1
|
Hyderi Z, Kannappan A, Ravi AV. The Multifaceted Applications of Seaweed and Its Derived Compounds in Biomedicine and Nutraceuticals: A Promising Resource for Future. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:491-505. [PMID: 39655722 DOI: 10.1002/pca.3482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 04/12/2025]
Abstract
The increasing demand for global food resources and over-dependence on terrestrial agroecosystems pose a significant challenge to the sustainable production of food commodities. Macroalgae are an essential source of food production in the marine environment, and their cultivation is a promising approach to alleviate the impending global food insecurity due to key factors, such as independence from terrestrial agriculture, rapid growth rate, unique biochemical composition, and carbon capture potential. Moreover, in many countries, seaweed has been used as food for decades because of its health and nutritional benefits. Seaweed contains bioactive components that are beneficial against various pathological conditions, including cancer, type 2 diabetes, and neurological disorders. Furthermore, the natural products derived from macroalgae have also been found to have immunostimulatory and antimicrobial properties. Macroalgae are also a significant source of rare sugars such as L-fucose, L-rhamnose, and glucuronic acid. Besides sugars, other bioactive components have been widely reported for their potential in cosmeceuticals. We have outlined the nutrient composition and functional properties of different species of macroalgae, with an emphasis on their potential as value-added products to the functional food market. Beyond being nutritional powerhouses, the variety of biological activities in human health and biomedicine makes them excellent candidates for developing novel drugs. Therefore, this review summarizes the pharmaceutical applications of macroalgae and suggests potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Zeeshan Hyderi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Arunachalam Kannappan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| |
Collapse
|
2
|
Zhang Z, Li XM, Guo Y, Wang H, Li Z, Lin H. Insight into the anti-allergic impacts of fucoidan from Gracilaria lemaneiformis in mitigating allergic reactions induced by shrimp tropomyosin via regulating Th1/Th2 cytokines and T cell subsets. Int J Biol Macromol 2025; 299:140228. [PMID: 39855495 DOI: 10.1016/j.ijbiomac.2025.140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Fucoidan is a natural sulfated polysaccharide with immunoregulatory function. In this work, the anti-allergic impacts of Gracilaria lemaneiformis fucoidan (GLF) in mitigating allergic reactions induced by shrimp tropomyosin were investigated. As the results, GLF performed significant hyaluronidase inhibition ability (IC50 = 0.272 mg/mL), alleviated the allergic reactions of RAW 264.7 macrophage cells via decreasing the secretion of TNF-α and NO by 58.75 % and 46.17 %, respectively, and mitigated the degranulation degree and secretion of IL-4, TNF-α and histamine as well as promoted IL-10 secretion in RBL-2H3 mast cells. In BALB/c mouse, after gavage of GLF, the mouse allergic symptoms got significantly alleviated, the secretion of IgE and IgG1 got reduced, IgG2a got promoted, the IL-4 secretion from mouse spleen lymphocytes (SLP) significantly declined, and IL-10 and IFN-γ secretion in SLP got improved, which indicated GLF performed significantly anti-allergic functions via transforming Th2 response into Th1 and Treg response. Moreover, the SLP cells treated by GLF had lower expression of GATA-3, higher T-bet and Foxp3 expression, which indicated GLF could mitigate allergic reactions via regulating T-bet, GATA3 and Foxp3 transcription factor expression of T cell subsets. Therefore, GLF could serve as anti-allergic substances for shrimp-induced allergy via regulating Th1/Th2 cytokines and T cell subsets.
Collapse
Affiliation(s)
- Ziye Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Yatao Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhenxing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
3
|
Liu YJ, Wang HY, Wang R, Yu J, Shi JJ, Chen RY, Yang GJ, Chen J. IgE-FcεRI protein-protein interaction as a therapeutic target against allergic asthma: An updated review. Int J Biol Macromol 2025; 284:138099. [PMID: 39608548 DOI: 10.1016/j.ijbiomac.2024.138099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
In the last decade, research has clarified the binding interactions between immunoglobulin E (IgE) and its high-affinity receptor, the FcεRI alpha chain (FcεRI). The formation of the IgE-FcεRI complex is crucial in the context of atopic allergies, linking allergen recognition to cellular activation and disease manifestation. Consequently, pharmacological strategies that disrupt these interactions are vital for managing atopic conditions. Historically, the complexity of the IgE-FcεRI binding process and challenges in producing functional recombinant derivatives has complicated data interpretation. However, advancements in structural biology, protein engineering, and immunological studies have enhanced our understanding of these protein-protein interactions (PPI), facilitating the development of more effective therapies. The introduction of anti-IgE therapies underscores the significance of the IgE-FcεRI PPI in allergic asthma. IgE, that is present locally and systemically, serves as a sensory mechanism in the adaptive immune response, particularly in mast cells (MCs) and basophils. When bound to FcεRI, IgE enables rapid memory responses to allergens, but dysregulation can lead to severe allergic asthma. Thus, the reactivity of IgE sensors can be finely modulated using various IgE-associated molecules. This review explores the mechanisms underlying IgE-dependent MC activation and its regulation by these molecules, including the latest therapeutic candidates under investigation.
Collapse
Affiliation(s)
- Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Hui-Ying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
4
|
Rincón-Cervera MA, de Burgos-Navarro I, Chileh-Chelh T, Belarbi EH, Álvarez-Corral M, Carmona-Fernández M, Ezzaitouni M, Guil-Guerrero JL. The Agronomic Potential of the Invasive Brown Seaweed Rugulopteryx okamurae: Optimisation of Alginate, Mannitol, and Phlorotannin Extraction. PLANTS (BASEL, SWITZERLAND) 2024; 13:3539. [PMID: 39771237 PMCID: PMC11677978 DOI: 10.3390/plants13243539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Rugulopteryx okamurae is an invasive brown macroalga that has recently proliferated in the western Mediterranean Sea, causing significant environmental challenges. This alga, however, contains valuable bioactive compounds-alginate, mannitol, and phlorotannins-that can serve as biofertilizers to promote plant growth and aid in bioremediation of degraded or contaminated soils. This study focused on optimizing the extraction of these compounds from R. okamurae, transforming an ecological issue into a beneficial resource. Algae samples collected from the Spanish Mediterranean coast were processed through a randomized factorial response surface design. Extraction conditions varied by time, temperature, algae-to-solvent ratio, and ethanol-to-water ratio to determine optimal yields. The highest yields achieved were 29.4, 11.9, and 0.35 g/100 g for alginate, mannitol, and phlorotannin's under extraction conditions of 6, 6, and 3 h; 58.8, 60.0, and 60.0 °C; and an algae:solvent ratio of 1:50, 2:45, and 1.40 g/mL, respectively. Characterization of the extracted sodium alginate using 1H-NMR, FTIR, and high-resolution electron microscopy confirmed its high purity and typical morphological features. This study highlights a sustainable approach to mitigating the invasive spread of R. okamurae while supporting soil health and sustainable agriculture. Harnessing this invasive species' biofertilizer potential provides a dual solution, aiding marine ecosystem conservation and developing eco-friendly agricultural practices.
Collapse
Affiliation(s)
- Miguel A. Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile
| | - Irene de Burgos-Navarro
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - Tarik Chileh-Chelh
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - El-Hassan Belarbi
- Engineering Chemistry Department, University of Almeria, 04120 Almeria, Spain;
| | | | - Minerva Carmona-Fernández
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - Mohamed Ezzaitouni
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - José L. Guil-Guerrero
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| |
Collapse
|
5
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Shen J, Zheng L, Zhang Y, Chen G, Mei X, Chang Y, Xue C. Discovery of a catalytic domain defines a new glycoside hydrolase family containing endo-1,3-fucanase. Carbohydr Polym 2024; 323:121442. [PMID: 37940306 DOI: 10.1016/j.carbpol.2023.121442] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Sulfated fucans are important marine polysaccharides with various bioactivities. Fucanases are desirable tools for the structural elucidations and oligosaccharides preparation of sulfated fucans. Herein, a gene with unknown function was screened from a sulfated fucan utilization locus in genome of marine bacterium Wenyingzhuangia aestuarii OF219 with the assistance of a machine learning approach on the structural biology. An undefined catalytic domain that presented in this gene was further cloned and expressed in Escherichia coli. Utilizing a sulfated fucan tetrasaccharide with definite structure as substrate, the endo-acting cleavage point of expressed protein (named Fun187A) was identified as the α-l-1,3-glycosidic bond between Fucp and Fucp(2OSO3-). Fun187A demonstrated a novel cleavage specificity, that is the subsite -1 could tolerate α-l-Fucp, and the subsite +1 could tolerate α-l-Fucp(2OSO3-). A homologue of Fun187A was also validated to display the endo-1,3-fucanse activity. The sequence novelty of Fun187A and its homologue defines a new glycoside hydrolase family, GH187.
