1
|
Lu Y, Li X, Zhou J, Zhou P, Lai J, Yang Y, Shen L. Design and theoretical calculation of chitosan derivatives: Amphiphilic chitosan micelles loaded with Chinese fir essential oil. Int J Biol Macromol 2025; 297:139833. [PMID: 39814307 DOI: 10.1016/j.ijbiomac.2025.139833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The unique structure of chitosan-based micelles can be loaded with essential oil, so it is significant to study the modification of chitosan and the interactions between chitosan and essential oil, while molecular dynamics (MD) simulation and density functional theory (DFT) provide a solution. In this study, three kinds of amphiphilic chitosan derivatives (CSDs) were constructed by grafting of different hydrophilic and hydrophobic groups. Amphiphilic chitosan micelles loaded with Chinese fir essential oil (CFEO) were prepared by self-assembly. The aggregation behavior of CFEO component (cedrol and α-cedrene) in the solutions of chitosan and three CSDs were simulated using MD, and the mean square displacement was calculated. DFT analyzed the mechanism for regulating the molecular properties of CSDs by different modification methods, and explored the intensity and type of interaction force between cedrol/α-cedrene and three CSDs. The results show that cedrol and α-cedrene were more easily aggregated near the modified CSDs, with CS-g-PLA showing the strongest trapping ability. The grafting of polylactic acid on chitosan resulted in a significant decrease in HOMO-LUMO energy gap and an increase in reactivity activity. Widely distributed hydrogen bonding and van der Waals forces were confirmed to be the key to enhanced loading capacity.
Collapse
Affiliation(s)
- Ying Lu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, Hunan, China
| | - Xiangzhou Li
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, Hunan, China; Institute of Natural Products Research and Development, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jun Zhou
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, Hunan, China
| | - Peng Zhou
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, Hunan, China
| | - Jiajia Lai
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, Hunan, China
| | - Yanhong Yang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, Hunan, China
| | - Liqun Shen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, Guangxi, China
| |
Collapse
|
2
|
Chakraborty DD, Chakraborty P, Mondal A. An insight into cancer nanomedicine based on polysaccharides. Int J Biol Macromol 2025; 290:138678. [PMID: 39672407 DOI: 10.1016/j.ijbiomac.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
With cancer rates on the rise around the world, cancer treatment has dominated scientific discussions in recent years. The toxicity of cytotoxic drugs, their lack of tumor localization, and their uniform dispersion into tumor tissues are the obstacles to cancer therapy. Other cancer treatment drawbacks include short blood circulation half-lives and undesirable pharmacokinetic behavior. Low-molecular-weight drugs conjugated with macromolecular carriers are better distributed in the body. The enhanced permeation and retention (EPR) effect causes natural and synthetic polymers, such as polysaccharides, proteins, antibodies, and poly amino acids, to accumulate in tumor tissue. Many manufactured and natural polymers are attractive polymeric drug carriers, allowing the creation of prodrugs from medicinal substances. Polysaccharides are biological polymers with structural and functional variations. They are also non-toxic, hydrophilic, biodegradable, and efficiently bioactive. Polysaccharides are ideal for synthesizing many nanoparticles due to their functional groups. Their ability to adapt to their microenvironment makes them valuable. Nanoplatforms based on polysaccharides can deliver targeted anticancer drugs for personalized cancer treatment. Unique polysaccharide structures and properties offer chemical and biological advantages for novel drug delivery. Polysaccharide-drug conjugation could revolutionize cancer chemotherapy. This study investigates polysaccharide conjugates and polysaccharides as natural biomaterials for cancer drug delivery.
Collapse
Affiliation(s)
| | - Prithviraj Chakraborty
- Royal School of Pharmacy, The Assam Royal Global University, Betkuchi, Guwahati-781035, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha-743234, India.
| |
Collapse
|
3
|
Worzakowska M. Preparation, Thermal Properties and Decomposition Course of Highly Resistant Potato Starch Graft Poly(Cinnamyl Methacrylate) Materials. Molecules 2025; 30:376. [PMID: 39860251 PMCID: PMC11767298 DOI: 10.3390/molecules30020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.3% ± 0.4) using a ratio of starch to methacrylic monomer of 1:3 were obtained. The heterogeneous, non-porous structure materials were prepared. They were characterized by significant lower swelling in polar solvents and moisture absorption but higher swelling in non-polar solvents compared to unmodified potato starch. The chemical resistance in acidic, alkaline and neutral environments for all the tested copolymers was significantly higher compared to the chemical resistance of potato starch. The tested copolymers decomposed in at least three main stages in inert conditions and in at least four main stages in oxidative conditions. Their pyrolysis with the emission of the mixture of volatiles such as aldehyde, acid, ester, alcohol, aromatic, alkene, alkane, H2O, CO2 and CO based on the TG/FTIR studies was proved. The oxidative decomposition included pyrolysis processes combined with oxidation and combustion reactions of volatiles and the formed residues. As a result, the emission of the unsaturated and saturated compounds with carbonyl, hydroxyl, carboxyl and/or ester groups, alkane, alkene, aromatics and its oxidized forms, H2O, CO2 and CO, was observed.
Collapse
Affiliation(s)
- Marta Worzakowska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland
| |
Collapse
|
4
|
Li J, Ahmed HH, Hussein AM, Kaur M, Jameel MK, Kaur H, Tillaeva U, Al-Hussainy AF, Sameer HN, Hameed HG, Idan AH, Alsaikhan F, Narmani A, Farhood B. Advances in polysaccharide-based materials for biomedical and pharmaceutical applications: A comprehensive review. Arch Pharm (Weinheim) 2025; 358:e2400854. [PMID: 39651831 DOI: 10.1002/ardp.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Polysaccharides, the most abundant biopolymers in nature, have attracted the attention of researchers and clinicians due to its practicality in biomedical and pharmaceutical sciences. These biomaterials have high bioavailability and play structural and functional roles in living organisms. Polysaccharides are classified into several groups based on their origin, including plant polysaccharides and marine polysaccharides (like chitosan, hyaluronic acid, dextran, alginates, etc.) with specific applications. These biopolymers possess unique physicochemical (such as surface functional groups, solubility, and stability), mechanical (like mechanical strength and tensile), and biomedical (such as antioxidant activity, biocompatibility, biodegradability, renewability, and non-immunogenicity) characteristics which have made them excellent platforms for a wide variety of biomedical and pharmaceutical applications. Ease of extraction and different preparation approaches are mentioned as other potential properties of polysaccharides that further improved their practicality in biomedical sciences. They have high drug/bioactive encapsulation capacity and sustained/controlled release manner in in vivo microenvironments. The anti-inflammatory and immunomodulation, stimuli-responsive drug/bioactive release, and passive and active drug/bioactive delivery are considered the potential features of these biopolymers in pharmaceutical sciences. Polysaccharides have indicated practical applications in biomedical sciences, including biosensors, tissue engineering, implantation, wound healing, vascular grafting, and vaccines. This review highlights the advances of polysaccharide-based materials in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Cognitive Neuroscience and Philosophy, University of Skovde, Skovde, Sweden
| | | | - Ali M Hussein
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mohammed Khaleel Jameel
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Ali MF, Ochiai B. Click Chemistry for Well-Defined Graft Copolymers. Polymers (Basel) 2024; 16:3275. [PMID: 39684020 DOI: 10.3390/polym16233275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Graft copolymers have gained significant importance in various fields due to their tunable functionality and well-defined architecture. However, there are still limitations due to the compatibility of monomers and functional groups depending on the polymerization mode. Click chemistry has solved this problem through its ability to easily and quantitatively link a wide range of polymers and functional groups. The combination of click chemistry, including copper-catalyzed azide-alkyne cycloaddition (CuAAC), thiol-ene, and thiol-yne reactions, with various polymerization techniques offers a promising solution for the robust and efficient preparation of graft copolymers with the desired architecture and functionality. In this review, we present successful applications of click chemistry in the production of well-defined graft copolymers with diverse functionalities such as for electronics, energy devices, biomedical applications, and nanotechnology.
