1
|
Lee TH, Balcik M, Ali Z, Joo T, Rivera MP, Pinnau I, Smith ZP. Microporous polyimine membranes for efficient separation of liquid hydrocarbon mixtures. Science 2025; 388:839-844. [PMID: 40403073 DOI: 10.1126/science.adv6886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/27/2025] [Indexed: 05/24/2025]
Abstract
Interfacial polymerization has been an industrial standard for preparing desalination membranes. Extending the same concept to molecular separation of organic solvents would be a key enabler for the decarbonization of the chemical and petrochemical industries through energy-efficient crude or biocrude oil fractionation. Here, we report a molecular engineering approach based on acid-catalyzed interfacial polymerization for efficient hydrocarbon separation. The design strategies include (i) changing the linkage from amide to imine and (ii) subsequent introduction of shape-persistent units such as triptycene and spirobifluorene. The prepared polyimine membranes exhibit ultrahigh microporosity and enhanced swelling and plasticization resistance compared with conventional polyamide counterparts. These membranes, which feature fast and selective transport of hydrocarbons, including multicomponent and industrially relevant mixtures, outperform commercial and state-of-the-art benchmark membranes.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Future Energy Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marcel Balcik
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zain Ali
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Osmoflo Water Management Pty Ltd., Burton, SA, Australia
| | - Taigyu Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew P Rivera
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Hasan AMM, Roy R, Shehab MK, Davis AN, Slicker K, Kirlikovali KO, Pankow RM, Farha OK, Evans AM. Rapid Cathodic Coloration in Solution-Processable Electrochromic Polymers of Intrinsic Microporosity. J Am Chem Soc 2025; 147:16331-16339. [PMID: 40300111 DOI: 10.1021/jacs.5c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
This study describes four solution-processable polymers of intrinsic microporosity with rapid electrochemical switching in solid-state two-terminal devices. Conventional electrochromic polymers are often designed to be conformationally coplanar to maximize π-orbital overlap, which is presumed to increase electronic conductivity and electrochemical redox accessibility. However, this reduces the void space and polymer chain mobility needed to facilitate electrolyte ion penetration and exchange, which typically reduces switching speed. Here, we pursue a polymer design that incorporates spirobisindane units to intentionally install nonplanarity and create permanent void space in polymer thin films, which would typically be considered antithetical to electrochromic polymer design. The four n-type polymers we produce have four distinct chromophores that each host two electrochemically accessible reduced states, for a total of 12 distinct optical profiles. In complete electrochemical devices with a gel electrolyte, we achieve >90% optical contrast (ΔT %) with a 1-s switching time (t95). This rapid electrochromic switching is attributed to the large accessible surface areas (>250 m2 g-1) of these polymers, as determined by CO2 sorption isotherms and electrochemical impedance spectroscopy measurements. Additionally, high coloration efficiencies (CE) up to 450 cm2 C-1 are achieved with >95% retention over 200 cycles. Together, these findings highlight that electrochemical redox accessibility and porosity are not mutually exclusive and provide macromolecular structural design guidelines for the next generation of organic mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- A M Mahmudul Hasan
- Department of Chemistry, Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Rupam Roy
- Department of Chemistry, Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Mohammad K Shehab
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ani N Davis
- Department of Chemistry, Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Kaitlin Slicker
- Department of Chemistry, Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Robert M Pankow
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin M Evans
- Department of Chemistry, Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Goodwin DM, Carta M, Ali MM, Gillard D, Guy OJ. Enhanced Nitrogen Dioxide Detection Using Resistive Graphene-Based Electronic Sensors Modified with Polymers of Intrinsic Microporosity. ACS Sens 2025; 10:1378-1386. [PMID: 39960864 PMCID: PMC11877633 DOI: 10.1021/acssensors.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
In this study, we report on the fabrication and evaluation of gas sensing performance for 3 × 3 graphene pixel array sensors coated with polymers of intrinsic microporosity (PIM-1 and PIM-EA-TB) and Matrimid, a commercial polyimide, for the detection of nitrogen dioxide (NO2). The polymer films, with thicknesses of only 9-11 nm, significantly enhanced the gas sensing performance, demonstrating responses as high as -25.7% compared to a bare graphene response of -10.8%. The gas sensing performance was evaluated in real-time by exposing the sensors to NO2 concentrations from 1 to 50 ppm, along with selectivity tests using ammonia (NH3), nitric oxide (NO), methane (CH4), and carbon dioxide (CO2). In addition to their high sensitivity, the sensors exhibited reduced response times by 56 s. They also demonstrated high selectivity for NO2, with minimal cross-sensitivity to other gases. Furthermore, the polymer membranes exhibited rapid recovery times (114-153 s) and limits of detection in the low parts per billion range, with PIM-EA-TB achieving a detection limit of 0.7 ppb. These features highlight their potential as promising candidates for real-time environmental monitoring of toxic gases, showcasing the potential use of PIMs to enhance the sensitivity and selectivity of graphene-based gas sensors and providing a foundation for further development of cost-effective and reliable NO2 detection systems.
Collapse
Affiliation(s)
- Danielle M. Goodwin
- Centre for Integrative
Semiconductor Materials (CISM), Faculty of Science and Engineering, Swansea University—Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| | - Mariolino Carta
- Department of Chemistry, College of Science, Swansea University—Singleton Campus, Swansea SA2 8PP, U.K.
| | - Muhammad Munem Ali
- Centre for Integrative
Semiconductor Materials (CISM), Faculty of Science and Engineering, Swansea University—Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| | - Daniel Gillard
- Centre for Integrative
Semiconductor Materials (CISM), Faculty of Science and Engineering, Swansea University—Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| | - Owen J. Guy
- Centre for Integrative
Semiconductor Materials (CISM), Faculty of Science and Engineering, Swansea University—Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
- Department of Chemistry, College of Science, Swansea University—Singleton Campus, Swansea SA2 8PP, U.K.
| |
Collapse
|
4
|
Altınışık S, Yayla C, Karaca N, Koyuncu S. Carbazole-Bismaleimide Based Hyper-Cross-Linked Porous Organic Polymer for Efficient Iodine Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3259-3268. [PMID: 39874584 DOI: 10.1021/acs.langmuir.4c04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups. To produce CzBMI-POP, a free radical polymerization reaction was carried out via the unsaturated double bonds of Bis-Cz(BMI), enabling the construction of the N-rich porous skeleton in a simple and practical way. A high surface area carbazole-bismaleimide-based POP with polymer backbone having affinity for iodine uptake and sponge-like pore structures ranging from 2 to 20 nm showed iodine uptake capacity up to 215 wt %. The study highlights new opportunities to use POPs as iodine capture platform from nuclear waste, highlighting their potential for environmental remediation due to their easy synthesis and low cost.