Collapse
Affiliation(s)
- Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Long Zheng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
7
|
Jayawardhana HHACK, Jayawardena TU, Sanjeewa KKA, Liyanage NM, Nagahawatta DP, Lee HG, Kim JI, Jeon YJ. Marine Algal Polyphenols as Skin Protective Agents: Current Status and Future Prospectives. Mar Drugs 2023; 21:md21050285. [PMID: 37233479 DOI: 10.3390/md21050285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
The skin is the outermost anatomical barrier, which plays a vital role in the maintenance of internal homeostasis and protection against physical, chemical, and biological detractors. Direct contact with various stimuli leads to several physiological changes that are ultimately important for the growth of the cosmetic industry. Due to the consequences of using synthetic compounds in skincare and cosmeceutical-related industries, the pharmaceutical and scientific communities have recently shifted their focus to natural ingredients. The nutrient-rich value of algae, which are some of the most interesting organisms in marine ecosystems, has attracted attention. Secondary metabolites isolated from seaweeds are potential candidates for a wide range of economic applications, including food, pharmaceuticals, and cosmetics. An increasing number of studies have focused on polyphenol compounds owing to their promising biological activities against oxidation, inflammation, allergies, cancers, melanogenesis, aging, and wrinkles. This review summarizes the potential evidence of the beneficial properties and future perspectives of using marine macroalgae-derived polyphenolic compounds for advancing the cosmetic industry.
Collapse
Affiliation(s)
- H H A C K Jayawardhana
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - K K A Sanjeewa
- Faculty of Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
8
|
Riaz K, Butt MS, Sharif MK, Faisal MN. Therapeutic efficacy of spirulina against ovalbumin and cigarette smoke-induced asthma-specific stress biomarkers in Sprague-Dawley rats. Food Sci Nutr 2023; 11:972-982. [PMID: 36789047 PMCID: PMC9922124 DOI: 10.1002/fsn3.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the high prevalence of allergies and asthma, awareness about allergens and therapeutic use of functional foods and nutraceuticals have gained immense attention. Spirulina powder is being used as health-boosting and antioxidant agent against several ailments owing to its unique nutritional profile. Considering its antioxidant role, the current study was focused on exploring therapeutic role of spirulina against stress biomarkers in asthmatic model. To assess the therapeutic efficacy of spirulina against allergic asthma-specific oxidative stress biomarkers, a model feed trial was conducted and rats were divided into four groups (n = 10). G0-I (negative control), G0-II (positive control), whereas GI (spirulina) and G2 (salbutamol) served as treatment groups. Salbutamol is a chemical compound which is used in several antiallergic medicines because it works as bronchodilator. G2 group was given salbutamol for comparison of results. For asthma induction, rats were given intraperitoneal injection of ovalbumin on 7th, 14th, and 21st day. Treatment groups were given spirulina powder (500 mg/kg body weight) and salbutamol (1 mg/kg), respectively, after the induction of asthma. All three asthmatic groups were also exposed to cigarette smoke daily along with respective treatment for 4 weeks. Asthma induction caused an increase in total cell count in bronchioalveolar fluid (BALF), while spirulina treatment reduced total cells in BALF by 33.50% and salbutamol by 41.7%. Level of interleukins (IL) like IL-4 decreased by 33.32% & 48.56% in G1 and G2. Similarly, IL-5 and IL-13 levels reduced by 40.9% & 49.9% and 18.62% & 38.02%, respectively, in G1 and G2. Serum levels of Immunoglobin-E (Ig-E) declined by 29.70% and 52.82%, while histamine levels were 26.23% & 45.58% less at the end of study in comparison to positive control. Moreover, histological analysis of lung tissue revealed that both spirulina and salbutamol effectively reduced ovalbumin and cigarette smoke-induced moderate to severe necrosis, architectural changes, and congestion. It was concluded that salbutamol showed better results however, spirulina also effectively reduced mild to moderate allergic symptoms in dose-dependent manner. Nutraceutical and functional foods are considered helpful in mitigating oxidative stress-mediated health problems. Spirulina has its unique nutritional profile including phycobiliproteins, phytochemicals, and antioxidant vitamins which make it useful against several ailments. Considering its antioxidant role, current study was focused on exploring therapeutic efficacy of spirulina against stress biomarkers in asthmatic model. Outcomes of present research also demonstrated beneficial effect of spirulina in modulating allergic symptoms. In this regard, ancient concept of "medicine food homology" can be implemented and spirulina can be incorporated in food for additional benefits. However, further research regarding safety aspects is needed for its use in clinical practice for humans.
Collapse
Affiliation(s)
- Khadija Riaz
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Mian Kamran Sharif
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Naeem Faisal
- Faculty of Veterinary Science, Institute of Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
9
|
Banjare P, Singh J, Papa E, Roy PP. Aquatic toxicity prediction of diverse pesticides on two algal species using QSTR modeling approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10599-10612. [PMID: 36083366 DOI: 10.1007/s11356-022-22635-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
With the aim of identification of toxic nature of the diverse pesticides on the aquatic compartment, a large dataset of pesticides (n = 325) with experimental toxicity data on two algal test species (Pseudokirchneriella subcapitata (PS) (synonym: Raphidocelis subcapitata, Selenastrum capricornutum) and Scenedemus subspicatus (SS)) was gathered and subjected to quantitative structure toxicity relationship (QSTR) analysis to predict aquatic toxicity of pesticides. The QSTR models were developed by multiple linear regressions (MLRs), and the genetic algorithm (GA) was used for the variable selection. The developed GA-MLR models were statistically robust enough internally (Q2LOO = 0.620-0.663) and externally (Q2Fn = 0.693-0.868, CCCext = 0.843-0.877). The leverage approach of applicability domain (AD) and prediction reliability indicator assured the reliability of the developed models. The mechanistic interpretation highlighted that the presence of SO2, F and aromatic rings influenced the toxicity of pesticides towards PS species while the presence of alkyl, alkyl halide, aromatic rings and carbonyl was responsible for the toxicity of pesticides towards SS species. Additionally, we have reported the application of developed models to pesticides without experimental value and the cumulative toxicity of pesticides on the aquatic environment by using principal component analysis (PCA). The reliable prediction and prioritization of toxic compounds from the developed models will be useful in the aquatic toxicity assessment of pesticides.
Collapse
Affiliation(s)
- Purusottam Banjare
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Ester Papa
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
10
|
Jaworowska A, Murtaza A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:730. [PMID: 36613050 PMCID: PMC9819613 DOI: 10.3390/ijerph20010730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chronic, low-grade inflammation is linked to the development of non-communicable diseases, including cancer, cardiovascular disease, obesity, insulin resistance, diabetes, and others which together contribute to more than 50% of deaths globally. Modulation of inflammatory responses may be a promising strategy, and n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) may offer a new therapeutic option in inflammatory conditions. Seaweeds are characterised by high nutritional quality and are a good source of many bioactive compounds, including n-3 LC-PUFA. This review addresses the potential anti-inflammatory properties of seaweed derived lipids, and their immunomodulating mechanisms in order to identify the possible applications of seaweed as an anti-inflammatory functional food ingredient or dietary supplement. A few studies have evaluated the anti-inflammatory activity of seaweed lipids using crude lipid extracts, lipid fractions and isolated complex lipids from several seaweeds belonging to the Ochrophyta and Rhodophyta phyla, with only three Ulva rigida, Ulva sp. and Codium tomentosum within the Chlorophyta phylum. It was reported that seaweed derived lipids suppress inducible nitric oxide synthase and cyclooxygenase-2 expression and reduce nuclear factor κB p100 and myeloid differentiation primary response 88 protein levels leading to the downregulation of the production of several pro-inflammatory cytokines and nitric oxide. Further investigations are required to unravel the complex mechanisms underlying their preventive action against chronic inflammation and their potential use as a new functional food ingredient and/or health supplement.
Collapse
Affiliation(s)
| | - Aliza Murtaza
- School of Science, University of Greenwich, Chatham ME4 4TG, UK
| |
Collapse
|
11
|
Maheswari V, Babu PAS. Phlorotannin and its Derivatives, a Potential Antiviral Molecule from Brown Seaweeds, an Overview. RUSSIAN JOURNAL OF MARINE BIOLOGY 2022; 48:309-324. [PMID: 36405241 PMCID: PMC9640822 DOI: 10.1134/s1063074022050169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 05/31/2023]
Abstract
Research on seaweeds provides a continual discovery of natural bioactive compounds. The review presents new information on studies of the potential and specific antiviral action of phlorotannin and their derivatives from marine brown algae. Phlorotannin is a polyphenolic derivative and a secondary metabolite from marine brown algae which exhibits a high quality of biological properties. Phlorotannin has a variety of biological activities that include antioxidant, anticancer, antiviral, anti-diabetic, anti-allergic, antibacterial, antihypertensive and immune modulating activities. These phlorotannin properties were revealed by various biochemical and cell-based assays in vitro. This distinctive polyphenol from the marine brown algae may be a potential pharmaceutical and nutraceutical compound. In this review, the extraction, quantification, characterization, purification, and biological applications of phlorotannin are discussed, and antiviral potential is described in detail.