Collapse
Affiliation(s)
- Muhammad Faizan Ali
- Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| | - Bungo Ochiai
- Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| |
Collapse
|
6
|
Li Y, Gao Q, Ruan Z. Effects of side-chain lengths on the structure and properties of anhydrides modified starch micelles: Experimental and DPD simulation studies. Carbohydr Polym 2024; 343:122451. [PMID: 39174130 DOI: 10.1016/j.carbpol.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
Anhydride-modified starch micelles have great potential in the delivery of hydrophobic guest molecules. This study aimed to experimentally explore the effects of side-chain lengths on the structure and properties of anhydride-modified starch micelles, and to visualize the self-assembly and loading process of these micelles through Dissipative particle dynamics (DPD) simulations. Starch micelles could only form when the carbon chain length exceeded four. The highly hydrophobic C18 starch micelle exhibited the minimum particle size (65 nm) and maximum loading capability (59.10 μg/mg). For each addition carbon atom in the anhydride side chains, the critical micelle concentration (CMC) of starch micelles decreased average of 1.79 %. Thermodynamic results showed that the micellization was an entropy-dominated driven process, and longer carbon chains enhanced the stability of starch micelles. DPD results showed that the starch chains formed the small clusters then spherical aggregates and finally core-shell structure spherical micelle. Curcumin was loaded into micelles by adjoint aggregation-micellization-adsorption mechanism. Overall, this study provides microscopic insight into the micellization and drug-loading mechanisms for anhydrides modified starch micelles.
Collapse
Affiliation(s)
- Yang Li
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China; Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang, Henan Province 461000, PR China.
| | - Zheng Ruan
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Basak U, Chatterjee DP, Mahapatra G, Nandi AK. Enhanced Optoelectronic Properties of Polythiophene- g-Poly(dimethyl amino ethyl methacrylate)- b-Poly(diethylene glycol methyl ether methacrylate) Copolymers using " Grafting onto" Synthetic Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48854-48869. [PMID: 39231951 DOI: 10.1021/acsami.4c13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The optoelectronic properties of polythiophene (PT) graft block copolymers are most important for fabricating optoelectronic devices, and recently, we reported a single-pot atom-transfer radical polymerization (ATRP) technique for preparation of PT graft block copolymers between thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMEM) and pH-responsive poly(dimethyl amino ethyl methacrylate) (PDMAEMA) from the PT backbone via the "grafting from" strategy with an 11 mol % contamination. A "grafting onto" strategy has been opted to eliminate the contamination from the block copolymer where we synthesized poly(thiophene acetic acid) (P3TAA) followed by the coupling with PDEGMEM-b-PDMAEMA-Cl, PDMAEMA-b-PDEGMEM-Cl, and PDMAEMA-ran-PDEGMEM-Cl copolymers, produced separately by the ATRP technique. The polymers were characterized using 1H NMR, SEC, etc. TEM study exhibits mostly vesicular morphology and optical properties measured using UV-vis and photoluminescence spectroscopy showing pH dependent behavior. dc conductivity values indicate semiconducting nature in the order P2 > P3 > P1. The abrupt hike of P2 (∼80 times) in conductivity at pH 3 from that of previously prepared P2 copolymers formed by the grafting from process is attributed to the absence of ∼11 mol % contamination. Conductivity decreases with increasing pH, due to coiling of the PT backbone in accordance with the blue shifts of λabs peaks. The current (I)-voltage (V) plots exhibit bimodal memory and organic mixed ionic and electronic conductivity. Higher current (3.3 mA for P2, pH 3) and electronic memory occur upon light irradiation than that of dark. Photoswitching property decreases with increase of pH, showing highest photocurrent gain of 8.05 for P2 at pH 3. Photocurrent gain follows the order P2 > P3 > P1 indicating P2 is the best to develop photoswitches in the P-series polymers. Fitting of growth and decay curves suggests that they are a two-stage process: photocurrent raises fast at the on state initially and then at a slower rate and similar at an off state. Impedance spectra suggest charge-transfer resistance and Warburg impedance values follow the order of P1 > P3 > P2, whereas capacitance value follows the opposite order.
Collapse
Affiliation(s)
- Udayan Basak
- Polymer Science Unit, School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Dhruba P Chatterjee
- Department of Chemistry, Presidency University, College Street, Kolkata 700073, India
| | - Gouranga Mahapatra
- Polymer Science Unit, School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
9
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
10
|
Geng H, Chen M, Guo C, Wang W, Chen D. Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr Res 2024; 538:109071. [PMID: 38471432 DOI: 10.1016/j.carres.2024.109071] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The ocean is the common home of a large number of marine organisms, including plants, animals, and microorganisms. Researchers can extract thousands of important bioactive components from the oceans and use them extensively to treat and prevent diseases. In contrast, marine polysaccharide macromolecules such as alginate, carrageenan, Laminarin, fucoidan, chitosan, and hyaluronic acid have excellent physicochemical properties, good biocompatibility, and high bioactivity, which ensures their wide applications and strong therapeutic potentials in drug delivery. Drug delivery systems (DDS) based on marine polysaccharides and modified marine polysaccharide molecules have emerged as an innovative technology for controlling drug distribution on temporal, spatial, and dosage scales. They can detect and respond to external stimuli such as pH, temperature, and electric fields. These properties have led to their wide application in the design of novel drug delivery systems such as hydrogels, polymeric micelles, liposomes, microneedles, microspheres, etc. In addition, marine polysaccharide-based DDS not only have smart response properties but also can combine with the unique biological properties of the marine polysaccharide base to exert synergistic therapeutic effects. The biological activities of marine polysaccharides and the design of marine polysaccharide-based DDS are reviewed. Marine polysaccharide-based responsive DDS are expected to provide new strategies and solutions for disease treatment.
Collapse
Affiliation(s)
- Hongxu Geng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Meijun Chen
- Yantai Muping District Hospital of Traditional Chinese Medicine, No.505, Government Street, Muping District, Yantai, 264110, PR China.
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao, 266003, PR China.
