1
|
Marvi PK, Das P, Jafari A, Hassan S, Savoji H, Srinivasan S, Rajabzadeh AR. Multifunctional Carbon Dots In Situ Confined Hydrogel for Optical Communication, Drug Delivery, pH Sensing, Nanozymatic Activity, and UV Shielding Applications. Adv Healthc Mater 2025; 14:e2403876. [PMID: 39757485 PMCID: PMC11874666 DOI: 10.1002/adhm.202403876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Indexed: 01/07/2025]
Abstract
Inspired by the emerging potential of photoluminescent hydrogels, this work unlocks new avenues for advanced biosensing, bioimaging, and drug delivery applications. Carbon quantum dots (CDs) are deemed particularly promising among various optical dyes, for enhancing polymeric networks with superior physical and chemical properties. This study presents the synthesis of CDs derived from Prunella vulgaris, a natural plant resource, through a single-step hydrothermal process, followed by their uniform integration into hydrogel matrices via an in situ free radical graft polymerization. The resulting CD-integrated hydrogels exhibit multifunctionality in biomedical applications, featuring a diffusion-controlled drug release mechanism, permit concurrent delivery of photoluminescent CDs and therapeutic agents, enabling real-time monitoring over 32 h. In addition, these hydrogels function as a broad-range optical pH sensor (pH 3-11), provide robust ultraviolet (UV) shielding, and demonstrate nanozyme-like peroxidase activity. Critically, biocompatibility tests confirm their non-cytotoxicity toward fibroblast cells, establishing these hydrogels as promising candidates for diverse biomedical applications. These include advanced wound dressings that monitor the healing process and detect infection through pH sensing, and promote healing through the nanozymatic activity, all while maintaining a moist wound microenvironment. These hydrogels demonstrate exceptional suitability for advanced smart drug delivery, effective UV-blocking, and as innovative platforms for in vivo sensing and bioimaging.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Arman Jafari
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3T 1J4Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3T 1J4Canada
| | - Shiza Hassan
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Houman Savoji
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3T 1J4Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3T 1J4Canada
- Center for Applied Research On Polymers and Composites (CREPEC)MontrealQCH3A 0C3Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| |
Collapse
|
2
|
Ren J, Lyu B, Gao D, Fu Y, Ma J. High-Performance Triple-Network Hydrogels Derived from Chrome Leather Scraps: Ultrahigh Compressive Strength, Adhesion, and Self-Recovery. Biomacromolecules 2025; 26:679-688. [PMID: 39680854 DOI: 10.1021/acs.biomac.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The development of engineered hydrogels with high strength, self-recovery, and adhesion is essential for applications requiring resistance to large deformations and cyclic loading. Herein, a triple-network (TN) hydrogel with ultrahigh compressive strength, strong adhesion, and good self-recovery was constructed by using tannic acid-modified chrome leather scrap hydrolysate as the first network, polyacrylamide as the second network, and poly-2-propenamide-2-methylpropanesulfonic acid as the third network. The ultrahigh (70 MPa compressive strength and 95% compression deformation) TN hydrogels were effectively created, which is attributed to the synergy of the three networks. The TN hydrogels display adhesion (adhesion strength > 20 kPa) ascribed to the introduction of phenolic hydroxyl groups in tannic acid. Intriguingly, the TN hydrogels exhibit excellent self-recovery performance (93.6% dissipated energy recovery at 70 °C) and shape memory performance (restored to the original shape in 20 s). These properties are essential for the development of high-performance hydrogels and promote the resource utilization of leather waste.
