1
|
Luo WQ, Cao MT, Sun CX, Wang JJ, Gao MX, He XR, Dang LN, Geng YY, Li BY, Li J, Shi ZC, Yan XR. Size-dependent internalization of polystyrene microplastics as a key factor in macrophages and systemic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137701. [PMID: 40020305 DOI: 10.1016/j.jhazmat.2025.137701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Microplastics are emerging pollutants with a wide range of ecological and biological effects, including the ability to accumulate in organisms and induce toxicity. Although numerous studies have investigated the distribution and toxicity of microplastics in murine models and cell lines, the conclusions are inconsistent owing to variations in experimental designs, particle sizes, exposure methods, and dose quantifications. To address these gaps, we systematically evaluated the size-dependent internalization and toxicity of polystyrene microplastics (PS-MPs) using in vitro and in vivo models. Fluorescently labeled PS-MPs were used to confirm the negligible toxicity of fluorophores on macrophages, demonstrating their suitability for tracking particle accumulation. In vitro experiments using RAW 264.7 cell lines and primary peritoneal macrophages revealed size-dependent phagocytosis and cytotoxicity, with smaller particles (0.5 µm) demonstrating higher internalization and causing greater mitochondrial depolarization, reactive oxygen species generation, and apoptosis compared to that with larger particles (5 µm). Acute in vivo experiments comparing oral administration and tail-vein injection revealed that the absorbed dose and toxicity were significantly influenced by particle size, with smaller PS-MPs showing higher organ retention and alterations in hematological and metabolic parameters. Additionally, a 28-day subacute oral exposure study highlighted systemic toxicity, including weight loss, disrupted food intake, elevated oxidative stress markers, and reduced antioxidant enzyme activity. By integrating multiple exposure routes, macrophage models, and fluorescence toxicity evaluations, this study provided a comprehensive and realistic assessment of microplastic toxicity, offering valuable insights for advancing toxicological evaluations and regulatory frameworks. However, this study did not address the influence of other plastic types, shapes, or environmental factors on toxicity. Future studies are thus needed to explore these variables and the long-term implications of real-world microplastic exposure.
Collapse
Affiliation(s)
- Wei-Qiang Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Meng-Ting Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Chen-Xuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Jun-Jian Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Meng-Xi Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Xue-Rui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Le-Ning Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Yang-Yang Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Bing-Yao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Cheng Shi
- Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Xing-Rong Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Zhou L, Ran L, He Y, Huang Y. Mechanisms of microplastics on gastrointestinal injury and liver metabolism disorder (Review). Mol Med Rep 2025; 31:98. [PMID: 39981917 PMCID: PMC11865701 DOI: 10.3892/mmr.2025.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
With the high production and use of plastic products, a large amount of microplastics (MPs) is generated by degradation, which causes environmental pollution. MPs are particles with a diameter <5 mm; further degradation of MPs produces nano‑plastics (NPs), which could further increase the damage to cells when entering the human body. Therefore, the present review summarizes the effect of MP and NP deposition on the human gastrointestinal tract and the underlying injury mechanism of oxidative stress, inflammation and apoptosis, as well as the potential mechanism of glucose and liver lipid metabolism disorder. The present review provides a theoretical basis for research on the mechanisms of MPs in gastrointestinal injury and liver metabolism disorder. Further studies are needed for prevention and treatment of gastrointestinal diseases caused by MPs and NPs.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Lidan Ran
- Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Yufen He
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Yaxi Huang
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| |
Collapse
|
3
|
Marcellus KA, Prescott D, Scur M, Ross N, Gill SS. Exposure of Polystyrene Nano- and Microplastics in Increasingly Complex In Vitro Intestinal Cell Models. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:267. [PMID: 39997830 PMCID: PMC11858616 DOI: 10.3390/nano15040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
With the rise in global plastic production and the presence of plastic waste in the environment, microplastics are considered an emerging environmental contaminant. Human exposure and the impact of microplastics on human health are not well studied. Recent studies have observed the presence of microplastics in human tissues and several studies have noted toxicity in in vitro and in vivo mammalian models. We examined the impact of polystyrene nano- and microplastics in increasingly complex intestinal cell models. Using an undifferentiated Caco-2 mono-culture model, we assessed particle association, cytotoxicity, and particle clearance/retention, whereas in differentiated mono- and tri-culture transwell models, we assessed membrane integrity and particle translocation. Only 50 nm and 500 nm particles were internalized in the undifferentiated cells; however, no signs of cellular toxicity were observed at any concentrations tested. Additionally, polystyrene particles had no impact on barrier integrity, but the 50 nm particles were able to cross to the basolateral side, albeit attenuated in the tri-culture model that had a mucus layer. This study reduced some of the variability common to MNPL testing across various in vitro models, but further testing is needed to fully understand the potential effects of human MNPL exposure.
Collapse
Affiliation(s)
| | | | | | | | - Santokh S. Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
4
|
Wang Y, Nan X, Sun H, Shi Y, Miao J, Li Y, Han X, Zhang N, Wang H, Ren N, Zhao X, Liu B. From insects to mammals! Tissue accumulation and transgenerational transfer of micro/nano-plastics through the food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136424. [PMID: 39531820 DOI: 10.1016/j.jhazmat.2024.136424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Despite extensive global attention on microplastic pollution, our understanding of the pathways underlying microplastic translocation, accumulation, and their potential impacts on ecosystems and human health through the food chain remains incomplete. To investigate the translocation and accumulation of microplastics from insects to mammals, we developed a novel oral exposure model that Tenebrio molitor larvae (yellow mealworms, invertebrate terrestrial insects) were firstly orally exposed to both micro and nanometer-sized plastics (M/NPs), and subsequently fed as a food source to mice (mammals). Our results provide clear evidence that micro/nanoplastics (M/NPs) do indeed translocate through the food chain, from lower to higher trophic levels. Fluorescence microscopy and tissue quantification revealed the accumulation of M/NPs in the digestive, somatic, and circulatory systems of the larvae. Specifically, the food chain transferred M/NPs were later detected in the digestive, respiratory, and urinary systems of mice, showcasing strong fluorescent signals in vital organs such as the lungs, liver, intestines, brain, and kidneys, as well as in embryos. These findings highlight the intricate dynamics of M/NPs contamination, emphasizing their ability to traverse biological barriers, accumulate in organisms, and potentially impact embryonic development via food chain transfer.
Collapse
Affiliation(s)
- Yijing Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xinrui Nan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yutian Shi
- Clinical Medicine, The Second Clinical Medical School, China Medical University, Shenyang 110122, China
| | - Jixing Miao
- Clinical Medicine, The First Clinical Medical School, China Medical University, Shenyang 110001, China
| | - Yuheng Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Huaqin Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Baoqin Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Chakraborty S, Banerjee M, Jayaraman G, Rajeswari V D. Evaluation of the health impacts and deregulation of signaling pathways in humans induced by microplastics. CHEMOSPHERE 2024; 369:143881. [PMID: 39631686 DOI: 10.1016/j.chemosphere.2024.143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This review assesses the diverse health risk factors associated with microplastic (MP) exposure and their impact on cellular signaling pathways. MPs induce chronic inflammation, oxidative stress, endocrine disruption, apoptosis, and immune dysregulation. They activate signaling pathways such as NF-κB, MAPK, and Nrf2, exacerbating inflammatory responses, oxidative damage, and hormonal imbalances. Understanding the interplay between MPs and signaling pathways is crucial for elucidating the mechanisms underlying MP-induced health effects. Effective risk assessment and management strategies are essential to mitigate the adverse health impacts of MPs on human populations. This research underscores the urgent need for interdisciplinary collaboration to safeguard human health and environmental sustainability in the face of rising MP pollution. In this paper, we also assess the risk factors caused by the microplastics in the pregnant women and the development of the fetus. This review explores the potential risks and challenges associated with MP exposure in newborn babies. It is quite concerning that microplastic particles were recently found in the placental tissue of newborn children for the first time. Although it is unclear how these tiny particles affect different organs, researchers believe that these tiny particles could potentially carry harmful chemicals or disrupt the developing immune system of the fetus. This review overall focuses on the impact of microplastic disrupting different signaling including reproductive health in humans.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gurunathan Jayaraman
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Devi Rajeswari V
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
7
|
Qiao X, Bao L, Liu G, Cui X. Nanomaterial journey in the gut: from intestinal mucosal interaction to systemic transport. NANOSCALE 2024; 16:19207-19220. [PMID: 39347780 DOI: 10.1039/d4nr02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineered nanomaterials (NMs) are commonly utilized in food additives, cosmetics, and therapeutic applications due to their advantageous properties. Consequently, humans are frequently exposed to exogenous nanomaterials through oral ingestion, thus making the intestinal mucosal system a primary site for these particles. Understanding the interactions between nanomaterials and the intestinal mucosal system is crucial for harnessing their therapeutic potential and mitigating potential health risks from unintended exposure. This review aims to elucidate recent advancements in the dual effects of nanomaterials on the intestinal mucosal system. Upon entering the gut lumen, nanomaterials will interact with diverse intestinal components, including trillions of gut microbiota, mucus layer, intestinal epithelial cells (IECs), and the intestinal immune system. Additionally, the systemic fate and transportation of nanomaterials to distal organs, such as central nervous system, are also highlighted. These interactions result in a distinct biological effect of nanomaterials on the multilayer structure of intestine, thus displaying complex journeys and outcomes of nanomaterials in the living body. This in-depth exploration of the in vivo destiny and immunological implications of nanomaterials encountering the intestine has the potential to propel advancements in oral drug delivery techniques and motivate future investigations in novel toxicology research.