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
11
|
Lu A, Li S. Polysaccharides as a Hydrophilic Building Block of Amphiphilic Block Copolymers for the Conception of Nanocarriers. Pharmaceutics 2024; 16:467. [PMID: 38675130 PMCID: PMC11054713 DOI: 10.3390/pharmaceutics16040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Polysaccharides are gaining increasing attention for their relevance in the production of sustainable materials. In the domain of biomaterials, polysaccharides play an important role as hydrophilic components in the design of amphiphilic block copolymers for the development of drug delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradability, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the synthesis of polysaccharide-based block copolymers. Compared with polysaccharide-based graft copolymers, the structure of block copolymers can be more precisely controlled. In this review, the synthesis methods of polysaccharide-based amphiphilic block copolymers are discussed in detail, taking into consideration the structural characteristics of polysaccharides. Various synthetic approaches, including reductive amination, oxime ligation, and other chain-end modification reactions, are explored. This review also focuses on the advantages of polysaccharides as hydrophilic blocks in polymeric nanocarriers. The structure and unique properties of different polysaccharides such as cellulose, hyaluronic acid, chitosan, alginate, and dextran are described along with examples of their applications as hydrophilic segments in the synthesis of amphiphilic copolymers to construct nanocarriers for sustained drug delivery.
Collapse
Affiliation(s)
- Aijing Lu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China;
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
12
|
Zhang Y, Liu K, Chi C, Chen L, Li X. Preparation, stability and controlled release properties of starch-based micelles for oral delivery of hydrophobic bioactive molecules. Int J Biol Macromol 2024; 262:130241. [PMID: 38367789 DOI: 10.1016/j.ijbiomac.2024.130241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Amphiphilic starches incorporating fatty acid ester chains of varying lengths and degrees of substitution (DS) were synthesized to fabricate starch-based micelles for oral delivery of hydrophobic bioactive molecules. The assembly of the amphiphilic starches is influenced by the concentration, temperature, and the chain length and DS of their fatty acid ester chain. Highly acidic environment can hydrolyze the amphiphilic starches, resulting in the formation of small-sized micelles. Conversely, high ionic concentration hinders the self-assembly of amphiphilic starches and the digestive fluids can dilute the amphiphilic starches concentration, leading to the micelle dissociation. However, amphiphilic starches with longer chain length and/or higher DS of the fatty acid ester chain possess greater hydrophobicity, enhancing the stability of starch-based micelles under varying conditions and favouring the protection of Trp-2 peptides during storage. The micelles demonstrate high cell bioaccessibility for Trp-2 peptides, with 59.25 % of Trp-2 peptides being transferred by the intestinal epithelium. These findings suggest a potential starch-based micelle system can be adjusted for the oral delivery of hydrophobic bioactive molecules.
Collapse
Affiliation(s)
- Yiping Zhang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kun Liu
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Expezerimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengdeng Chi
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
13
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
14
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [DOI: 10.https:/doi.org/10.1007/s13346-023-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 03/30/2025]
|
15
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [PMID: 37555905 DOI: 10.1007/s13346-023-01392-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Phenylketonuria (PKU) is a rare inherited metabolic disease characterized by phenylalanine hydroxylase enzyme deficiency. In PKU patients, coenzyme Q10 (CoQ10) levels were found low. Therefore, we focused on the modification of CoQ10 to load the micelles and increase entry of micelles into the cell and mitochondria, and it is taking a part in ATP turnover. Micelles had produced by comparing two different production methods (thin-film layer and direct-dissolution), and characterization studies were performed (zeta potential, size, and encapsulation efficiency). Then, L-arginine (LARG) and poly-arginine (PARG) were incorporated with the micelles for subsequential release and PKU cell studies. The effects of these components on intracellular uptake and their use in the cellular cycle were analyzed by ELISA, Western blot, membrane potential measurement, and flow cytometry methods. In addition, both effects of LARG and PARG micelles on pharmacokinetics at the cellular level and their cell binding rate were determined. The thin-film method was found superior in micelle preparation. PARG/LARG-modified micelles showed sustained release. In the cellular and mitochondrial uptake of CoQ10, CoQ10-micelle + PARG > CoQ10-micelle + LARG > CoQ10-micelle > CoQ10 was found. This increased localization caused lowering of oxygen consumption rates, but maintaining mitochondrial membrane potential. The study results had showed that besides micelle formulation, PARG and LARG are effective in cellular and mitochondrial targeting.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA.
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA
| | - Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Pourjavadi A, Kashani FB, Doroudian M, Amin SS. Synthesis and characterization of stimuli responsive micelles from chitosan, starch, and alginate based on graft copolymers with polylactide-poly(methacrylic acid) and polylactide- poly[2(dimethyl amino)ethyl methacrylate] side chains. Int J Biol Macromol 2023; 253:127170. [PMID: 37783250 DOI: 10.1016/j.ijbiomac.2023.127170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The primary objective of this paper is to serve as a comprehensive study on the synthesis of stimulus-sensitive micelles based on polysaccharides. In pursuit of this goal, functionalization with polylactide (PLA) was used as the water-resistance part and poly[2(Dimethyl amino)ethyl methacrylate] (PDMAEMA) or poly(methacrylic acid) (PMA) were employed as the stimulus-sensitive part to create micelles with a simple structure. FTIR and 1HNMR measurements were utilized to characterize the functionalized polysaccharides. Fluorescence spectroscopy was used to determine the critical micelle concentration. The average micelles' diameter, as observed in SEM and TEM pictures, ranges from 50 to 200 nm. To gain a better understanding of the potential of theses micelles for delivering drugs in a stimulus-sensitive manner, drug release tests were conducted. The cytotoxicity of these nano-vehicles was examined using the MTT assay. Utilizing MCF7 cells stained with DAPI and Mito Tracker, cellular uptake studies were also investigated. The results indicate that the behavior of the micelles is nearly same even though they used polysaccharides with various charge densities or different stimulus sensitive polymers. This approach, therefore, demonstrates that a broad range of micelle production is possible by employing diverse polysaccharides functionalized with PLA and polymethacrylates.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran.
| | - Fatemeh Bolori Kashani
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Mohadeseh Doroudian
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Shiva Sadat Amin
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| |
Collapse
|
17
|
He Y, Li L, Ding M, Li W. Flow-driven translocation of comb-like copolymer micelles through a nanochannel. SOFT MATTER 2023; 19:9166-9172. [PMID: 37990911 DOI: 10.1039/d3sm01241g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Using hybrid lattice-Boltzmann molecular dynamics simulations, we investigate the flow-driven translocation of comb-like copolymer micelles through a nanochannel, in particular, making a detailed comparison with micelles formed by the corresponding diblock copolymers. Our results demonstrate that the critical flow flux of micelles formed by the comb-like copolymers is higher than that of micelles formed by the corresponding diblock copolymers, which is more pronounced with increasing side chain lengths or grafting densities, as evidenced by the free energy computed by self-consistent field theory. Our work indicates that the impact of chain topology on the stability of micelles, especially with the same size, can be well characterized using the critical flow fluxes, which provides a theoretical basis for designing self-assembling micelles for various applications.
