1002/bit.27666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
A versatile peptide-based toolbox for surface functionalization was established by a combination of a universal material binding peptide (LCI-anchor peptide) and sortase-mediated bioconjugation (sortagging). This toolbox facilitates surface functionalization either as a one- or a two-step strategy. In the case of the one-step strategy, the desired functionality was directly introduced to LCI. For the two-step strategy, LCI was modified with a reactive group, which can be further functionalized (e.g., employing "click" chemistry). Sortagging of LCI, employing sortase A from Staphylococcus aureus, was achieved with six different amine compounds: dibenzocyclooctyne amine, biotin-polyethylene glycol amine, Cyanine-3 amine, kanamycin, methoxypolyethylene glycol amine (Mn = 5000 Da), and 2,2,3,3,4,4,4-Heptafluorobutylamine. The purification of LCI-amine sortagging products was performed by a negative purification using Strep-tag II affinity chromatography, resulting in LCI-amine conjugates with purities >90%. For the two-step strategy, the LCI-dibenzocyclooctyne sortagging product was purified and enabled, through copper-free azide-alkyne "click" chemistry, universal surface functionalization of material surfaces such as polypropylene, polyethylene terephthalate, stainless steel, gold, and silicon. The click reaction was performed before or after surface binding of LCI-dibenzocyclooctyne. Finally, in the case of the one-step strategy, polypropylene was directly functionalized with Cyanine-3 and biotin-polyethylene glycol amine.
Collapse
Affiliation(s)
- Maximilian Nöth
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Zhi Zou
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Islam El-Awaad
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Guilherme Dilarri
- Department of Applied and General Biology, Biosciences Institute, São Paulo State University, Rio Claro, SP, Brazil
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Henrique Ferreira
- Department of Applied and General Biology, Biosciences Institute, São Paulo State University, Rio Claro, SP, Brazil
| | - Felix Jakob
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
27
|
Ji Y, Lu Y, Puetz H, Schwaneberg U. Anchor peptides promote degradation of mixed plastics for recycling. Methods Enzymol 2021; 648:271-292. [PMID: 33579408 DOI: 10.1016/bs.mie.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Resource stewardship and sustainable use of natural resources is mandatory for a circular plastic economy. The discovery of microbes and enzymes that can selectively degrade mixed-plastic waste enables to recycle plastics. Knowledge on how to achieve efficient and selective enzymatic plastic degradation is a key prerequisite for biocatalytic recycling of plastics. Wild-type natural polymer degrading enzymes such as cellulases pose often selective non-catalytic binding domains that facilitate a targeting and efficient degradation of polymeric substrates. Recently identified polyester hydrolases with synthetic polymer degrading activities, however, lack in general such selective domains. Inspired by nature, we herein report a protocol for the identification and engineering of anchor peptides which serve as non-catalytic binding domains specifically toward synthetic plastics. The identified anchor peptides hold the promise to be fused to known plastic degrading enzymes and thereby enhance the efficiency of biocatalytic plastic recycling processes.
Collapse
Affiliation(s)
- Yu Ji
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Yi Lu
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Hendrik Puetz
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials, Aachen, Germany.
| |
Collapse
|
28
|
Sauer DF, Wittwer M, Markel U, Minges A, Spiertz M, Schiffels J, Davari MD, Groth G, Okuda J, Schwaneberg U. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00609f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemogenetic engineering turned the heme protein nitrobindin into an artificial epoxygenase: MnPPIX was introduced and subsequent protein engineering increased the activity in the epoxidation of styrene derivatives by overall 7-fold.
