1
|
El-Ghiaty MA, Alqahtani MA, El-Mahrouk SR, Isse FA, Alammari AH, El-Kadi AOS. Alteration of Hepatic Cytochrome P450 Expression and Arachidonic Acid Metabolism by Arsenic Trioxide (ATO) in C57BL/6 Mice. Biol Trace Elem Res 2025; 203:1000-1015. [PMID: 38758479 DOI: 10.1007/s12011-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
The success of arsenic trioxide (ATO) in acute promyelocytic leukemia has driven a plethora studies to investigate its efficacy in other malignancies. However, the inherent toxicity of ATO limits the expansion of its clinical applications. Such toxicity may be linked to ATO-induced metabolic derangements of endogenous substrates. Therefore, the primary objective of this study was to investigate the effect of ATO on the hepatic formation of arachidonic acid (AA) metabolites, hydroxyeicosatetraenoic acids (HETEs), as well as their most notable producing machinery, cytochrome P450 (CYP) enzymes. For this purpose, C57BL/6 mice were intraperitoneally injected with 8 mg/kg ATO for 6 and 24 h. Total RNA was extracted from harvested liver tissues for qPCR analysis of target genes. Hepatic microsomal proteins underwent incubation with AA, followed by identification/quantification of the produced HETEs. ATO downregulated Cyp2e1, while induced Cyp2j9 and most of Cyp4a and Cyp4f, and this has resulted in a significant increase in 17(S)-HETE and 18(R)-HETE, while significantly decreased 18(S)-HETE. Additionally, ATO induced Cyp4a10, Cyp4a14, Cyp4f13, Cyp4f16, and Cyp4f18, resulting in a significant elevation in 20-HETE formation. In conclusion, ATO altered hepatic AA metabolites formation through modulating the underlying network of CYP enzymes. Modifying the homeostatic production of bioactive AA metabolites, such as HETEs, may entail toxic events that can, at least partly, explain ATO-induced hepatotoxicity. Such modification can also compromise the overall body tolerability to ATO treatment in cancer patients.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Asulin M, Gorodetzer N, Fridman R, Shelly Ben-Shushan R, Cohen Z, Beyer AM, Chuyun D, Gutterman DD, Szuchman-Sapir A. 5,6-diHETE lactone (EPA-L) mediates hypertensive microvascular dilation by activating the endothelial GPR-PLC-IP 3 signaling pathway. Biochem Biophys Res Commun 2024; 700:149585. [PMID: 38290177 DOI: 10.1016/j.bbrc.2024.149585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Endothelial microvascular dysfunction affects multi-organ pathologic processes that contribute to increased vascular tone and is at the base of impaired metabolic and cardiovascular diseases. The vascular dilation impaired by nitric oxide (NO) deficiency in such dysfunctional endothelium is often balanced by endothelial-derived hyperpolarizing factors (EDHFs), which play a critical role in managing vascular tone. Our latest research has uncovered a new group of lactone oxylipins produced in the polyunsaturated fatty acids (PUFAs) CYP450 epoxygenase pathway, significantly affecting vascular dilation. The lactone oxylipin, derived from arachidonic acid (5,6-diHET lactone, AA-L), has been previously shown to facilitate vasodilation dependent on the endothelium in isolated human microvessels. The administration of the lactone oxylipin derived from eicosapentaenoic acid (5,6-diHETE lactone, EPA-L) to hypertensive rats demonstrated a significant decrease in blood pressure and improvement in the relaxation of microvessels. However, the molecular signaling processes that underlie these observations were not fully understood. The current study delineates the molecular pathways through which EPA-L promotes endothelium-dependent vascular dilation. In microvessels from hypertensive individuals, it was found that EPA-L mediates endothelium-dependent vasodilation while the signaling pathway was not dependent on NO. In vitro studies on human endothelial cells showed that the hyperpolarization mediated by EPA-L relies on G-protein-coupled receptor (GPR)-phospholipase C (PLC)-IP3 signaling that further activates calcium-dependent potassium flux. The pathway was confirmed using a range of inhibitors and cells overexpressing GPR40, where a specific antagonist reduced the calcium levels and outward currents induced by EPA-L. The downstream AKT and endothelial NO synthase (eNOS) phosphorylations were non-significant. These findings show that the GPR-PLC-IP3 pathway is a key mediator in the EPA-L-triggered vasodilation of arterioles. Therefore, EPA-L is identified as a significant lactone-based PUFA metabolite that contributes to endothelial and vascular health.