Collapse
Affiliation(s)
- Yingjie He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Mohammadi F, Moradi A, Tavakoli F, Rahmati S, Giti R, Ramezani V. Development and characterization of a copolymeric micelle containing soluble and insoluble model drugs. PLoS One 2023; 18:e0286251. [PMID: 37228096 PMCID: PMC10212155 DOI: 10.1371/journal.pone.0286251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Micelles are nano-sized particles with a core-shell structure that are made by natural or synthetic polymers or copolymers. The aim of this study was to develop and characterize a copolymeric micelle using two polymers loaded with hydrophilic and lipophilic drugs. METHODS Poly(ethylene glycol) and poly(ε-caprolactone) (PEG-PCL) were used to form a copolymeric micelle which was further loaded with either moxifloxacin or clarithromycin as hydrophilic and lipophilic drug samples, respectively. Characterization tests were done including fourier transform-infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, encapsulation efficiency, particle size, zeta potential, polydispersity index, transmission electron microscopy, and in-vitro release test. RESULTS The construction of the copolymer was confirmed by the results of FT-IR and 1H NMR spectroscopy tests. The encapsulation efficiency test exhibited that loading was about 50% for twelve formulations. Particle size, zeta potential, polydispersity index, and transmission electron microscopy confirmed the formation of monodispersed, uniform, and nano-sized micelles with a few negative charges. The kinetic model of release was fitted to the Higuchi model. CONCLUSIONS Polymeric micelles consisting of PEG-PCL copolymer were loaded with adequate concentrations of hydrophilic (moxifloxacin) and lipophilic (clarithromycin) model drugs, with a mean particle size under 300 nm. Therefore, copolymeric micelles can be used as a suitable drug delivery system for mucous membranes and skin.
Collapse
Affiliation(s)
- Farhad Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Fatemeh Tavakoli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Samaneh Rahmati
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Yazd, Iran
| |
Collapse
|
19
|
Thermo-Responsive Injectable Hydrogels Formed by Self-Assembly of Alginate-Based Heterograft Copolymers. Gels 2023; 9:gels9030236. [PMID: 36975684 PMCID: PMC10048633 DOI: 10.3390/gels9030236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative method to tune Tgel using an alginate-based thermo-responsive gelator bearing two kinds of grafting chains (heterograft copolymer topology) of P(NIPAM86-co-NtBAM14) random copolymers and pure PNIPAM, differing in their lower critical solution temperature (LCST) about 10 °C. Interestingly, the Tgel of the heterograft copolymer is controlled from the overall hydrophobic content, NtBAM, of both grafts, implying the formation of blended side chains in the crosslinked nanodomains of the formed network. Rheological investigation of the hydrogel showed excellent responsiveness to temperature and shear. Thus, a combination of shear-thinning and thermo-thickening effects provides the hydrogel with injectability and self-healing properties, making it a good candidate for biomedical applications.
Collapse
|
20
|
Zaborniak I, Pieńkowska N, Chmielarz P, Bartosz G, Dziedzic A, Sadowska-Bartosz I. Nitroxide-containing amphiphilic polymers prepared by simplified electrochemically mediated ATRP as candidates for therapeutic antioxidants. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
21
|
Patel D, Tripathi N, Ray D, Aswal VK, Kuperkar K, Bahadur P. Self-assembly generation triggered in highly hydrophilic Pluronics® by sugars/ polyols. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
22
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
23
|
Shi L, Jin Y, Bai L, Shang X, Li Y, Zhou R. Ultrasensitive
redox‐responsive ditelluride‐containing
fluorinated Gemini micelles for controlled drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Liangjie Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yong Jin
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Long Bai
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Xiang Shang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yupeng Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Rong Zhou
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| |
Collapse
|
24
|
Novel self-assembly nano OSA starch micelles controlled by protonation in aqueous media. Carbohydr Polym 2023; 299:120146. [PMID: 36876775 DOI: 10.1016/j.carbpol.2022.120146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
A new micellization method was applied to produce the nano octenyl succinic anhydride (OSA) modified starch micelles with controllable size. The underlying mechanism was explored by using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), zeta-potential, surface tension, fluorescence spectra and transmission electron microscope (TEM). Due to the new starch modification method, the electrostatic repulsion between the deprotonation carboxyl groups prevented the aggregation of starch chains. With the progress of protonation, the weaken electrostatic repulsion and enhanced hydrophobic interaction driven the self-assembly of micelles. The size of micelles increased gradually with the increase of the protonation degree (PD) and concentration of OSA starch. However, a V-shaped trends were observed in the size as the increase of substitution of degree (DS). Curcuma loading test indicated that micelles had good encapsulated capability and the maximum value was 52.2 μg/mg. The understanding of the self-assembly behavior of OSA starch micelles can facilitate and improve the starch-based carrier designs used to synthesis complex and smart micelle delivery system with good biocompatibility.
Collapse
Key Words
- Curcumin
- Molecular interactions
- OSA starch
- PubChem CID: 10340, Sodium carbonate
- PubChem CID: 14798, Sodium hydroxide
- PubChem CID: 24243, Sodium phosphate tribasic
- PubChem CID: 31423, Pyrene
- PubChem CID: 5362721, Octenyl succinic anhydride
- PubChem CID: 6344, Dichloromethane
- PubChem CID: 679, Dimethyl sulfoxide
- PubChem CID: 71502, Trifluoroacetic acid-d(1)
- PubChem CID: 75151, DMSO-d(6)
- PubChem CID: 969516, Curcumin
- Self-assembly
- Size
- Starch micelle
Collapse
|
25
|
Tincu CEI, Popa M, Atanase LI, Popa O, Ochiuz L, Postolache P, Ghizdovat V, Irimiciuc SA, Agop M, Volovat C, Volovat S. Multi-fractal modeling of curcumin release mechanism from polymeric nanomicelles. Drug Deliv 2022; 29:2883-2896. [PMID: 36062523 PMCID: PMC9448400 DOI: 10.1080/10717544.2022.2118402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The physicochemical properties of "smart" or stimuli-sensitive amphiphilic copolymers can be modeled as a function of their environment. In special, pH-sensitive copolymers have practical applications in the biomedical field as drug delivery systems. Interactions between the structural units of any polymer-drug system imply mutual constraints at various scale resolutions and the nonlinearity is accepted as one of the most fundamental properties. The release kinetics, as a function of pH, of a model active principle, i.e., Curcumin, from nanomicelles obtained from amphiphilic pH-sensitive poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) tailor-made diblock copolymers was firstly studied by using the Rietger-Peppas equation. The value of the exponential coefficient, n, is around 0.5, generally suggesting a diffusion process, slightly disturbed in some cases. Moreover, the evaluation of the polymer-drug system's nonstationary dynamics was caried out through harmonic mapping from the usual space to the hyperbolic one. The kinetic model we developed, based on fractal theory, fits very well with the experimental data obtained for the release of Curcumin from the amphiphilic copolymer micelles in which it was encapsulated. This model is a variant of the classical kinetic models based on the formal kinetics of the process.