Collapse
Affiliation(s)
- Daniel F. Sauer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Malte Wittwer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Markel
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Markus Spiertz
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Mehdi D. Davari
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz Institute for Interactive Materials
| |
Collapse
|
29
|
Mirzaei Garakani T, Sauer DF, Mertens MAS, Lazar J, Gehrmann J, Arlt M, Schiffels J, Schnakenberg U, Okuda J, Schwaneberg U. FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
| | - Julia Gehrmann
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Marcus Arlt
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, D-52056 Aachen, Germany
| |
Collapse
|
30
|
Ke CB, Chen JL. Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2723. [PMID: 32397682 PMCID: PMC7249214 DOI: 10.3390/s20092723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/27/2022]
Abstract
Composites of tetracycline (Tc)-imprinted polymethacrylates and quantum dots have been coated on chemically pretreated polyimide substrates (PIs) as fluorescent sensors. In this study, PIs were pretreated by capacitively coupled plasma (CCP) before coating the same composites on them. For the first time, to fabricate sensors by plasma modification of PIs, the CCP conditions, including plasma gas, flow rate, radio frequency generation power, and duration time, the fabrication details, including coating, baking, and stripping steps, and the sample loading process were optimized to perform a linear decrease in fluorescent intensity with Tc concentrations in the range of 5.0-3000 μM (R2 = 0.9995) with a limit of detection of 0.2 μM (S/N = 3, relative standard deviation (RSD) = 2.2%). The selectivity of the stripped PIs was evaluated by the imprinting factors (IFs) for Tc (IF = 7.2), other Tc analogues (IF = 3.4-5.3), and steroids (IF ≈ 1) and by the recoveries of 5.0 μM Tc from bovine serum albumin at 300 μg∙mL-1 (98%, RSD = 3.2%), fetal bovine serum at 1.5 ppt (98%, RSD = 2.8%), and liquid milk (94.5%, RSD = 5.3%). The superiority of the present plasma-treated-based sensor over the previous chemically-treated one in fabrication efficiency and detection effectiveness was clear.
Collapse
Affiliation(s)
- Ching-Bin Ke
- Department of Beauty and Health Care, Min-Hwei Junior College of Health Care Management, No.1116, Sec 2, Zhongshan E. Rd., Tainan 73658, Taiwan;
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
31
|
Gehlen DB, De Lencastre Novaes LC, Long W, Ruff AJ, Jakob F, Haraszti T, Chandorkar Y, Yang L, van Rijn P, Schwaneberg U, De Laporte L. Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41091-41099. [PMID: 31600051 DOI: 10.1021/acsami.9b16025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polydimethylsiloxane (PDMS) is a synthetic material with excellent properties for biomedical applications because of its easy fabrication method, high flexibility, permeability to oxygen, transparency, and potential to produce high-resolution structures in the case of lithography. However, PDMS needs to be modified to support homogeneous cell attachments and spreading. Even though many physical and chemical methods, like plasma treatment or extracellular matrix coatings, have been developed over the last decades to increase cell-surface interactions, these methods are still very time-consuming, often not efficient enough, complex, and can require several treatment steps. To overcome these issues, we present a novel, robust, and fast one-step PDMS coating method using engineered anchor peptides fused to the cell-adhesive peptide sequence (glycine-arginine-glycine-aspartate-serine, GRGDS). The anchor peptide attaches to the PDMS surface predominantly by hydrophobic interactions by simply dipping PDMS in a solution containing the anchor peptide, presenting the GRGDS sequence on the surface available for cell adhesion. The binding performance and kinetics of the anchor peptide to PDMS are characterized, and the coatings are optimized for efficient cell attachment of fibroblasts and endothelial cells. Additionally, the applicability is proven using PDMS-based directional nanotopographic gradients, showing a lower threshold of 5 μm wrinkles for fibroblast alignment.
Collapse
Affiliation(s)
- David B Gehlen
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
| | | | - Wei Long
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Anna Joelle Ruff
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Felix Jakob
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
| | - Yashoda Chandorkar
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
| | - Liangliang Yang
- University Medical Center Groningen , Department of Biomedical Engineering , FB40 , 9713 AV Groningen , The Netherlands
| | - Patrick van Rijn
- University Medical Center Groningen , Department of Biomedical Engineering , FB40 , 9713 AV Groningen , The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
- Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , Worringerweg 1-2 , D-52074 Aachen , Germany
| |
Collapse
|
32
|
Dedisch S, Wiens A, Davari MD, Söder D, Rodriguez‐Emmenegger C, Jakob F, Schwaneberg U. Matter‐
tag