Collapse
Affiliation(s)
- Jingjing Ren
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Yatong Fu
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| |
Collapse
|
3
|
Tan E, Snee PT, Danışman-Kalındemirtaş F. An investigation of quantum dot theranostic probes for prostate and leukemia cancer cells using a CdZnSeS QD-based nanoformulation. J Colloid Interface Sci 2024; 675:1032-1039. [PMID: 39008921 DOI: 10.1016/j.jcis.2024.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Anticancer theranostic nanocarriers have the potential to enhance the efficacy of pharmaceutical evaluation of drugs. Semiconductor nanocrystals, also known as quantum dots (QDs), are particularly promising components of drug carrier systems due to their small sizes and robust photoluminescence properties. Herein, bright CdZnSeS quantum dots were synthesized in a single step via the hot injection method. The particles have a quasi-core/shell structure as evident from the high quantum yield (85 %), which decreased to 41 % after water solubilization. These water solubilized QDs were encapsulated into gallic acid / alginate (GA-Alg) matrices to fabricate imaging QDs@mod-PAA/GA-Alg particles with enhanced stability in aqueous media. Cell viability assessments demonstrated that these nanocarriers exhibited viability ranging from 63 % to 83 % across all tested cell lines. Furthermore, the QDs@mod-PAA/GA-Alg particles were loaded with betulinic acid (BA) and ceranib-2 (C2) for in vitro drug release studies against HL-60 leukemia and PC-3 prostate cancer cells. The BA loaded QDs@mod-PAA/GA-Alg had a half-maximal inhibitory concentration (IC50) of 8.76 μg/mL against HL-60 leukemia cells, which is 3-fold lower than that of free BA (IC50 = 26.55 μg/mL). Similar enhancements were observed with nanocarriers loaded with C2 and simultaneously with both BA and C2. Additionally, BA:C2 loaded QDs@mod-PAA/GA-Alg nanocarriers displayed a similar enhancement (IC50 = 3.37 μg/mL compared against IC50 = 11.68 μg/mL for free BA:C2). The C2 loaded QDs@mod-PAA/GA-Alg nanocarriers had an IC50 = 2.24 μg/mL against HL-60 cells. C2 and BA loaded QDs@mod-PAA/GA-Alg NCr had IC50 values of 7.37 μg/mL and 24.55 μg/mL against PC-3 cells, respectively.
Collapse
Affiliation(s)
- Ezgi Tan
- Istanbul University-Cerrahpasa, Department of Chemistry, Istanbul, Turkey.
| | - Preston T Snee
- University of Illinois at Chicago, Department of Chemistry, Chicago, USA.
| | | |
Collapse
|
4
|
Janipour Shahroudkolaei M, Mredha MTI, Chuang KC, Jeon I. Hofmeister-Effect-Driven Hybrid Glycerogels for Perfect Wide-Temperature Shape Fixity and Shape Recovery in Soft Robotics Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400567. [PMID: 38750612 DOI: 10.1002/smll.202400567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Shape memory gels have emerged as crucial elements in soft robotics, actuators, and biomedical devices; however, several problems persist, like the trade-off between shape fixity and shape recovery, and the limited temperature range for their application. This article introduces a new class of shape memory hybrid glycerogels (GGs) designed to address these limitations. The well-modulated internal structure of the GGs, facilitated by the Hofmeister salting-out effect, strategically incorporates a higher crystallite content, abundant crosslinking points, and a high elastic modulus. Unlike reported shape memory gels, the GG exhibits a perfect triple-step shape memory behavior in air with 100% shape fixity in a wide programming temperature range (75-135 °C) and simultaneously achieves 100% shape recoverability. The gel recovers its shape at -40 °C under near-infrared light across a wide programming temperature range (25-135 °C), showing unexpected initiation even at subzero temperatures. Inspired by the mechanics of composite structures, a method is proposed to integrate the GG seamlessly with a shape memory alloy, which further expands the temperature range that yields perfect shape memory properties. Finally, two light-controlled fluttering and crawling soft robot prototypes are engineered to illustrate the versatility and potential applications of the composite gel in soft robotics.
Collapse
Affiliation(s)
- Mona Janipour Shahroudkolaei
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Md Tariful Islam Mredha
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Kuo-Chih Chuang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of Aeronautics and Astronautics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Insu Jeon
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
5
|
Kim S, Goo W, Karima G, Lee JH, Kim HD. Polyacrylamide/Gel-Based Self-Healing Artificial Tympanic Membrane for Drug Delivery of Otitis Treatment. Biomater Res 2024; 28:0049. [PMID: 38952716 PMCID: PMC11214819 DOI: 10.34133/bmr.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/26/2024] [Indexed: 07/03/2024] Open
Abstract
One of the bacterial infections caused by tympanic membrane perforation is otitis media (OM). Middle ear inflammation causes continuous pain and can be accompanied by aftereffects such as facial nerve paralysis if repeated chronically. Therefore, it is necessary to develop an artificial tympanic membrane (TM) that can effectively regenerate the eardrum due to the easy implantation and removal of OM inflammation. In this study, we synthesized hydrogel by mixing gelatin and polyacrylamide. Cefuroxime sodium salt was then incorporated into this hydrogel to both regenerate the TM and treat OM. Cytotoxicity experiments confirmed the biocompatibility of hydrogels equipped with antibiotics, and we conducted drug release and antibacterial experiments to examine continuous drug release. Through experiments, we have verified the excellent biocompatibility, drug release ability, and antibacterial effectiveness of hydrogel. It holds the potential to serve as an effective strategy for treating OM and regenerating TM as a drug delivery substance.