Collapse
Affiliation(s)
- Sinem Altınışık
- Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey
- Department of Energy Resources and Management, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Cansu Yayla
- Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey
| | - Nurcan Karaca
- Central Research Laboratory Research and Application Center, Yalova University, 77200 Yalova, Turkey
| | - Sermet Koyuncu
- Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey
- Department of Energy Resources and Management, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| |
Collapse
|
5
|
Gou F, Wang Q, Yang Z, Chang W, Shen J, Zeng H. Artificial Lithium Channels Built from Polymers with Intrinsic Microporosity. Angew Chem Int Ed Engl 2025; 64:e202418304. [PMID: 39352859 DOI: 10.1002/anie.202418304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
In sharp contrast to numerous artificial potassium channels developed over the past decade, the study of artificial lithium-transporting channels has remained limited. We demonstrate here the use of an interesting class of polymers with intrinsic microporosity (PIM) for constructing artificial lithium channels. These PIM-derived lithium channels show exceptionally efficient (γLi +>40 pS) and highly selective transport of Li+ ions, with selectivity factors of>10 against both Na+ and K+. By simply adjusting the initial reaction temperature, we can tune the transport property in a way that PIMs synthesized at initial reaction temperatures of 60 °C and 80 °C exhibit improved transport efficiency and selectivity, respectively, in the dioleoyl phosphatidylcholine membrane.
Collapse
Affiliation(s)
- Fei Gou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiuting Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zihong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenju Chang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
6
|
Qiu B, Gao Y, Gorgojo P, Fan X. Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis. NANO-MICRO LETTERS 2025; 17:114. [PMID: 39847125 PMCID: PMC11757663 DOI: 10.1007/s40820-024-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Collapse
Affiliation(s)
- Boya Qiu
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Yong Gao
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China
| | - Patricia Gorgojo
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Mariano Esquillor, 50018, Zaragoza, Spain.
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Xiaolei Fan
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315048, People's Republic of China.
| |
Collapse
|
7
|
Hawkins N, Antonangelo AR, Wood M, Tocci E, Jansen JC, Fuoco A, Rizzuto C, Longo M, Bezzu CG, Carta M. Nitrogen Enriched Tröger's Base Polymers of Intrinsic Microporosity for Heterogeneous Catalysis. ACS APPLIED POLYMER MATERIALS 2025; 7:220-233. [PMID: 39816930 PMCID: PMC11730871 DOI: 10.1021/acsapm.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Heterogeneous catalysis is significantly enhanced by the use of highly porous polymers with specific functionalities, such as basic groups, which accelerate reaction rates. Polymers of intrinsic microporosity (PIMs) provide a unique platform for catalytic reactions owing to their high surface areas and customizable pore structures. We herein report a series of Tröger's base polymers (TB-PIMs) with enhanced basicity, achieved through the incorporation of nitrogen-containing groups into their repeat units, such as triazine and triphenylamine. These polymers offer a perfect balance between the pore "swellability", which allows the use of substrates of various dimensions, and the basicity of their repeat units, which facilitates the use of reactants with diverse acidity. The catalytic activity is evaluated through the Knoevenagel condensation of benzaldehydes and various methylene species, conducted in the presence of ethanol as a green solvent and using a 1:1 ratio of the two reagents. The results highlight a significant improvement, with reactions reaching completion using just a 1% molar ratio of catalysts and achieving a 3-fold enhancement over previous results with 4-tert-butyl-benzaldehyde. Computational modeling confirms that the enhanced basicity of the repeat units is attributable to the polymer design. Additionally, preliminary studies are undertaken to assess the kinetics of the catalyzed condensation reaction.
Collapse
Affiliation(s)
- Natasha Hawkins
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Ariana R. Antonangelo
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Mitchell Wood
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Elena Tocci
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Johannes Carolus Jansen
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Alessio Fuoco
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Carmen Rizzuto
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Mariagiulia Longo
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - C. Grazia Bezzu
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Mariolino Carta
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| |
Collapse
|
8
|
Chen Q, Hao J, Zhu Y, Zhang SJ, Zuo P, Zhao X, Jaroniec M, Qiao SZ. Anti-Swelling Microporous Membrane for High-Capacity and Long-Life Zn-I 2 Batteries. Angew Chem Int Ed Engl 2025; 64:e202413703. [PMID: 39150406 DOI: 10.1002/anie.202413703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
Zinc-iodine (Zn-I2) batteries are gaining popularity due to cost-effectiveness and ease of manufacturing. However, challenges like polyiodide shuttle effect and Zn dendrite growth hinder their practical application. Here, we report a cation exchange membrane to simultaneously prevent the polyiodide shuttle effect and regulate Zn2+ deposition. Comprised of rigid polymers, this membrane shows superior swelling resistance and ion selectivity compared to commercial Nafion. The resulting Zn-I2 battery exhibits a high Coulombic efficiency of 99.4 % and low self-discharge rate of 4.47 % after 48 h rest. By directing a uniform Zn2+ flux, the membrane promotes a homogeneous electric field, resulting in a dendrite-free Zn surface. Moreover, its microporous structure enables pre-adsorption of additional active materials prior to battery assembly, boosting battery capacity to 287 mAh g-1 at 0.1 A g-1. At 2 A g-1, the battery exhibits a steady running for 10,000 cycles with capacity retention up to 96.1 %, demonstrating high durability of the membrane. The practicality of the membrane is validated via a high-loading (35 mg cm-2) pouch cell with impressive cycling stability, paving a way for membrane design towards advanced Zn-I2 batteries.
Collapse
Affiliation(s)
- Qianru Chen
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Junnan Hao
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Yilong Zhu
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Shao-Jian Zhang
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Xun Zhao
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, 44242, Kent, OH, United States of America
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, 5005, Adelaide, SA, Australia
| |
Collapse
|
9
|
Wu Y, Antonangelo AR, Bezzu CG, Carta M. Highly Thermally Stable and Gas Selective Hexaphenylbenzene Tröger's Base Microporous Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69870-69880. [PMID: 39625852 DOI: 10.1021/acsami.4c15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This study shows the multistep synthesis of a series of Tröger's base polymers of intrinsic microporosity (TB-PIMs) based on a hexaphenylbenzene (HPB) core, with a focus on evaluating their thermal stability, porosity, and CO2 capture performance. Both ladder and linear structures were prepared, designed to feature tunable nitrogen content and porosity. Our findings demonstrate that polymers with higher nitrogen content, such as tetra-TB-HPB, exhibit superior CO2 affinity and selectivity, attributed to enhanced interactions with CO2 and optimized micropore sizes. Linear TB-polymers 1 and 2 are also made for comparison and show competitive performance in carbon capture, suggesting that cost-effective, simpler-to-synthesize materials can achieve efficient gas separation. The study reveals that increased porosity significantly enhances CO2 capacity and selectivity, particularly in networked TB-HPB-PIMs with high surface areas and narrow micropores, achieving values up to 544 m2 g-1, CO2 uptake of 2.00 mmol g-1, and CO2/N2 selectivity of 45.6. The thermal properties of these materials, assessed via thermogravimetric analysis (TGA), show that TB-HPB-PIMs maintain robust thermal stability in nitrogen atmosphere, with tetra- and hexa-TB-HPBs leading the series. However, in oxidative environments, denser polymers such as TB-HPB and linear TB-polymer 1 demonstrate higher performance, likely due to restricted air diffusion. Overall, our findings highlight the critical need to balance porosity and thermal stability in TB-HPB-PIMs for applications in gas separation, carbon capture, and the potential for these polymers as flame retardant materials. Tetra-TB-HPB stands out as the most promising material for CO2 capture and thermal stability under inert conditions, while denser polymers like TB-HPB offer superior performance in oxidative environments.