Collapse
Affiliation(s)
- Xin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
8
|
Xiao S, Wang J, Digiacomo L, Amici A, De Lorenzi V, Pugliese LA, Cardarelli F, Cerrato A, Laganà A, Cui L, Papi M, Caracciolo G, Marchini C, Pozzi D. Protein corona alleviates adverse biological effects of nanoplastics in breast cancer cells. NANOSCALE 2024; 16:16671-16683. [PMID: 39171675 DOI: 10.1039/d4nr01850h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Pollution from micro- and nanoplastics (MNPs) has long been a topic of concern due to its potential impact on human health. MNPs can circulate through human blood and, thus far, have been found in the lungs, spleen, stomach, liver, kidneys and even in the brain, placenta, and breast milk. While data are already available on the adverse biological effects of pristine MNPs (e.g. oxidative stress, inflammation, cytotoxicity, and even cancer induction), no report thus far clarified whether the same effects are modulated by the formation of a protein corona around MNPs. To this end, here we use pristine and human-plasma pre-coated polystyrene (PS) nanoparticles (NPs) and investigate them in cultured breast cancer cells both in terms of internalization and cell biochemical response to the exposure. It is found that pristine NPs tend to stick to the cell membrane and inhibit HER-2-driven signaling pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are associated with cancer cell survival and growth. By contrast, the formation of a protein corona around the same NPs can promote their uptake by endocytic vesicles and final sequestration within lysosomes. Of note is that such intracellular fate of PS-NPs is associated with mitigation of the biochemical alterations of the phosphorylated AKT (pAKT)/AKT and phosphorylated ERK (pERK)/ERK levels. These findings provide the distribution of NPs in human breast cancer cells, may broaden our understanding of the interactions between NPs and breast cancer cells and underscore the crucial role of the protein corona in modulating the impact of MNPs on human health.
Collapse
Affiliation(s)
- Siyao Xiao
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Valentina De Lorenzi
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Licia Anna Pugliese
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Lishan Cui
- Department of Neuroscience, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Massimiliano Papi
- Department of Neuroscience, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
9
|
Bruno A, Dovizio M, Milillo C, Aruffo E, Pesce M, Gatta M, Chiacchiaretta P, Di Carlo P, Ballerini P. Orally Ingested Micro- and Nano-Plastics: A Hidden Driver of Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:3079. [PMID: 39272937 PMCID: PMC11393928 DOI: 10.3390/cancers16173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Micro- and nano-plastics (MNPLs) can move along the food chain to higher-level organisms including humans. Three significant routes for MNPLs have been reported: ingestion, inhalation, and dermal contact. Accumulating evidence supports the intestinal toxicity of ingested MNPLs and their role as drivers for increased incidence of colorectal cancer (CRC) in high-risk populations such as inflammatory bowel disease (IBD) patients. However, the mechanisms are largely unknown. In this review, by using the leading scientific publication databases (Web of Science, Google Scholar, Scopus, PubMed, and ScienceDirect), we explored the possible effects and related mechanisms of MNPL exposure on the gut epithelium in healthy conditions and IBD patients. The summarized evidence supports the idea that oral MNPL exposure may contribute to intestinal epithelial damage, thus promoting and sustaining the chronic development of intestinal inflammation, mainly in high-risk populations such as IBD patients. Colonic mucus layer disruption may further facilitate MNPL passage into the bloodstream, thus contributing to the toxic effects of MNPLs on different organ systems and platelet activation, which may, in turn, contribute to the chronic development of inflammation and CRC development. Further exploration of this threat to human health is warranted to reduce potential adverse effects and CRC risk.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66110 Chieti, Italy
| | - Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Zhang L, Ma Y, Wei Z, Wang L. Toxicity of gold nanoparticles complicated by the co-existence multiscale plastics. Front Microbiol 2024; 15:1447046. [PMID: 39268536 PMCID: PMC11392435 DOI: 10.3389/fmicb.2024.1447046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Gold nanoparticles (AuNPs) have been developed as treatment materials for various diseases and shown magnificent potential. By contrast to the broad toxicological studies on the single exposure (AuNPs), how the other health risks modulate the toxicological profile of AuNPs remains to be investigated. Plastics are among the most common health risks in daily life due to the broad utilization of plastic products. Therefore, in this study, we aimed to reveal the toxicological effects induced by co-exposure of gold nanorod (AuR) and polystyrene micro- and nano-plastics (hereinafter, referred to as AuRmPS and AuRnPS, respectively) in mice. Methods Systematic biochemical characterizations were performed to investigate the hepatotoxicity, nephrotoxicity, neurotoxicity, inflammatory responses, alterations in gut microbiota induced by co-exposure, and to analyze the toxicological phenomena from the roles of reactive oxygen species and gut-organ axis. Results It has been found that hepatotoxicity, nephrotoxicity, neurotoxicity, and inflammation were exacerbated in AuRnPS and AuRmPS, and gut microbiota composition was more severely altered in AuRnPS exposure. These results suggest the necessity of reducing plastics exposure in AuNPs-based therapies. Moreover, protection against the nano-sized plastic particles holds higher priority. Conclusion These findings will facilitate the explorations of methods to reduce therapeutic toxicity and improve biosafety for specific treatments by referring to the orders of importance in protecting different organs.
Collapse
Affiliation(s)
- Lan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuyang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhiliang Wei
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Maryland, MD, United States
| | - Luyang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Du B, Li T, He H, Xu X, Zhang C, Lu X, Wang Y, Cao J, Lu Y, Liu Y, Hu S, Li J, Li L, Shi M. Analysis of Biodistribution and in vivo Toxicity of Varying Sized Polystyrene Micro and Nanoplastics in Mice. Int J Nanomedicine 2024; 19:7617-7630. [PMID: 39081896 PMCID: PMC11288365 DOI: 10.2147/ijn.s466258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Studies have shown that microplastics (MPs) and nanoplastics (NPs) could accumulate in the human body and pose a potential threat to human health. The purpose of this study is to evaluate the biodistribution and toxicity of MPs/NPs with different particle sizes comprehensively and thoroughly. Methods The purpose of this study was to investigate the biodistribution and in vivo toxicity of polystyrene (PS) MPs/NPs with different sizes (50 nm, 100 nm, and 500 nm). The BALB/c mice were given 100 μL of PS50, PS100 and PS500 at the dosage of 1 mg/kg BW or 10 mg/kg BW, respectively, by gavage once a day. After 28 consecutive days of treatment, the biodistribution of differently sized PS MPs/NPs was determined through cryosection fluorescence microscopy and fluorescent microplate reader analysis, and the subsequent effects of differently sized PS MPs/NPs on histopathology, hematology and blood biochemistry were also evaluated. Results The results showed that the three different sizes of PS MPs/NPs were distributed in the organs of mice, mainly in the liver, spleen, and intestine. At the same time, the smaller the particle size, the more they accumulate in the body and more easily penetrate the tissue. During the whole observation period, no abnormal behavior and weight change were observed. The results of H&E staining showed that no severe histopathological abnormalities were observed in the main organs in the low-dose exposure group, while. Exposure of three sizes of PS MPs/NPs could cause some changes in hematological parameters or biochemical parameters related to heart, liver, and kidney function; meanwhile, there were size- and dose-dependencies. Conclusion The biological distribution and toxicity of plastic particles in mice were more obvious with the decrease of particle size and the increase of concentration of plastic particles. Compared with MPs, NPs were easier to enter the tissues and produce changes in liver, kidney, and heart functions. Therefore, more attention should be paid to the toxicity of NPs.
Collapse
Affiliation(s)
- Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xun Xu
- Experimental Animal Center, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Shanshan Hu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| |
Collapse
|
12
|
Seo Y, Zhou Z, Lai Y, Chen G, Pembleton K, Wang S, He JZ, Song P. Micro- and nanoplastics in agricultural soils: Assessing impacts and navigating mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172951. [PMID: 38703838 DOI: 10.1016/j.scitotenv.2024.172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Micro-/nanoplastic contamination in agricultural soils raises concerns on agroecosystems and poses potential health risks. Some of agricultural soils have received significant amounts of micro-/nanoplastics (MNPs) through plastic mulch film and biosolid applications. However, a comprehensive understanding of the MNP impacts on soils and plants remains elusive. The interaction between soil particles and MNPs is an extremely complex issue due to the different properties and heterogeneity of soils and the diverse characteristics of MNPs. Moreover, MNPs are a class of relatively new anthropogenic pollutants that may negatively affect plants and food. Herein, we presented a comprehensive review of the impacts of MNPs on the properties of soil and the growth of plants. We also discussed different strategies for mitigating or eliminating MNP contamination. Moreover, perspectives for future research on MNP contamination in the agricultural soils are also highlighted.
Collapse
Affiliation(s)
- Yoonjung Seo
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Zhezhe Zhou
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia
| | - Yunru Lai
- Centre for Sustainable Agricultural Systems, University of Southern Queensland, Springfield, Australia.
| | - Guangnan Chen
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia.
| | - Keith Pembleton
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pingan Song
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
13
|
Kim WH, Lee DH, Kim JE, Jeong HW, Chung JO, Roh J, Kim W, Fu X, Shim SM. Characterization of the intestinal transport mechanism of polystyrene microplastics (MPs) and the potential inhibitory effect of green tea extracts on MPs intestinal absorption. Toxicol In Vitro 2024; 97:105813. [PMID: 38522493 DOI: 10.1016/j.tiv.2024.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The aims of the current study included characterizing the intestinal transport mechanism of polystyrene microplastics (MPs) with different charges and sizes in the intestinal epithelial cell model and determining the inhibitory effect of green tea extracts (GTEs) on the intestinal absorption of MPs in Caco-2 cells. The smaller sizes, which included diameters of 0.2 μm, of amine-modified MPs compared to either larger size (1 μm diameter, or carboxylate-MPs (0.2 and 1 μm diameter) significantly lowered the cell viability of caco-2 cells that were measured by MTT assay (p < 0.05). The transported amount (particles/mL of the cell media) of amine-modified MPs by the Caco-2 cell, was not dependent according to the concentrations, energy, or temperature, but it was higher than the carboxylate-modified MPs. The co-treatment of GTEs with the amine-modified MPs inhibited Caco-2 cell cytotoxicity as well as reduced the production of intracellular reactive oxygen species (ROS) in HepG2 generated by the exposure of amine-modified MPs. The GTEs co-treatment also increased trans-epithelial electrical resistances (TEER) and reduced the transportation of Lucifer Yellow via the Caco-2 monolayer compared to only the amine-modified MPs exposure. The GTEs treatment led to a decrease in the number of amine-modified MPs transported to the basal side of the Caco-2 monolayer. The results from our study suggest that the consumption of GTEs could enhance the intestinal barrier function by recovering intestinal epithelial cell damage induced by MPs, which resulted in a decrease of the intestinal absorption of MPs.