Collapse
Affiliation(s)
- Sujin Kim
- Department of IT Convergence (Brain Korea Plus 21),
Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Woonhoe Goo
- Department of Otorhinolaryngology-Head and Neck Surgery,
Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gul Karima
- Department of Polymer Science and Engineering,
Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery,
Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hwan D. Kim
- Department of IT Convergence (Brain Korea Plus 21),
Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Polymer Science and Engineering,
Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering,
Korea National University of Transportation, Chungju, 27469, Republic of Korea
| |
Collapse
|
6
|
Madadian E, Naseri E, Legault R, Ahmadi A. Development of 3D-Printable Albumin-Alginate Foam for Wound Dressing Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1175-e1185. [PMID: 39359603 PMCID: PMC11442183 DOI: 10.1089/3dp.2022.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In this article, a method to develop 3D printable hybrid sodium alginate and albumin foam, crosslinked with calcium chloride mist is introduced. Using this method, highly porous structures are produced without the need of further postprocessing (such as freeze drying). The proposed method is particularly beneficial in the development of wound dressing as the printed foams show excellent lift-off and water absorption properties. Compared with methods that use liquid crosslinker, the use of mist prevents the leaching of biocompounds into the liquid crosslinker. 3D printing technique was chosen to provide more versatility over the wound dressing geometry. Calcium chloride and rhodamine B were used as the crosslinking material and the model drug, respectively. Various biomaterial inks were prepared by different concentrations of sodium alginate and albumin, and the fabricated scaffolds were crosslinked in mist, liquid, or kept without crosslinking. The effects of biomaterial composition and the crosslinking density on the wound dressing properties were assessed through printability studies. The mist-crosslinked biomaterial ink composed of 1% (w/v) sodium alginate and 12% (w/v) albumin showed the superior printability. The fabricated scaffolds were also characterized through porosity, mechanical, degradation, and drug release tests. The mist-crosslinked scaffolds showed superior mechanical properties and provided relatively prolonged drug release.
Collapse
Affiliation(s)
- Elias Madadian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Emad Naseri
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
| | - Ryan Legault
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
| | - Ali Ahmadi
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
7
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
8
|
Yeh YY, Lin YY, Wang TT, Yeh YJ, Chiu TH, Wang R, Bai MY, Yeh YC. Fabrication of versatile poly(xylitol sebacate)-co-poly(ethylene glycol) hydrogels through multifunctional crosslinkers and dynamic bonds for wound healing. Acta Biomater 2023; 170:344-359. [PMID: 37607615 DOI: 10.1016/j.actbio.2023.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Poly(polyol sebacate) (PPS) polymer family has been recognized as promising biomaterials for biomedical applications with their characteristics of easy production, elasticity, biodegradation, and cytocompatibility. Poly(xylitol sebacate)-co-poly(ethylene glycol) (PXS-co-PEG) has been developed to fabricate PPS-based hydrogels; however, current PXS-co-PEG hydrogels presented limited properties and functions due to the limitations of the crosslinkers and crosslinking chemistry used in the hydrogel formation. Here, we fabricate a new type of PXS-co-PEG hydrogels through the use of multifunctional crosslinkers as well as dynamic bonds. In our design, polyethyleneimine-polydopamine (PEI-PDA) macromers are utilized to crosslink aldehyde-functionalized PXS-co-PEG (APP) through imine bonds and hydrogen bonds. PEI-PDA/APP hydrogels present multiple functional properties (e.g., fluorescent, elastomeric, biodegradable, self-healing, bioadhesive, antioxidant, and antibacterial behaviors). These properties of PEI-PDA/APP hydrogels can be fine-tuned by changing the PDA grafting degrees in the PEI-PDA crosslinkers. Most importantly, PEI-PDA/APP hydrogels are considered promising wound dressings to promote tissue remodeling and prevent bacterial infection in vivo. Taken together, PEI-PDA/APP hydrogels have been demonstrated as versatile biomaterials to provide multiple tailorable properties and desirable functions to expand the utility of PPS-based hydrogels for advanced biomedical applications. STATEMENT OF SIGNIFICANCE: Various strategies have been developed to fabricate poly(polyol sebacate) (PPS)-based hydrogels. However, current PPS-based hydrogels present limited properties and functions due to the limitations of the crosslinkers and crosslinking chemistry used in the hydrogel formation. This work describes that co-engineering crosslinkers and interfacial crosslinking is a promising approach to synthesizing a new type of poly(xylitol sebacate)-co-poly(ethylene glycol) (PXS-co-PEG) hydrogels as multifunctional hydrogels to expand the utility of PPS-based hydrogels for advanced biomedical applications. The fabricated hydrogels present multiple functional properties (e.g., fluorescent, biodegradable, elastomeric, self-healing, bioadhesive, antioxidative, and antibacterial), and these properties can be fine-tuned by the defined crosslinkers. The fabricated hydrogels are also used as promising wound dressing biomaterials to exhibit promoted tissue remodeling and prevent bacterial infection in vivo.