Collapse
Affiliation(s)
- Meitar Asulin
- Laboratory of Vascular Signaling, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Nadav Gorodetzer
- Laboratory of Vascular Signaling, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Rotem Fridman
- Laboratory of Vascular Signaling, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | | | - Zohar Cohen
- Laboratory of Vascular Signaling, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Andreas M Beyer
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - David D Gutterman
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrea Szuchman-Sapir
- Laboratory of Vascular Signaling, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
3
|
Liu R, Zhong L, Wang C, Sun Y, Ru W, Dai W, Yang S, Zhong A, Xie X, Chen X, Li S. MiR-3646 accelerates inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis in hypertension model. Clin Exp Hypertens 2023; 45:2166948. [PMID: 36751048 DOI: 10.1080/10641963.2023.2166948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Inflammatory response of human vascular smooth muscle cells (hVSMCs) is a driving factor in hypertension progression. It has been reported that miR-3646 was significantly up-regulated in serum samples from patients with coronary artery disease and acute myocardial infarction mice. However, its role and underlying molecular mechanism related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs remain unclear. OBJECTIVE We aimed to explore the potential molecular mechanisms related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs. METHODS Ang II-induced hypertension model was established after hVSMCs treated with 1 μM Ang II at 24 h. The interaction between microRNA 3646 (miR-3646) and cytochrome P450 2J2 (CYP2J2) was assessed by dual-luciferase reporter gene assay. MTS assay, Lipid Peroxidation MDA Assay Kit, ELISA, Western blot, and qRT-PCR were performed to examine viability, malondialdehyde (MDA) level, inflammatory cytokine levels, and the level of genes and proteins. RESULTS Our findings illustrated that miR-3646 was up-regulated but CYP2J2 was down-regulated in Ang II-induced hVSMCs. Mechanically, miR-3646 negatively targeted to CYP2J2 in Ang II-induced hVSMCs. These findings indicated that miR-3646 regulated inflammatory response of Ang II-induced hVSMCs via targeting CYP2J2. Moreover, functional researches showed that CYP2J2 overexpression alleviated inflammatory response of Ang II-induced hVSMCs via epoxyeicosatrienoic acids/peroxisome proliferator-activated receptor-γ (EETs/PPARγ) axis, and miR-3646 aggravated inflammatory response of Ang II-induced hVSMCs via mediating CYP2J2/EETs axis. CONCLUSION MiR-3646 accelerated inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis. Our findings illustrated the specific molecular mechanism of miR-3646 regulating hypertension.
Collapse
Affiliation(s)
- Runzhi Liu
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Liying Zhong
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Cong Wang
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Yehai Sun
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Wunjuan Ru
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Wei Dai
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Shengnan Yang
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Aimin Zhong
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - XiuMei Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - XiaoBin Chen
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Shundong Li
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| |
Collapse
|
4
|
Yamaguchi A, Botta E, Holinstat M. Eicosanoids in inflammation in the blood and the vessel. Front Pharmacol 2022; 13:997403. [PMID: 36238558 PMCID: PMC9551235 DOI: 10.3389/fphar.2022.997403] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 01/14/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids in cells. PUFAs regulate cellular function through the formation of derived lipid mediators termed eicosanoids. The oxygenation of 20-carbon PUFAs via the oxygenases cyclooxygenases, lipoxygenases, or cytochrome P450, generates a class of classical eicosanoids including prostaglandins, thromboxanes and leukotrienes, and also the more recently identified hydroxy-, hydroperoxy-, epoxy- and oxo-eicosanoids, and the specialized pro-resolving (lipid) mediators. These eicosanoids play a critical role in the regulation of inflammation in the blood and the vessel. While arachidonic acid-derived eicosanoids are extensively studied due to their pro-inflammatory effects and therefore involvement in the pathogenesis of inflammatory diseases such as atherosclerosis, diabetes mellitus, hypertension, and the coronavirus disease 2019; in recent years, several eicosanoids have been reported to attenuate exacerbated inflammatory responses and participate in the resolution of inflammation. This review focused on elucidating the biosynthesis and the mechanistic signaling of eicosanoids in inflammation, as well as the pro-inflammatory and anti-inflammatory effects of these eicosanoids in the blood and the vascular wall.