: A universal immobilization platform for enzymes on polymers, metals, and silicon‐based materials. Biotechnol Bioeng 2019; 117:49-61. [DOI: 10.1002/bit.27181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Sarah Dedisch
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Annika Wiens
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Mehdi D. Davari
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Dominik Söder
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
| | - Cesar Rodriguez‐Emmenegger
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen Germany
| | - Felix Jakob
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Ulrich Schwaneberg
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| |
Collapse
|
33
|
Apitius L, Buschmann S, Bergs C, Schönauer D, Jakob F, Pich A, Schwaneberg U. Biadhesive Peptides for Assembling Stainless Steel and Compound Loaded Micro‐Containers. Macromol Biosci 2019; 19:e1900125. [DOI: 10.1002/mabi.201900125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Lina Apitius
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Sven Buschmann
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
| | - Christian Bergs
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
| | - David Schönauer
- SeSaM‐Biotech GmbH Forckenbeckstrasse 50 52074 Aachen Germany
| | - Felix Jakob
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Andrij Pich
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Functional and Interactive PolymersInstitute of Technical and Macromolecular ChemistryRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
34
|
Büscher N, Sayoga GV, Rübsam K, Jakob F, Schwaneberg U, Kara S, Liese A. Biocatalyst Immobilization by Anchor Peptides on an Additively Manufacturable Material. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Niclas Büscher
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Giovanni V. Sayoga
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Kristin Rübsam
- DWI−Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- RWTH Aachen University, Lehrstuhl für Biotechnologie, Worringerweg 3, D-52074 Aachen, Germany
| | - Felix Jakob
- DWI−Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- RWTH Aachen University, Lehrstuhl für Biotechnologie, Worringerweg 3, D-52074 Aachen, Germany
| | - Ulrich Schwaneberg
- DWI−Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- RWTH Aachen University, Lehrstuhl für Biotechnologie, Worringerweg 3, D-52074 Aachen, Germany
| | - Selin Kara
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
- Department of Engineering, Biocatalysis and Bioprocessing, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus, Denmark
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| |
Collapse
|
35
|
Weber J, Petrović D, Strodel B, Smits SHJ, Kolkenbrock S, Leggewie C, Jaeger KE. Interaction of carbohydrate-binding modules with poly(ethylene terephthalate). Appl Microbiol Biotechnol 2019; 103:4801-4812. [PMID: 30993383 PMCID: PMC6536475 DOI: 10.1007/s00253-019-09760-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/26/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the most widely applied synthetic polymers, but its hydrophobicity is challenging for many industrial applications. Biotechnological modification of PET surface can be achieved by PET hydrolyzing cutinases. In order to increase the adsorption towards their unnatural substrate, the enzymes are fused to carbohydrate-binding modules (CBMs) leading to enhanced activity. In this study, we identified novel PET binding CBMs and characterized the CBM-PET interplay. We developed a semi-quantitative method to detect CBMs bound to PET films. Screening of eight CBMs from diverse families for PET binding revealed one CBM that possesses a high affinity towards PET. Molecular dynamics (MD) simulations of the CBM-PET interface revealed tryptophan residues forming an aromatic triad on the peptide surface. Their interaction with phenyl rings of PET is stabilized by additional hydrogen bonds formed between amino acids close to the aromatic triad. Furthermore, the ratio of hydrophobic to polar contacts at the interface was identified as an important feature determining the strength of PET binding of CBMs. The interaction of CBM tryptophan residues with PET was confirmed experimentally by tryptophan quenching measurements after addition of PET nanoparticles to CBM. Our findings are useful for engineering PET hydrolyzing enzymes and may also find applications in functionalization of PET.
Collapse
Affiliation(s)
- Joanna Weber
- evoxx technologies GmbH, Alfred-Nobel-Str. 10, D-40789, Monheim am Rhein, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany
- Bayer AG, Friedrich-Ebert-Straße 475, 42117, Wuppertal, Germany
| | - Dušan Petrović
- Institute of Complex Systems ICS-6: Structural Biochemistry, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems ICS-6: Structural Biochemistry, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Stephan Kolkenbrock
- evoxx technologies GmbH, Alfred-Nobel-Str. 10, D-40789, Monheim am Rhein, Germany
- Altona Diagnostics GmbH, Mörkenstr. 12, 22767, Hamburg, Germany
| | - Christian Leggewie
- evoxx technologies GmbH, Alfred-Nobel-Str. 10, D-40789, Monheim am Rhein, Germany.