Collapse
Affiliation(s)
- Woo-Hyun Kim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Dong-Ho Lee
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Jeong-Eun Kim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea
| | - Hyun Woo Jeong
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Jin-Oh Chung
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - JongHwa Roh
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - WanGi Kim
- Healthcare Research Division, AMOREPACIFIC Research and Innovation (R&I) Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul 143-747, South Korea.
| |
Collapse
|
14
|
Mukhopadhyay P, Valsalan SA. Incidence of microplastic translocation in freshwater fish eggs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123529. [PMID: 38341061 DOI: 10.1016/j.envpol.2024.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The issue of microplastic contamination in seafood is progressively recognised as a significant global issue. This study presents novel findings regarding the detection of microplastics within the eggs of commercially available fish intended for consumption by humans. Eggs of Ompok bimaculatus, Heteropneustes fossilis, Mystus vittatus and Anabas testudineus collected from the Periyar River, Kerala, India were subjected to analysis for the potential presence of microplastics. Out of the 91 fishes (containing eggs) examined, microplastics were observed in the eggs of 2 species, i.e., Ompok bimaculatus and Mystus vittatus. The polymers recorded were polyethylene and polypropylene. Fish eggs are commonly consumed by humans and are highly esteemed as a delectable food. Considering the widespread consumption of fish eggs as a delicacy among humans, there exists a potential route for human exposure to microplastics, which raises concerns regarding public health.
Collapse
Affiliation(s)
- Patralika Mukhopadhyay
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India.
| | - Shibu Arkkakadavil Valsalan
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India
| |
Collapse
|
15
|
Pitt JA, Hahn ME, Aluru N. Implications of exposure route for the bioaccumulation potential of nanopolystyrene particles. CHEMOSPHERE 2024; 351:141133. [PMID: 38199495 DOI: 10.1016/j.chemosphere.2024.141133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microplastics and nanoplastics are found in marine biota across a wide range of trophic levels and environments. While a large portion of the information about plastic exposure comes from gastrointestinal (GI) data, the relevance of particle accumulation from an oral exposure compared with other types of exposure (e.g. dermal, respiratory) is unknown. To address this gap in knowledge, larval zebrafish (7 days post fertilization) were exposed to two different sizes of nanoplastics through either oral gavage or a waterborne exposure. Larvae were tracked for 48 h post exposure (hpe) to assess the migration and elimination of plastics. Larvae eliminated orally gavaged nanoplastics within 48 hpe. Oral gavage showed limited particle movement from the GI tract into other tissues. In contrast, waterborne nanoplastic-exposed larvae displayed notable fluorescence in tissues outside of the GI tract. The 50 nm waterborne-exposed larvae retained the particles past 48 hpe, and showed accumulation with neuromasts. For both sizes of plastic particles, the nanoplastics were eliminated from non-GI tract tissues by 24 hpe. Our results suggest that waterborne exposure leads to greater accumulation of plastic in comparison to oral exposure, suggesting that plastic accumulation in certain tissues is greater via routes of exposure other than oral consumption.
Collapse
Affiliation(s)
- Jordan A Pitt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Massachusetts Institute of Technology (MIT), Woods Hole Oceanographic Institution (WHOI), Joint Graduate Program in Oceanography and Oceanographic Engineering, USA; Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543 10, USA.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543 10, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543 10, USA
| |
Collapse
|
16
|
Tariq M, Iqbal B, Khan I, Khan AR, Jho EH, Salam A, Zhou H, Zhao X, Li G, Du D. Microplastic contamination in the agricultural soil-mitigation strategies, heavy metals contamination, and impact on human health: a review. PLANT CELL REPORTS 2024; 43:65. [PMID: 38341396 DOI: 10.1007/s00299-024-03162-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.
Collapse
Affiliation(s)
- Muhammad Tariq
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Ismail Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huan Zhou
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Zhenjiang New District Environmental Monitoring Station Co. Ltd, Zhenjiang, 212132, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
17
|
Li P, Liu J. Micro(nano)plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38315819 DOI: 10.1021/acs.est.3c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.
Collapse
Affiliation(s)
- Penghui Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingfu Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
18
|
Rahmatin NM, Soegianto A, Irawan B, Payus CM, Indriyasari KN, Marchellina A, Mukholladun W, Irnidayanti Y. The spatial distribution and physico-chemical characteristic of microplastics in the sediment and cockle (Anadara granosa) from the coastal waters of East Java, Indonesia, and the health hazards associated with cockle consumption. MARINE POLLUTION BULLETIN 2024; 198:115906. [PMID: 38070399 DOI: 10.1016/j.marpolbul.2023.115906] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
This study evaluated microplastic (MP) abundances and physico-chemical characteristics in sediments and Anadara granosa along the East Java coast and their health implications. Fibers (74 %) dominated sediment MPs at south coast, while fragments (49-61 %) dominated north coast. Fiber (43-52 %) is the predominant MP in cockle tissues in all locations. Most MP in sediments (31-47 %) and cockle tissues (41-49 %) is black. The majority of microplastics (100-1500 μm) are found in sediment (73-90 %), and cockles (77-79 %). Very weak correlations found between the amount of MP and the length of the cockle shell. However, Spearman correlation shows that as the amount of MP in sediment increases, so does the amount of MP in cockle tissue. Each year, individuals of varying ages consume an average of 20,800 to 156,000 MP items. Cockles contain plasticizer components and microplastic polymers which are classified from II to V regarding of hazard levels, with V being the most hazardous.
Collapse
Affiliation(s)
- Nailul Muthiati Rahmatin
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Agoes Soegianto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Bambang Irawan
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Carolyn Melissa Payus
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Ary Marchellina
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Wildanun Mukholladun
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Yulia Irnidayanti
- Department of Biologi, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| |
Collapse
|
19
|
Gao L, Xiong X, Chen C, Luo P, Li J, Gao X, Huang L, Li L. The male reproductive toxicity after nanoplastics and microplastics exposure: Sperm quality and changes of different cells in testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115618. [PMID: 37939553 DOI: 10.1016/j.ecoenv.2023.115618] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Nanoplastics (NPs) and Microplastics (MPs) pollution has become a severe threat to the planet and is a growing concern. However, their effects on male reproductive toxicity remain poorly understood. In this study, a series of morphological analyses were completed to explore the influence of NPs and MPs exposure on the testis in mice. After 12-weeks exposure, although both NPs and MPs exposure can lead to reproductive toxicity, compared with NPs exposure, exposure to MPs leads to a more significant increase in reproductive toxicity dependent on some particle size. Moreover, increased reproductive toxicities, including increased spermatogenesis disorders, and sperm physiological abnormality, oxidative stress, testis inflammation was more associated with MPs group than NPs group. Ultra-pathological structure observed by transmission electron microscopy indicated that both NPs and MPs have different effects on spermatogonia, spermatocytes and Sertoli cells. Exposure to MPs resulted in decreased Sertoli cell numbers and reduced Leydig cell area, and showed no effects on differentiation of Leydig cells by the expression level of the Insulin-Like factor 3 (INSL3) in Leydig cells. Transcriptomic sequencing analysis provided valuable insights into the differential effects of NPs and MPs on cellular processes. Specifically, our findings demonstrated that NPs were predominantly involved in the regulation of steroid biosynthesis, whereas MPs primarily influenced amino acid metabolism. This study demonstrates the effect of adult-stage reproductive toxicity in mice after exposure to NPs and MPs, which will deep the understanding of the NPs and MPs induced toxicity.
Collapse
Affiliation(s)
- Likun Gao
- Department of Pathology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Chen Chen
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan 430060, China
| | - Jing Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Lili Li
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
20
|
Li X, Luo J, Han C, Lu X. Nanoplastics enhance the intestinal damage and genotoxicity of sulfamethoxazole to medaka juveniles (Oryzias melastigma) in coastal environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164943. [PMID: 37329919 DOI: 10.1016/j.scitotenv.2023.164943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Antibiotics and nanoplastics are widely detected in the coastal ecosystem. However, the transcriptome mechanism elucidating the effect of antibiotics and nanoplastics co-exposure on the gene expression of aquatic organisms in coastal environment is still unclear. Here, single and joint effects of sulfamethoxazole (SMX) and polystyrene nanoplastics (PS-NPs) on the intestinal health and gene expression of medaka juveniles (Oryzias melastigma), which live in coastal environment, were investigated. The SMX and PS-NPs co-exposure decreased intestinal microbiota diversity compared to the PS-NPs, and caused more adverse effect on the intestinal microbiota composition and intestinal damage compared to the SMX, indicating that PS-NPs might enhance the toxicity of SMX on the medaka intestine. The increased abundance of Proteobacteria in the intestine was observed in the co-exposure group, which might induce the intestinal epithelium damage. In addition, the differentially expressed genes (DEGs) were mainly involved in the drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450 pathways in visceral tissue after the co-exposure. The expression of the host immune system genes (e.g., ifi30) could be associated with the increased pathogens in intestinal microbiota. This study is useful for understanding the toxicity effect of antibiotics and NPs on aquatic organisms in coastal ecosystem.