Collapse
Affiliation(s)
- Camelia E Iurciuc Tincu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Iaşi, Romania.,Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, Gheorghe Asachi" Technical University, Iaşi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, Gheorghe Asachi" Technical University, Iaşi, Romania.,Academy of Romanian Scientists, Bucharest, Romania
| | - Leonard I Atanase
- Academy of Romanian Scientists, Bucharest, Romania.,Faculty of Dental Medicine, "Apollonia" University of Iasi, Iași, Romania
| | - Ovidiu Popa
- Department of Emergency Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Paraschiva Postolache
- 1st Medical Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Stefan A Irimiciuc
- National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
| | - Maricel Agop
- Academy of Romanian Scientists, Bucharest, Romania.,Department of Physics, "Gh. Asachi" Technical University of Iasi, Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Iasi, Romania.,Center of Oncology Euroclinic, Iasi, Romania
| | - Simona Volovat
- Department of Medical Oncology Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, Iasi, Romania.,Center of Oncology Euroclinic, Iasi, Romania
| |
Collapse
|
26
|
Rodchenko S, Kurlykin M, Tenkovtsev A, Milenin S, Sokolova M, Yakimansky A, Filippov A. Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 3. Influence of Grafting Density on Behavior in Organic and Aqueous Solutions. Polymers (Basel) 2022; 14:5118. [PMID: 36501510 PMCID: PMC9740392 DOI: 10.3390/polym14235118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Regular and irregular molecular brushes with polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains have been synthesized. Prepared samples differed strongly in the side chain grafting density, namely, in the ratio of the lengths of spacer between the grafting points and the side chains. The hydrodynamic properties and molecular conformation of the synthesized grafted copolymers and their behavior in aqueous solutions on heating were studied by the methods of molecular hydrodynamics and optics. It was found that the regularity and the grafting density do not affect the molecular shape of the studied samples of molecular brushes in the selective solvent. On the contrary, the grafting density is one of the most important factors determining the thermoresponsivity of grafted copolymers. It was shown that in analyzing self-organization and LCST values in aqueous solutions of poly-2-isopropyl-2-oxazolines with complex architecture, many factors should be considered. First is the molar fraction of the hydrophobic fragment and the intramolecular density. It was found that molar mass is not a factor that greatly affects the phase transition temperature of poly-2-isopropyl-2-oxazolines solutions at a passage from one molecular architecture to another.
Collapse
Affiliation(s)
- Serafim Rodchenko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Sergey Milenin
- Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, Lenin Avenue, 125, 300026 Tula, Russia
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya, 70, 117393 Moscow, Russia
| | - Maria Sokolova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Alexander Yakimansky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| |
Collapse
|
27
|
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022; 14:4702. [PMID: 36365696 PMCID: PMC9657626 DOI: 10.3390/polym14214702] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India
| |
Collapse
|
28
|
Investigation of self-assembled poly(ethylene glycol)-poly(L-lactic acid) micelle as potential drug delivery system for poorly water soluble anticancer drug abemaciclib. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Ozturk MR(B, Popa M, Rata DM, Cadinoiu AN, Parfait F, Delaite C, Atanase LI, Solcan C, Daraba OM. Drug-Loaded Polymeric Micelles Based on Smart Biocompatible Graft Copolymers with Potential Applications for the Treatment of Glaucoma. Int J Mol Sci 2022; 23:ijms23169382. [PMID: 36012646 PMCID: PMC9409108 DOI: 10.3390/ijms23169382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is the second leading cause of blindness in the world. Despite the fact that many treatments are currently available for eye diseases, the key issue that arises is the administration of drugs for long periods of time and the increased risk of inflammation, but also the high cost of eye surgery. Consequently, numerous daily administrations are required, which reduce patient compliance, and even in these conditions, the treatment of eye disease is too ineffective. Micellar polymers are core–shell nanoparticles formed by the self-assembly of block or graft copolymers in selective solvents. In the present study, polymeric micelles (PMs) were obtained by dialysis from smart biocompatible poly(ε-caprolactone)-poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) [PCL-g-P(NVCL-co-NVP)] graft copolymers. Two copolymers with different molar masses were studied, and a good correlation was noted between the micellar sizes and the total degree of polymerisation (DPn) of the copolymers. The micelles formed by Cop A [PCL120-g-P(NVCL507-co-NVP128)], with the lowest total DPn, have a Z-average value of 39 nm, whereas the micellar sizes for Cop B [PCL120-g-P(NVCL1253-co-NVP139)] are around 47 nm. These PMs were further used for the encapsulation of two drugs with applications for the treatment of eye diseases. After the encapsulation of Dorzolamide, a slight increase in micellar sizes was noted, whereas the encapsulation of Indomethacin led to a decrease in these sizes. Using dynamic light scattering, it was proved that both free and drug-loaded PMs are stable for 30 days of storage at 4 °C. Moreover, in vitro biological tests demonstrated that the obtained PMs are both haemo- and cytocompatible and thus can be used for further in vivo tests. The designed micellar system proved its ability to release the encapsulated drugs in vitro, and the results obtained were validated by in vivo tests carried out on experimental animals, which proved its high effectiveness in reducing intraocular pressure.
Collapse
Affiliation(s)
| | - Marcel Popa
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Correspondence: (M.P.); (L.I.A.)
| | - Delia Mihaela Rata
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
| | | | | | | | - Leonard Ionut Atanase
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Correspondence: (M.P.); (L.I.A.)
| | - Carmen Solcan
- Public Health Department, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| | - Oana Maria Daraba
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
| |
Collapse
|
30
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Bai B, Weng S, Wu Z, Xie Z, Tang J, Yang Q. Fabrication of Dual-Responsive pH and Reduction of Dual Anticancer Drugs Conjugates Dextran Self-Assembly for Osteosarcoma Cancer Treatment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Drug Delivery Systems Based on Pluronic Micelles with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14153007. [PMID: 35893968 PMCID: PMC9331063 DOI: 10.3390/polym14153007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial oral diseases are chronic, and, therefore, require appropriate treatment, which involves various forms of administration and dosing of the drug. However, multimicrobial resistance is an increasing issue, which affects the global health system. In the present study, a commercial amphiphilic copolymer, Pluronic F127, was used for the encapsulation of 1-(5′-nitrobenzimidazole-2′-yl-sulphonyl-acetyl)-4-aryl-thiosemicarbazide, which is an original active pharmaceutical ingredient (API) previously synthesized and characterized by our group, at different copolymer/API weight ratios. The obtained micellar systems, with sizes around 20 nm, were stable during 30 days of storage at 4 °C, without a major increase of the Z-average sizes. As expected, the drug encapsulation and loading efficiencies varied with the copolymer/API ratio, the highest values of 84.8 and 11.1%, respectively being determined for the F127/API = 10/1 ratio. Moreover, in vitro biological tests have demonstrated that the obtained polymeric micelles (PMs) are both hemocompatible and cytocompatible. Furthermore, enhanced inhibition zones of 36 and 20 mm were observed for the sample F127/API = 2/1 against S. aureus and E. coli, respectively. Based on these encouraging results, it can be admitted that these micellar systems can be an efficient alternative for the treatment of bacterial oral diseases, being suitable either by injection or by a topical administration.