- Erber Enzymes GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
- Institute of Molecular Enzyme Technology, Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany.
| |
Collapse
|
36
|
Apitius L, Rübsam K, Jakesch C, Jakob F, Schwaneberg U. Ultrahigh‐throughput screening system for directed polymer binding peptide evolution. Biotechnol Bioeng 2019; 116:1856-1867. [DOI: 10.1002/bit.26990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Lina Apitius
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- RWTH Aachen UniversityAachen Germany
| | - Kristin Rübsam
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
| | | | - Felix Jakob
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- RWTH Aachen UniversityAachen Germany
| | - Ulrich Schwaneberg
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- RWTH Aachen UniversityAachen Germany
| |
Collapse
|
37
|
Islam S, Apitius L, Jakob F, Schwaneberg U. Targeting microplastic particles in the void of diluted suspensions. ENVIRONMENT INTERNATIONAL 2019; 123:428-435. [PMID: 30622067 DOI: 10.1016/j.envint.2018.12.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 05/22/2023]
Abstract
Accumulation of microplastic in the environment and food chain will be a grand challenge for our society. Polyurethanes are widely used synthetic polymers in medical (e.g. catheters) and industrial products (especially as foams). Polyurethane is not abundant in nature and only a few microbial strains (fungi and bacteria) and enzymes (polyurethaneases and cutinases) have been reported to efficiently degrade polyurethane. Notably, in nature a long period of time (from 50 to >100 years depending on the literature) is required for degradation of plastics. Material binding peptides (e.g. anchor peptides) bind strongly to polymers such as polypropylene, polyethylene terephthalate, and polyurethane and can target specifically polymers. In this study we report the fusion of the anchor peptide Tachystatin A2 to the bacterial cutinase Tcur1278 which accelerated the degradation of polyester-polyurethane nanoparticles by a factor of 6.6 in comparison to wild-type Tcur1278. Additionally, degradation half-lives of polyester-polyurethane nanoparticles were reduced from 41.8 h to 6.2 h (6.7-fold) in a diluted polyester-polyurethane suspension (0.04% w/v).
Collapse
Affiliation(s)
- Shohana Islam
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Lina Apitius
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Felix Jakob
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
38
|
Xie SX, Boone K, VanOosten SK, Yuca E, Song L, Ge X, Ye Q, Spencer P, Tamerler C. Peptide Mediated Antimicrobial Dental Adhesive System. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:557. [PMID: 33542835 PMCID: PMC7857482 DOI: 10.3390/app9030557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Kay VanOosten
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Department of Molecular Biology and Genetics, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Xueping Ge
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
39
|
Grimm AR, Sauer DF, Mirzaei Garakani T, Rübsam K, Polen T, Davari MD, Jakob F, Schiffels J, Okuda J, Schwaneberg U. Anchor Peptide-Mediated Surface Immobilization of a Grubbs-Hoveyda-Type Catalyst for Ring-Opening Metathesis Polymerization. Bioconjug Chem 2019; 30:714-720. [DOI: 10.1021/acs.bioconjchem.8b00874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander R. Grimm
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | | | - Kristin Rübsam
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| |
Collapse
|
40
|
Zou Z, Alibiglou H, Mate DM, Davari MD, Jakob F, Schwaneberg U. Directed sortase A evolution for efficient site-specific bioconjugations in organic co-solvents. Chem Commun (Camb) 2018; 54:11467-11470. [PMID: 30255876 DOI: 10.1039/c8cc06017g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Directed sortase A evolution yielded the variants R159G and D165Q/D186G/K196V with increased resistance (2.2-fold) and catalytic efficiency (6.3-fold) in 45% (v/v) dimethylsulfoxide. Interestingly, D165Q/D186G/K196V also showed an up to 4.7-fold increased activity for the conjugation of hydrophobic peptides/amines in co-solvents. MD simulations revealed that conformational mobilities are important for the gained resistance.
Collapse
Affiliation(s)
- Zhi Zou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraβe 50, 52056 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Rübsam K, Davari MD, Jakob F, Schwaneberg U. KnowVolution of the Polymer-Binding Peptide LCI for Improved Polypropylene Binding. Polymers (Basel) 2018; 10:E423. [PMID: 30966458 PMCID: PMC6415234 DOI: 10.3390/polym10040423] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 12/02/2022] Open
Abstract
The functionalization of polymer surfaces by polymer-binding peptides offers tremendous opportunities for directed immobilization of enzymes, bioactive peptides, and antigens. The application of polymer-binding peptides as adhesion promoters requires reliable and stable binding under process conditions. Molecular modes of interactions between material surfaces, peptides, and solvent are often not understood to an extent that enables (semi-) rational design of polymer-binding peptides, hindering the full exploitation of their potential. Knowledge-gaining directed evolution (KnowVolution) is an efficient protein engineering strategy that facilitates tailoring protein properties to application demands through a combination of directed evolution and computational guided protein design. A single round of KnowVolution was performed to gain molecular insights into liquid chromatography peak I peptide, 47 aa (LCI)-binding to polypropylene (PP) in the presence of the competing surfactant Triton X-100. KnowVolution yielded a total of 8 key positions (D19, S27, Y29, D31, G35, I40, E42, and D45), which govern PP-binding in the presence of Triton X-100. The recombination of two of the identified amino acid substitutions (Y29R and G35R; variant KR-2) yielded a 5.4 ± 0.5-fold stronger PP-binding peptide compared to LCI WT in the presence of Triton X-100 (1 mM). The LCI variant KR-2 shows a maximum binding capacity of 8.8 ± 0.1 pmol/cm² on PP in the presence of Triton X-100 (up to 1 mM). The KnowVolution approach enables the development of polymer-binding peptides, which efficiently coat and functionalize PP surfaces and withstand surfactant concentrations that are commonly used, such as in household detergents.