Collapse
Affiliation(s)
- V. Maheswari
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600062 Avadi, Chennai, Tamilnadu India
| | - P. Azhagu Saravana Babu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, 600062 Avadi, Chennai, Tamilnadu India
| |
Collapse
|
12
|
Wang C, Ye Z, Wang Y, Fu L. Effect of the harvest period on the structure and anti-allergic activity of Porphyra haitanensis polysaccharides. Food Funct 2022; 13:10034-10045. [PMID: 36069516 DOI: 10.1039/d2fo01442d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides are a major functional component of seaweeds with various biological activities. Porphyra haitanensis is usually harvested in different growth periods, but how the harvest periods influence the Porphyra haitanensis polysaccharide (PHP) activity is unclear. This work aimed to evaluate the anti-allergic activity of PHP from different harvest periods and investigate the potential structure-activity relationship. The water-soluble polysaccharide of P. haitanensis from three different harvest periods was purified and administered to an ovalbumin-sensitized food allergy mouse model. Results showed that PHPs significantly alleviated the allergic symptoms and reduced the production of histamine and allergen-specific IgE. Further experiments elucidated that PHPs suppressed the allergic activity of intestinal epithelial cells, dendritic cells, and Th2 cells and downregulated the proportion of Th2 cells. Noticeably, the molecular weight and sulfate content gradually decreased as the harvest period was delayed; simultaneously, the anti-allergic activity gradually increased, implying a relationship between the harvest period, structure, and anti-allergic activity of PHPs. This work elucidated the anti-allergic activity of PHPs from different harvest periods, facilitated the deep-processing and efficient application of Porphyra haitanensis, and shed light on the development of novel anti-allergic functional foods.
Collapse
Affiliation(s)
- Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Ziqiang Ye
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
13
|
Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. Mar Drugs 2022; 20:md20070445. [PMID: 35877738 PMCID: PMC9319038 DOI: 10.3390/md20070445] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Driven by consumer demand and government policies, synthetic additives in aquafeed require substitution with sustainable and natural alternatives. Seaweeds have been shown to be a sustainable marine source of novel bioactive phenolic compounds that can be used in food, animal and aqua feeds, or microencapsulation applications. For example, phlorotannins are a structurally unique polymeric phenolic group exclusively found in brown seaweed that act through multiple antioxidant mechanisms. Seaweed phenolics show high affinities for binding proteins via covalent and non-covalent bonds and can have specific bioactivities due to their structures and associated physicochemical properties. Their ability to act as protein cross-linkers means they can be used to enhance the rheological and mechanical properties of food-grade delivery systems, such as microencapsulation, which is a new area of investigation illustrating the versatility of seaweed phenolics. Here we review how seaweed phenolics can be used in a range of applications, with reference to their bioactivity and structural properties.
Collapse
|
14
|
Subbiah V, Xie C, Dunshea FR, Barrow CJ, Suleria HAR. The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Hafiz A. R. Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Huang L, Zeng Q, Zhang Y, Yin Q, Zhu X, Zhang P, Wang C, Liu J. Effects of fucoidans and alginates from Sargassum graminifolium on allergic symptoms and intestinal microbiota in mice with OVA-induced food allergy. Food Funct 2022; 13:6702-6715. [PMID: 35660845 DOI: 10.1039/d2fo00802e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food allergy has been one of the main problems threatening people's health in recent years. However, there is still no way to completely cure it at present. Therefore, the development of food allergy related drugs is still necessary. Sargassum graminifolium (SG) is a kind of polysaccharide rich marine brown alga used in food and medicine. Sargassum graminifolium polysaccharides (SGP) is mainly composed of fucoidans and alginic acid. In our study, we compared the activity of fucoidans and alginates from SG against OVA-induced food allergy in a mouse model, observed the regulatory effects of fucoidans and alginates from SG on the intestinal microbiota and summarized the possible role of the intestinal microbiota in the anti-food allergy process because polysaccharides can further act on the body through the intestinal microbiota. The results showed that fucoidans and alginates from SG could relieve the symptoms of allergy, diarrhea and jejunum injury significantly in mice with food allergy (p < 0.05). Furthermore, fucoidans at 500 mg kg-1 could reduce OVA-specific IgE and TNF-α levels significantly in the serum of food allergic mice (p < 0.05), while alginates could only significantly down-regulate serum OVA-specific IgE (p < 0.05). The results also showed that fucoidans had a stronger regulatory effect on the richness and diversity of the intestinal microbiota in food allergic mice compared to alginates at the same dose. In addition, fucoidans at 500 mg kg-1 had the most significant regulatory effect on Firmicutes, Lactobacillus and Alistipes in food allergic mice. These results suggested that fucoidans and alginates might regulate food allergy in mice through different pathways. Together, this study enriched the research on the action of alga-derived polysaccharides against food allergy.
Collapse
Affiliation(s)
- Lan Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Qianhui Zeng
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Yudie Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Qing Yin
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Xunxian Zhu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Peixi Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Cuifang Wang
- Quanzhou Normal University, Quanzhou 362000, China.
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| |
Collapse
|
16
|
Hotos GN, Antoniadis TI. The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium sp. and Cyanothece sp. in Batch Cultures. Life (Basel) 2022; 12:837. [PMID: 35743868 PMCID: PMC9225148 DOI: 10.3390/life12060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Two local marine cyanobacteria, Phormidium sp. and Cyanothece sp., were batch-cultured under 18-19.5 °C, at 40 ppt salinity, using white LED light of low (40 μmol photons/m2/s) and high (160 μmol/m2/s) intensity and, additionally, blue, green and red LED light. Yield was highest in high white light in both species (2.15 g dw/L in Phormidium, 1.47 g/L in Cyanothece), followed by green light (1.25 g/L) in Cyanothece and low white and green (1.26-1.33 g/L) in Phormidium. Green light maximized phycocyanin in Phormidium (0.45 mg/mL), while phycoerythrin was enhanced (0.17 mg/mL) by blue light and allophycocyanin by all colors (~0.80 mg/mL). All colors maximized phycocyanin in Cyanothece (~0.32 mg/mL), while phycoerythrin and allophycocyanin peaked under green light (~0.138 and 0.38 mg/mL, respectively). In Phormidium, maximization of chlorophyll-a (9.3 μg/mL) was induced by green light, while total carotenoids and b-carotene (3.05 and 0.89 μg/mL, respectively) by high white light. In Cyanothece, both white light intensities along with green maximized chlorophyll-a (~9 μg/mL) while high white light and green maximized total carotenoids (2.6-3.0 μg/mL). This study strongly indicates that these cyanobacteria can be cultured at the first stage under white light to accumulate sufficient biomass and, subsequently, under colored light for enhancing phycobiliproteins.
Collapse
Affiliation(s)
- George N. Hotos
- Plankton Culture Laboratory, Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece;
| | | |
Collapse
|
17
|
Anti-Allergic Effect of 3,4-Dihydroxybenzaldehyde Isolated from Polysiphonia morrowii in IgE/BSA-Stimulated Mast Cells and a Passive Cutaneous Anaphylaxis Mouse Model. Mar Drugs 2022; 20:md20020133. [PMID: 35200662 PMCID: PMC8875385 DOI: 10.3390/md20020133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum albumin (BSA)-induced BMCMCs degranulation by reducing the release of β-hexosaminidase without inducing cytotoxicity. Further, DHB dose-dependently decreased the IgE binding and high-affinity IgE receptor (FcεRI) expression and FcεRI-IgE binding on the surface of BMCMCs. Moreover, DHB suppressed the secretion and/or the expression of the allergic cytokines, interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF)-α, and the chemokine, thymus activation-regulated chemokine (TARC), by regulating the phosphorylation of IκBα and the translocation of cytoplasmic NF-κB into the nucleus. Furthermore, DHB attenuated the passive cutaneous anaphylactic (PCA) reaction reducing the exuded Evans blue amount in the mouse ear stimulated by IgE/BSA. These results suggest that DHB is a potential therapeutic candidate for the prevention and treatment of type I allergic disorders.