Collapse
Affiliation(s)
- Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Eliana Botta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Michael Holinstat,
| |
Collapse
|
5
|
Mo HY, Wei QY, Zhong QH, Zhao XY, Guo D, Han J, Noracharttiyapot W, Visser L, van den Berg A, Xu YM, Lau ATY. Cytochrome P450 27C1 Level Dictates Lung Cancer Tumorigenicity and Sensitivity towards Multiple Anticancer Agents and Its Potential Interplay with the IGF-1R/Akt/p53 Signaling Pathway. Int J Mol Sci 2022; 23:7853. [PMID: 35887201 PMCID: PMC9324654 DOI: 10.3390/ijms23147853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P450 enzymes (CYP450s) exert mighty catalytic actions in cellular metabolism and detoxication, which play pivotal roles in cell fate determination. Preliminary data shows differential expression levels of CYP27C1, one of the "orphan P450s" in human lung cancer cell lines. Here, we study the functions of CYP27C1 in lung cancer progression and drug endurance, and explore its potential to be a diagnostic and therapeutic target for lung cancer management. Quantitative real-time PCR and immunoblot assays were conducted to estimate the transcription and protein expression level of CYP27C1 in human lung cancer cell lines, which was relatively higher in A549 and H1975 cells, but was lower in H460 cells. Stable CYP27C1-knockdown A549 and H1975 cell lines were established, in which these cells showed enhancement in cell proliferation, colony formation, and migration. In addition, aberrant IGF-1R/Akt/p53 signal transduction was also detected in stable CYP27C1-knockdown human lung cancer cells, which exhibited greater tolerance towards the treatments of anticancer agents (including vinorelbine, picropodophyllin, pacritinib, and SKLB610). This work, for the first time, reveals that CYP27C1 impacts lung cancer cell development by participating in the regulation of the IGF-1R/Akt/p53 signaling pathway, and the level of CYP27C1 plays indispensable roles in dictating the cellular sensitivity towards multiple anticancer agents.
Collapse
Affiliation(s)
- Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Dan Guo
- Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Jin Han
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wachiraporn Noracharttiyapot
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Ding Y, Tu P, Chen Y, Huang Y, Pan X, Chen W. CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia-reperfusion injury in vivo and in vitro. Respir Res 2021; 22:291. [PMID: 34774051 PMCID: PMC8590292 DOI: 10.1186/s12931-021-01891-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia–reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo. Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs. Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway. Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yun Ding
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Pengjie Tu
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yiyong Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yangyun Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xiaojie Pan
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Wenshu Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
7
|
Mota-Zamorano S, Robles NR, González LM, Valdivielso JM, Lopez-Gomez J, Cancho B, García-Pino G, Gervasini G. Genetics Variants in the Epoxygenase Pathway of Arachidonic Metabolism Are Associated with Eicosanoids Levels and the Risk of Diabetic Nephropathy. J Clin Med 2021; 10:3980. [PMID: 34501433 PMCID: PMC8432556 DOI: 10.3390/jcm10173980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Genes in the epoxygenase pathway of arachidonic acid metabolism leading to vasoactive eicosanoids, mainly 20-hydroxyeicosatetraenoic (20-HETE) and epoxyeicosatrienoic (EETs) acids, have been related to glucose-induced renal damage in preclinical reports. We genotyped 1088 diabetic kidney disease (DKD) patients and controls for seven polymorphisms in five genes (CYP2C8, CYP2J2, CYP4F2, CYP4A11, and EPHX2) along this metabolic route and evaluated their effect on DKD risk, clinical outcomes, and the plasma/urine levels of eicosanoids measured by LC/MS/MS and immunoenzymatic assays. The CYP4F2 433M variant allele was associated with lower incidence of DKD (OR = 0.65 (0.48-0.90), p = 0.008), whilst the CYP2C8*3/*3 genotype was related to increased risk (OR = 3.21 (1.05-9.87), p = 0.036). Patients carrying the 433M allele also showed lower eGFR [median and interquartile range vs. wildtype carriers: 30.8 (19.8) and 33.0 (23.2) mL/min/1.73 m2, p = 0.037). Finally, the 433VM/MM variant genotypes were associated with lower urinary levels of 20-HETE compared with 433VV (3.14 (0.86) vs. 8.45 (3.69) ng/mg Creatinine, p = 0.024). Our results indicate that the CYP4F2 V433M polymorphism, by decreasing 20-HETE levels, may play an important role in DKD.