Collapse
Affiliation(s)
- Yue Wu
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Ariana R Antonangelo
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - C Grazia Bezzu
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| |
Collapse
|
10
|
Willner BJ, Aitchison CM, Podjaski F, Lu W, Tian J, Durrant JR, McCulloch I. Correlation between the Molecular Properties of Semiconducting Polymers of Intrinsic Microporosity and Their Photocatalytic Hydrogen Production. J Am Chem Soc 2024; 146:30813-30823. [PMID: 39475215 PMCID: PMC11565637 DOI: 10.1021/jacs.4c08549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024]
Abstract
Increasing the interface area between organic semiconductor photocatalysts and electrolyte by fabricating nanoparticles has proven to be an effective strategy to increase photocatalytic hydrogen production activity. However, it remains unclear if increasing the internal interface by the introduction of porosity has as clear benefits for activity. To better inform future photocatalyst design, a series of polymers of intrinsic microporosity (PIMs) with the same conjugated backbone were synthesized as a platform to independently modulate the variables of porosity and relative hydrophilicity through the use of hydrophilic alcohol moieties protected by silyl ether protecting groups. When tested in the presence of ascorbic acid and photodeposited Pt, a strong correlation between the wettable porosity and photocatalytic activity was found, with the more wettable analogue of two polymers of almost the same surface area delivering 7.3 times greater activity, while controlling for other variables. Transient absorption spectroscopic (TAS) investigation showed efficient intrinsic charge generation within 10 ps in two of the porous polymers, even without the presence of ascorbic acid or Pt. Detectable hole polarons were found to be immediately extracted by added ascorbic acid, suggesting the generation of reactive charges at regions readily accessible to electrolyte in the porous structures. This study directs organic semiconductor photocatalysts design toward more hydrophilic functionality for addressing exciton and charge recombination bottlenecks and clearly demonstrates the advantages of wettable porosity as a design principle.
Collapse
Affiliation(s)
- Benjamin J. Willner
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Catherine M. Aitchison
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Filip Podjaski
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12
0BZ, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Junfu Tian
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - James R. Durrant
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12
0BZ, U.K.
| | - Iain McCulloch
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
- Andlinger
Center for Energy and the Environment and Department of Electrical
and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Caliskan E, Shishatskiy S, Filiz V. Comparative Study of Polymer of Intrinsic Microporosity-Derivative Polymers in Pervaporation and Water Vapor Permeance Applications. Polymers (Basel) 2024; 16:2932. [PMID: 39458760 PMCID: PMC11511032 DOI: 10.3390/polym16202932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
This study assesses the gas and water vapor permeance of PIM-derivative thin-film composite (TFC) membranes using pervaporation and "pressure increase" methods, and provides a comparative view of "time lag" measurements of thick films obtained from our previous work. In this study, TFC membranes were prepared using PIM-1 and homopolymers that were modified with different side groups to explore their effects on gas and water vapor transport. Rigid and bulky aliphatic groups were used to increase the polymer's free volume and were evaluated for their impact on both gas and water transport. Aromatic side groups were specifically employed to assess water affinity. The permeance of CO2, H2, CH4 and water vapor through these membranes was analyzed using the 'pressure increase' method to determine the modifications' influence on transport efficiency and interaction with water molecules. Over a 20 h period, the aging and the permeance of the TFC membranes were analyzed using this method. In parallel, pervaporation experiments were conducted on samples taken independently from the same membrane roll to assess water flux, with particular attention paid to the liquid form on the feed side. The significantly higher water vapor transport rates observed in pervaporation experiments compared to those using the "pressure increase" method underline the efficiency of pervaporation. This efficiency suggests that membranes designed for pervaporation can serve as effective alternatives to conventional porous membranes used in distillation applications. Additionally, incorporating "time lag" results from a pioneering study into the comparison revealed that the trends observed in "time lag" and pervaporation results exhibited similar trends, whereas "pressure increase" data showed a different development. This discrepancy is attributed to the state of the polymer, which varies significantly depending on the operating conditions.
Collapse
Affiliation(s)
| | | | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.)
| |
Collapse
|
12
|
Martínez-López JC, Santos Rodríguez M, Oliver Cuenca V, Silva Testa G, van Eck E, Zhao EW, Lozano ÁE, Álvarez C, Carretero-González J. Dibenzodioxin-Based Polymers of Intrinsic Microporosity with Enhanced Transport Properties for Lithium Ions in Aqueous Media. Macromolecules 2024; 57:9442-9456. [PMID: 39399831 PMCID: PMC11468783 DOI: 10.1021/acs.macromol.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Boosting the transport and selectivity properties of membranes based on polymers of intrinsic microporosity (PIMs) toward one specific working analyte of interest is challenging. In this work, a novel family of PIM membranes, prepared by casting and exhibiting optima mechanical properties and high thermal stability, was synthesized from 4,4'-(2,2,2-trifluoro-1-phenylethane-1,1-diyl) bis(benzene-1,2-diol) and two tetrafluoro-nitrile derivatives. Gas permeability measurements evidenced a CO2/CH4 selectivity up to 170% relative to the reference polymer, PIM-1, in agreement with their calculated fractional free volume and the analysis of the textural properties by N2 and CO2 gas adsorption. Besides, the chemical modification by acid hydrolysis of the PIM membranes favored the permeability for lithium ions (LiCl 2M, 6 × 10-9 cm2·s-1) compared to other alkali metal analogs such as sodium (NaCl 2M, 7.38 × 10-10 cm2·s-1) and potassium (KCl 2M, 1.05 × 10-9 cm2·s-1). Moreover, the complete mitigation of the crossover of redox species with higher molecular sizes than the ions from alkali metal salts was confirmed by using in-line benchtop NMR methods. Additionally, the modified PIM membranes were measured in a symmetric electrochemical flow cell using an aqueous electrolyte by combining lithium ferro/ferricyanide redox compounds and lithium chloride. The electrochemical tests showed low polarization, high-rate capability, and capacity retention values of 99% when cycled at 10 mA·cm-2 for over 50 cycles. Based on these results, these polymers could be used as highly selective and conducting membranes in electrodialysis for lithium separation and lithium-based redox flow batteries and as a protective layer in high-energy density lithium metal batteries.