Collapse
|
18
|
Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021; 19:625. [PMID: 34822496 PMCID: PMC8622035 DOI: 10.3390/md19110625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiaoyang Liu
- National Engineering Research Center for Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
19
|
Costa M, Cardoso C, Afonso C, Bandarra NM, Prates JAM. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J Anim Physiol Anim Nutr (Berl) 2021; 105:1075-1102. [PMID: 33660883 DOI: 10.1111/jpn.13509] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
The effects of dietary macroalgae, or seaweeds, on growth performance and meat quality of livestock animal species are here reviewed. Macroalgae are classified into Phaeophyceae (brown algae), Rhodophyceae (red algae) and Chlorophyceae (green algae). The most common macroalga genera used as livestock feedstuffs are: Ascophyllum, Laminaria and Undaria for brown algae; Ulva, Codium and Cladophora for green algae; and Pyropia, Chondrus and Palmaria for red algae. Macroalgae are rich in many nutrients, including bioactive compounds, such as soluble polysaccharides, with some species being good sources of n-3 and n-6 polyunsaturated fatty acids. To date, the incorporation of macroalgae in livestock animal diets was shown to improve growth and meat quality, depending on the alga species, dietary level and animal growth stage. Generally, Ascophyllum nodosum can increase average daily gain (ADG) in ruminant and pig mostly due to its prebiotic activity in animal's gut. A. nodosum also enhances marbling score, colour uniformity and redness, and can decrease saturated fatty acids in ruminant meats. Laminaria sp., mainly Laminaria digitata, increases ADG and feed efficiency, and improves the antioxidant potential of pork. Ulva sp., and its mixture with Codium sp., was shown to improve poultry growth at up to 10% feed. Therefore, seaweeds are promising sustainable alternatives to corn and soybean as feed ingredients, thus attenuating the current competition among food-feed-biofuel industries. In addition, macroalgae can hinder eutrophication and participate in bioremediation. However, some challenges need to be overcome, such as the development of large-scale and cost-effective algae production methods and the improvement of algae digestibility by monogastric animals. The dietary inclusion of Carbohydrate-Active enZymes (CAZymes) could allow for the degradation of recalcitrant macroalga cell walls, with an increase of nutrients bioavailability. Overall, the use of macroalgae as feedstuffs is a promising strategy for the development of a more sustainable livestock production.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Cláudia Afonso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong ACY, Hsieh YSY, Wang D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar Drugs 2021; 19:620. [PMID: 34822491 PMCID: PMC8623139 DOI: 10.3390/md19110620] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Balázs Imre
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Ann C. Y. Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| |
Collapse
|
21
|
Kalasariya HS, Yadav VK, Yadav KK, Tirth V, Algahtani A, Islam S, Gupta N, Jeon BH. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021; 26:5313. [PMID: 34500745 PMCID: PMC8434260 DOI: 10.3390/molecules26175313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Amongst the countless marine organisms, seaweeds are considered as one of the richest sources of biologically active ingredients having powerful biological activities. Seaweeds or marine macroalgae are macroscopic multicellular eukaryotic photosynthetic organisms and have the potential to produce a large number of valuable compounds, such as proteins, carbohydrates, fatty acids, amino acids, phenolic compounds, pigments, etc. Since it is a prominent source of bioactive constituents, it finds diversified industrial applications viz food and dairy, pharmaceuticals, medicinal, cosmeceutical, nutraceutical, etc. Moreover, seaweed-based cosmetic products are risen up in their demands by the consumers, as they see them as a promising alternative to synthetic cosmetics. Normally it contains purified biologically active compounds or extracts with several compounds. Several seaweed ingredients that are useful in cosmeceuticals are known to be effective alternatives with significant benefits. Many seaweeds' species demonstrated skin beneficial activities, such as antioxidant, anti-melanogenesis, antiaging, photoprotection, anti-wrinkle, moisturizer, antioxidant, anti-inflammatory, anticancer and antioxidant properties, as well as certain antimicrobial activities, such as antibacterial, antifungal and antiviral activities. This review presents applications of bioactive molecules derived from marine algae as a potential substitute for its current applications in the cosmetic industry. The biological activities of carbohydrates, proteins, phenolic compounds and pigments are discussed as safe sources of ingredients for the consumer and cosmetic industry.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Engineering, River Engineering Pvt. Ltd., Ecotech Phase III, Greater Noida 110042, Uttar Pradesh, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, Madhya Pradesh, India;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Asir, Saudi Arabia;
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
22
|
Rodrigues L, Tilvi S, Fernandes MS, Harmalkar SS, Tilve SG, Majik MS. Isolation and Identification of Tyrosinase Inhibitors from Marine Algae Enteromorpha sp. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200721011816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The extract of marine green algae Enteromorpha sp. was evaluated in vitro for inhibitory
activity against mushroom tyrosinase enzyme. The principle active agents i.e. coumarin; 4-hydroxycoumarin
(1) and two sterols; ergosta-5,7,22-trien-3β-ol (2) & ergosterol peroxide (3) were isolated for
the first time, from a crude methanol extract of Enteromorpha sp. showing anti-tyrosinase activity.
Their structures were elucidated by IR, extensive NMR spectroscopy, LC-ESI-MS, Single crystal
X-ray diffraction techniques. Thus, Enteromorpha sp. can be an alternative edible anti-tyrosinase
agent.
Collapse
Affiliation(s)
- Lima Rodrigues
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206,India
| | - Supriya Tilvi
- Bio-organic Chemistry Laboratory, CSIR-National Institute of Oceanography, Donapaula, Goa 403 004,India
| | | | - Sarvesh S. Harmalkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206,India
| | - Santosh G. Tilve
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206,India
| | - Mahesh S. Majik
- Department of Chemistry, Government College of Arts, Science & Commerce, Khandola, Marcela-Goa, 403 107,India
| |
Collapse
|
23
|
Lomartire S, Cotas J, Pacheco D, Marques JC, Pereira L, Gonçalves AMM. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar Drugs 2021; 19:245. [PMID: 33926129 PMCID: PMC8146014 DOI: 10.3390/md19050245] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweeds are a potential source of bioactive compounds that are useful for biotechnological applications and can be employed in different industrial areas in order to replace synthetic compounds with components of natural origin. Diverse studies demonstrate that there is a solid ground for the exploitation of seaweed bioactive compounds in order to prevent illness and to ensure a better and healthier lifestyle. Among the bioactive algal molecules, phenolic compounds are produced as secondary metabolites with beneficial effects on plants, and also on human beings and animals, due to their inherent bioactive properties, which exert antioxidant, antiviral, and antimicrobial activities. The use of phenolic compounds in pharmaceutical, nutraceutical, cosmetics, and food industries may provide outcomes that could enhance human health. Through the production of healthy foods and natural drugs, bioactive compounds from seaweeds can help with the treatment of human diseases. This review aims to highlight the importance of phenolic compounds from seaweeds, the scope of their production in nature and the impact that these compounds can have on human and animal health through nutraceutical and pharmaceutical products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - João Cotas
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Diana Pacheco
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - João Carlos Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
Kord A, Foudil-Cherif Y, Amiali M, Boumechhour A, Benfares R. Phlorotannins Composition, Radical Scavenging Capacity and Reducing Power of Phenolics from the Brown Alga Cystoseira sauvageauana. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1895392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Affaf Kord
- National Center for Research and Development of Fisheries and Aquaculture, CNRDPA, Bou-Ismail, Algeria
- Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, USTHB, Algiers, Algeria
| | - Yazid Foudil-Cherif
- Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, USTHB, Algiers, Algeria
| | - Malek Amiali
- Agronomic Higher National School, Laboratory of Food Technology and Human Nutrition, ENSA, Algiers, Algeria
| | - Abdenour Boumechhour
- Center for Technical and Scientific Research in Physical-Chemical Analysis, CRAPC, Bou-Ismail, Algeria
| | - Redhouane Benfares
- National Center for Research and Development of Fisheries and Aquaculture, CNRDPA, Bou-Ismail, Algeria
| |
Collapse
|
25
|
Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, Socaci SA, Farcas AC. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020; 12:E3085. [PMID: 33050561 PMCID: PMC7601163 DOI: 10.3390/nu12103085] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Nowadays, one of the most important research directions that concerns the scientific world is to exploit the earth's resources in a sustainable way. Considering the increasing interest in finding new sources of bioactive molecules and functional products, many research studies focused their interest on demonstrating the sustainability of exploiting marine macroalgal biomass as feedstock for wastewater treatment and natural fertilizer, conversion into green biofuels, active ingredients in pharmaceutical and nutraceutical products, or even for the production of functional ingredients and integration in the human food chain. The objective of the present paper was to provide an overview on the recent progress in the exploitation of different macroalgae species as a source of bioactive compounds, mainly emphasizing the latter published data regarding their potential bioactivities, health benefits, and industrial applications.
Collapse
Affiliation(s)
- Elena-Suzana Biris-Dorhoi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Delia Michiu
- Department of Food Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Carmen R. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Ancuta M. Rotar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Maria Tofana
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Oana L. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Sonia A. Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Anca C. Farcas
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| |
Collapse
|
26
|
Potential Therapeutic Role of Dietary Supplementation with Spirulina platensis on the Erectile Function of Obese Rats Fed a Hypercaloric Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3293065. [PMID: 32685091 PMCID: PMC7345966 DOI: 10.1155/2020/3293065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Spirulina platensis, an important source of bioactive compounds, is a multicellular, filamentous cyanobacterium rich in high-quality proteins, vitamins, minerals, and antioxidants. Due to its nutrient composition, the alga is considered a complete food and is recognized for its anti-inflammatory, antioxidant, antiobesity, and reproprotective effects. All of which are important for prevention and treatment of organic and metabolic disorders such as obesity and erectile dysfunction. The aim of this study was to investigate the modulatory role of Spirulina platensis food supplementation and the mechanisms of action involved in reversing the damage caused by a hypercaloric diet on the erectile function of rats. The animals were divided into a standard diet group (SD, n = 5); a hypercaloric diet group (HCD, n = 5); a hypercaloric diet group supplemented with S. platensis at doses of 25 (HCD+SP25, n = 5), 50 (HCD+SP50, n = 5), and 100 mg/kg (HCD+SP100, n = 5); and a hypercaloric diet group subsequently fed a standard diet (HCD+SD, n = 5). In the rats fed a hypercaloric diet, dietary supplementation with S. platensis effectively increased the number of erections while decreasing latency to initiate penile erection. Additionally, S. platensis increases NO bioavailability, reduces inflammation by reducing the release of contractile prostanoids, enhances the relaxation effect promoted by acetylcholine (ACh), restores contractile reactivity damage and cavernous relaxation, reduces reactive oxygen species (ROS), and increases cavernous total antioxidant capacity (TAC). Food supplementation with S. platensis thus restores erectile function in obese rats, reduces production of contractile prostanoids, reduces oxidative stress, and increases NO bioavailability. Food supplementation with S. platensis thus emerges as a promising new therapeutic alternative for the treatment of erectile dysfunction as induced by obesity.