Collapse
Affiliation(s)
- Kristin Rübsam
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany.
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany.
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany.
| | - Felix Jakob
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany.
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany.
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany.
| |
Collapse
|
42
|
Zou Z, Mate DM, Rübsam K, Jakob F, Schwaneberg U. Sortase-Mediated High-Throughput Screening Platform for Directed Enzyme Evolution. ACS COMBINATORIAL SCIENCE 2018; 20:203-211. [PMID: 29363945 DOI: 10.1021/acscombsci.7b00153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sortase-catalyzed ligations have emerged as powerful tools for the site-specific ligation of peptides and proteins in material science and biocatalysis. In this work, a directed sortase evolution strategy (SortEvolve) has been developed as a general high-throughput screening (HTS) platform to improve activity of sortase A (application 1) and to perform directed laccase evolution through a semipurification process in 96-well microtiter plate (MTP) (application 2). A semipurification process in polypropylene MTP (PP-MTP) is achieved through the anchor peptide LCI, which acts as adhesion promoter. To validate the SortEvolve screening platform for both applications, three site-saturation mutagenesis (SSM) libraries of sortase A (Sa-SrtA) from Staphylococcus aureus (application 1) and two SSM libraries of the copper efflux oxidase (CueO laccase) from Escherichia coli (application 2) were generated at literature reported positions. After screening and rescreening, an array of Sa-SrtA variants (including the previously reported P94S, D160N, and D165A) and CueO variants (including the previously reported D439A and P444A) were identified. Further recombinant Sa-SrtA variant P94T/D160L/D165Q and CueO variant D439V/P444V were characterized with 22-fold and 103-fold improvements in catalytic efficiency compared with corresponding wild-types, respectively. An important advantage of the SortEvolve screening platform in comparison to many MTP-based screening systems is that the background noise was minimized (decreased 20-fold; application 2) due to the employed semipurification process. In essence, SortEvolve provides a universal surface-functionalized screening platform for sortases and enzymes in which especially background activity can be minimized to enable successful directed evolution campaigns.
Collapse
Affiliation(s)
- Zhi Zou
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Diana M. Mate
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Kristin Rübsam
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Felix Jakob
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
43
|
Rübsam K, Weber L, Jakob F, Schwaneberg U. Directed evolution of polypropylene and polystyrene binding peptides. Biotechnol Bioeng 2017; 115:321-330. [DOI: 10.1002/bit.26481] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Kristin Rübsam
- RWTH Aachen University; Worringerweg 3; Aachen Germany
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| | - Lina Weber
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| | - Felix Jakob
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| | - Ulrich Schwaneberg
- RWTH Aachen University; Worringerweg 3; Aachen Germany
- DWI - Leibniz-Institute for Interactive Materials; Forckenbeckstraße 50; Aachen Germany
| |
Collapse
|
44
|
Gau E, Mate DM, Zou Z, Oppermann A, Töpel A, Jakob F, Wöll D, Schwaneberg U, Pich A. Sortase-Mediated Surface Functionalization of Stimuli-Responsive Microgels. Biomacromolecules 2017; 18:2789-2798. [DOI: 10.1021/acs.biomac.7b00720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elisabeth Gau
- Functional
and Interactive Polymers, Institute of Technical and Macromolecular
Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Diana M. Mate
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Zhi Zou
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute
for Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Alex Oppermann
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Alexander Töpel
- Functional
and Interactive Polymers, Institute of Technical and Macromolecular
Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Felix Jakob
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Dominik Wöll
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute
for Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Andrij Pich
- Functional
and Interactive Polymers, Institute of Technical and Macromolecular
Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|