Collapse
Affiliation(s)
| | - Marta Santos Rodríguez
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Víctor Oliver Cuenca
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Giu Silva Testa
- Magnetic
Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Ernst van Eck
- Magnetic
Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Evan Wenbo Zhao
- Magnetic
Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Ángel E. Lozano
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Cristina Álvarez
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Javier Carretero-González
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| |
Collapse
|
13
|
Shi Y, Wang Y, Meng N, Liao Y. Photothermal Conversion Porous Organic Polymers: Design, Synthesis, and Applications. SMALL METHODS 2024; 8:e2301554. [PMID: 38485672 DOI: 10.1002/smtd.202301554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Indexed: 10/18/2024]
Abstract
Solar energy is a primary form of renewable energy, and photothermal conversion is a direct conversion process with tunable conversion efficiency. Among various kinds of photothermal conversion materials, porous organic polymers (POP) are widely investigated owing to their controllable molecular design, tailored porous structures, good absorption of solar light, and low thermal conductivity. A variety of POP, such as conjugated microporous polymers (CMP), covalent organic frameworks (COF), hyper-crosslinked porous polymers (HCP), polymers of intrinsic microporosity (PIM), porous ionic polymers (PIP), are developed and applied in photothermal conversion applications of seawater desalination, latent energy storage, and biomedical fields. In this review, a comprehensive overview of the recent advances in POP for photothermal conversion is provided. The micro molecular structure characteristics and macro morphology of POP are designed for applications such as seawater desalination, latent heat energy storage, phototherapy and photodynamic therapy, and drug delivery. Besides, a probe into the underlying mechanism of structural design for constructing POP with excellent photothermal conversion performance is methodicalized. Finally, the remaining challenges and prospective opportunities for the future development of POP for solar energy-driven photothermal conversion applications are elucidated.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuzhu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
14
|
Alotaibi MM, Almalki B, Tashkandi N, Basingab F, Abdullah S, Alkayal NS. Synthesis of silver nanoparticles embedded into melamine polyaminal networks as antibacterial and anticancer active agents. Sci Rep 2024; 14:20008. [PMID: 39198544 PMCID: PMC11358378 DOI: 10.1038/s41598-024-70606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Silver nanoparticles were successfully incorporated into a melamine-based polymer, resulting in the synthesis of (Ag NPs@Bipy-PAN) through a reverse double solvent approach. The synthesised Ag NPs@Bipy-PAN polymer underwent extensive characterisation through Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and Energy Dispersive X-ray (EDX) and Thermal Gravimetric Analysis. PXRD analysis confirmed the successful encapsulation of Ag nanoparticles and provided insights into the amorphous nature of the polymer following encapsulation. SEM and EDX analyses further corroborated the presence and distribution of Ag nanoparticles on the polymer surface. The biological efficacy of the Ag NPs@Bipy-PAN polymer was evaluated through antibacterial, anti-breast cancer, and biocompatibility assays. The results demonstrated notable antibacterial and anticancer activities, with significant efficacy against bacterial strains and breast cancer cells. Biocompatibility assessments indicated acceptable compatibility, particularly at a concentration of 2.5 mg/mL, compared to untreated control cells. These findings suggest that Ag NPs@Bipy-PAN has considerable potential as a candidate for cancer-targeted and antimicrobial drug delivery systems. The incorporation of silver nanoparticles into the melamine-based polymer enhances the safety profile of these systems in in vivo conditions, making them a viable option for advanced therapeutic applications.
Collapse
Affiliation(s)
- Maha M Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| | - Bodoor Almalki
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| | - Nada Tashkandi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O Box 80200, 21589, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, P.O Box 80200, 22252, Jeddah, Saudi Arabia
| | - Samaa Abdullah
- College of Pharmacy, Amman Arab University, Amman, 11953, Jordan
- Creativity, Innovation and Entrepreneurship Center, Amman Arab University, Amman, 11953, Jordan
| | - Nazeeha S Alkayal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Amin MK, Ye C, Pang S, Liu Y, Taylor D, Nichol GS, McKeown NB. Triptycene-like naphthopleiadene as a readily accessible scaffold for supramolecular and materials chemistry. Chem Sci 2024:d4sc02755h. [PMID: 39211740 PMCID: PMC11348350 DOI: 10.1039/d4sc02755h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Triptycene derivatives are used extensively in supramolecular and materials chemistry, however, most are prepared using a multi-step synthesis involving the generation of a benzyne intermediate, which hinders production on a large scale. Inspired by the ease of the synthesis of resorcinarenes, we report the rapid and efficient preparation of triptycene-like 1,6,2',7'-tetrahydroxynaphthopleiadene directly from 2,7-dihydroxynaphthalene and phthalaldehyde. Structural characterisation confirms the novel bridged bicyclic framework, within which the planes of the single benzene ring and two naphthalene units are fixed at an angle of ∼120° relative to each other. Other combinations of aromatic 1,2-dialdehydes and 2,7-disubstituted naphthalenes also provided similar triptycene-like products. The low cost of the precursors and undemanding reaction conditions allow for rapid multigram synthesis of 1,6,2',7'-tetrahydroxynaphthopleiadene, which is shown to be a useful precursor for making the parent naphthopleiadene hydrocarbon. The great potential for the use of the naphthopleiadene scaffold in supramolecular and polymer chemistry is demonstrated by the preparation of a rigid novel cavitand, a microporous network polymer, and a solution-processable polymer of intrinsic microporosity.
Collapse
Affiliation(s)
- Md Khairul Amin
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
- Chemistry Discipline, Khulna University Khulna 9208 Bangladesh
| | - Chunchun Ye
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Shuhua Pang
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Yuancheng Liu
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Dominic Taylor
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S Nichol
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
16
|
Lee TH, Balcik M, Wu WN, Pinnau I, Smith ZP. Dual-phase microporous polymer nanofilms by interfacial polymerization for ultrafast molecular separation. SCIENCE ADVANCES 2024; 10:eadp6666. [PMID: 39141741 PMCID: PMC11323956 DOI: 10.1126/sciadv.adp6666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Fine-tuning microporosity in polymers with a scalable method has great potential for energy-efficient molecular separations. Here, we report a dual-phase molecular engineering approach to prepare microporous polymer nanofilms through interfacial polymerization. By integrating two micropore-generating units such as a water-soluble Tröger's base diamine (TBD) and a contorted spirobifluorene (SBF) motif, the resultant TBD-SBF polyamide shows an unprecedentedly high surface area. An ultrathin TBD-SBF membrane (~20 nm) exhibits up to 220 times improved solvent permeance with a moderate molecular weight cutoff (~640 g mol-1) compared to the control membrane prepared by conventional chemistry, which outperforms currently reported polymeric membranes. We also highlight the great potential of the SBF-based microporous polyamides for hydrocarbon separations by exploring the isomeric effects of aqueous phase monomers to manipulate microporosity.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcel Balcik
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Cao Y, Taghvaie Nakhjiri A, Ghadiri M. Breakthrough applications of porous organic materials for membrane-based CO 2 separation: a review. Front Chem 2024; 12:1381898. [PMID: 38576848 PMCID: PMC10991746 DOI: 10.3389/fchem.2024.1381898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Over the last decades, porous organic materials (POMs) have been extensively employed in various industrial approaches including gas separation, catalysis and energy production due to possessing indisputable advantages like great surface area, high permeability, controllable pore size, appropriate functionalization and excellent processability compared to traditional substances like zeolites, Alumina and polymers. This review presents the recent breakthroughs in the multifunctional POMs for potential use in the membrane-based CO2 separation. Some examples of highly-selective membranes using multifunctional POMs are described. Moreover, various classifications of POMs following with their advantages and disadvantages in CO2 separation processes are explained. Apart from reviewing the state-of-the-art POMs in CO2 separation, the challenges/limitations of POMs with tailored structures for reasonable application are discussed.