Collapse
Affiliation(s)
- Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Yun Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Teng Wang
- Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan; Master of Public Health (MPH) Program, National Taiwan University, Taipei, Taiwan; GIP-TRIAD Master's Degree in Agro-Biomedical Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Yi Bai
- Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Adjunct Appointment to the Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Tavakoli M, Mirhaj M, Varshosaz J, Salehi S, Mohanna SM, Salehi S, Haghighi V, Kazemi N, Mehrjoo M, Shahriari-Khalaji M. Asymmetric tri-layer sponge-nanofiber wound dressing containing insulin-like growth factor-1 and multi-walled carbon nanotubes for acceleration of full-thickness wound healing. BIOMATERIALS ADVANCES 2023; 151:213468. [PMID: 37220673 DOI: 10.1016/j.bioadv.2023.213468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
To more closely resemble the structure of natural skin, multi-layered wound dressings have been developed. Herein, a tri-layer wound dressing was prepared containing a polyacrylamide (PAAm)-Aloe vera (Alo) sponge that had been incorporated with insulin-like growth factor-1 (IGF1) to provide a porous absorbent layer, which was able to promote angiogenesis. Alo nanofibers with multi-walled carbon nanotubes (MWCNT) were electrospun into the bottom layer to increase cell behavior, and a small film of stearic acid was put as a top layer to avoid germy penetration. In comparison to bilayer dressing, the tensile strength increased by 17.0 % (from 0.200 ± 0.010 MPa to 0.234 ± 0.022 MPa) and the elastic modulus by 45.6 % (from 0.217 ± 0.003 MPa to 0.316 ± 0.012 MPa) in the presence of Alo nanofibers containing 0.5 wt% of MWCNT at the bottom layer of Trilayer0.5 dressing. The release profile of IGF1, the antibacterial activity and the degradability of different wound dressings were investigated. Trilayer0.5 indicated the highest cell viability, cell adhesion and angiogenic potential among the prepared dressing materials. In-vivo rat model revealed that the Trilayer0.5 dressing treated group had the highest rate of wound closure and wound healing within 10 days compared to other groups.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seyedhosein Mirjalili Mohanna
- Department of Mechanical Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Sepideh Salehi
- Department of Medicine, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Vida Haghighi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Ma W, Ling S, Liu Y, Chen Z, Xu J. Bio-Inspired Low-Cost Fabrication of Stretchable, Adhesive, Transparent, and Multi-Functionalized Joint Wound Dressings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22915-22928. [PMID: 37155948 DOI: 10.1021/acsami.3c02065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ideal joint wound dressings should not only promote wound healing and have good mechanical properties including stretchability and adhesion but also possess functions such as sterilization or motion monitoring. The multiple characteristic requirements have greatly limited the material's alternative, resulting in research on functional joint wound dressings falling far short of market demand. Therefore, low-cost, comprehensive designs need to be developed. Herein, inspired by the spiral arteries in the endometrium, alginate-based helical fibers were introduced into polyacrylamide/gelatin (PAM-Gel) to obtain composite polymer membranes, realizing a combination of both mechanical and functional properties. Large scale (100 m) and high-throughput (10 times higher than literature) fabrication of helical microfibers were first achieved, ensuring the low cost of fiber preparation. The composite film had adequate stretchability (>300% strain), adhesion strength (14 kPa), high transparency, and good biocompatibility. The helical fibers could be easily functionalized without affecting the mechanical properties of the dressings, thus broadening the range of materials available for joint dressings. After different treatments of the helical fibers, controlled drug release and joint motion monitoring were realized. Therefore, this helical microfiber composite membrane design achieved low-cost preparation, good mechanical properties, and functionalities including healing promotion, drug release, and motion monitoring ability, demonstrating application potential.