Collapse
|
27
|
In Vitro Hypoglycemic and Radical Scavenging Activities of Certain Medicinal Plants. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The purpose of this study is to investigate in vitro hypoglycemic and free radical scavenging activities of some medicinal plants including Ficus glomerata (FG), Pandanus amaryllifolia (PaA), Artocarpus altilis (AA), Gomphrena celosioides (GC) and Gynostemma pentaphyllum (GP). Alpha-amylase inhibitory assay was examined by dinitrosalicylic acid reaction. Glucose up-take assay was investigated by LO-2 cell model. DPPH and ABTS+ scavenging assays were performed by spectrophotometry. Cell viability was determined by MTT method. It was found that the extracts including FG, PaA, AA, GC and GP were able to inhibit alpha-amylase activity up to 38.4 ± 4.2%, 47.8 ± 4.3%, 49.3 ± 3.5%, 40.1 ± 4.4% and 38.5 ± 3.8%, respectively. Moreover, glucose adsorption and glucose uptake capacity of these extracts were evidenced. In addition, free radical scavenging activity of these extracts was indicated in a range of 30.6-54.5% for DPPH radical and 31.8-51.1% for ABTS+ radical. Especially, these extracts exhibited no cytotoxicity effect on human hepatic LO-2 cells and human gastric BGC-823 cells at the concentration of 100 µg/ml. The results indicated that A. altilis leaves were effective in inhibiting alpha-amylase activity, increasing glucose adsorption and glucose uptake and scavenging free radicals. Therefore, it could be suggested to be a promising hypoglycemic agent for managing type 2 diabetes.
Collapse
|
28
|
Vo TS. Natural products targeting FcεRI receptor for anti-allergic therapeutics. J Food Biochem 2020; 44:e13335. [PMID: 32588463 DOI: 10.1111/jfbc.13335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/26/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
Mast cells and basophils are important contributors for development of allergic reactions. The activation of these cells via cross-linking of IgE bound to FcεRI by allergen causes the generation of allergic mediators and the reaction of immediate hypersensitivity. Obviously, FcεRI is considered as a key trigger of acute allergic responses. Consequently, FcεRI is regarded as a potential target for downregulation of allergic diseases. So far, numerous synthetic agents have been reported for inhibition of FcεRI expression and FcεRI-IgE interaction. Meanwhile, natural products have received much attention due to their efficacy and safety. Recently, numerous anti-allergic agents from natural products have been revealed as promising inhibitors of allergic reactions via inhibiting the expression of FcεRI subunits as well as blocking FcεRI activation. Thus, the present contribution is mainly focused to describe natural products targeting FcεRI receptor and to emphasize their applicable potential as anti-allergic foods. PRACTICAL APPLICATIONS: Phlorotannins, epigallocatechin-3-gallate, peptides, chitooligosaccharides, and other natural products have been revealed as potential inhibitors of allergic responses. These bioactive agents target to FcεRI receptor by inhibiting expression of FcεRI and blocking interaction of FcεRI-IgE. Hence, these compounds could be applied as functional ingredients of anti-allergic foods.
Collapse
Affiliation(s)
- Thanh Sang Vo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| |
Collapse
|
29
|
Magdugo RP, Terme N, Lang M, Pliego-Cortés H, Marty C, Hurtado AQ, Bedoux G, Bourgougnon N. An Analysis of the Nutritional and Health Values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)-Two Chlorophyta Collected from the Philippines. Molecules 2020; 25:E2901. [PMID: 32599734 PMCID: PMC7356146 DOI: 10.3390/molecules25122901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Polysaccharides, lipids and amino acid profiles were investigated to understand the nutritional value of Caulerpa racemosa and Ulva fasciata from the Philippines. The results revealed that both species contain high amounts of proteins (8.8-19.9% for C. racemosa and 8.0-11.1% for U. fasciata). The portions of the total amino acids that were essential amino acids (EAAs) (45.28 ± 0.12% for C. racemosa and 42.17 ± 0.12% for U. fasciata) out were comparable to FAO/WHO requirements. Leucine, valine, isoleucine, and lysine are the dominant EAAs in C. racemosa, while leucine, valine, lysine, and phenylalanine are those in U. fasciata. The fatty acid profiles are dominated by monounsaturated fatty acids and polyunsaturated fatty acids in C. racemosa (56.2%), while saturated fatty acids (72.1%) are dominant in U. fasciata. High C18/C20 polyunsaturated fatty acid ratios were recorded in both species. Mineral contents for both seaweeds were within levels considered safe for functional foods. Total pigment content of C. racemosa (140.84 mg/g dw) was almost 20 times higher than that of U. fasciata (7.54 mg/g dw). Hot water extract (HWE) from C. racemosa showed in vitro antiherpetic activity without cytotoxicity. Nutritional characteristics confirmed that C. racemosa could be potentially used as a nutritious and functional food items for human consumption.
Collapse
Affiliation(s)
- Rexie P. Magdugo
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEM, F-56000 Vannes, France; (R.P.M.); (N.T.); (M.L.); (H.P.-C.); (C.M.); (G.B.)
| | - Nolwenn Terme
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEM, F-56000 Vannes, France; (R.P.M.); (N.T.); (M.L.); (H.P.-C.); (C.M.); (G.B.)
| | - Marie Lang
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEM, F-56000 Vannes, France; (R.P.M.); (N.T.); (M.L.); (H.P.-C.); (C.M.); (G.B.)
| | - Hugo Pliego-Cortés
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEM, F-56000 Vannes, France; (R.P.M.); (N.T.); (M.L.); (H.P.-C.); (C.M.); (G.B.)
| | - Christel Marty
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEM, F-56000 Vannes, France; (R.P.M.); (N.T.); (M.L.); (H.P.-C.); (C.M.); (G.B.)
| | - Anicia Q. Hurtado
- Integrated Services for the Development of Aquaculture and Fisheries (ISDA) Inc., MacArthur Highway, Tabuc Suba, Jaro, Iloilo City 5000, Philippines;
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEM, F-56000 Vannes, France; (R.P.M.); (N.T.); (M.L.); (H.P.-C.); (C.M.); (G.B.)
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEM, F-56000 Vannes, France; (R.P.M.); (N.T.); (M.L.); (H.P.-C.); (C.M.); (G.B.)
| |
Collapse
|
30
|
5-Bromo-3,4-dihydroxybenzaldehyde from Polysiphonia morrowii attenuate IgE/BSA-stimulated mast cell activation and passive cutaneous anaphylaxis in mice. Biochem Pharmacol 2020; 178:114087. [PMID: 32531348 DOI: 10.1016/j.bcp.2020.114087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
The present study investigates the anti-allergic activity of the marine algal bromophenol, 3-bromo-4,5-dihydroxybenzaldehyde (BDB), isolated from Polysiphonia morrowii Harvey in immunoglobulin (Ig)E/bovine serum albumin (BSA)-stimulated mouse bone marrow-derived cultured mast cells (BMCMCs) and a passive cutaneous anaphylaxis (PCA) mice ear model. BDB effectively inhibited β-hexosaminidase release (IC50 = 80.12 µM), in IgE/BSA-stimulated BMCMCs without a cytotoxic response. Also, BDB down-regulated the expression or secretion of cytokines, interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-10, IL-13, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α and the chemokine (thymus and activation-regulated chemokine (TARC). The above effects could be attributed to the dose-dependent decrease of FcεRI expression on the surface of BMCMCs and its stable IgE binding. Moreover, BDB suppressed the nuclear factor (NF)-κB and spleen tyrosine kinase (SYK)-linker for T-cell activation (LAT)-GRB2 associated binding protein 2 (Gab2) signaling axis activated by IgE/BSA stimulation. Furthermore, oral administration of BDB to IgE-sensitized mice effectively attenuated IgE-triggered PCA reaction. Collectively, the anti-allergic effects of BDB suggest its potential applicability as a candidate for in-depth test trials.