Collapse
Affiliation(s)
- Yan Cao
- School of Computer Science and Engineering, Xi’an Technological University, Xi’an, China
| | - Ali Taghvaie Nakhjiri
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Ghadiri
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- The Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
18
|
Caliskan E, Shishatskiy S, Abetz V, Filiz V. Pioneering the preparation of porous PIM-1 membranes for enhanced water vapor flow. RSC Adv 2024; 14:9631-9645. [PMID: 38525056 PMCID: PMC10958458 DOI: 10.1039/d3ra08398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, porous polymers of intrinsic microporosity (PIM-1) membranes were prepared by non-solvent induced phase inversion (NIPS) and investigated for water vapor transport in view of their application in membrane distillation (MD). Due to the lack of high boiling point solvents for PIM-1 that are also water miscible, the mixture of tetrahydrofuran (THF) and N-methyl-2-pyrrolidone (NMP) was found to be optimal for the formation of a membrane with a developed porous system both on the membrane surface and in the bulk. PIM-1 was synthesized by using low and high temperature methods to observe how molecular weight effects the membrane structure. Low molecular weight PIM-1 was produced at low temperatures, while high molecular weight PIM-1 was obtained at high temperatures. Several membranes were prepared, including PM-6, PM-9, and PM-11 from low molecular weight PIM-1, and PM-13 from high molecular weight PIM-1. Scanning electron microscopy (SEM) was used to image the surface and cross-section of different porous PIM-1 membranes. Among all the PIM-1 membranes (PM) obtained, PM-6, PM-9, PM-11 and PM-13 showed the most developed porous structure, while PM-13 showed large voids in the bulk of the membrane. Contact angle measurements showed that all PIM-1 porous membranes are highly hydrophobic. Liquid water flux measurements showed that PM-6, PM-9 and PM-11 showed minimal water fluxes due to small surface pore size, while PM-13 showed a high water flux due to a large surface pore size. Water vapor transport measurements showed high permeance values for all membranes, demonstrating the applicability of the developed membranes for MD. In addition, a thin film composite (TFC) membrane with PIM-1 selective layer was prepared and investigated for water vapor transport to compare with porous PIM-1 membranes. The TFC membrane showed an approximately 4-fold lower vapor permeance than porous membranes. Based on these results, we postulated that the use of porous PIM-1 membranes could be promising for MD due to their hydrophobic nature and the fact that the porous membranes allow vapor permeability through the membrane but not liquid water. The TFC membrane can be used in cases where the transfer of water-soluble contaminants must be absolutely avoided.
Collapse
Affiliation(s)
- Esra Caliskan
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Sergey Shishatskiy
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
- Institute of Physical Chemistry, University of Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| |
Collapse
|
19
|
Wang M, Yan R, Shan M, Liu S, Tang H. Fabrication of crown ether-containing copolymer porous membrane and their enhanced adsorption performance for cationic dyes: Experimental and DFT investigations. CHEMOSPHERE 2024; 352:141363. [PMID: 38346508 DOI: 10.1016/j.chemosphere.2024.141363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Adsorptive separation membranes are widely utilized for the removal of toxic dyeing pollutants from dyeing wastewater. However, developing novel adsorption membranes with large adsorption capacities and enhanced adsorption performance for dyes in actual wastewater poses a significant challenge. This study focuses on the fabrication of crown ether-containing copolymer porous membrane (CRPM) and investigation of the adsorption performance of dyes from aqueous solutions. The morphology structure and pore size distribution revealed that the membrane was endowed with rich micropores and hierarchical porous structures. Three typical cationic dyes (MB, RhB, CV) and an anionic dye (MO) were selected to evaluate the adsorption behavior. The results of adsorption isotherms and kinetics demonstrated that the adsorption data could be well-fitted using the Freundlich and pseudo-first-order kinetic models, the thermodynamic parameters revealed that the adsorption process of dyes on CRPM is a spontaneous endothermic reaction. The membrane exhibited excellent adsorption performance for cationic dyes, with RhB displaying a higher maximum adsorption capacity than previously reported porous membranes. Notably, dynamic adsorption-desorption filtration demonstrated a rapid removal efficiency, with RhB, MB, and CV achieving removal rates of 99.09%, 98.63%, and 99.14% respectively, after five cycles. The filtration volume of the CRPM membrane was 2.4-fold greater than that of a traditional PVDF membrane when applied to actual dyeing wastewater. DFT theoretical calculations were employed to elucidate the adsorption mechanism. These calculations confirmed the significant roles of electrostatic interactions, H-bonds and π-π interactions in facilitating the high-efficiency adsorption of cationic dyes. These findings highlight the potential of the crown ether-containing copolymer as a promising material for adsorption separation membranes in the treatment of dyeing wastewater.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Rongkang Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Meng Shan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China.
| | - Hai Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
20
|
Guo S, Yeo JY, Benedetti FM, Syar D, Swager TM, Smith ZP. A Microporous Poly(Arylene Ether) Platform for Membrane-Based Gas Separation. Angew Chem Int Ed Engl 2024; 63:e202315611. [PMID: 38084884 DOI: 10.1002/anie.202315611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 01/18/2024]
Abstract
Membrane-based gas separations are crucial for an energy-efficient future. However, it is difficult to develop membrane materials that are high-performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd-catalyzed C-O coupling reactions. The scaffold of these microporous polymers consists of rigid three-dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution-processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2 /CH4 and (H2 S+CO2 )/CH4 selectivity in mixture tests as predicted by the dual-mode sorption model. The structural tunability, stability, and ease-of-processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.
Collapse
Affiliation(s)
- Sheng Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jing Ying Yeo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Jia Q, Zhao Y. Bioinspired Organic Porous Coupling Agent for Enhancement of Nanoparticle Dispersion and Interfacial Strength. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6403-6413. [PMID: 38261353 DOI: 10.1021/acsami.3c17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Composite materials have significantly advanced with the integration of inorganic nanoparticles as fillers in polymers. Achieving fine dispersion of these nanoparticles within the composites, however, remains a challenge. This study presents a novel solution inspired by the natural structure of Xanthium. We have developed a polymer of intrinsic microporosity (PIM)-based porous coupling agent, named PCA. PCA's rigid backbone structure enhances interfacial interactions through a unique intermolecular interlocking mechanism. This approach notably improves the dispersion of SiO2 nanoparticles in various organic solvents and low-polarity polymers. Significantly, PCA-modified SiO2 nanoparticles embedded in polyisoprene rubber showed enhanced mechanical properties. The Young's modulus increases to 30.7 MPa, compared to 5.4 MPa in hexadecyltrimethoxysilane-modified nanoparticles. Further analysis shows that PCA-modified composites not only become stiffer but also gain strength and ductility. This research demonstrates a novel biomimetic strategy for enhancing interfacial interactions in composites, potentially leading to stronger, more versatile composite materials.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
22
|
Gogoi A, Barman H, Mandal S, Seth S. Removal of dyes using polymers of intrinsic microporosity (PIMs): a recent approach. Chem Commun (Camb) 2023; 59:12799-12812. [PMID: 37815313 DOI: 10.1039/d3cc03248e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Removal of dyes from various industrial effluents is a great challenge, and cost-effective methods and materials with high dye removal efficacy are in high demand. Adsorption, nanofiltration and photocatalytic degradation are three major techniques that have been investigated for dye removal. PIMs are promising materials for use in these three methods based on their attributes, such as microporosity, solution processibility, high chemical stability and tunability through facile synthesis and easy postmodification. Although the number of reports on dye removal employing PIMs are limited, some of the materials have been shown to exhibit good dye separation properties, which are comparable to those of the state-of-the-art material activated carbon. In this highlight, we make an account of progress in PIMs and PIM-based composite materials in different dye removal processes over the last decade. Furthermore, we discuss the existing challenges of PIM-based materials and aim to analyze the key parameters for improving their dye removal properties.