Collapse
Affiliation(s)
- Wenjun Ma
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Sida Ling
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yingzhe Liu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Bal-Öztürk A, Torkay G, İdil N, Özkahraman B, Özbaş Z. Gellan gum/guar gum films incorporated with honey as potential wound dressings. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Sasmal PK, Ganguly S. Polymer in hemostasis and follow‐up wound healing. J Appl Polym Sci 2023. [DOI: 10.1002/app.53559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Somenath Ganguly
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
13
|
Ning X, Huang J, A Y, Yuan N, Chen C, Lin D. Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. Int J Mol Sci 2022; 23:15757. [PMID: 36555397 PMCID: PMC9779336 DOI: 10.3390/ijms232415757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels with a three-dimensional network structure are particularly outstanding in water absorption and water retention because water exists stably in the interior, making the gel appear elastic and solid. Although traditional hydrogels have good water absorption and high water content, they have poor mechanical properties and are not strong enough to be applied in some scenarios today. The proposal of double-network hydrogels has dramatically improved the toughness and mechanical strength of hydrogels that can adapt to different environments. Based on ensuring the properties of hydrogels, they themselves will not be damaged by excessive pressure and tension. This review introduces preparation methods for double-network hydrogels and ways to improve the mechanical properties of three typical gels. In addition to improving the mechanical properties, the biocompatibility and swelling properties of hydrogels enable them to be applied in the fields of biomedicine, intelligent sensors, and ion adsorption.
Collapse
Affiliation(s)
- Xuanjun Ning
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jiani Huang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Yimuhan A
- School of Materials and Metallurgy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ningning Yuan
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Donghai Lin
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
14
|
Zhang Z, Hu Y, Ma H, Wang Y, Zhong S, Sheng L, Li X, Peng J, Li J, Zhai M. MXene/Gelatin/Polyacrylamide Nanocomposite Double Network Hydrogel with Improved Mechanical and Photothermal Properties. Polymers (Basel) 2022; 14:polym14235247. [PMID: 36501639 PMCID: PMC9739737 DOI: 10.3390/polym14235247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The development of smart hydrogel with excellent mechanical properties and photothermal conversion capability is helpful in expending its application fields. Herein, a MXene/gelatin/polyacrylamide (M/G/PAM) nanocomposite double network (NDN) hydrogel was synthesized by γ-ray radiation technology for the first time. Compared with gelatin/polyacrylamide double network hydrogel, the optimized resultant M3/G/PAM NDN hydrogel shows better mechanical properties (tensile strength of 634 ± 10 kPa, compressive strength of 3.44 ± 0.12 MPa at a compression ratio of 90%). The M3/G/PAM NDN hydrogel exhibits a faster heating rate of 30 °C min-1, stable photothermal ability, and mechanical properties even after 20 cycles of on-off 808 nm near-infrared (NIR) laser irradiation (1.0 W cm-2). Furthermore, the temperature of M3/G/PAM NDN hydrogel can be increased rapidly from 25 °C to 90 °C in 10 s and could reach 145 °C in 120 s under irradiation by focused NIR laser irradiation (56.6 W cm-2). The high mechanical property and photothermal properties of M/G/PAM hydrogel are ascribed to the formation of double network and uniform hydrogen bonding between MXene and gelatin and PAM polymers. This work paves the way for construction of photothermal hydrogels with excellent mechanical properties.
Collapse
Affiliation(s)
- Zeyu Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Hu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huiling Ma
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shouchao Zhong
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lang Sheng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (J.P.); (M.Z.); Tel.: +86-10-62757193 (J.P.); +86-10-62753794 (M.Z.)
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (J.P.); (M.Z.); Tel.: +86-10-62757193 (J.P.); +86-10-62753794 (M.Z.)
| |
Collapse
|
15
|
Comparison of physical, mechanical and biological effects of leucocyte-PRF and advanced-PRF on polyacrylamide nanofiber wound dressings: In vitro and in vivo evaluations. BIOMATERIALS ADVANCES 2022; 141:213082. [PMID: 36067641 DOI: 10.1016/j.bioadv.2022.213082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 12/22/2022]
Abstract
Platelet-rich fibrin (PRF) is extracted from the blood without biochemical interference and, also, with the ability of a long-term release of growth factors that can stimulate tissue repair and regerenation. Here, leucocyte- and platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF) were extracted and utilized for the creation of nanofibers containing polyacrylamide (PAAm), PAAm / L-PRF and PAAm / A-PRP through electrospinning processing technique. The effect of the type of PRF on the physical, mechanical and biological properties of the resultant nanofiberous wound dressings are thoroughly evaluated. The results presented in the current study reveals that the fiber diameter is grealtly reduced through the utilization of L-PRF. In addition, mechanical property is also positively affected by L-PRF and the degradation rate is found to be higher compared to A-PRF group. The L929 cells proliferation and adhesion, angiogenesis potential and wound healing ability was significantly higher in PAAm/A-PRF nanofibers compared to pure PAAm and PAAm/L-PRF nanofibers owed to the release of vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). Overall, the utilization of L-PRF or A-PRF can improve the physical, mechanical and biological behavior of nanofiber making them an ideal candidate for wound dressings, with the emphasis on the skin tissue repair and regeneration applications.