Collapse
Affiliation(s)
- Xue Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiwei Luo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Chenglong Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
21
|
Huang J, Sun X, Wang Y, Su J, Li G, Wang X, Yang Y, Zhang Y, Li B, Zhang G, Li J, Du J, Nanjundappa RH, Umeshappa CS, Shao K. Biological interactions of polystyrene nanoplastics: Their cytotoxic and immunotoxic effects on the hepatic and enteric systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115447. [PMID: 37690176 DOI: 10.1016/j.ecoenv.2023.115447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
As emerging pollutants in the environment, nanoplastics (NPs) can cross biological barriers and be enriched in organisms, posing a greatest threat to the health of livestock and humans. However, the size-dependent toxic effects of NPs in higher mammals remain largely unknown. To determine the size-dependent potential toxicities of NPs, we exposed mouse (AML-12) and human (L02) liver cell lines in vitro, and 6-week-old C57BL/6 mice (well-known preclinical model) in vivo to five different sizes of polystyrene NPs (PS-NPs) (20, 50, 100, 200 and 500 nm). We found that ultra-small NPs (20 nm) induced the highest cytotoxicity in mouse and human liver cell lines, causing oxidative stress and mitochondrial membrane potential loss on AML-12 cells. Unexpectedly in vivo, after long-term oral exposure to PS-NPs (75 mg/kg), medium NPs (200 nm) and large NPs (500 nm) induced significant hepatotoxicity, evidenced by increased oxidative stress, liver dysfunction, and lipid metabolism disorders. Most importantly, medium or large NPs generated local immunotoxic effects via recruiting and activating more numbers of neutrophils and monocytes in the liver or intestine, which potentially resulted in increased proinflammatory cytokine secretion and the tissue damage. The discrepancy in in vitro-in vivo toxic results might be attributed to the different properties of biodistribution and tissue accumulation of different sized NPs in vivo. Our study provides new insights regarding the hepatotoxicity and immunotoxicity of NPs on human and livestock health, warranting us to take immense measures to prevent these NPs-associated health damage.
Collapse
Affiliation(s)
- Jiahao Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinbo Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianlong Su
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuning Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuxuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bangjian Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jing Du
- Liaoning Ocean and Fisheries Science Research Institute, 50# Heishijiao Road, Shahekou District, Dalian 116023, China
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
22
|
Meligi NM, Dyab AKF. Natural sporopollenin microcapsules: biological evaluation and application in regulating hepatic toxicity of diclofenac sodium in vivo. Biomater Sci 2023; 11:6193-6209. [PMID: 37522344 DOI: 10.1039/d3bm00638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Diclofenac sodium (DIC) is a pain reliever and anti-nociceptive medication. Significant limitations of DIC treatment stem from its adverse effects. This study investigates the feasibility of using natural Lycopodium clavatum sporopollenin (LCS) microcapsules loaded with DIC to mitigate the hepatotoxicity associated with DIC treatment. In addition, LCS microcapsules were tracked in the blood, stomach, small intestine, and feces of rats to demonstrate their morphological integrity and uptake behavior. Four groups (6 per group) of adult male albino rats were administered normal saline (control), empty LCS (30 mg kg-1), plain DIC (10 mg kg-1), and DIC-loaded LCS (40 mg kg-1) orally for seven consecutive days. The first comprehensive histological examination of the rat stomach demonstrated the robustness and bioadhesion ability of LCS under severe conditions. The findings suggested that these versatile microcapsules are unlikely to be digested in the gastrointestinal tract (GIT). The administration of DIC-loaded LCS was found to play a potential protective role in regulating DIC-induced substantially increased serum levels of transaminases, alkaline phosphatase, total bilirubin, and pro-inflammatory cytokines. In addition, DIC-loaded LCS restored the antioxidant enzymes, DNA damage, and liver histological architecture abnormalities caused by DIC. Microencapsulation of DIC into pollen-derived biomaterials could be employed as an efficient platform with enough safety coverage on rat liver, pending further clinical studies.
Collapse
Affiliation(s)
- Noha M Meligi
- Zoology Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Amro K F Dyab
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| |
Collapse
|
23
|
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr 2023; 10:1186724. [PMID: 37492595 PMCID: PMC10363603 DOI: 10.3389/fnut.2023.1186724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Nanoplastics (NPs) and microplastics (MPs) made of polystyrene (PS) can be toxic to humans, especially by ingestion of plastic particles. These substances are often introduced into the gastrointestinal tract, where they can cause several adverse effects, including disturbances in intestinal flora, mutagenicity, cytotoxicity, reproductive toxicity, neurotoxicity, and exacerbated oxidative stress. Although there are widespread reports of the protective effects of probiotics on the harm caused by chemical contaminants, limited information is available on how these organisms may protect against PS toxicity in either humans or animals. The protective effects of probiotics can be seen in organs, such as the gastrointestinal tract, reproductive tract, and even the brain. It has been shown that both MPs and NPs could induce microbial dysbiosis in the gut, nose and lungs, and probiotic bacteria could be considered for both prevention and treatment. Furthermore, the improvement in gut dysbiosis and intestinal leakage after probiotics consumption may reduce inflammatory biomarkers and avoid unnecessary activation of the immune system. Herein, we show probiotics may overcome the toxicity of polystyrene nanoplastics and microplastics in humans, although some studies are required before any clinical recommendations can be made.
Collapse
Affiliation(s)
- Javad Bazeli
- Department of Medical Emergencies, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS NANO 2023. [PMID: 37410891 DOI: 10.1021/acsnano.3c02403] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Oral drug administration has been a popular choice due to patient compliance and limited clinical resources. Orally delivered drugs must circumvent the harsh gastrointestinal (GI) environment to effectively enter the systemic circulation. The GI tract has a number of structural and physiological barriers that limit drug bioavailability including mucus, the tightly regulated epithelial layer, immune cells, and associated vasculature. Nanoparticles have been used to enhance oral bioavailability of drugs, as they can act as a shield to the harsh GI environment and prevent early degradation while also increasing uptake and transport of drugs across the intestinal epithelium. Evidence suggests that different nanoparticle formulations may be transported via different intracellular mechanisms to cross the intestinal epithelium. Despite the existence of a significant body of work on intestinal transport of nanoparticles, many key questions remain: What causes the poor bioavailability of the oral drugs? What factors contribute to the ability of a nanoparticle to cross different intestinal barriers? Do nanoparticle properties such as size and charge influence the type of endocytic pathways taken? In this Review, we summarize the different components of intestinal barriers and the types of nanoparticles developed for oral delivery. In particular, we focus on the various intracellular pathways used in nanoparticle internalization and nanoparticle or cargo translocation across the epithelium. Understanding the gut barrier, nanoparticle characteristics, and transport pathways may lead to the development of more therapeutically useful nanoparticles as drug carriers.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Rebecca Louisthelmy
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Li S, Keenan JI, Shaw IC, Frizelle FA. Could Microplastics Be a Driver for Early Onset Colorectal Cancer? Cancers (Basel) 2023; 15:3323. [PMID: 37444433 DOI: 10.3390/cancers15133323] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The incidence of colorectal cancer in those under 50 years of age (early onset colorectal cancer (EOCRC)) is increasing throughout the world. This has predominantly been an increase in distal colonic and rectal cancers, which are biologically similar to late onset colorectal cancer (LOCRC) but with higher rates of mucinous or signet ring histology, or poorly differentiated cancers. The epidemiology of this change suggests that it is a cohort effect since 1960, and is most likely driven by an environmental cause. We explore the possible role of microplastics as a driver for this change. Review: The development of sporadic colorectal cancer is likely facilitated by the interaction of gut bacteria and the intestinal wall. Normally, a complex layer of luminal mucus provides colonocytes with a level of protection from the effects of these bacteria and their toxins. Plastics were first developed in the early 1900s. After 1945 they became more widely used, with a resultant dramatic increase in plastic pollution and their breakdown to microplastics. Microplastics (MPs) are consumed by humans from an early age and in increasingly large quantities. As MPs pass through the gastrointestinal tract they interact with the normal physiological mechanism of the body, particularly in the colon and rectum, where they may interact with the protective colonic mucus layer. We describe several possible mechanisms of how microplastics may disrupt this mucus layer, thus reducing its protective effect and increasing the likelihood of colorectal cancer. Conclusions: The epidemiology of increase in EOCRC suggests an environmental driver. This increase in EOCRC matches the time sequence in which we could expect to see an effect of rapid increase of MPs in the environment and, as such, we have explored possible mechanisms for this effect. We suggest that it is possible that the MPs damage the barrier integrity of the colonic mucus layer, thus reducing its protective effect. MPs in CRC pathogenesis warrants further investigation. Future directions: Further clarification needs to be sought regarding the interaction between MPs, gut microbiota and the mucus layer. This will need to be modelled in long-term animal studies to better understand how chronic consumption of environmentally-acquired MPs may contribute to an increased risk of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Shelley Li
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jacqueline I Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Ian C Shaw
- School of Physical & Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Frank A Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
26
|
Dent AR, Chadwick DDA, Eagle LJB, Gould AN, Harwood M, Sayer CD, Rose NL. Microplastic burden in invasive signal crayfish ( Pacifastacus leniusculus) increases along a stream urbanization gradient. Ecol Evol 2023; 13:e10041. [PMID: 37153013 PMCID: PMC10156447 DOI: 10.1002/ece3.10041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Microplastics are a globally pervasive pollutant with the potential to directly impact species and accumulate in ecosystems. However, there remains a relative paucity of research addressing their accumulation in freshwater ecosystems and a near absence of work in crayfish, despite their high ecological and economic importance. This study investigated the presence of microplastics in the invasive signal crayfish Pacifastacus leniusculus along a stream urbanization gradient. The results demonstrate a ubiquitous presence of microplastics in crayfish digestive tracts at all sites and provide the first evidence of microplastic accumulation in tail tissue. Evidence of a positive linear trend was demonstrated between microplastic concentration in crayfish and upstream urban area size in generalized linear models. Evidence for a positive effect of the upstream urban area and a negative effect of crayfish length on microplastic concentrations in crayfish was demonstrated in multiple generalized linear regression models. Our results extend the current understanding of microplastics presence in freshwater ecosystems and demonstrate their presence in crayfish in the wild for the first time.