Collapse
|
33
|
Sunitha K, Mahesh S, Suchithra C, Unnikrishnan G, Reghunadhan Nair CP. Comb like amphiphilic graft copolymers bearing PDMS and PEO side chains: synthesis and solvent assisted self-assembly behavior. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Díaz J, Soltau M, Lísal M, Carbone P, Pagonabarraga I. Adsorption of amphiphilic grafted polymers as polymer corrosion inhibitors: insights from mesoscopic simulations. Phys Chem Chem Phys 2022; 24:11992-12001. [PMID: 35532223 DOI: 10.1039/d2cp00504b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The homogeneous covering of amphiphillic polymer molecules onto metallic surfaces is of great importance for corrosion inhibitor applications. Lyophillic side chains grafted onto a lyophobic backbone act as anchors that allow the molecule to absorb at the metallic surface preventing the exposure with the solvent. Coarse-grained simulations are used to study the sorption and conformation behaviour of amphiphillic grafted polymers for corrosion inhibition. The backbone insolubility is found to play a key role in the sorption and conformation behaviour in the dilute limit. For finite concentrations, moderate backbone solubility and moderate molecule concentrations achieve optimal surface coverage, while highly a lyophobic backbone leads to bulk-like structures as a consequence of aggregation.
Collapse
Affiliation(s)
- Javier Díaz
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime - Avenue Forel 2, Lausanne, 1015, Switzerland.
| | | | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Prague, Czech Republic.,Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Úst nad Labem, Czech Republic
| | - Paola Carbone
- Department of Chemical Engineering, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime - Avenue Forel 2, Lausanne, 1015, Switzerland. .,Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
35
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
36
|
Synthesis of Amphiphilic Copolymers of N-Vinyl-2-pyrrolidone and Allyl Glycidyl Ether for Co-Delivery of Doxorubicin and Paclitaxel. Polymers (Basel) 2022; 14:polym14091727. [PMID: 35566896 PMCID: PMC9103997 DOI: 10.3390/polym14091727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Co-delivery of chemotherapeutics in cancer treatment has been proven essential for overcoming multidrug resistance and improving the outcome of therapy. We report the synthesis of amphiphilic copolymers of N-vinyl-2-pyrrolidone and allyl glycidyl ether of various compositions and demonstrate that they can form nanoaggregates capable of simultaneous covalent immobilization of doxorubicin by the epoxy groups in the shell and hydrophobic-driven incorporation of paclitaxel into the core of nanoparticles. The structure of the obtained copolymers was characterized by 13C NMR, IR, and MALDI spectroscopy, as well as adsorption at the water/toluene interface. A linear increase in the number-average molecular weight of amphiphilic copolymers and a decrease in the number-average diameter of macromolecular aggregates with an increase in the ratio N-vinyl-2-pyrrolidone/allyl glycidyl ether were observed. The assembled nanocarriers were characterized by DLS. The reported novel nanocarriers can be of interest for delivery and co-delivery of a wide range of pharmacological preparations and combined therapy for cancer and other deceases.
Collapse
|
37
|
Souza BNRF, Ribeiro ERFR, da Silva de Barros AO, Pijeira MSO, Kenup-Hernandes HO, Ricci-Junior E, Diniz Filho JFS, dos Santos CC, Alencar LMR, Attia MF, Gemini-Piperni S, Santos-Oliveira R. Nanomicelles of Radium Dichloride [ 223Ra]RaCl 2 Co-Loaded with Radioactive Gold [ 198Au]Au Nanoparticles for Targeted Alpha-Beta Radionuclide Therapy of Osteosarcoma. Polymers (Basel) 2022; 14:1405. [PMID: 35406278 PMCID: PMC9002948 DOI: 10.3390/polym14071405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues. Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined alpha and beta therapy in the same formulation, compared with these components used alone. Together, these results show, for the first time, an efficient association between alpha and beta therapies, which could become a promising tool in the control of tumor progression.
Collapse
Affiliation(s)
- Bárbara Nayane Rosário Fernandes Souza
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Elisabete Regina Fernandes Ramos Ribeiro
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Aline Oliveira da Silva de Barros
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Martha Sahylí Ortega Pijeira
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Hericka Oliveira Kenup-Hernandes
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil;
| | - Eduardo Ricci-Junior
- DEFARMED Laboratory, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil;
| | - Joel Félix Silva Diniz Filho
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Clenilton Costa dos Santos
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Mohamed F. Attia
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Sara Gemini-Piperni
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ralph Santos-Oliveira
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro 23070-200, Brazil
| |
Collapse
|
38
|
Xu J, Abetz V. Double thermoresponsive graft copolymers with different chain ends: feasible precursors for covalently crosslinked hydrogels. SOFT MATTER 2022; 18:2082-2091. [PMID: 35199817 DOI: 10.1039/d1sm01692j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The tailored synthesis of graft copolymers from acrylic and methacrylic monomers can be accomplished solely through photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization. Samples with poly[oligo(ethylene glycol) methacrylate] (POEGMA) backbones synthesized under green light irradiation and poly(N-isopropylacrylamide) (PNIPAM) side chains growing under blue light irradiation are presented. As monitored by temperature-dependent dynamic light scattering (DLS) measurements and temperature-variable nuclear magnetic resonance (NMR) spectroscopy, the architecture of the graft copolymers allows unique two-step lower critical solution temperature (LCST) transitions in aqueous solutions. Meanwhile, different end-groups introduced by the corresponding RAFT agents affect the detailed thermoresponsive behavior remarkably. This RAFT strategy shows more advantages when the multiple trithiocarbonate groups are converted into thiol reactive pyridyl disulfide (PDS) groups via a facile post-polymerization modification. The PDS-terminated graft copolymer can then be regarded as a usable precursor for various applications, such as thermoresponsive hydrogels.
Collapse
Affiliation(s)
- Jingcong Xu
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
39
|
Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022; 20:91. [PMID: 35193612 PMCID: PMC8864802 DOI: 10.1186/s12951-022-01290-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Novel temperature and pH dual-sensitive amphiphilic micelles were fabricated exploiting the host-guest interaction between benzimidazole-terminated PHEMA-g-(PCL-BM) and β-CD-star-PMAA-b-PNIPAM. The fabricated graft copolymer had a brush-like structure with star side chains. The micelles were utilized as dual-responsive nanocarriers and showed the LCST between 40 and 41 °C. The acidic pH promoted the dissociation of the PHEMA-g-(PCL-BM: β-CD-star-PMAA-b-PNIPAM) micelles. DOX.HCl was loaded into the core of the micelles during self-assembly in an aqueous solution with a high encapsulation efficacy (97.3%). The average size of the amphiphilic micelles was about 80 nm, suitable size for the enhanced permeability and retention effect in tumor vasculature. In an aqueous environment, these micelles exhibited very good self-assembly ability, low CMC value, rapid pH- and thermo-responsiveness, optimal drug loading capacity, and effective release of the drug. The biocompatibility was confirmed by the viability assessment of human breast cancer cell line (MCF-7) through methyl tetrazolium assay. DOX-loaded micelles displayed excellent anti-cancer activity performance in comparison with free DOX.