Collapse
|
31
|
Anti-allergy effect of mojabanchromanol isolated from Sargassum horneri in bone marrow-derived cultured mast cells. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Yu B, Bi D, Yao L, Li T, Gu L, Xu H, Li X, Li H, Hu Z, Xu X. The inhibitory activity of alginate against allergic reactions in an ovalbumin-induced mouse model. Food Funct 2020; 11:2704-2713. [PMID: 32163080 DOI: 10.1039/d0fo00170h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Marine seaweed polysaccharides have been considered as a potential resource for antiallergic therapy. Alginate is an acidic linear polysaccharide and soluble dietary fiber that was extracted from brown algae, Laminaria japonica. The molecular weight of alginate was 108 kDa, and its water solution exhibited non-Newtonian characteristics, including viscoelasticity and shear-thinning behavior. The ability of alginate to inhibit allergic reactions was investigated in ovalbumin (OVA)-induced BALB/c mice, which have been widely used as a mouse model of egg allergy. The results showed that alginate could effectively attenuate the occurrence of allergic reactions, including improving the integrity of the intestinal epithelial villi and inhibition of mast cell degranulation in the jejunum, in OVA-induced mice. Moreover, after treatment with alginate, the levels of IgE, histamine and IL-4 in OVA-induced mice were remarkably decreased, and the levels of IFN-γ were markedly increased. In addition, the number of Treg cells in spleen tissues in OVA-induced mice was increased by alginate, and the OVA-induced differentiation of Th0 cells into Th2 cells was significantly inhibited. These results demonstrate that alginate possesses potential antiallergic activities in a mouse model of egg allergy, which might provide important evidence that alginate, extracted from Laminaria japonica, can be developed into a novel functional food for inhibiting egg allergy.
Collapse
Affiliation(s)
- Boming Yu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Tong Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Liang Gu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, P. R. China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
33
|
Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, Pereira DT, Alencar ÉN, Tsapis N, Egito EST. Use of Natural Products in Asthma Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1021258. [PMID: 32104188 PMCID: PMC7040422 DOI: 10.1155/2020/1021258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
Asthma, a disease classified as a chronic inflammatory disorder induced by airway inflammation, is triggered by a genetic predisposition or antigen sensitization. Drugs currently used as therapies present disadvantages such as high cost and side effects, which compromise the treatment compliance. Alternatively, traditional medicine has reported the use of natural products as alternative or complementary treatment. The aim of this review was to summarize the knowledge reported in the literature about the use of natural products for asthma treatment. The search strategy included scientific studies published between January 2006 and December 2017, using the keywords "asthma," "treatment," and "natural products." The inclusion criteria were as follows: (i) studies that aimed at elucidating the antiasthmatic activity of natural-based compounds or extracts using laboratory experiments (in vitro and/or in vivo); and (ii) studies that suggested the use of natural products in asthma treatment by elucidation of its chemical composition. Studies that (i) did not report experimental data and (ii) manuscripts in languages other than English were excluded. Based on the findings from the literature search, aspects related to asthma physiopathology, epidemiology, and conventional treatment were discussed. Then, several studies reporting the effectiveness of natural products in the asthma treatment were presented, highlighting plants as the main source. Moreover, natural products from animals and microorganisms were also discussed and their high potential in the antiasthmatic therapy was emphasized. This review highlighted the importance of natural products as an alternative and/or complementary treatment source for asthma treatment, since they present reduced side effects and comparable effectiveness as the drugs currently used on treatment protocols.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Wógenes N. Oliveira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Susiane S. Moreira-Oliveira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Daniel T. Pereira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Éverton N. Alencar
- Graduate Program in Pharmaceutical Nanotechnology, LaSid, UFRN, Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Eryvaldo Sócrates T. Egito
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
- Graduate Program in Pharmaceutical Nanotechnology, LaSid, UFRN, Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
| |
Collapse
|
34
|
Charoensiddhi S, Abraham RE, Su P, Zhang W. Seaweed and seaweed-derived metabolites as prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:97-156. [PMID: 32035602 DOI: 10.1016/bs.afnr.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seaweeds and their bioactive compounds, particularly polysaccharides and phenolics can be regarded as great dietary supplements with gut health benefits and prebiotics. These components are resistant to digestion by enzymes present in the human gastrointestinal tract, also selectively stimulate the growth of beneficial gut bacteria and the production of fermentation products such as short chain fatty acids. Commonly, the health benefits of seaweed components are assessed by including them in an in vitro anaerobic fermentation system containing human fecal inocula that mimics the environment of the human large bowel. Regarding to the complex interactions between dietary components, gastrointestinal physiological processes, and gut microbiota are difficult to model in vitro. Consequently it is important to follow up the promising in vitro results with in vivo animal or human testing. The aim of this chapter is to have a comprehensive review on the application of seaweeds and seaweed-derived metabolites as prebiotics, and understand the trends, gaps and future directions of both scientific and industrial developments. This work contributes to develop and expand new platform of seaweed utilization for higher-value products, particularly to functional food and nutraceutical industries in order to serve the social demand for health awareness and support economic development.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Reinu E Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
35
|
Wang K, Pramod SN, Pavase TR, Ahmed I, Lin H, Liu L, Tian S, Lin H, Li Z. An overview on marine anti-allergic active substances for alleviating food-induced allergy. Crit Rev Food Sci Nutr 2019; 60:2549-2563. [PMID: 31441662 DOI: 10.1080/10408398.2019.1650716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Food provides energy and various nutrients and is the most important substance for the survival of living beings. However, for allergic people, certain foods cause strong reactions, and sometimes even cause shock or death. Food allergy has been recognized by the World Health Organization (WHO) as a major global food safety issue which affect the quality of life of nearly 5% of adults and 8% of children, and the incidence continues to rise but there is no effective cure. Drug alleviation methods for food allergies often have shortcomings such as side effects, poor safety, and high cost. At present, domestic and foreign scientists have turned to research and develop various new, safe and efficient natural sources of hypoallergenic or anti-allergic drugs or foods. There are many kinds of anti-allergic substances obtained from the plants and animals have been reported. Besides, probiotics and bifidobacteria also have certain anti-allergic effects. Of all the sources of anti-allergic substances, the ocean is rich in effective active substances due to its remarkable biodiversity and extremely complex living environment, and plays a huge role in the field of anti-food allergy. In this paper, the anti-food allergic bioactive substances isolated from marine organisms encompassing marine microbial, plant, animal sources and their mechanism were reviewed and the possible targets of anti-allergic substances exerting effects are illustrated by drawing. In addition, the development prospects of marine anti-allergic market are discussed and forecasted, which can provide reference for future research on anti-allergic substances.
Collapse
Affiliation(s)
- Kexin Wang
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Siddanakoppalu Narayana Pramod
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hang Lin
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Liangyu Liu
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Shenglan Tian
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| |
Collapse
|
36
|
Deciphering the anti-Parkinson’s activity of sulphated polysaccharides from Chlamydomonas reinhardtii on the α-Synuclein mutants A30P, A53T, E46K, E57K and E35K. J Biochem 2019; 166:463-474. [DOI: 10.1093/jb/mvz064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/18/2023] Open
Abstract
AbstractParkinsonism-linked mutations in alanine and glutamic acid residues of the pre-synaptic protein α-Synuclein (α-Syn) affect specific tertiary interactions essential for stability of the native state and make it prone to more aggregation. Many of the currently available drugs used for the treatment of Parkinson’s disease (PD) are not very effective and are associated with multiple side effects. Recently, marine algae have been reported to have sulphated polysaccharides which offers multiple pharmaceutical properties. With this background, we have isolated sulphated polysaccharides from Chlamydomonas reinhardtii (Cr-SPs) and investigated their effects on inhibition of fibrillation/aggregation of α-Syn mutants through a combination of spectroscopic and microscopic techniques. The kinetics of α-Syn fibrillation establishes that Cr-SPs are very effective in inhibiting fibrillation of α-Syn mutants. The morphological changes associated with the fibrillation/aggregation process have been monitored by transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis gel image suggests that Cr-SPs increase the amount of soluble protein after completion of the fibrillation/aggregation process. The circular dichroism results showed that Cr-SPs efficiently delay the conversion of native protein into β-sheet-rich structures. Thus, the current work has considerable therapeutic implications towards deciphering the potential of Cr-SPs to act against PD and other protein aggregation-related disorders.