Collapse
Affiliation(s)
| | - Daniel D. A. Chadwick
- Department of GeographyUniversity College LondonLondonUK
- PBA Applied EcologySettle, North YorkshireUK
| | - Lawrence J. B. Eagle
- Department of GeographyUniversity College LondonLondonUK
- PBA Applied EcologySettle, North YorkshireUK
| | | | | | - Carl D. Sayer
- Department of GeographyUniversity College LondonLondonUK
| | - Neil L. Rose
- Department of GeographyUniversity College LondonLondonUK
| |
Collapse
|
27
|
Ji J, Wu X, Li X, Zhu Y. Effects of microplastics in aquatic environments on inflammatory bowel disease. ENVIRONMENTAL RESEARCH 2023; 229:115974. [PMID: 37088319 DOI: 10.1016/j.envres.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) has been increasing in recent years, particularly in newly industrialized nations. Environmental factors have been identified as playing a crucial role in IBD pathogenesis. Microplastics (MPs), a novel class of environmental pollutants, are a significant global pollution concern. MPs are found in almost all aquatic environments. MPs in the environment may pose health risks, specifically concerning the intestinal system, due to prolonged exposure through the consumption of aquatic foods and drinking water. In this review, we aimed to provide a comprehensive overview of the current knowledge on the impact of MPs in water resources on the occurrence and progression of IBD. Our systematic analysis of in vitro and in vivo studies found that MPs induce intestinal barrier dysfunction, imbalance in the intestinal microbiome, and metabolic abnormalities, ultimately leading to IBD. In addition, MP exposure causes greater harm to individuals with preexisting gastrointestinal disorders than those without them. Our analysis of this literature review highlights the need for further research to improve the understanding of the complex relationship between MP exposure and IBD.
Collapse
Affiliation(s)
- Jiali Ji
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Li
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
28
|
Alijagic A, Hedbrant A, Persson A, Larsson M, Engwall M, Särndahl E. NLRP3 inflammasome as a sensor of micro- and nanoplastics immunotoxicity. Front Immunol 2023; 14:1178434. [PMID: 37143682 PMCID: PMC10151538 DOI: 10.3389/fimmu.2023.1178434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Micro- and nanoplastics (MNPs) are emerging pollutants with scarcely investigated effects on human innate immunity. If they follow a similar course of action as other, more thoroughly investigated particulates, MNPs may penetrate epithelial barriers, potentially triggering a cascade of signaling events leading to cell damage and inflammation. Inflammasomes are intracellular multiprotein complexes and stimulus-induced sensors critical for mounting inflammatory responses upon recognition of pathogen- or damage-associated molecular patterns. Among these, the NLRP3 inflammasome is the most studied in terms of activation via particulates. However, studies delineating the ability of MNPs to affect NLRP3 inflammasome activation are still rare. In this review, we address the issue of MNPs source and fate, highlight the main concepts of inflammasome activation via particulates, and explore recent advances in using inflammasome activation for assessment of MNP immunotoxicity. We also discuss the impact of co-exposure and MNP complex chemistry in potential inflammasome activation. Development of robust biological sensors is crucial in order to maximize global efforts to effectively address and mitigate risks that MNPs pose for human health.
Collapse
Affiliation(s)
- Andi Alijagic
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
29
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
30
|
Yang J, Monnot M, Sun Y, Asia L, Wong-Wah-Chung P, Doumenq P, Moulin P. Microplastics in different water samples (seawater, freshwater, and wastewater): Removal efficiency of membrane treatment processes. WATER RESEARCH 2023; 232:119673. [PMID: 36764106 DOI: 10.1016/j.watres.2023.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The distribution and fate of microplastics in different water sources and their treatment plants (seawater, three municipal wastewaters, a pharmaceutical factory wastewater, and three drinking waters) in France were studied. Currently, research in this field is still under exploration since almost no relevant standards or policies have been introduced for the detection, the removal, or the discharge of microplastics. This study used an improved quantitative and qualitative analytical methodology for microplastic detection by μ-FTIR carried out with siMPle analytical software. By investigation, wastewater was determined to contain the most abundant microplastics in quantity (4,203-42,000 MP·L-1), then followed by surface water/groundwater (153-19,836 MP·L-1) and seawater (around 420 MP·L-1). Polyethylene was the dominant material in almost all water types followed by polypropylene, polystyrene, and polyethylene terephthalate. Almost all treatment technologies could remove microplastics whatever the feed water types and concentration of microplastics, though some treatment processes or transport pipes could cause additional contamination from microplastics. The four WWTPs, three DWTPs, and SWTP in France provided, respectively, 87.8-99.8%, 82.3-99.9%, 69.0-96.0% removal/retention of MPs in quantity, and provided 97.3-100%, 91.9-99.9%, 92.2-98.1% removal/retention of MPs in surface area. Moreover, ultrafiltration was confirmed to be an effective technology for microplastic retention and control of dimensions of microplastics in smaller ranges both in field-scale and lab-scale experiments. The 200 kDa ultrafiltration membrane could retain 70-100% and 80-100% of microplastics in quantity and in surface area, respectively.
Collapse
Affiliation(s)
- J Yang
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France; Present affiliation: State Key Laboratory of Urban Water Resources and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - M Monnot
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France
| | - Y Sun
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France
| | - L Asia
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | | - P Doumenq
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | - P Moulin
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France.
| |
Collapse
|
31
|
Wang L, Zhu Y, Gu J, Yin X, Guo L, Qian L, Shi L, Guo M, Ji G. The toxic effect of bisphenol AF and nanoplastic coexposure in parental and offspring generation zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114565. [PMID: 36682183 DOI: 10.1016/j.ecoenv.2023.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) and bisphenol AF (BPAF) are two environmental pollutants that usually coexist in the natural environment. Studies of MPs or BPAF have gradually increased in recent years, but few studies have focused on the combination toxic effects. In this study, the subchronic model of adult zebrafish was exposed to 1 mg/L nanolevel microplastics and 200 μg/L BPAF for 45 days; the parental zebrafish were spawning every 3 days during exposure, and the effects of continuous poisoning were examined on the offspring after 1-9 spawns. The results showed that single BPAF exposure or BPAF and nanoplastic coexposure can both decrease the number of eggs laid and the locomotor behavior of parental zebrafish and impact the hatching rate, mortality, body length and locomotor behavior of offspring zebrafish, especially in 7-9 spawn. BPAF were accumulated in parental zebrafish intestinal in 334.62 ng/g in BPAF group and 594.52 ng/g in nm+BPAF group, and accumulated in whole offspring zebrafish for 281.6 ng/g in BPAF group and 321.46 ng/g in nm+BPAF group. Neurodevelopmental, inflammation, apoptosis and oxidative stress-related genes were also significantly increased after 7-9 spawn. In addition, the exacerbated accumulation in the BPAF+nm group in parental and offspring zebrafish may be the reason for the accelerated toxic effect in the present research. In this study, we investigated the combined effects of nanoplastics and BPAF on parental and offspring zebrafish in the aquatic environment to identify the accumulative toxic effects and provide new experimental support for assessing the effects of coexposure on aquatic organisms.
Collapse
Affiliation(s)
- Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanhui Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Co-Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Liguo Guo
- Co-Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lingling Qian
- Co-Innovation Center for Sustainable Forestry in Southen China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
32
|
Efficient extraction of small microplastic particles from rat feed and feces for quantification. Heliyon 2023; 9:e12811. [PMID: 36711289 PMCID: PMC9876835 DOI: 10.1016/j.heliyon.2023.e12811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
To date, microplastic is ubiquitously encountered in the environment. Studies analyzing microplastic in terrestrial ecosystems, including animal feces and feed, are few. Microplastic quantification method validation and harmonization are not yet far developed. For the analysis of small microplastic, approximately <0.5 mm, extraction from organic and inorganic materials is fundamental prior to quantitative and qualitative analysis. Method validation, including recovery studies, are necessary throughout the analytical chain. In this study, we developed an optimized, efficient protocol with a duration of 72 h for the digestion of laboratory rat feed and feces. A combination of a mild acidic (H2O2 15%; HNO3 5%) and an alkaline treatment (10% KOH) dissolving the previous filter, followed by enzymatic digestion (Viscozyme®L) proved to be efficient for the extraction and identification of spiked polyamide (15-20 μm) and polyethylene (40-48 μm) from feed and feces samples from rats, showing high recovery rates. Extracted rat feces samples from an in vivo study in which Wistar rats were fed with feed containing microplastic were analyzed with pyrolysis-gas chromatography-Orbitrap™ mass spectrometry, quantifying recovered microplastic in rat feces in environmentally relevant concentrations. The presented three-step protocol provides a suitable, time and cost-effective method to extract microplastic from rat feed and feces.
Collapse
|
33
|
Delon LC, Faria M, Jia Z, Johnston S, Gibson R, Prestidge CA, Thierry B. Capturing and Quantifying Particle Transcytosis with Microphysiological Intestine-on-Chip Models. SMALL METHODS 2023; 7:e2200989. [PMID: 36549695 DOI: 10.1002/smtd.202200989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Understanding the intestinal transport of particles is critical in several fields ranging from optimizing drug delivery systems to capturing health risks from the increased presence of nano- and micro-sized particles in human environment. While Caco-2 cell monolayers grown on permeable supports are the traditional in vitro model used to probe intestinal absorption of dissolved molecules, they fail to recapitulate the transcytotic activity of polarized enterocytes. Here, an intestine-on-chip model is combined with in silico modeling to demonstrate that the rate of particle transcytosis is ≈350× higher across Caco-2 cell monolayers exposed to fluid shear stress compared to Caco-2 cells in standard "static" configuration. This relates to profound phenotypical alterations and highly polarized state of cells grown under mechanical stimulation and it is shown that transcytosis in the microphysiological model is energy-dependent and involves both clathrin and macropinocytosis mediated endocytic pathways. Finally, it is demonstrated that the increased rate of transcytosis through cells exposed to flow is explained by a higher rate of internal particle transport (i.e., vesicular cellular trafficking and basolateral exocytosis), rather than a change in apical uptake (i.e., binding and endocytosis). Taken together, the findings have important implications for addressing research questions concerning intestinal transport of engineered and environmental particles.