Collapse
Affiliation(s)
- Floria Adeli
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, Tabriz, Iran.
| | - Mirzaagha Babazadeh
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics 2022; 14:pharmaceutics14020386. [PMID: 35214120 PMCID: PMC8878053 DOI: 10.3390/pharmaceutics14020386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In the last decade, amphiphilic cellulose (AC) is emerging as attractive biomaterial for different therapeutic use, due to its unique chemical and physical properties. Using it as alternative to synthetic polymers, AC opens up new avenues to prepare new bio-sustainable materials with low impact in the cellular environment. Herein, most recent methods to synthesize and processing AC materials from different sources—i.e., cellulose nanofibers, bacterial cellulose, cellulose derivatives—will be discussed. By an accurate optimization of morphology and surface chemistry, it is possible to develop innovative amphiphilic platforms, promising for a wide range of biomedical applications, from drug delivery to molecular/particle adsorption.
Collapse
|
41
|
Gadzinowski M, Kasprów M, Basinska T, Slomkowski S, Otulakowski Ł, Trzebicka B, Makowski T. Synthesis, Hydrophilicity and Micellization of Coil-Brush Polystyrene- b-(polyglycidol- g-polyglycidol) Copolymer-Comparison with Linear Polystyrene- b-polyglycidol. Polymers (Basel) 2022; 14:253. [PMID: 35054660 PMCID: PMC8778311 DOI: 10.3390/polym14020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, an original method of synthesis of Coil-Brush amphiphilic polystyrene-b-(polyglycidol-g-polyglycidol) (PS-b-(PGL-g-PGL)) block copolymers was developed. The hypothesis that their hydrophilicity and micellization can be controlled by polyglycidol blocks architecture was verified. The research enabled comparison of behavior in water of PS-b-PGL copolymers and block-brush copolymers PS-b-(PGL-g-PGL) with similar composition. The Coil-Brush copolymers were composed of PS-b-PGL linear core with average DPn of polystyrene 29 and 13 of polyglycidol blocks. The DPn of polyglycidol side blocks of coil-b-brush copolymers were 2, 7, and 11, respectively. The copolymers were characterized by 1H and 13C NMR, GPC, and FTIR methods. The hydrophilicity of films from the linear and Coil-Brush copolymers was determined by water contact angle measurements in static conditions. The behavior of Coil-Brush copolymers in water and their critical micellization concentration (CMC) were determined by UV-VIS using 1,6-diphenylhexa-1,3,5-trien (DPH) as marker and by DLS. The CMC values for brush copolymers were much higher than for linear species with similar PGL content. The results of the copolymer film wettability and the copolymer self-assembly studies were related to fraction of hydrophilic polyglycidol. The CMC for both types of polymers increased exponentially with increasing content of polyglycidol.
Collapse
Affiliation(s)
- Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| | - Maciej Kasprów
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (Ł.O.); (B.T.)
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| | - Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (Ł.O.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (Ł.O.); (B.T.)
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| |
Collapse
|
42
|
Garcia-Carrasco M, Parra-Aguilar IF, Gutiérrez-Grijalva EP, Licea-Claverie A, Basilio Heredia J. Nano-formulations in drug delivery. FOOD, MEDICAL, AND ENVIRONMENTAL APPLICATIONS OF NANOMATERIALS 2022:473-491. [DOI: 10.1016/b978-0-12-822858-6.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [PMCID: PMC7935400 DOI: 10.1016/j.carpta.2021.100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
COVID-19 pandemic is taking a dangerous turn due to unavailability of approved and effective vaccines and therapy. Currently available diagnostic techniques are time-consuming, expensive, and maybe impacted by the mutations produced in the virus. Therefore, investigation of novel, rapid, and economic diagnosis techniques, prophylactic vaccines and targeted efficacious drug delivery systems as treatment strategy is imperative. Carbohydrates are essential biomolecules which also act as markers in the realization of immune systems. Moreover, they exhibit antiviral, antimicrobial, and antifungal properties. Carbohydrate-based vaccines and therapeutics including stimuli sensitive systems can be developed successfully and used effectively to fight COVID-19. Thus, carbohydrate-based diagnostic, prophylactic and therapeutic alternatives could be promising to defeat COVID-19 propitiously. Morphology of SARS-CoV-2 and its relevance in devising combat strategies has been discussed. Carbohydrate-based approaches for tackling infectious diseases and their importance in the design of various diagnostic and treatment modalities have been reviewed.
Collapse
|
44
|
Su W, Qin Y, Meng G, Wu J, Yang S, Cui L, Li W, Liu Z, Guo X. Intelligent response release of imidacloprid from a tailored star‐shaped polymer targeting the temperature‐dependent reproduction of cotton aphids. J Appl Polym Sci 2021. [DOI: 10.1002/app.51895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weihua Su
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Yan Qin
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Guihua Meng
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Jianning Wu
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Lin Cui
- School of Medicine Shihezi University Shihezi China
| | - Wenjuan Li
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials‐Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi China
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
45
|
Seo M, Kim H, Lee E, Li S. Ordered Microdomain Structures in Saccharide-Polystyrene-Saccharide Hybrid Conjugates. Biomacromolecules 2021; 22:4659-4668. [PMID: 34613707 DOI: 10.1021/acs.biomac.1c00931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid conjugates consist of synthetic polymers and naturally occurring saccharides, and are capable of microphase separation at small molecular weights to form ordered domain structures. In this study, we synthesize ABA triblock-like conjugates with polystyrene as the synthetic mid-segment and either trisaccharide maltotriose (MT) or disaccharide maltose (Mal) as the end unit. Hybrid conjugates of varying compositions are prepared by a combination of atom transfer radical polymerization and a click reaction, and their morphologies are examined by small-angle X-ray scattering and transmission electron microscopy. The MT-containing conjugates are found to form well-ordered domain structures with a sub-10 nm periodicity, and morphology transition from cylinders to spheres to disordered spheres is observed with decreasing saccharide weight fraction. The Mal-containing conjugates also show microphase separation. However, the observed domain morphologies lack regular packing due to the close proximity of polymer glass transition temperature and order-disorder transition temperature. The saccharide-containing conjugates are also found to undergo an irreversible morphology change at high temperatures, attributed to saccharide dehydration-induced pentablock-like structure formation.
Collapse
Affiliation(s)
- Minji Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hayeon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Dual responsive dextran-graft-poly (N-isopropylacrylamide)/doxorubicin prodrug via Schiff base reaction. Int J Biol Macromol 2021; 185:390-402. [PMID: 34153357 DOI: 10.1016/j.ijbiomac.2021.06.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
Stimulus-responsive nanoparticles stand out in studies for cancer treatment since these systems can promote a selective release of the drug in tumor tissues and cells, minimizing the effects caused by conventional chemotherapy. Dextran-graft-poly (N-isopropylacrylamide) copolymers were synthesized via Schiff base formation. The synthesis of copolymers was confirmed by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) and the analyses of dynamic light scattering (DLS) showed that the copolymers were thermal and pH dual-responsive. The chemotherapy drug doxorubicin (DOX) was conjugated to the copolymers via Schiff base formation, obtaining nanoparticles by self-assembling with size smaller than 130 nm. A higher percentage of doxorubicin was released at pH 5.0 (59.1 ± 2.1%) compared to physiological pH (34.9 ± 4.8%), confirming a pH-sensitive release profile. The in vitro cytotoxicity assay demonstrated that DOX-loaded nanoparticles can inhibit cancer cell proliferation and promote reduced cytotoxicity in non-tumor cells. The D45kP30k-DOX nanoparticles induced morphological changes in HCT-116 cells suggesting cell death and the cell uptake assay indicated that the nanoparticles can be internalized by endocytosis. Therefore, DOX-loaded nanoparticles exhibited potential as smart systems for cancer treatment.