Collapse
|
16
|
Yang Y, Zhang Y, Min Y, Chen J. Preparation of methacrylated hyaluronate/methacrylated collagen sponges with rapid shape recovery and orderly channel for fast blood absorption as hemostatic dressing. Int J Biol Macromol 2022; 222:30-40. [PMID: 36089083 DOI: 10.1016/j.ijbiomac.2022.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Uncontrolled hemorrhage of deep, narrow, and non-compressible perforating wounds is responsible for many trauma deaths. In this study, a rapid hemostatic sponge with an orderly channel based on methacrylated collagen (ColMA) was prepared via directional freeze-drying technology. The methacrylated hyaluronate (HAMA) was added to further enhance the mechanical properties of the sponge. The sponge presents excellent mechanical strength, rapid shape recovery, and absorption speed, which was faster than those of many reported natural polymer hemostatic sponges. Moreover, ColMA/HAMA sponge showed much better blood-clotting capacity and superior hemostasis performance than commercially available collagen sponges in vitro and in the rat-liver injury model. This study demonstrated a feasible strategy to construct the rapid hemostatic sponge with an orderly channel for the deep and non-compressible perforating wound.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yanyan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuanping Min
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Wangsawangrung N, Choipang C, Chaiarwut S, Ekabutr P, Suwantong O, Chuysinuan P, Techasakul S, Supaphol P. Quercetin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex-Loaded Hydrogels for Accelerated Wound Healing. Gels 2022; 8:gels8090573. [PMID: 36135285 PMCID: PMC9498314 DOI: 10.3390/gels8090573] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
This study concentrated on developing quercetin/cyclodextrin inclusion complex-loaded polyvinyl alcohol (PVA) hydrogel for enhanced stability and solubility. Quercetin was encapsulated in hydroxypropyl-β-cyclodextrin (HP-β-CD) by the solvent evaporation method. The prepared quercetin/HP-β-CD inclusion complex showed 90.50 ± 1.84% encapsulation efficiency (%EE) and 4.67 ± 0.13% loading capacity (%LC), and its successful encapsulation was confirmed by FT-IR and XRD. The quercetin/HP-β-CD inclusion complex was well dispersed in viscous solutions of PVA in various amounts (0.5, 1.0, 1.5. 2.5, and 5.0% w/v ratio), and the drug-loaded polymer solution was physically crosslinked by multiple freeze–thaw cycles to form the hydrogel. The cumulative amount of quercetin released from the prepared hydrogels increased with increasing concentrations of the inclusion complex. The introduction of the inclusion complex into the PVA hydrogels had no influence on their swelling ratio, but gelation and compressive strength reduced with increasing inclusion complex concentration. The potential cytotoxicity of quercetin/HP-β-CD inclusion complex hydrogels was evaluated by MTT assay and expressed as % cell viability. The results show biocompatibility toward NCTC 929 clone cells. The inhibitory efficacy was evaluated with 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, and the results show a higher level of antioxidant activity for quercetin/HP-β-CD inclusion complex hydrogels compared with free quercetin. The findings of our study indicate that the developed quercetin/HP-β-CD inclusion complex hydrogels possess the required properties and can be proposed as a quercetin delivery system for wound-healing applications.