Collapse
Affiliation(s)
- Ludivine C Delon
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhengyang Jia
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Stuart Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel Gibson
- School of Allied Health Science and Practice, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5050, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
34
|
Udovicki B, Andjelkovic M, Cirkovic-Velickovic T, Rajkovic A. Microplastics in food: scoping review on health effects, occurrence, and human exposure. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00093-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractWith most of the plastics ever produced now being waste, slowly degrading and fragmenting in the environment, microplastics (MPs) have become an emerging concern regarding their presence in food and influence on human health. While many studies on marine ecotoxicology and the occurrence of MPs in fish and shellfish exist, research on the occurrence of MPs in other foods and their effect on human health is still in early-stage, but the attention is increasing. This review aimed to provide relevant information on the possible health effect of ingested MPs, the occurrence, and levels of MPs contamination in various foods and estimated exposure to MPs through food. Potential toxic consequences from exposure to MPs through food can arise from MPs themselves, diffused monomers and additives but also from sorbed contaminants or microorganisms that colonise MPs. Recent publications have confirmed widespread contamination of our food with MPs including basic and life-essential constituents such as water and salt providing the basis for chronic exposure. Available exposure assessments indicate that we ingest up to several hundred thousand MPs particles yearly.
Collapse
|
35
|
Covernton GA, Cox KD, Fleming WL, Buirs BM, Davies HL, Juanes F, Dudas SE, Dower JF. Large size (>100-μm) microplastics are not biomagnifying in coastal marine food webs of British Columbia, Canada. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2654. [PMID: 35543035 PMCID: PMC9786919 DOI: 10.1002/eap.2654] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) contamination in marine environments is of increasing concern, as plastic particles are globally ubiquitous across ecosystems. A large variety of aquatic taxa ingest MPs, but the extent to which animals accumulate and transfer MPs through food webs is largely unknown. In this study, we quantified MP uptake in bivalves, crabs, echinoderms, and fish feeding at different trophic levels at three sites on southern Vancouver Island. We paired stable-isotope food web analysis with MP concentrations in digestive tracts across all trophic levels and in fish livers. We then used Bayesian generalized linear mixed models to explore whether bioaccumulation and biomagnification were occurring. Our results showed that MPs (100-5000 μm along their longest dimension) are not biomagnifying in marine coastal food webs, with no correlation between the digestive tract or fish liver MP concentrations and trophic position of the various species. Ecological traits did, however, affect microplastic accumulation in digestive tracts, with suspension feeder and smaller-bodied planktivorous fish ingesting more MPs by body weight. Trophic transfer occurred between prey and predator for rockfish, but higher concentrations in full stomachs compared with empty ones suggested rapid excretion of ingested MPs. Collectively, our findings suggested the movement of MP through marine food webs is facilitated by species-specific mechanisms, with contamination susceptibility a function of species biology, not trophic position. Furthermore, the statistical methods we employ, including machine learning for classifying unknown particles and a probabilistic way to account for background contamination, are universally applicable to the study of microplastics. Our findings advance understanding of how MPs enter and move through aquatic food webs, suggesting that lower-trophic-level animals are more at risk of ingesting >100-μm MPs, relative to higher-trophic-level animals. Our work also highlights the need to advance the study of <100-μm MPs, which are still poorly understood and may need to be considered separately in ecological risk assessments.
Collapse
Affiliation(s)
- Garth A. Covernton
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Present address:
Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Kieran D. Cox
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteCalvert IslandBritish ColumbiaCanada
| | - Wendy L. Fleming
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Brittany M. Buirs
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Hailey L. Davies
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Francis Juanes
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Sarah E. Dudas
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Hakai InstituteCalvert IslandBritish ColumbiaCanada
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBritish ColumbiaCanada
| | - John F. Dower
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- School of Earth and Ocean SciencesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
36
|
Wen S, Zhao Y, Wang M, Yuan H, Xu H. Micro(nano)plastics in food system: potential health impacts on human intestinal system. Crit Rev Food Sci Nutr 2022; 64:1429-1447. [PMID: 36066327 DOI: 10.1080/10408398.2022.2116559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Micro(nano)plastics (MNPs) in human food system have been broadly recognized by researchers and have drawn an increasing public attention to their potential health risks, particularly the risk to the intestinal system regarding the long-term exposure to MNPs through food consumption. This study aims to review the environmental properties (formation and composition) of MNPs and MNPs pollution in human food system following the order of food production, food processing and food consumption. The current analytic and identical technologies utilized by researchers are also summarized in this review. In fact, parts of commonly consumed food raw materials, processed food and the way to take in food all become the possible sources for human MNPs ingestion. In addition, the available literatures investigating MNPs-induced intestinal adverse effect are discussed from in vitro models and in vivo mammalian experiments, respectively. Particle translocation, cytotoxicity, damaged gut barrier, intestinal inflammation as well as microbial alteration are mostly reported. Moreover, the practical remediation strategies for MNPs pollution are also illustrated in the last section. This review is expected to provide a research insight for foodborne MNPs and arouse more public awareness of MNPs pollution in food and potential risk for human intestinal health.
Collapse
Affiliation(s)
- Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Chortarea S, Kuru OC, Netkueakul W, Pelin M, Keshavan S, Song Z, Ma B, Gómes J, Abalos EV, Luna LAVD, Loret T, Fordham A, Drummond M, Kontis N, Anagnostopoulos G, Paterakis G, Cataldi P, Tubaro A, Galiotis C, Kinloch I, Fadeel B, Bussy C, Kostarelos K, Buerki-Thurnherr T, Prato M, Bianco A, Wick P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129053. [PMID: 35650742 DOI: 10.1016/j.jhazmat.2022.129053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.
Collapse
Affiliation(s)
- Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Ogul Can Kuru
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Woranan Netkueakul
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandeep Keshavan
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Julio Gómes
- Avanzare Innovacion Tecnologica S.L. 26370 Navarrete, Spain
| | - Elvira Villaro Abalos
- Instituto de Tecnologías Químicas de La Rioja (InterQuímica), 26370 Navarrete, Spain
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Alexander Fordham
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Matthew Drummond
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nikolaos Kontis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Pietro Cataldi
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece; Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ian Kinloch
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Barcelona 08193, Spain
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
38
|
Horvatits T, Tamminga M, Liu B, Sebode M, Carambia A, Fischer L, Püschel K, Huber S, Fischer EK. Microplastics detected in cirrhotic liver tissue. EBioMedicine 2022; 82:104147. [PMID: 35835713 PMCID: PMC9386716 DOI: 10.1016/j.ebiom.2022.104147] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Background The contamination of ecosystem compartments by microplastics (MPs) is an ubiquitous problem. MPs have been observed in mice tissues, and recently in human blood, stool and placenta. However, two aspects remain unclear: whether MPs accumulate in peripheral organs, specifically in the liver, and if liver cirrhosis favours this process. We aimed to examine human liver tissue samples to determine whether MPs accumulate in the liver. Methods This proof-of-concept case series, conducted in Germany, Europe, analyzed tissue samples of 6 patients with liver cirrhosis and 5 individuals without underlying liver disease. A total of 17 samples (11 liver, 3 kidney and 3 spleen samples) were analyzed according to the final protocol. A reliable method for detection of MP particles from 4 to 30 µm in human tissue was developed. Chemical digestion of tissue samples, staining with Nile red, subsequent fluorescent microscopy and Raman spectroscopy were performed. Morphology, size and composition of MP polymers were assessed. Findings Considering the limit of detection, all liver, kidney and spleen samples from patients without underlying liver disease tested negative for MPs. In contrast, MP concentrations in cirrhotic liver tissues tested positive and showed significantly higher concentrations compared to liver samples of individuals without underlying liver disease. Six different microplastic polymers ranging from 4 to 30 µm in size were detected. Interpretation This proof-of-concept case series assessed the presence of MPs in human liver tissue and found six different MP polymers in the liver of individuals with liver cirrhosis, but not in those without underlying liver disease. Future studies are needed to evaluate whether hepatic MP accumulation represents a potential cause in the pathogenesis of fibrosis, or a consequence of cirrhosis and portal hypertension. Funding No funding was received for conducting this investigator driven study.
Collapse
Affiliation(s)
- Thomas Horvatits
- I. Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Matthias Tamminga
- Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
| | - Beibei Liu
- I. Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcial Sebode
- I. Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonella Carambia
- I. Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elke Kerstin Fischer
- Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany.
| |
Collapse
|
39
|
Mortensen NP, Moreno Caffaro M, Davis K, Aravamudhan S, Sumner SJ, Fennell TR. Investigation of eight cellulose nanomaterials' impact on Differentiated Caco-2 monolayer integrity and cytotoxicity. Food Chem Toxicol 2022; 166:113204. [PMID: 35679974 DOI: 10.1016/j.fct.2022.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Abstract
The potential applications of cellulose nanomaterials (CNMs) as food additives or in food packaging, present a possible source of human ingestion. While micron- and macro-scale cellulose products are classified as Generally Regarded As Safe, the safety of ingested nano-scale cellulose is largely unknown. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity was investigated for four nanocellulose crystals (CNCs) and four nanocellulose fibrils (CNFs) following 24 h of exposure at 50 μg/mL. Scanning electron microscope showed some aggregation of both CNCs and CNFs. X-ray photoelectron spectroscopy analyses showed that carbon and oxygen were the main elements. The zeta-potential for CNMs formulated in cell culture medium showed a negative surface charge. Two CNMs increased cell membrane permeability and three CNMs decreased the cell metabolic activity. While three CNMs lead to cytotoxic responses, no changes in apparent permeability coefficient (Papp) for dextran or tight junction integrity were found. Our results show that three CNMs induce cytotoxicity in differentiated Caco-2 cells, demonstrating the need to understand the role of size and shape. The interaction between CNMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications following CNM ingestion.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Klinton Davis
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
40
|
Lee S, Kang KK, Sung SE, Choi JH, Sung M, Seong KY, Lee J, Kang S, Yang SY, Lee S, Lee KR, Seo MS, Kim K. In Vivo Toxicity and Pharmacokinetics of Polytetrafluoroethylene Microplastics in ICR Mice. Polymers (Basel) 2022; 14:polym14112220. [PMID: 35683896 PMCID: PMC9182653 DOI: 10.3390/polym14112220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
The increased use of plastics has led to severe environmental pollution, particularly by microplastics—plastic particles 5 mm or less in diameter. These particles are formed by environmental factors such as weathering and ultraviolet irradiation, thereby making environmental pollution worse. This environmental pollution intensifies human exposure to microplastics via food chains. Despite potential negative effects, few toxicity assessments on microplastics are available. In this study, two sizes of polytetrafluoroethylene (PTFE) microplastics, approximately 5 μm and 10–50 μm, were manufactured and used for single and four-week repeated toxicity and pharmacokinetic studies. Toxicological effects were comprehensively evaluated with clinical signs, body weight, food and water consumption, necropsy findings, and histopathological and clinical-pathological examinations. Blood collected at 15, 30 60, and 120 min after a single administration of microplastics were analyzed by Raman spectroscopy. In the toxicity evaluation of single and four-week repeated oral administration of PTFE microplastics, no toxic changes were observed. Therefore, the lethal dose 50 (LD50) and no-observed-adverse-effect-level (NOAEL) of PTFE microplastics in ICR mice were established as 2000 mg/kg or more. PTFE microplastics were not detected in blood, so pharmacokinetic parameters could not be calculated. This study provides new insight into the long-term toxicity and pharmacokinetics of PTFE microplastics.