Collapse
Affiliation(s)
- Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, 06071 Badajoz, Spain; (S.M.-Z.); (L.M.G.)
| | - Nicolás R. Robles
- Service of Nephrology, Badajoz University Hospital, 06071 Badajoz, Spain; (N.R.R.); (B.C.)
| | - Luz M. González
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, 06071 Badajoz, Spain; (S.M.-Z.); (L.M.G.)
| | - José M. Valdivielso
- Vascular and Renal Translational Research Group, UDETMA, ISCIII REDinREN, IRBLleida, 25198 Lleida, Spain;
| | - Juan Lopez-Gomez
- Service of Clinical Analyses, Badajoz University Hospital, 06071 Badajoz, Spain;
| | - Bárbara Cancho
- Service of Nephrology, Badajoz University Hospital, 06071 Badajoz, Spain; (N.R.R.); (B.C.)
| | | | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, 06071 Badajoz, Spain; (S.M.-Z.); (L.M.G.)
| |
Collapse
|
8
|
Gonzalez-Fernandez E, Liu Y, Auchus AP, Fan F, Roman RJ. Vascular contributions to cognitive impairment and dementia: the emerging role of 20-HETE. Clin Sci (Lond) 2021; 135:1929-1944. [PMID: 34374423 PMCID: PMC8783562 DOI: 10.1042/cs20201033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The accumulation of extracellular amyloid-β (Aβ) and intracellular hyperphosphorylated τ proteins in the brain are the hallmarks of Alzheimer's disease (AD). Much of the research into the pathogenesis of AD has focused on the amyloid or τ hypothesis. These hypotheses propose that Aβ or τ aggregation is the inciting event in AD that leads to downstream neurodegeneration, inflammation, brain atrophy and cognitive impairment. Multiple drugs have been developed and are effective in preventing the accumulation and/or clearing of Aβ or τ proteins. However, clinical trials examining these therapeutic agents have failed to show efficacy in preventing or slowing the progression of the disease. Thus, there is a need for fresh perspectives and the evaluation of alternative therapeutic targets in this field. Epidemiology studies have revealed significant overlap between cardiovascular and cerebrovascular risk factors such as hypertension, diabetes, atherosclerosis and stroke to the development of cognitive impairment. This strong correlation has given birth to a renewed focus on vascular contributions to AD and related dementias. However, few genes and mechanisms have been identified. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that plays a complex role in hypertension, autoregulation of cerebral blood flow and blood-brain barrier (BBB) integrity. Multiple human genome-wide association studies have linked mutations in the cytochrome P450 (CYP) 4A (CYP4A) genes that produce 20-HETE to hypertension and stroke. Most recently, genetic variants in the enzymes that produce 20-HETE have also been linked to AD in human population studies. This review examines the emerging role of 20-HETE in AD and related dementias.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Alexander P. Auchus
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| |
Collapse
|
9
|
Liu Y, Zhang H, Wu CY, Yu T, Fang X, Ryu JJ, Zheng B, Chen Z, Roman RJ, Fan F. 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins Other Lipid Mediat 2021; 154:106548. [PMID: 33753221 PMCID: PMC8154705 DOI: 10.1016/j.prostaglandins.2021.106548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
We previously reported that deficiency in 20-HETE or CYP4A impaired the myogenic response and autoregulation of cerebral blood flow (CBF) in rats. The present study demonstrated that CYP4A was coexpressed with alpha-smooth muscle actin (α-SMA) in vascular smooth muscle cells (VSMCs) and most pericytes along parenchymal arteries (PAs) isolated from SD rats. Cell contractile capabilities of cerebral VSMCs and pericytes were reduced with a 20-HETE synthesis inhibitor, HET0016, but restored with 20-HETE analog WIT003. Similarly, intact myogenic responses of the middle cerebral artery and PA of SD rats decreased with HET0016 and were rescued by WIT003. The myogenic response of the PA was abolished in SS and was restored in SS.BN5 and SS.Cyp4a1 rats. HET0016 enhanced CBF and impaired its autoregulation in the surface and deep cortex of SD rats. These results demonstrate that 20-HETE has a direct effect on cerebral mural cell contractility that may play an essential role in controlling cerebral vascular function.