Collapse
|
37
|
The Role of Rhodomyrtus tomentosa (Aiton) Hassk. Fruits in Downregulation of Mast Cells-Mediated Allergic Responses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3505034. [PMID: 31281834 PMCID: PMC6590610 DOI: 10.1155/2019/3505034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 01/12/2023]
Abstract
Rhodomyrtus tomentosa, a flowering plant of Myrtaceae family from southern and southeastern Asia, was known to possess a rich source of structurally diverse and various biological activities. In this study, the inhibitory effect of R. tomentosa fruit extract (RFE) on allergic responses in calcium ionophore A23187-activated RBL-2H3 mast cells was investigated. The result showed that RFE was able to inhibit mast cell degranulation via decreasing β-hexosaminidase release and intracellular Ca2+ elevation at the concentration of 400 μg/ml. Moreover, the suppressive effects of RFE on the production of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were evidenced. In addition, RFE effectively scavenged DPPH radical and suppressed the reactive oxygen species generation in a dose-dependent manner. Notably, the pretreatment of RFE caused the downregulation of tyrosine kinase Fyn phospholipid enzyme phospholipase Cγ (PLCγ), extracellular-signal-regulated kinase (ERK), and nuclear factor kappa B (NF-κB) phosphorylation. These results indicated that RFE could be a promising inhibitor of allergic responses and may be developed as bioactive ingredient for prevention or treatment of allergic diseases.
Collapse
|
38
|
Li Y, Sun H, Wu T, Fu Y, He Y, Mao X, Chen F. Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid. BIORESOURCE TECHNOLOGY 2019; 282:94-102. [PMID: 30852337 DOI: 10.1016/j.biortech.2019.02.127] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 05/06/2023]
Abstract
This study explored the co-production of fucoxanthin and stearidonic acid from Isochrysis zhangjiangensis by investigating its carbon metabolism under different light intensities. Results showed high light inhibited the synthesis of fucoxanthin and stearidonic acid, while promoted cell growth and enhanced cellular lipid content compared with low light, achieving 2.4 g/L and 28.55%, respectively. Low light accelerated the accumulation of fucoxanthin and stearidonic acid, which obtained 23.29 mg/g and 17.16% (of total fatty acid). In combination with the molecular analysis, low light redirected carbon skeletons into glyceraldehyde-3-phosphate and diverted into carotenoid especially fucoxanthin. While, high light redistributed the skeletons to Malonyl CoA, citrate and α-Ketoglutarate and then oriented into lipid metabolism. The highest fucoxanthin and stearidonic acid productivity was 2.94 mg L-1 d-1 and 4.33 mg L-1 d-1, respectively, which revealed I. zhanjiangensis is a potential strain for the co-production of fucoxanthin and stearidonic acid.
Collapse
Affiliation(s)
- Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yunlei Fu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yongjin He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
39
|
Investigation of Biological Activities of Wild Bitter Melon ( Momordica charantia Linn. Var. Abbreviata Ser.). Biomolecules 2019; 9:biom9060211. [PMID: 31151277 PMCID: PMC6627102 DOI: 10.3390/biom9060211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/28/2022] Open
Abstract
Wild bitter melon (Momordica charantia L. var. Abbreviata Ser.) is a wild edible variety of M. charantia, often used in folk medicine. In this study, the biological activities of its extract and fractions were investigated in vitro. It was found that ethyl acetate (EA) fraction exhibited high 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity with a half maximal inhibitory concentration (IC50) value of 0.43 ± 0.04 mg/mL, while the chloroform (CF), EA, and n-butanol (Bu) fractions had strong 2,2-azinobis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS)+ scavenging ability with IC50 values of 0.36 ± 0.04 mg/mL, 0.35 ± 0.02 mg/mL, and 0.35 ± 0.05 mg/mL, respectively. Moreover, the EA and Bu fractions exhibited the highest protective effect against H2O2-induced DNA damage in a concentration-dependent manner. Furthermore, the EA fraction was effective in the inhibition of enzyme α-amylase activity with an IC50 value of 0.27 ± 0.029 mg/mL. Finally, it was observed that the production of nitric oxide (NO), a pro-inflammatory mediator, was significantly reduced from LPS-stimulated murine macrophage RAW 264.7 cells by the ethanol extract (ET) and the EA fraction. Therefore, wild bitter melon could be considered as a promising biomaterial for the development of pharmaceutical products.
Collapse
|
40
|
Barboríková J, Šutovská M, Kazimierová I, Jošková M, Fraňová S, Kopecký J, Capek P. Extracellular polysaccharide produced by Chlorella vulgaris - Chemical characterization and anti-asthmatic profile. Int J Biol Macromol 2019; 135:1-11. [PMID: 31121228 DOI: 10.1016/j.ijbiomac.2019.05.104] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Microalgae are the lowest plant organisms producing a wide range of metabolites that make them interesting organisms for industrial applications. Cultivation of green microalgal species Chlorella vulgaris resulted a significant production of extracellular polysaccharide (EPS). Preliminary chemico-spectroscopic studies on EPS revealed its molecular profile, a complex primary structure consisting of six monosaccharide units occurring in both furano and pyrano forms, a high sugar binding variability and the presence of partially methylated derivatives of some sugar constituents. Biological activity tests showed that EPS caused significant bronchodilatory, anti-inflammatory and antitussive effects in test animals. Chlorella EPS appears to be a promising agent for the prevention of chronic airway inflammation, which is the basic pathogenic mechanism of many respiratory diseases, including bronchial asthma.
Collapse
Affiliation(s)
- Jana Barboríková
- Department of Pharmacology, Jessenius Faculty of Medicine, 03601 Martin, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| | - Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine, 03601 Martin, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| | - Ivana Kazimierová
- Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| | - Marta Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine, 03601 Martin, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine, 03601 Martin, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| | - Jiří Kopecký
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Treboň, Czechia
| | - Peter Capek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia.
| |
Collapse
|
41
|
Barbosa M, Lopes G, Andrade PB, Valentão P. Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Costa FDN, Borges RM, Leitão GG, Jerz G. Preparative mass-spectrometry profiling of minor concentrated metabolites in Salicornia gaudichaudiana Moq by high-speed countercurrent chromatography and off-line electrospray mass-spectrometry injection. J Sep Sci 2019; 42:1528-1541. [PMID: 30746891 DOI: 10.1002/jssc.201801195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
Salicornia species have just been introduced to the European market as a vegetable named 'samphire', 'green asparagus', or 'sea asparagus'. Due to its increasing attention, and associated value, minor compounds of Salicornia gaudichaudiana Moq were investigated. The use of countercurrent chromatography and mass spectrometry enabled the search for known, as well as potentially novel natural products. Their identification was achieved based on molecular weights and mass-spectrometric fragmentation data. Low detection limits enabled the visualization of all compounds with their identification in almost real time close to the preparative countercurrent chromatography experiment. A list of known natural products from Salicornia genus guided the identification process of compounds occurring in Salicornia gaudichaudiana Moq by tandem mass spectrometry fragment comparison. The natural product classes were divided into four groups: chlorogenic acid derivatives; flavonoid derivatives; pentacyclic triterpenoid saponins; and other compounds.
Collapse
Affiliation(s)
- Fernanda das Neves Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Rio de Janeiro-RJ, Brazil
| | - Ricardo Moreira Borges
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Rio de Janeiro-RJ, Brazil
| | - Gilda Guimarães Leitão
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Rio de Janeiro-RJ, Brazil
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
43
|
Li T, Ding T, Li J. Medicinal Purposes: Bioactive Metabolites from Marine-derived Organisms. Mini Rev Med Chem 2019; 19:138-164. [PMID: 28969543 DOI: 10.2174/1389557517666170927113143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022]
Abstract
The environment of marine occupies about 95% biosphere of the world and it can be a critical source of bioactive compounds for humans to be explored. Special environment such as high salt, high pressure, low temperature, low nutrition and no light, etc. has made the production of bioactive substances different from terrestrial organisms. Natural ingredients secreted by marine-derived bacteria, fungi, actinomycetes, Cyanobacteria and other organisms have been separated as active pharmacophore. A number of evidences have demonstrated that bioactive ingredients isolated from marine organisms can be other means to discover novel medicines, since enormous natural compounds from marine environment were specified to be anticancer, antibacterial, antifungal, antitumor, cytotoxic, cytostatic, anti-inflammatory, antiviral agents, etc. Although considerable progress is being made within the field of chemical synthesis and engineering biosynthesis of bioactive compounds, marine environment still remains the richest and the most diverse sources for new drugs. This paper reviewed the natural compounds discovered recently from metabolites of marine organisms, which possess distinct chemical structures that may form the basis for the synthesis of new drugs to combat resistant pathogens of human life. With developing sciences and technologies, marine-derived bioactive compounds are still being found, showing the hope of solving the problems of human survival and sustainable development of resources and environment.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning, 116600, China
| | - Ting Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China
| |
Collapse
|
44
|
Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. COSMETICS 2018. [DOI: 10.3390/cosmetics5040068] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Riverine, estuarine, and coastal populations have always used algae in the development of home remedies that were then used to treat diverse health problems. The empirical knowledge of various generations originated these applications, and their mechanism of action is, in most cases, unknown, that is, few more scientific studies would have been described beyond simple collection and ethnographic recording. Nevertheless, recent investigations, carried out with the purpose of analyzing the components and causes that alter the functioning and the balance of our organism, are already giving their first results. Water, and especially sea water is considered as essential to life on our planet. It sings all the substances necessary and conducive to the development of the living being (minerals, catalysts, vitamins, amino acids, etc.). Oceans cover over 70% of Earth, being home to up to 90% of the organisms in the planet. Many rich resources and unique environments are provided by the ocean. Additionally, bioactive compounds that multiple marine organisms have a great potential to produce can be used as nutraceuticals, pharmaceuticals, and cosmeceuticals. Both primary and secondary metabolites are produced by algae. The first ones are directly implicated in development, normal growth, or reproduction conditions to perform physiological functions. Stress conditions, like temperature changes, salinity, environmental pollutants, or UV radiation exposure cause the performance of secondary metabolites. In algae, proteins, polysaccharides, fatty acids, and amino acids are primary metabolites and phenolic compounds, pigments, vitamins, sterols, and other bioactive agents, all produced in algae tissues, are secondary metabolites. These algal active constituents have direct relevance in cosmetics.