Collapse
Affiliation(s)
| | - Chasuda Choipang
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit on Herbal Extracts-Infused Advanced Wound Dressing, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sonthaya Chaiarwut
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit on Herbal Extracts-Infused Advanced Wound Dressing, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongpol Ekabutr
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Orawan Suwantong
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Piyachat Chuysinuan
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pitt Supaphol
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit on Herbal Extracts-Infused Advanced Wound Dressing, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-2184-117
| |
Collapse
|
18
|
Fmoc-phenylalanine as a building block for hybrid double network hydrogels with enhanced mechanical properties, self-recovery, and shape memory capability. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Wang J, Hu J, Yuan X, Li Y, Song L, Xu F. Recombinant collagen hydrogels induced by disulfide bonds. J Biomed Mater Res A 2022; 110:1774-1785. [PMID: 35836355 PMCID: PMC9544300 DOI: 10.1002/jbm.a.37427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
With the characteristics of low toxicity and biodegradability, recombinant collagen‐like proteins have been chemically and genetically engineered as a scaffold for cell adhesion and proliferation. However, most of the existing hydrogels crosslinked with peptides or polymers are not pure collagen, limiting their utility as biomaterials. A major roadblock in the development of biomaterials is the need for high purity collagen that can self‐assemble into hydrogels under mild conditions. In this work, we designed a recombinant protein, S‐VCL‐S, by introducing cysteine residues into the Streptococcus pyogenes collagen‐like protein at both the N‐and C‐termini of the collagen with a trimerization domain (V) and a collagen domain (CL). The S‐VCL‐S protein was properly folded in complete triple helices and formed self‐supporting hydrogels without polymer modifications. In addition, the introduction of cysteines was found to play a key role in the properties of the hydrogels, including their microstructure, pore size, mechanical properties, and drug release capability. Moreover, two/three‐dimensional cell‐culture assays showed that the hydrogels are noncytotoxic and can promote long‐term cell viability. This study explored a crosslinking collagen hydrogel based on disulfide bonds and provides a design strategy for collagen‐based biomaterials.
Collapse
Affiliation(s)
- Jie Wang
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Jinyuan Hu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Xuan Yuan
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
20
|
Yin F, Liu J, Hu J, Ju Y. Bioinspired Polyacrylamide/(polyvinyl alcohol-copper acetate) Hydrogel with Cooling-triggered Shape Memory, Color Changing, and Self-healing Behavior. Macromol Rapid Commun 2022; 43:e2200401. [PMID: 35836310 DOI: 10.1002/marc.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Inspired by many living creatures with adjustment of shape and color in ever-changing environment, color changeable shape memory hydrogels are designed and expected to be potential candidates in the fields spanning from anti-counterfeiting to biomedical devices. However, they normally require complex synthesis, and more importantly, the cooling-induced shape recovery hydrogel is still rare and in its infancy so far. Herein, we have developed a unique color changeable shape memory hydrogel by simply incorporating polyvinyl alcohol and copper acetate into covalent polyacrylamide network. As core functional element, copper ions serve as reversible crosslinks after heating to achieve excellent cooling-triggered shape memory effect, color shifting and self-healing behavior, showing significant potential in diverse applications like grabbing, information encryption, and biomimetic designs. This work may guide the development of cooling-triggered smart hydrogels for practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Feng Yin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jinguo Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yong Ju
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Wang X, Qiao C, Jiang S, Liu L, Yao J. Hofmeister effect in gelatin-based hydrogels with shape memory properties. Colloids Surf B Biointerfaces 2022; 217:112674. [PMID: 35785718 DOI: 10.1016/j.colsurfb.2022.112674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
The soaking strategy with the Hofmeister effect has been proposed to fabricate gelatin- based hydrogels with excellent properties. However, the modulation mechanism of hydrogels lacks in-depth study. In this work, we studied in detail the effects of Hofmeister ions on the structural, thermal, viscoelastic and mechanical properties of gelatin hydrogels. The results showed that kosmotropic anions (Cit3-, SO42-, H2PO4- and S2O32-) enhanced hydrogen bonds and hydrophobic interactions between gelatin molecules, resulting in increases in the length and content of triple helices and thus improving the properties of gelatin hydrogels. In contrast, chaotropic anions (I- and SCN-) weakened the interactions between gelatin molecules, and thus attenuated the properties. Based on the Hofmeister effect, we successfully fabricated gelatin poly N-methylolacrylamide (PNMA) double network hydrogels with shape memory properties. The Hofmeister effect provides an excellent route for the rational design and fabrication of functional gelatin-based hydrogels.