Collapse
Affiliation(s)
- Yedan Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Celeste Yc Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Tina Yu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Jane J Ryu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zongbo Chen
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
10
|
Mota-Zamorano S, Robles NR, Lopez-Gomez J, Cancho B, González LM, Garcia-Pino G, Navarro-Pérez ML, Gervasini G. Plasma and urinary concentrations of arachidonic acid-derived eicosanoids are associated with diabetic kidney disease. EXCLI JOURNAL 2021; 20:698-708. [PMID: 34040498 PMCID: PMC8144539 DOI: 10.17179/excli2021-3408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Preclinical studies indicate that arachidonic acid (AA)-derived eicosanoids contribute to hyperglycemia-induced kidney injury. We aimed to determine whether plasma and/or urinary levels of dihydroxyeicosatrienoic (DHETs) and 20-hydroxyeicosatetraenoic (20-HETE) acids are associated with diabetic kidney disease (DKD). A total of 334 subjects (132 DKD patients and 202 non-diabetic individuals) were studied. Plasma levels of 11,12-DHET, 14,15-DHET and 20-HETE were measured by LC/MS/MS. Urinary 20-HETE concentrations were determined by immunoenzymatic assay. Subjects with normoalbuminuria had larger 20-HETE-to-creatinine urinary ratios (20-HETE/Cr) than those with micro and macroalbuminuria (p=0.012). Likewise, participants with eGFR>60 ml/min/1.73 m2 had higher plasma levels of 14,15-DHET (p=0.039) and 20-HETE/Cr ratios (p=0.007). Concentrations of 14,15-DHET, 11,12-DHET and 20-HETE/Cr were significantly lower in DKD patients. Median values for non-diabetic vs. DKD were, respectively, 493 (351.0-691.5) vs. 358 (260.5-522) ng/L, p=3e-5; 262 (183.5-356.0) vs. 202 (141.5-278.0) ng/L, p=1e-4 and 5.26 (1.68-11.65) vs. 2.53 (1.01-6.28) ng/mgCr, p=0.010. In addition, 20-HETE/Cr ratios were higher in patients with non-proteinuric DKD than in those with typical DKD (p=0.020). When only individuals with impaired filtration were considered, 14,15-DHET and 11,12-DHET levels were still higher in non-diabetic subjects (p=0.002 and p=0.006, respectively). Our results indicate that AA-derived eicosanoids may play a relevant role in DKD.