Collapse
Affiliation(s)
- Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Tezpur-784028, India.
| | - Hima Barman
- Department of Applied Sciences, Tezpur University, Tezpur-784028, India.
| | - Susovan Mandal
- Department of Chemistry, Jhargram Raj College, Jhargram-721507, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Tezpur-784028, India.
| |
Collapse
|
23
|
Nagendra B, Cozzolino A, Acocella MR, Daniel C, Rizzo P, Guerra G. Hydrogen Bonded Dimer of an Alcohol with the Derived Carboxylic Acid Triggering their Sorption by Nanoporous-crystalline PPO Films. Chemistry 2023; 29:e202301441. [PMID: 37401565 DOI: 10.1002/chem.202301441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Films exhibiting nanoporous-crystalline (NC) phases of poly(2,6-dimethyl-1,4-phenylene) oxide (PPO), which are highly effective to absorb apolar organic guest molecules, are also able to absorb polar molecules (like alcohols and carboxylic acids) but only from concentrated organic solutions. NC PPO films, which do not absorb alcohols and carboxylic acids from diluted aqueous solutions, exhibits a huge uptake (even above 30 wt %) of benzyl alcohol (BAL) and benzoic acid (BA), if BA is obtained by spontaneous room temperature oxidation of BAL in aqueous solution. This phenomenon is rationalized by an easy uptake, mainly by the PPO intrahelical crystalline empty channels, of a BAL/BA 1/1 hydrogen-bonded dimer. This huge uptake of BAL/BA dimer by NC PPO films, which is also fast for films exhibiting the orientation of the crystalline helices perpendicular to the film plane (c⊥ orientation), can be exploited for purification of water from BAL, when present in traces. High and fast sorption of a hydrogen bonded dimer and negligible sorption of the two separate compounds is possibly unprecedented for absorbent materials.
Collapse
Affiliation(s)
- Baku Nagendra
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonietta Cozzolino
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Maria Rosaria Acocella
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Christophe Daniel
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Paola Rizzo
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gaetano Guerra
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
24
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
25
|
Pathak C, Gogoi A, Devi A, Seth S. Polymers of Intrinsic Microporosity Based on Dibenzodioxin Linkage: Design, Synthesis, Properties, and Applications. Chemistry 2023; 29:e202301512. [PMID: 37303240 DOI: 10.1002/chem.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs. Among these linkages, however, most of the studies have been based on dibenzodioxin-based PIMs. Therefore, this review focuses precisely on dibenzodioxin linkage chemistry. Herein, the design principles of different rigid and contorted monomer scaffolds are discussed, as well as synthetic strategies of the polymers through dibenzodioxin-forming reactions including copolymerization and postsynthetic modifications, their characteristic properties and potential applications studied so far. Towards the end, the prospects of these materials are examined with respect to their utility in industrial purposes. Further, the structure-property correlation of dibenzodioxin PIMs is analyzed, which is essential for tailored synthesis and tunable properties of these PIMs and their molecular level engineering for enhanced performances making these materials suitable for commercial usage.
Collapse
Affiliation(s)
| | - Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Arpita Devi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Assam, India
| |
Collapse
|
26
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023; 5:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
27
|
Wang S, Wang Z, Zhu S, Liu S, Zhang F, Jin J. Highly porous ultrathin polyamide membranes for fast separation of small molecules from organic solvents. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
28
|
Tan R, Wang A, Ye C, Li J, Liu D, Darwich BP, Petit L, Fan Z, Wong T, Alvarez-Fernandez A, Furedi M, Guldin S, Breakwell CE, Klusener PAA, Kucernak AR, Jelfs KE, McKeown NB, Song Q. Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206888. [PMID: 37178400 PMCID: PMC10369228 DOI: 10.1002/advs.202206888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems.
Collapse
Affiliation(s)
- Rui Tan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chunchun Ye
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jiaxi Li
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Dezhi Liu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Luke Petit
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Zhiyu Fan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Mate Furedi
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Charlotte E Breakwell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Peter A A Klusener
- Shell Global Solutions International B.V., Energy Transition Campus Amsterdam, HW Amsterdam, Grasweg 31, 1031, The Netherlands
| | - Anthony R Kucernak
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Neil B McKeown
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
29
|
Skupov KM, Ponomarev II, Vtyurina ES, Volkova YA, Ponomarev II, Zhigalina OM, Khmelenin DN, Cherkovskiy EN, Modestov AD. Proton-Conducting Polymer-Coated Carbon Nanofiber Mats for Pt-Anodes of High-Temperature Polymer-Electrolyte Membrane Fuel Cell. MEMBRANES 2023; 13:membranes13050479. [PMID: 37233540 DOI: 10.3390/membranes13050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150-200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacrylonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time. These anodes were studied by electron microscopy and tested in membrane-electrode assembly for H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the HT-PEMFC performance.
Collapse
Affiliation(s)
- Kirill M Skupov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Igor I Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Elizaveta S Vtyurina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Yulia A Volkova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Ivan I Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Olga M Zhigalina
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Dmitry N Khmelenin
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Evgeny N Cherkovskiy
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Alexander D Modestov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Av. 31, bld. 4., 119071 Moscow, Russia
| |
Collapse
|
30
|
Sorokina SA, Kuchkina NV, Mikhalchenko AV, Krasnova IY, Khanin DA, Skupov KM, Shifrina ZB. Ultramicroporous Polyphenylenes via Diels-Alder Polycondensation Approach. Polymers (Basel) 2023; 15:2060. [PMID: 37177207 PMCID: PMC10181309 DOI: 10.3390/polym15092060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Development of new microporous organic polymers attracts significant attention due to a wide scope of promising applications. In addition, the synthesis of soluble, non-crosslinking polymers of high surface area and uniform microporosity is very challenging, and the methods for soluble microporous polymers formation are rather limited. In this work, we report a new approach to construct porous polyphenylenes which employs the Diels-Alder polycondensation of multifunctional ethynyl-containing monomers of different spatial architecture with bis(cyclopentadienone)s. The resulting polymers were soluble in common organic solvents, and their structure and properties were assessed by NMR, TGA, DSC, and SEC studies. The polymers demonstrated a specific surface area up to 751 m2·g-1 and ultramicroporous (pore size ≤ 0.6 nm) structure. N2 and CO2 adsorption-desorption data revealed that porosity parameters, e.g., specific surface area and pore sizes, can be tuned selectively by varying the type of monomers and reaction conditions.