Collapse
Affiliation(s)
- Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- Institute of Animal Medicine & Department of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Kyung-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
| | - Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Joo-Hee Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
| | - Minkyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Jian Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Subin Kang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Seong Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (K.-Y.S.); (J.L.); (S.K.); (S.Y.Y.)
| | - Sunjong Lee
- Korea Institute of Industrial Technology, Cheonan 31056, Korea;
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea;
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Min-Soo Seo
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- Correspondence: (M.-S.S.); (K.K.); Tel.: +82-53-790-5727 (M.-S.S.); +82-53-790-5700 (K.K.)
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.L.); (K.-K.K.); (S.-E.S.); (J.-H.C.); (M.S.)
- College of Veterinary Medicine, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Korea
- Correspondence: (M.-S.S.); (K.K.); Tel.: +82-53-790-5727 (M.-S.S.); +82-53-790-5700 (K.K.)
| |
Collapse
|
41
|
Condorelli M, Speciale A, Cimino F, Muscarà C, Fazio E, D’Urso L, Corsaro C, Neri G, Mezzasalma AM, Compagnini G, Neri F, Saija A. Nano-Hybrid Au@LCCs Systems Displaying Anti-Inflammatory Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3701. [PMID: 35629727 PMCID: PMC9143445 DOI: 10.3390/ma15103701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
Abstract
Gold nanoparticles (Au NPs) have received great attention owing to their biocompatible nature, environmental, and widespread biomedical applications. Au NPs are known as capable to regulate inflammatory responses in several tissues and organs; interestingly, lower toxicity in conjunction with anti-inflammatory effects was reported to occur with Au NPs treatment. Several variables drive this benefit-risk balance, including Au NPs physicochemical properties such as their morphology, surface chemistry, and charge. In our research we prepared hybrid Au@LCC nanocolloids by the Pulsed Laser Ablation, which emerged as a suitable chemically clean technique to produce ligand-free or functionalized nanomaterials, with tight control on their properties (product purity, crystal structure selectivity, particle size distribution). Here, for the first time to our knowledge, we have investigated the bioproperties of Au@LCCs. When tested in vitro on intestinal epithelial cells exposed to TNF-α, Au@LCCs sample at the ratio of 2.6:1 showed a significantly reduced TNF gene expression and induced antioxidant heme oxygenase-1 gene expression better than the 1:1 dispersion. Although deeper investigations are needed, these findings indicate that the functionalization with LCCs allows a better interaction of Au NPs with targets involved in the cell redox status and inflammatory signaling.
Collapse
Affiliation(s)
- Marcello Condorelli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (M.C.); (L.D.); (G.C.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Luisa D’Urso
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (M.C.); (L.D.); (G.C.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Giuseppe Compagnini
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (M.C.); (L.D.); (G.C.)
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (E.F.); (C.C.); (A.M.M.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (F.C.); (C.M.); (G.N.)
| |
Collapse
|
42
|
Damato A, Vianello F, Novelli E, Balzan S, Gianesella M, Giaretta E, Gabai G. Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production. Front Vet Sci 2022; 9:889612. [PMID: 35619608 PMCID: PMC9127995 DOI: 10.3389/fvets.2022.889612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Clay minerals are naturally occurring rock and soil materials primarily composed of fine-grained aluminosilicate minerals, characterized by high hygroscopicity. In animal production, clays are often mixed with feed and, due to their high binding capacity towards organic molecules, used to limit animal absorption of feed contaminants, such as mycotoxins and other toxicants. Binding capacity of clays is not specific and these minerals can form complexes with different compounds, such as nutrients and pharmaceuticals, thus possibly affecting the intestinal absorption of important substances. Indeed, clays cannot be considered a completely inert feed additive, as they can interfere with gastro-intestinal (GI) metabolism, with possible consequences on animal physiology. Moreover, clays may contain impurities, constituted of inorganic micronutrients and/or toxic trace elements, and their ingestion can affect animal health. Furthermore, clays may also have effects on the GI mucosa, possibly modifying nutrient digestibility and animal microbiome. Finally, clays may directly interact with GI cells and, depending on their mineral grain size, shape, superficial charge and hydrophilicity, can elicit an inflammatory response. As in the near future due to climate change the presence of mycotoxins in feedstuffs will probably become a major problem, the use of clays in feedstuff, given their physico-chemical properties, low cost, apparent low toxicity and eco-compatibility, is expected to increase. The present review focuses on the characteristics and properties of clays as feed additives, evidencing pros and cons. Aims of future studies are suggested, evidencing that, in particular, possible interferences of these minerals with animal microbiome, nutrient absorption and drug delivery should be assessed. Finally, the fate of clay particles during their transit within the GI system and their long-term administration/accumulation should be clarified.
Collapse
Affiliation(s)
- Anna Damato
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - Elisa Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- *Correspondence: Elisa Giaretta
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
43
|
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, Roeder F, Tengelmann C, Wimmer BH, Laforsch C, Kress H. From properties to toxicity: Comparing microplastics to other airborne microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128151. [PMID: 35042167 DOI: 10.1016/j.jhazmat.2021.128151] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) debris is considered as a potentially hazardous material. It is omnipresent in our environment, and evidence that MP is also abundant in the atmosphere is increasing. Consequently, the inhalation of these particles is a significant exposure route to humans. Concerns about potential effects of airborne MP on human health are rising. However, currently, there are not enough studies on the putative toxicity of airborne MP to adequately assess its impact on human health. Therefore, we examined potential drivers of airborne MP toxicity. Physicochemical properties like size, shape, ζ-potential, adsorbed molecules and pathogens, and the MP's bio-persistence have been proposed as possible drivers of MP toxicity. Since their role in MP toxicity is largely unknown, we reviewed the literature on toxicologically well-studied non-plastic airborne microparticles (asbestos, silica, soot, wood, cotton, hay). We aimed to link the observed health effects and toxicology of these microparticles to the abovementioned properties. By comparing this information with studies on the effects of airborne MP, we analyzed possible mechanisms of airborne MP toxicity. Thus, we provide a basis for a mechanistic understanding of airborne MP toxicity. This may enable the assessment of risks associated with airborne MP pollution, facilitating effective policymaking and product design.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Julian Bender
- Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jonas Kitzinger
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Felix Meyer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anja Frm Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Franz Roeder
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Caroline Tengelmann
- Medical Faculty, University of Würzburg, Würzburg, Germany; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
44
|
Delon L, Gibson R, Prestidge C, Thierry B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J Control Release 2022; 343:584-599. [PMID: 35149142 DOI: 10.1016/j.jconrel.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Micro- and nano-scale particulate formulations are widely investigated towards improving the oral bioavailability of both biologics and drugs with low solubility and/or low intestinal permeability. Particulate formulations harnessing physiological intestinal transport pathways have recently yielded remarkably high oral bioavailabilities, illustrating the need for better understanding the specific pathways underpinning particle small intestinal absorption and the relative role of intestinal cells. Mechanistic knowledge has been hampered by the well acknowledged limitations of current in vitro, in vivo and ex vivo models relevant to the human intestinal physiology and the lack of standardization in studies reporting absorption data. Here we review the relevant literature and critically discusses absorption pathways with a focus on the role of specific intestinal epithelial and immune cells. We conclude that while Microfold (M) cells are a valid target for oral vaccines, enterocytes play a greater role in the systemic bioavailability of orally administrated particulate formulations, particularly within the sub-micron size range. We also comment on less-reported mechanisms such as paracellular permeability of particles, persorption due to cell damage and uptake by migratory immune cells.