Collapse
Affiliation(s)
- Xujie Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Congde Qiao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Song Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Libin Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
22
|
Cui T, Sun Y, Wu Y, Wang J, Ding Y, Cheng J, Guo M. Mechanical, microstructural, and rheological characterization of gelatin-dialdehyde starch hydrogels constructed by dual dynamic crosslinking. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Ma W, Ling S, Zhang J, Chen Z, Xu J. Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wenjun Ma
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Sida Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Jingwei Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|
24
|
3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Int J Biol Macromol 2021; 192:1098-1107. [PMID: 34666132 DOI: 10.1016/j.ijbiomac.2021.10.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023]
Abstract
Plant-based hydrogels have attracted great attention in biomedical fields since they are biocompatible and based on natural, sustainable, cost-effective, and widely accessible sources. Here, we introduced new viscoelastic bio-inks composed of quince seed mucilage and cellulose nanofibrils (QSM/CNF) easily extruded into 3D lattice structures through direct ink writing in ambient conditions. The QSM/CNF inks enabled precise control on printing fidelity where CNF endowed objects with shape stability after freeze-drying and with suitable porosity, water uptake capacity, and mechanical strength. The compressive and elastic moduli of samples produced at the highest CNF content were both increased by ~100% (from 5.1 ± 0.2 kPa and 32 ± 1 kPa to 10.7 ± 0.5 and 64 ± 2 kPa, respectively). These values ideally matched those reported for soft tissues; accordingly, the cell compatibility of the printed samples was evaluated against HepG2 cells (human liver cancer). The results confirmed the 3D hydrogels as being non-cytotoxic and suitable to support attachment, survival, and proliferation of the cells. All in all, the newly developed inks allowed sustainable 3D bio-hydrogels fitting the requirements as scaffolds for soft tissue engineering.
Collapse
|
25
|
Tebcharani L, Wanzke C, Lutz TM, Rodon-Fores J, Lieleg O, Boekhoven J. Emulsions of hydrolyzable oils for the zero-order release of hydrophobic drugs. J Control Release 2021; 339:498-505. [PMID: 34662584 DOI: 10.1016/j.jconrel.2021.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
Drug delivery systems that release hydrophobic drugs with zero-order kinetics remain rare and are often complicated to use. In this work, we present a gellified emulsion (emulgel) that comprises oil droplets of a hydrolyzable oil entrapped in a hydrogel. In the oil, we incorporate various hydrophobic drugs and, because the oil hydrolyzes with zero-order kinetics, the release of the drugs is also linear. We tune the release period from three hours to 50 h by varying the initial oil concentration. We show that the release rate is tunable by varying the initial drug concentration. Our quantitative understanding of the system allows for predicting the drug release kinetics once the drug's partition coefficient between the oil and the aqueous phase is known. Finally, we show that our drug delivery system is fully functional after storing it at -20 °C. Cell viability studies show that the hydrolyzable oil and its hydrolysis product are non-toxic under the employed conditions. With its simplicity and versatility, our system is a promising platform for the zero-order release of the drug.
Collapse
Affiliation(s)
- Laura Tebcharani
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Caren Wanzke
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Theresa M Lutz
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748 Garching, Germany
| | - Jennifer Rodon-Fores
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Oliver Lieleg
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
26
|
Michalska-Sionkowska M, Warżyńska O, Kaczmarek-Szczepańska B, Łukowicz K, Osyczka AM, Walczak M. Characterization of Collagen/Beta Glucan Hydrogels Crosslinked with Tannic Acid. Polymers (Basel) 2021; 13:polym13193412. [PMID: 34641227 PMCID: PMC8512118 DOI: 10.3390/polym13193412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogels based on collagen/β-glucan crosslinked with tannic acid were obtained by neutralization using dialysis. The presence of tannic acid allowed obtaining stable hydrogel materials with better mechanical properties. Tannic acid was released from matrices gradually and not rapidly. The antioxidant properties of the obtained hydrogels increased over the course of their incubation in culture media and were dependent on the concentration of tannic acid in the matrices. The obtained materials influenced dehydrogenase activity and the ATP level of pathogens. Additionally, the materials' extracts improved the HaCaT cells' viability. Therefore, the obtained hydrogels seem to be promising biocompatible materials which display antimicrobial properties.
Collapse
Affiliation(s)
- Marta Michalska-Sionkowska
- Faculty of Biological and Veterinary Sciences, Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (O.W.); (M.W.)
- Correspondence:
| | - Oliwia Warżyńska
- Faculty of Biological and Veterinary Sciences, Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (O.W.); (M.W.)
| | - Beata Kaczmarek-Szczepańska
- Faculty of Chemistry, Department of Biomaterials and Cosmetics Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Krzysztof Łukowicz
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, 31-007 Kraków, Poland; (K.Ł.); (A.M.O.)
| | - Anna Maria Osyczka
- Institute of Zoology and Biomedical Research, Department of Biology and Cell Imaging, Faculty of Biology, Jagiellonian University, 31-007 Kraków, Poland; (K.Ł.); (A.M.O.)
| | - Maciej Walczak
- Faculty of Biological and Veterinary Sciences, Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (O.W.); (M.W.)
| |
Collapse
|