Collapse
Affiliation(s)
- Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain
| | | | - Juan Lopez-Gomez
- Service of Clinical Analyses, Badajoz University Hospital, Badajoz, Spain
| | - Bárbara Cancho
- Service of Nephrology, Badajoz University Hospital, Badajoz, Spain
| | - Luz M. González
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain
| | | | | | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Badajoz, Spain
| |
Collapse
|
11
|
Gonzalez-Fernandez E, Staursky D, Lucas K, Nguyen BV, Li M, Liu Y, Washington C, Coolen LM, Fan F, Roman RJ. 20-HETE Enzymes and Receptors in the Neurovascular Unit: Implications in Cerebrovascular Disease. Front Neurol 2020; 11:983. [PMID: 33013649 PMCID: PMC7499024 DOI: 10.3389/fneur.2020.00983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
20-HETE is a potent vasoconstrictor that is implicated in the regulation of blood pressure, cerebral blood flow and neuronal death following ischemia. Numerous human genetic studies have shown that inactivating variants in the cytochrome P450 enzymes that produce 20-HETE are associated with hypertension, stroke and cerebrovascular disease. However, little is known about the expression and cellular distribution of the cytochrome P450A enzymes (CYP4A) that produce 20-HETE or the newly discovered 20-HETE receptor (GPR75) in the brain. The present study examined the cell types and regions in the rat forebrain that express CYP4A and GPR75. Brain tissue slices from Sprague Dawley (SD), Dahl Salt-Sensitive (SS) and CYP4A1 transgenic rat strains, as well as cultured human cerebral pericytes and cerebral vascular smooth muscle cells, were analyzed by fluorescent immunostaining. Tissue homogenates from these strains and cultured cells were examined by Western blot. In the cerebral vasculature, CYP4A and GPR75 were expressed in endothelial cells, vascular smooth muscle cells and the glial limiting membrane of pial arteries and penetrating arterioles but not in the endothelium of capillaries. CYP4A, but not GPR75, was expressed in astrocytes. CYP4A and GPR75 were both expressed in a subpopulation of pericytes on capillaries. The diameters of capillaries were significantly decreased at the sites of first and second-order pericytes that expressed CYP4A. Capillary diameters were unaffected at the sites of other pericytes that did not express CYP4A. These findings implicate 20-HETE as a paracrine mediator in various components of the neurovascular unit and are consistent with 20-HETE's emerging role in the regulation of cerebral blood flow, blood-brain barrier integrity, the pathogenesis of stroke and the vascular contributions to cognitive impairment and dementia. Moreover, this study highlights GPR75 as a potential therapeutic target for the treatment of these devastating conditions.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel Staursky
- William and Carey University College of Osteopathic Medicine, Hattiesburg, MS, United States
| | - Kathryn Lucas
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bond V. Nguyen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Man Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chad Washington
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M. Coolen
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
12
|
Piper K, Garelnabi M. Eicosanoids: Atherosclerosis and cardiometabolic health. J Clin Transl Endocrinol 2020; 19:100216. [PMID: 32071878 PMCID: PMC7013337 DOI: 10.1016/j.jcte.2020.100216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases (CVD) have been the leading causes of death in the U.S. for nearly a century. Numerous studies have linked eicosanoids to cardiometabolic disease. Objectives and Methods: This review summaries recent advances and innovative research in eicosanoids and CVD. Numerous review articles and their original human or animal studies were assessed in the relevant and recent studies. OUTCOME We identified and discussed recent trends in eicosanoids known for their roles in CVD. Their subsequent relationships were assessed for any possible implications associated with consumption of different dietary lipids, essentially omega fatty acids. Eicosanoids have been heavily sought after over recent decades for their direct role in mediating the enhancement and resolution of acute immune responses. Given the short half-life of these oxidized lipid metabolites, studies on atherosclerosis have had to rely on the metabolites that are actively involved in eicosanoid production, signaling or redox reactions as markers for atherosclerosis-related molecular behaviors. CONCLUSION Further investigations expending current knowledge, should be applied to narrow the specific class and species of eicosanoids responsible for inciting inflammation especially in the context of recent clinical studies assessing the role of dietary lipid in cardiovascular diseases.
Collapse
|
13
|
Conflicting Roles of 20-HETE in Hypertension and Stroke. Int J Mol Sci 2019; 20:ijms20184500. [PMID: 31514409 PMCID: PMC6770042 DOI: 10.3390/ijms20184500] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hypertension is the most common modifiable risk factor for stroke, and understanding the underlying mechanisms of hypertension and hypertension-related stroke is crucial. 20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE), which plays an important role in vasoconstriction, autoregulation, endothelial dysfunction, angiogenesis, inflammation, and blood-brain barrier integrity, has been linked to hypertension and stroke. 20-HETE can promote hypertension by potentiating the vascular response to vasoconstrictors; it also can reduce blood pressure by inhibition of sodium transport in the kidney. The production of 20-HETE is elevated after the onset of both ischemic and hemorrhagic strokes; on the other hand, subjects with genetic variants in CYP4F2 and CYP4A11 that reduce 20-HETE production are more susceptible to stroke. This review summarizes recent genetic variants in CYP4F2, and CYP4A11 influencing 20-HETE production and discusses the role of 20-HETE in hypertension and the susceptibility to the onset, progression, and prognosis of ischemic and hemorrhagic strokes.
Collapse
|