Collapse
Affiliation(s)
- Ludivine Delon
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Rachel Gibson
- Australia School of Allied Health Science and Practice, University of Adelaide, South Australia 5005, Australia
| | - Clive Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
45
|
Gouin T, Ellis-Hutchings R, Thornton Hampton LM, Lemieux CL, Wright SL. Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks - development and application of a toxicity study assessment tool. MICROPLASTICS AND NANOPLASTICS 2022; 2:2. [PMID: 35098152 PMCID: PMC8760192 DOI: 10.1186/s43591-021-00023-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Concern regarding the human health implications that exposure to nano- and microplastic particles (NMPs) potentially represents is increasing. While there have been several years of research reporting on the ecotoxicological effects of NMPs, human health toxicology studies have only recently emerged. The available human health hazard data are thus limited, with potential concern regarding the relevance and reliability for understanding the potential human health implications. In this study we develop and apply a NMP toxicity screening assessment tool (NMP-TSAT) for evaluating human health effects studies against a suite of quality assurance and quality control (QA/QC) criteria for both in vivo and in vitro studies. A total of 74 studies representing either inhalation or oral exposure pathways were identified and evaluated. Assessment categories include particle characterization, experimental design, and applicability for risk assessment; with critical and non-critical criteria organized to allow screening and prioritization. It is observed that the majority of studies evaluated using the NMP-TSAT have been performed on monodisperse particles, predominately spheres (≈60%), consisting of polystyrene (≈46%). The majority of studies have tested particles < 5 μm, with a minimal particle size of 10 nm and a maximum particle size of about 200 μm. The total assessment score (TAS) possible for in vivo studies is 52, whereas for in vitro studies it is 46, which is based on receiving a maximum score of 2 against 26 and 23 criteria, respectively. The evaluated TAS ranged from between 12 and 44 and 16-34, for in vivo and in vitro studies, respectively. Given the challenges associated with prioritizing studies based on ranking them according to their TAS we propose a Tiered approach, whereby studies are initially screened based on how they score against various critical criteria, which have been defined for their relevance for assessing the hazards and risks for human health. In this instance, studies that score a minimum of '1' against each of the critical criteria, regardless of how they rank according to their TAS, are prioritized as part of a Tier 1 screening and prioritization phase, which would then be followed by an expert evaluation, representing a Tier 2 level of assessment. Using this approach we identify 10 oral ingestion and 2 inhalation studies that score at least 1 against all critical criteria. Lastly, several key observations for strengthening future effects studies are identified, these include a need for the generation and access to standard reference materials representative of human exposure to NMPs for use in toxicity test systems and/or the improved characterization and verification of test particle characteristics, and the adoption of study design guidance, such as recommended by OECD, when conducting either in vivo inhalation or oral ingestion toxicity tests. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43591-021-00023-x.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, Sharnbrook, Bedfordshire, UK
| | - Robert Ellis-Hutchings
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI 48673 USA
| | - Leah M. Thornton Hampton
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA USA
| | - Christine L. Lemieux
- Air Quality and Risk Assessment Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Stephanie L. Wright
- Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London, W12 0BZ UK
| |
Collapse
|
46
|
Turroni S, Wright S, Rampelli S, Brigidi P, Zinzani PL, Candela M. Microplastics shape the ecology of the human gastrointestinal intestinal tract. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Rufino AT, Ramalho A, Sousa A, de Oliveira JMPF, Freitas P, Gómez MAG, Piñeiro-Redondo Y, Rivas J, Carvalho F, Fernandes E, Freitas M. Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles. Molecules 2021; 26:6610. [PMID: 34771019 PMCID: PMC8588041 DOI: 10.3390/molecules26216610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles (AgNP) have been increasingly incorporated into food-related and hygiene products for their unique antimicrobial and preservative properties. The consequent oral exposure may then result in unpredicted harmful effects in the gastrointestinal tract (GIT), which should be considered in the risk assessment and risk management of these materials. In the present study, the toxic effects of polyethyleneimine (PEI)-coated AgNP (4 and 19 nm) were evaluated in GIT-relevant cells (Caco-2 cell line as a model of human intestinal cells, and neutrophils as a model of the intestinal inflammatory response). This study also evaluated the putative protective action of dietary flavonoids against such harmful effects. The obtained results showed that AgNP of 4 and 19 nm effectively induced Caco-2 cell death by apoptosis with concomitant production of nitric oxide, irrespective of the size. It was also observed that AgNP induced human neutrophil oxidative burst. Interestingly, some flavonoids, namely quercetin and quercetagetin, prevented the deleterious effects of AgNP in both cell types. Overall, the data of the present study provide a first insight into the promising protective role of flavonoids against the potentially toxic effects of AgNP at the intestinal level.
Collapse
Affiliation(s)
- Ana T. Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Ana Ramalho
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Paulo Freitas
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;
| | - Manuel A. Gonzalez Gómez
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - Yolanda Piñeiro-Redondo
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - José Rivas
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| |
Collapse
|
48
|
Fournier E, Etienne-Mesmin L, Grootaert C, Jelsbak L, Syberg K, Blanquet-Diot S, Mercier-Bonin M. Microplastics in the human digestive environment: A focus on the potential and challenges facing in vitro gut model development. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125632. [PMID: 33770682 DOI: 10.1016/j.jhazmat.2021.125632] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/02/2023]
Abstract
Plastic pollution is a major issue worldwide, generating massive amounts of smaller plastic particles, including microplastics (MPs). Their ubiquitous nature in the environment but also in foodstuff and consumer packaged goods has revealed potential threats to humans who can be contaminated mainly through air, food and water consumption. In this review, the current literature on human exposure to MPs is summarized with a focus on the gastrointestinal tract as portal of entry. Then, we discuss the vector effect of MPs, in their pristine versus weathered forms, with well-known contaminants as heavy metals and chemicals, or more emerging ones as antibiotics or microbial pathogens, like Pseudomonas spp., Vibrio spp., Campylobacter spp. and Escherichia coli. Comprehensive knowledge on MP fate in the gastrointestinal tract and their potential impact on gut homeostasis disruption, including gut microbiota, mucus and epithelial barrier, is reported in vitro and in vivo in mammals. Special emphasis is given on the crucial need of developing robust in vitro gut models to adequately simulate human digestive physiology and absorption processes. Finally, this review points out future research directions on MPs in human intestinal health.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, MEDIS (Microbiology, Digestive Environment and Health), 28 Place Henri Dunant, 63000 Clermont-Ferrand, France; Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, MEDIS (Microbiology, Digestive Environment and Health), 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Charlotte Grootaert
- Department of Food technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, MEDIS (Microbiology, Digestive Environment and Health), 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
49
|
Li Z, Feng C, Pang W, Tian C, Zhao Y. Nanoplastic-Induced Genotoxicity and Intestinal Damage in Freshwater Benthic Clams ( Corbicula fluminea): Comparison with Microplastics. ACS NANO 2021; 15:9469-9481. [PMID: 33988023 DOI: 10.1021/acsnano.1c02407] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the wide application of plastics in daily life, nanoplastics (NPs) are ubiquitous in freshwater environments. However, to date, few studies have focused on the mechanism underlying the toxicity of NPs, and the differences between this mechanism and that governing the toxicity of MPs have also not been thoroughly characterized. In this study, the genotoxicity, intestinal damage, and intestinal flora in Corbicula fluminea exposed to micro/nanoplastics were investigated through RNA sequencing, histopathology, and 16S rRNA sequencing, respectively. Significant differences in differentially expressed genes (DEGs) were observed between MP and NP exposure groups. It was observed that NPs preferentially elicited the process related to cellular components and triggered the apoptosis through the mitochondrial pathway in various tissues, especially in indirectly contacted tissues, while MPs induced the innate immune response and activated the complement and coagulation cascades (complement system) pathway. Both MPs and NPs can induce an inflammatory response and cause epithelial damage in the intestines, and they can notably change the gut microbial community structure. However, the abundance of pathogenic bacteria (e.g., Mycoplasma) was observed to increase only in the MP-treated group, which exacerbated intestinal damage. Unlike MPs, the effect of NPs on the intestinal microflora was highly limited, while NPs elicited more severe damage to the intestinal mucosal barrier. The results of this study may help to elucidate the toxicity mechanisms governing the responses of bivalves to MPs and NPs and to evaluate the detriment of MPs and NPs to the benthic ecosystem.
Collapse
Affiliation(s)
- Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Wen Pang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenhao Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Yue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
50
|
Liang B, Zhong Y, Huang Y, Lin X, Liu J, Lin L, Hu M, Jiang J, Dai M, Wang B, Zhang B, Meng H, Lelaka JJJ, Sui H, Yang X, Huang Z. Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part Fibre Toxicol 2021; 18:20. [PMID: 34098985 PMCID: PMC8186235 DOI: 10.1186/s12989-021-00414-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background Micro- and nanoplastic pollution has become a global environmental problem. Nanoplastics in the environment are still hard to detect because of analysis technology limitations. It is believed that when microplastics are found in the environment, more undetected nanoplastics are around. The current “microplastic exposure” is in fact the mixture of micro- and nanoplastic exposures. Therefore, the biological interaction between organisms among different sizes of micro- and nanoplastics should not be neglected. Results We measured the biodistribution of three polystyrene (PS) particles (50 nm PS, PS50; 500 nm PS, PS500; 5000 nm PS, PS5000) under single and co-exposure conditions in mice. We explored the underlying mechanisms by investigating the effects on three major components of the intestinal barrier (the mucus layer, tight junctions and the epithelial cells) in four intestine segments (duodenum, jejunum, ileum and colon) of mice. We found that the amounts of both PS500 and PS5000 increased when they were co-exposed with PS50 for 24 h in the mice. These increased amounts were due primarily to the increased permeability in the mouse intestines. We also confirmed there was a combined toxicity of PS50 and PS500 in the mouse intestines. This manifested as the mixture of PS50 and PS500 causing more severe dysfunction of the intestinal barrier than that caused by PS50 or PS500 alone. We found that the combined toxicity of PS micro- and nanoplastics on intestinal barrier dysfunction was caused primarily by reactive oxygen species (ROS)-mediated epithelial cell apoptosis in the mice. These findings were further confirmed by an oxidants or antioxidants pretreatment study. In addition, the combined toxicity of PS micro- and nanoplastics was also found in the mice after a 28-day repeated dose exposure. Conclusions There is a combined toxicity of PS50 and PS500 in the mouse intestines, which was caused primarily by ROS-mediated epithelial cell apoptosis in the mice. Considering that most recent studies on PS micro- and nanoplastics have been conducted using a single particle size, the health risks of exposure to PS micro- and nanoplastics on organisms may be underestimated. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00414-1.
Collapse
Affiliation(s)
- Boxuan Liang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Yizhou Zhong
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Yuji Huang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Xi Lin
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Jun Liu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Li Lin
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Manjiang Hu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Junying Jiang
- Faculty of Preventive Medicine, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou, 310051, PR China
| | - Bo Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Bingli Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Hao Meng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Jesse Justin J Lelaka
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China
| | - Haixia Sui
- Division III of risk assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, PR China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China.
| | - Zhenlie Huang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou, 510515, PR China.
| |
Collapse
|