Collapse
|
45
|
Khalil SR, Khalifa HA, Abdel-Motal SM, Mohammed HH, Elewa YHA, Mahmoud HA. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:255-265. [PMID: 29625400 DOI: 10.1016/j.ecoenv.2018.03.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Heavy metals are well known as environmental pollutants with hazardous impacts on human and animal health because of their wide industrial usage. In the present study, the role of Spirulina platensis in reversing the oxidative stress-mediated brain injury elicited by lead acetate exposure was evaluated. In order to accomplish this aim, rats were orally administered with 300 mg/kg bw Spirulina for 15 d, before and simultaneously with an intraperitoneal injection of 50 mg/kg bw lead acetate [6 injections through the two weeks]. As a result, the co-administration of Spirulina with lead acetate reversed the most impaired open field behavioral indices; however, this did not happen for swimming performance, inclined plane, and grip strength tests. In addition, it was observed that Spirulina diminished the lead content that accumulated in both the blood and the brain tissue of the exposed rats, and reduced the elevated levels of oxidative damage indices, and brain proinflammatory markers. Also, because of the Spirulina administration, the levels of the depleted biomarkers of antioxidant status and interleukin-10 in the lead-exposed rats were improved. Moreover, Spirulina protected the brain tissue (cerebrum and cerebellum) against the changes elicited by lead exposure, and also decreased the reactivity of HSP70 and Caspase-3 in both cerebrum and cerebellum tissues. Collectively, our findings demonstrate that Spirulina has a potential use as a food supplement in the regions highly polluted with heavy metals.
Collapse
Affiliation(s)
- Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Hesham A Khalifa
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Sabry M Abdel-Motal
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Hesham H Mohammed
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Yaser H A Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences. Graduate school of Veterinary, Hokkaido University, Sapporo, Japan
| | - Hend Atta Mahmoud
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
46
|
Effect of phlorotannins on myofibroblast differentiation and ECM protein expression in transforming growth factor β1‑induced nasal polyp‑derived fibroblasts. Int J Mol Med 2018; 42:2213-2220. [PMID: 30015862 DOI: 10.3892/ijmm.2018.3770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 11/05/2022] Open
Abstract
Phlorotannins (PTNs), a group of phenolic compounds from seaweeds, have diverse bioactivities. However, there has been no report on their antifibrotic effects during nasal polyp (NP) formation. In the present study, the effect of PTNs on transforming growth factor (TGF)‑β1‑induced profibrotic responses in nasal polyp‑derived fibroblasts (NPDFs) were determined and the relevant signaling pathways were investigated. The expression levels of collagen type‑1 (Col‑1) and fibronectin in NP tissues were measured by western blot analysis and immunohistochemistry. The NPDFs were treated with TGF‑β1 (1 ng/ml) in the presence or absence of PTNs (5‑30 µg/ml). The expression levels of α‑smooth muscle actin (α‑SMA), Col‑1, fibronectin, and phosphorylated‑small mothers against decapentaplegic (Smad)2/3 in NPDFs were measured by western blot analysis. The contractile activity of the NPDFs was determined by a collagen gel contraction assay. Col‑1 and fibronectin proteins were found to be expressed in NP tissues. PTNs had no significant cytotoxic effect on TGF‑β1‑induced NPDFs. TGF‑β1 induced the expression α‑SMA, Col‑1 and fibronectin, and stimulated fibroblast‑mediated contraction of collagen gel. However, pre‑treatment with PTNs inhibited the expression of these proteins. The inhibitory effects were mediated through the suppression of Smad2/3 signaling pathways in TGF‑β1‑induced NPDFs. These resulted suggested that PTNs may be important in inhibiting myofibroblast differentiation and extracellular matrix protein accumulation in NP formation through the Smad2/3 signaling pathway.
Collapse
|
47
|
Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol Adv 2018; 36:798-817. [DOI: 10.1016/j.biotechadv.2018.02.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
|
48
|
Unravelling the inhibitory activity of Chlamydomonas reinhardtii sulfated polysaccharides against α-Synuclein fibrillation. Sci Rep 2018; 8:5692. [PMID: 29632314 PMCID: PMC5890252 DOI: 10.1038/s41598-018-24079-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/26/2018] [Indexed: 01/10/2023] Open
Abstract
α-Synuclein (α-Syn) is an intrinsically disordered presynaptic protein, whose aggregation is critically involved in Parkinson’s disease (PD). Many of the currently available drugs for the treatment of PD are not sufficiently effective in preventing progress of the disease and have multiple side-effects. With this background, efficient drug candidates, sulfated polysaccharides from Chlamydomonas reinhardtii (Cr-SPs) were isolated and investigated for their effect on inhibition of α-Syn fibrillation and dissolution of preformed α-Syn fibrillar structures through a combination of spectroscopic and microscopic techniques. The kinetics of α-Syn fibrillation demonstrates that Cr-SPs are very effective in inhibiting α-Syn fibrillation. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis gel-image shows presence of soluble protein in the presence of Cr-SPs after completion of the fibrillation process. The morphological changes associated with fibrillation monitored by transmission electron microscopy showed that Cr-SPs efficiently bind with α-Syn and delay the conversion of α-helical intermediate into β-sheet rich structures. Cr-SPs are also effective even if onset of α-Syn fibrillation has already started and they also have the ability to dissolve pre-formed fibrils. Thus, the current work has substantial therapeutic implications towards unlocking the immense potential of algal products to function as alternative therapeutic agents against PD and other protein aggregation related disorders.
Collapse
|
49
|
First global transcriptome analysis of brown algae Macrocystis integrifolia (Phaeophyceae) under marine intertidal conditions. 3 Biotech 2018; 8:185. [PMID: 29556439 DOI: 10.1007/s13205-018-1204-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/08/2018] [Indexed: 01/28/2023] Open
Abstract
To understand the physiological responses of the brown macroalga Macrocystis integrifolia during the marine tidal cycle, two RNA libraries were prepared from algal frond samples collected in the intertidal zone (0 m depth) and subtidal zone (10 m depth). Samples collected from intertidal zone during low tide was considered as abiotic stressed (MI0), while samples collected from subtidal zone was considered as control (MI10). Both RNA libraries were sequenced on Illumina NextSeq 500 which generated approx. 46.9 million and 47.7 million raw paired-end reads for MI0 and MI10, respectively. Among the representative transcripts (RTs), a total of 16,398 RTs (39.20%) from MI0 and 21,646 RTs (39.24%) from MI10 were successfully annotated. A total of 535 unigenes (271 upregulated and 264 downregulated) showed significantly altered expression between MI0 and MI10. In abiotic-stressed condition (MI0), the relative expression levels of genes associated with antioxidant defenses (vanadium-dependent bromoperoxidase, glutathione S-transferase, lipoxygenase, serine/threonine-protein kinase, aspartate Aminotransferase, HSPs), water transport (aquaporin), photosynthesis (light-harvesting complex) protein were significantly upregulated, while in control condition (MI10) most of the genes predominantly involved in energy metabolism (NADH-ubiquinone oxidoreductase/NADH dehydrogenase, NAD(P)H-Nitrate reductase, long-chain acyl-CoA synthetase, udp-n-acetylglucosamine pyrophosphorylase) were overexpressed.
Collapse
|
50
|
Vo TS, Kim SK, Ryu B, Ngo DH, Yoon NY, Bach LG, Hang NTN, Ngo DN. The Suppressive Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast Cell Degranulation. Mar Drugs 2018; 16:E1. [PMID: 29300311 PMCID: PMC5793049 DOI: 10.3390/md16010001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/12/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A) derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.
Collapse
Affiliation(s)
- Thanh Sang Vo
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Se-Kwon Kim
- Department of Marine Life Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 606-791, Korea.
| | - BoMi Ryu
- School of Pharmacy, the University of Queensland, Brisbane QLD 4072, Australia.
| | - Dai Hung Ngo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
| | - Na-Young Yoon
- Food and Safety Research Center, National Fisheries Research & Development, Busan 46083, Korea.
| | - Long Giang Bach
- Department of Science and Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Nguyen Thi Nhat Hang
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
- Faculty of Chemistry, University of Science-VNU-HCM City, 227 Nguyen Van Cu Street, Ho Chi Minh City 700000, Vietnam.
| | - Dai Nghiep Ngo
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|