Collapse
Affiliation(s)
- Svetlana A. Sorokina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.)
| | | | | | | | | | | | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.)
| |
Collapse
|
31
|
Lee TH, Balçık M, Lee BK, Ghanem BS, Pinnau I, Park HB. Hyperaging-induced H2-selective thin-film composite membranes with enhanced submicroporosity toward green hydrogen supply. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
33
|
Izumi S, Inoue K, Nitta Y, Enjou T, Ami T, Oka K, Tohnai N, Minakata S, Fukushima T, Ishiwari F, Takeda Y. 3,11-Diaminodibenzo[a,j]phenazine: Synthesis, Properties, and Applications to Tröger's Base-Forming Ladder Polymerization. Chemistry 2023; 29:e202202702. [PMID: 36520052 DOI: 10.1002/chem.202202702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A new class of diamino-substituted π-extended phenazine compound was synthesized, and its photophysical properties were investigated. The U-shaped diaminophenazine displayed photoluminescence in solution with moderate quantum yield. The diamino aromatic compound was found applicable to the poly-condensation with formaldehyde to form Tröger's base ladder polymer. The obtained microporous ladder polymer features high CO2 adsorption selectivity against N2 , most likely due to the presence of basic nitrogen atoms in the phenazine rings.
Collapse
Affiliation(s)
- Saika Izumi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Keiki Inoue
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Yuya Nitta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Tomoya Enjou
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Takahiro Ami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
34
|
Chen J, Longo M, Fuoco A, Esposito E, Monteleone M, Comesaña Gándara B, Carolus Jansen J, McKeown NB. Dibenzomethanopentacene-Based Polymers of Intrinsic Microporosity for Use in Gas-Separation Membranes. Angew Chem Int Ed Engl 2023; 62:e202215250. [PMID: 36511357 PMCID: PMC10107563 DOI: 10.1002/anie.202215250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.
Collapse
Affiliation(s)
- Jie Chen
- EaStCHEMSchool of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Mariagiulia Longo
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Alessio Fuoco
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Elisa Esposito
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Marcello Monteleone
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | | | - Johannes Carolus Jansen
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Neil B. McKeown
- EaStCHEMSchool of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
35
|
Lu RQ, Yuan W, Feng H, Lennon Luo SX, Mason Wu YC, Etkind SI, Kumar M, Swager TM. Porous Polymers Containing Metallocalix[4]arene for the Extraction of Tobacco-Specific Nitrosamines. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10623-10630. [PMID: 37323159 PMCID: PMC10262809 DOI: 10.1021/acs.chemmater.2c02713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We designed porous polymers with a tungsten-calix[4]arene imido complex as the nitrosamine receptor for the efficient extraction of tobacco-specific nitrosamines (TSNAs) from water. The interaction between the metallocalix[4]arene and the TSNA, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) was investigated. We found that the incorporation of the nitrosamine receptor into porous polymers increased their selectivity toward NNK over nicotine. The polymer with an optimal ratio of calixarene-containing and porosity-inducing building blocks showed a high maximum adsorption capacity of up to 203 mg/g toward NNK under sonication, which was among the highest values reported. The adsorbed NNK could be removed from the polymer by soaking it in acetonitrile, enabling the adsorbent to be reused. A similar extraction efficiency to that under sonication could be achieved using the polymer-coated magnetic particles under stirring. We also proved that the material could efficiently extract TSNAs from real tobacco extract. This work not only provides an efficient material for the extraction of TSNAs but also offers a design strategy for efficient adsorbents.
Collapse
Affiliation(s)
- Ru-Qiang Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weize Yuan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Haosheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - You-Chi Mason Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel I Etkind
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohanraja Kumar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Solution-processable Amorphous Microporous Polymers for Membrane Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Skupov KM, Vtyurina ES, Ponomarev II, Ponomarev II, Aysin RR. Prospective carbon nanofibers based on polymer of intrinsic microporosity (PIM-1): Pore structure regulation for higher carbon sequestration and renewable energy source applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Preparation of microporous organic solvent nanofiltration (OSN) composite membrane from a novel tris-phenol monomer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Bechis I, Sapnik AF, Tarzia A, Wolpert EH, Addicoat MA, Keen DA, Bennett TD, Jelfs KE. Modeling the Effect of Defects and Disorder in Amorphous Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:9042-9054. [PMID: 36313398 PMCID: PMC9609304 DOI: 10.1021/acs.chemmater.2c01528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Amorphous metal-organic frameworks (aMOFs) are a class of disordered framework materials with a defined local order given by the connectivity between inorganic nodes and organic linkers, but absent long-range order. The rational development of function for aMOFs is hindered by our limited understanding of the underlying structure-property relationships in these systems, a consequence of the absence of long-range order, which makes experimental characterization particularly challenging. Here, we use a versatile modeling approach to generate in silico structural models for an aMOF based on Fe trimers and 1,3,5-benzenetricarboxylate (BTC) linkers, Fe-BTC. We build a phase space for this material that includes nine amorphous phases with different degrees of defects and local order. These models are analyzed through a combination of structural analysis, pore analysis, and pair distribution functions. Therefore, we are able to systematically explore the effects of the variation of each of these features, both in isolation and combined, for a disordered MOF system, something that would not be possible through experiment alone. We find that the degree of local order has a greater impact on structure and properties than the degree of defects. The approach presented here is versatile and allows for the study of different structural features and MOF chemistries, enabling the derivation of design rules for the rational development of aMOFs.
Collapse
Affiliation(s)
- Irene Bechis
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Adam F. Sapnik
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Andrew Tarzia
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Emma H. Wolpert
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Matthew A. Addicoat
- School
of Science and Technology, Nottingham Trent
University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - David A. Keen
- ISIS
Neutron and Muon Facility, Rutherford Appleton
Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Kim E. Jelfs
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| |
Collapse
|
40
|
Siderius DW, Hatch HW, Shen VK. Temperature Extrapolation of Henry's Law Constants and the Isosteric Heat of Adsorption. J Phys Chem B 2022; 126:7999-8009. [PMID: 36170675 PMCID: PMC9808984 DOI: 10.1021/acs.jpcb.2c04583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Computational screening of adsorbent materials often uses the Henry's law constant (KH) (at a particular temperature) as a first discriminator metric due to its relative ease of calculation. The isosteric heat of adsorption in the limit of zero pressure (qst∞) is often calculated along with the Henry's law constant, and both properties are informative metrics of adsorbent material performance at low-pressure conditions. In this article, we introduce a method for extrapolating KH as a function of temperature, using series-expansion coefficients that are easily computed at the same time as KH itself; the extrapolation function also yields qst∞. The extrapolation is highly accurate over a wide range of temperatures when the basis temperature is sufficiently high, for a wide range of adsorbent materials and adsorbate gases. Various results suggest that the extrapolation is accurate when the extrapolation range in inverse-temperature space is limited to |β - β0 | < 0.5 mol/kJ. Application of the extrapolation to a large set of materials is shown to be successful provided that KH is not extremely large and/or the extrapolation coefficients converge satisfactorily. The extrapolation is also able to predict qst∞ for a system that shows an unusually large temperature dependence. The work provides a robust method for predicting KH and qst∞ over a wide range of industrially relevant temperatures with minimal effort beyond that necessary to compute those properties at a single temperature, which facilitates the addition of practical operating (or processing) conditions to computational screening exercises.