Collapse
|
47
|
Ikkene D, Arteni AA, Ouldali M, Francius G, Brûlet A, Six JL, Ferji K. Direct Access to Polysaccharide-Based Vesicles with a Tunable Membrane Thickness in a Large Concentration Window via Polymerization-Induced Self-Assembly. Biomacromolecules 2021; 22:3128-3137. [PMID: 34137600 DOI: 10.1021/acs.biomac.1c00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymersomes are multicompartmental vesicular nano-objects obtained by self-assembly of amphiphilic copolymers. When prepared in the aqueous phase, they are composed of a hydrophobic bilayer enclosing water. Although such fascinating polymeric nano-objects have been widely reported with synthetic block copolymers, their formation from polysaccharide-based copolymers remains a significant challenge. In the present study, the powerful platform technology known as polymerization-induced self-assembly was used to prepare in situ pure vesicles from a polysaccharide-grafted copolymer: dextran-g-poly(2-hydroxypropyl methacrylate) (Dex-g-PHPMA). The growth of the PHPMA grafts was performed with a dextran-based macromolecular chain transfer agent in water at 20 °C using photomediated reversible addition fragmentation chain transfer polymerization at 405 nm. Transmission electron microscopy, cryogenic electron microscopy, small-angle X-ray scattering, atomic force microscopy, and dynamic light scattering revealed that amphiphilic Dex-g-PHPMAX = 100-300 (X is the targeted average degree of polymerization, Xn̅, of each graft at full conversion) exhibit remarkable self-assembly behavior. On the one hand, vesicles were obtained over a wide range of solid concentrations (from 2.5% to 13.5% w/w), which can facilitate posterior targeting of such rare morphology. On the other hand, the extension of Xn̅ induces an increase in the vesicle membrane thickness, rather than a morphological evolution (spherical micelles to cylinders to vesicles).
Collapse
Affiliation(s)
- Djallal Ikkene
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Ana Andreea Arteni
- Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, Université Paris-Saclay, CEA, CNRS, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, Université Paris-Saclay, CEA, CNRS, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Gregory Francius
- Université de Lorraine, CNRS, LCPME, F-54600 Villers-lès-Nancy, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin (UMR12 CEA, CNRS), Université Paris-Saclay, CEA Saclay Bât., 563 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
48
|
Self-assembly behavior and conformation of amphiphilic hemicellulose-graft-fatty acid micelles. Carbohydr Polym 2021; 261:117886. [DOI: 10.1016/j.carbpol.2021.117886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
|
49
|
pH and Reduction Dual-Responsive Bi-Drugs Conjugated Dextran Assemblies for Combination Chemotherapy and In Vitro Evaluation. Polymers (Basel) 2021; 13:polym13091515. [PMID: 34066882 PMCID: PMC8125917 DOI: 10.3390/polym13091515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric prodrugs, synthesized by conjugating chemotherapeutic agents to functional polymers, have been extensively investigated and employed for safer and more efficacious cancer therapy. By rational design, a pH and reduction dual-sensitive dextran-di-drugs conjugate (oDex-g-Pt+DOX) was synthesized by the covalent conjugation of Pt (IV) prodrug and doxorubicin (DOX) to an oxidized dextran (oDex). Pt (IV) prodrug and DOX were linked by the versatile efficient esterification reactions and Schiff base reaction, respectively. oDex-g-Pt+DOX could self-assemble into nanoparticles with an average diameter at around 180 nm. The acidic and reductive (GSH) environment induced degradation and drug release behavior of the resulting nanoparticles (oDex-g-Pt+DOX NPs) were systematically investigated by optical experiment, DLS analysis, TEM measurement, and in vitro drugs release experiment. Effective cellular uptake of the oDex-g-Pt+DOX NPs was identified by the human cervical carcinoma HeLa cells via confocal laser scanning microscopy. Furthermore, oDex-g-Pt+DOX NPs displayed a comparable antiproliferative activity than the simple combination of free cisplatin and DOX (Cis+DOX) as the extension of time. More importantly, oDex-g-Pt+DOX NPs exhibited remarkable reversal ability of tumor resistance compared to the cisplatin in cisplatin-resistant lung carcinoma A549 cells. Take advantage of the acidic and reductive microenvironment of tumors, this smart polymer-dual-drugs conjugate could serve as a promising and effective nanomedicine for combination chemotherapy.
Collapse
|
50
|
Petrova SL, Jäger E, Jäger A, Höcherl A, Konefał R, Zhigunov A, Pavlova E, Janoušková O, Hrubý M. Development of an Acid-Labile Ketal Linked Amphiphilic Block Copolymer Nanoparticles for pH-Triggered Release of Paclitaxel. Polymers (Basel) 2021; 13:polym13091465. [PMID: 34062772 PMCID: PMC8124141 DOI: 10.3390/polym13091465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Here, we report on the construction of biodegradable poly(ethylene oxide monomethyl ether) (MPEO)-b-poly(ε-caprolactone) (PCL) nanoparticles (NPs) having acid-labile (acyclic ketal group) linkage at the block junction. In the presence of acidic pH, the nanoassemblies were destabilized as a consequence of cleaving this linkage. The amphiphilic MPEO-b-PCL diblock copolymer self-assembled in PBS solution into regular spherical NPs. The structure of self-assemble and disassemble NPs were characterized in detail by dynamic (DLS), static (SLS) light scattering, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The key of the obtained NPs is using them in a paclitaxel (PTX) delivery system and study their in vitro cytostatic activity in a cancer cell model. The acid-labile ketal linker enabled the disassembly of the NPs in a buffer simulating an acidic environment in endosomal (pH ~5.0 to ~6.0) and lysosomal (pH ~4.0 to ~5.0) cell compartments resulting in the release of paclitaxel (PTX) and formation of neutral degradation products. The in vitro cytotoxicity studies showed that the activity of the drug-loaded NPs was increased compared to the free PTX. The ability of the NPs to release the drug at the endosomal pH with concomitant high cytotoxicity makes them suitable candidates as a drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Correspondence: (S.L.P.); (A.J.); Tel.: +420-296-809-296 (S.L.P.); +420-296-809-274 (A.J.)
| | | | - Alessandro Jäger
- Correspondence: (S.L.P.); (A.J.); Tel.: +420-296-809-296 (S.L.P.); +420-296-809-274 (A.J.)
| | | | | | | | | | | | | |
Collapse
|