Collapse
Affiliation(s)
- Daniel W. Siderius
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States,Corresponding Author:
| | - Harold W. Hatch
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
41
|
Swager TM, Etkind SI. The Properties, Synthesis, and Materials Applications of 1,4-Dithiins and Thianthrenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Abstract1,4-Dithiin and its dibenzo-analogue, thianthrene, represent a class of non-aromatic, sulfur-rich heterocycles. Their unique properties, stemming from both their non-planar structures and reversible one- and two-electron oxidations, serve as primary motivators for their use in the development of new materials. The applications of 1,4-dithiins and thianthrenes are rich and diverse, having been used for energy storage and harvesting, and the synthesis of phosphorescent compounds and porous polymers, among other uses. This review offers first an overview of the properties of 1,4-dithiin and thianthrene. Next, we describe enabling synthetic methodology to access 1,4-dithiins and thianthrenes with various substitution patterns. Lastly, the utility of 1,4-dithiin and thianthrene in the construction and design of new materials is detailed using select literature examples.1 Introduction2 Properties of 1,4-Dithiins and Thianthrenes3 Synthesis of 1,4-Dithiins and Thianthrenes3.1 Synthesis of 1,4-Dithiins3.2 Synthesis of Thianthrenes4 Application of 1,4-Dithiins and Thianthrenes in Materials4.1 Thianthrene-Containing Polymers4.2 Thianthrene in Redox-Active Materials4.3 Thianthrenes and 1,4-Dithiins in Supramolecular Chemistry and Self-Assembly4.4 Thianthrenes in Phosphorescent Materials4.5 Thianthrenes with Other Interesting Photophysical Properties4.6 Thianthrenes in the Synthesis of Non-natural Products5 Conclusion
Collapse
|
42
|
Ye C, Tan R, Wang A, Chen J, Comesaña Gándara B, Breakwell C, Alvarez‐Fernandez A, Fan Z, Weng J, Bezzu CG, Guldin S, Brandon NP, Kucernak AR, Jelfs KE, McKeown NB, Song Q. Long-Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime-Functionalized Ion-Selective Polymer Membranes. Angew Chem Int Ed Engl 2022; 61:e202207580. [PMID: 35876472 PMCID: PMC9541571 DOI: 10.1002/anie.202207580] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/07/2022]
Abstract
Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.
Collapse
Affiliation(s)
- Chunchun Ye
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Rui Tan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Anqi Wang
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jie Chen
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | | | - Charlotte Breakwell
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | | | - Zhiyu Fan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jiaqi Weng
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - C. Grazia Bezzu
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Stefan Guldin
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Nigel P. Brandon
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
| | - Anthony R. Kucernak
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Kim E. Jelfs
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Neil B. McKeown
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Qilei Song
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
43
|
Ye C, Tan R, Wang A, Chen J, Comesaña-Gándara B, Breakwell C, Alvarez-Fernandez A, Fan Z, Weng J, Bezzu G, Guldin S, Brandon N, Kucernak A, Jelfs KE, McKeown NB, Song Q. Long‐Life Aqueous Organic Redox Flow Batteries enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunchun Ye
- The University of Edinburgh School of Chemistry UNITED KINGDOM
| | - Rui Tan
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Anqi Wang
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Jie Chen
- The University of Edinburgh School of Chemistry UNITED KINGDOM
| | | | | | | | - Zhiyu Fan
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Jiaqi Weng
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Grazia Bezzu
- The University of Edinburgh Chemistry UNITED KINGDOM
| | - Stefan Guldin
- University College London Chemical Engineering UNITED KINGDOM
| | - Nigel Brandon
- Imperial College London Earth Science and Engineering UNITED KINGDOM
| | | | - Kim E. Jelfs
- Imperial College London Chemistry UNITED KINGDOM
| | | | - Qilei Song
- Imperial College London Department of Chemical Engineering South Kensington SW7 2AZ London UNITED KINGDOM
| |
Collapse
|
44
|
Yang J, Tao L, He J, McCutcheon JR, Li Y. Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. SCIENCE ADVANCES 2022; 8:eabn9545. [PMID: 35857839 PMCID: PMC9299556 DOI: 10.1126/sciadv.abn9545] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/07/2022] [Indexed: 05/21/2023]
Abstract
Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine learning (ML) implementation for the discovery of innovative polymers with ideal performance. Specifically, multitask ML models are trained on experimental data to link polymer chemistry to gas permeabilities of He, H2, O2, N2, CO2, and CH4. We interpret the ML models and extract valuable insights into the contributions of different chemical moieties to permeability and selectivity. We then screen over 9 million hypothetical polymers and identify thousands that lie well above current performance upper bounds, including hundreds of never-before-seen ultrapermeable polymer membranes with O2 and CO2 permeability greater than 104 and 105 Barrers, respectively. High-fidelity molecular dynamics simulations confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that many can be translated to reality.
Collapse
Affiliation(s)
- Jason Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lei Tao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jinlong He
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jeffrey R. McCutcheon
- Department of Chemical & Biomolecular Engineering, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Corresponding author.
| |
Collapse
|
45
|
Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Yoshimoto Y, Tomita Y, Sato K, Higashi S, Yamato M, Takagi S, Kawakami H, Kinefuchi I. Gas Adsorption and Diffusion Behaviors in Interfacial Systems Composed of a Polymer of Intrinsic Microporosity and Amorphous Silica: A Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7567-7579. [PMID: 35666952 DOI: 10.1021/acs.langmuir.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We investigate the adsorption and diffusion behaviors of CO2, CH4, and N2 in interfacial systems composed of a polymer of intrinsic microporosity (PIM-1) and amorphous silica using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. We build model systems of mixed matrix membranes (MMMs) with PIM-1 chains sandwiched between silica surfaces. Gas adsorption analysis using GCMC simulations shows that gas molecules are preferentially adsorbed in microcavities distributed near silica surfaces, resulting in an increase in the solubility coefficients of CO2, CH4, and N2 compared to bulk PIM-1. In contrast, diffusion coefficients obtained from MD simulations and then calibrated using the dual-mode sorption model show different tendencies depending on gas species: CO2 diffusivity decreases in MMMs compared to PIM-1, whereas CH4 and N2 diffusivities increase. These differences are attributed to competing effects of silica surfaces: the emergence of larger pores as a result of chain packing disruption, which enhances gas diffusion, and a quadrupole-dipole interaction between gas molecules and silica surface hydroxyl groups, which retards gas diffusion. The former has a greater impact on CH4 and N2 diffusivities, whereas the latter has a greater impact on CO2 diffusivity due to the strong quadrupole-dipole interaction between CO2 and surface hydroxyls. These findings add to our understanding of gas adsorption and diffusion behaviors in the vicinity of PIM-1/silica interfaces, which are unobtainable in experimental studies.
Collapse
Affiliation(s)
- Yuta Yoshimoto
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuiko Tomita
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Sato
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shiori Higashi
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Masafumi Yamato
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shu Takagi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Ikuya Kinefuchi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
47
|
Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat Commun 2022; 13:3184. [PMID: 35676263 PMCID: PMC9177609 DOI: 10.1038/s41467-022-30943-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm−2) in a laboratory-scale cell. Aqueous organic redox flow batteries are promising for grid-scale energy storage, although their practical application is still limited. Here, the authors report highly ion-conductive and selective polymer membranes, which boost the battery’s efficiency and stability, offering cost-effective electricity storage.
Collapse
|
48
|
McKeown NB. The structure-property relationships of Polymers of Intrinsic Microporosity (PIMs). Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Anstine DM, Sholl DS, Siepmann JI, Snurr RQ, Aspuru-Guzik A, Colina CM. In silico design of microporous polymers for chemical separations and storage. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Budd PM, Foster AB. Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|