1
|
Zazueta-Islas HM, Salceda-Sánchez B, Huerta-Jiménez H, Miranda-Caballero CI, Solis-Cortés M, de la Cruz-Pacheco Y, Luquín-García AC, Mondragon-Peña LV, Reyes-Hernández J, Bravo-Ramos JL, Sánchez-Otero MG, Huerta-Peña JC, Hernández-Herrera RI, San Martin-del Angel P, Roque ALR, Rodríguez-Moreno Á, Sánchez-Cordero V, Rodríguez Martínez HA, Grostieta E, Becker I, Sánchez-Montes S. Molecular Detection of Kinetoplastid Species in Ticks and Fleas Associated with Dogs and Humans in Mexico. Pathogens 2024; 13:1072. [PMID: 39770332 PMCID: PMC11728770 DOI: 10.3390/pathogens13121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
The Trypanosomatidae family encompasses around 24 genera of unicellular protozoans, many of which are transmitted by various hematophagous arthropods, particularly members of the Orders Diptera and Hemiptera. Fleas and ticks-an understudied group of ectoparasites-have been shown to be hosts of a wide and crescent variety of trypanosomatid species. Further, fleas and ticks of companion animals have been particularly neglected in trypanosomatid surveillance despite the proximity to human populations and the anthropophagous habits of many of these arthropods, which can potentially act as vectors of zoonotic trypanosomatids. We aimed to identify the presence, characterize the species, and establish the prevalence of Kinetoplastids, including members of the Trypanosomatidae family, in ectoparasites collected from dogs and humans from Mexico. A total of 537 ectoparasite specimens belonging to six ectoparasite taxa (Amblyomma mixtum, A. tenellum, Ctenocephalides felis felis, Pulex simulans, Rhipicephalus linnaei, and Rh. sanguineus s.s.) were collected from 15 States of Mexico. An 800 bp fragment of the 18S-rDNA gene from kinetoplastids was amplified and sequenced. The presence of two agents (Trypanosoma caninum and Parabodo sp.) was detected in R. linnaei ticks and one (Blechomonas lauriereadi) in the cat flea Ct. felis felis. This is the first record of genetic material of kinetoplastid species in ectoparasites from dogs and humans in Mexico.
Collapse
Affiliation(s)
- Héctor M. Zazueta-Islas
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (H.M.Z.-I.); (C.I.M.-C.); (M.S.-C.)
| | - Beatriz Salceda-Sánchez
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico; (B.S.-S.); (H.H.-J.)
| | - Herón Huerta-Jiménez
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico; (B.S.-S.); (H.H.-J.)
| | - Carlos I. Miranda-Caballero
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (H.M.Z.-I.); (C.I.M.-C.); (M.S.-C.)
| | - Marlene Solis-Cortés
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (H.M.Z.-I.); (C.I.M.-C.); (M.S.-C.)
| | - Yaretzi de la Cruz-Pacheco
- Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (Y.d.l.C.-P.); (A.C.L.-G.); (L.V.M.-P.); (J.R.-H.); (J.C.H.-P.)
| | - Ana Cristina Luquín-García
- Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (Y.d.l.C.-P.); (A.C.L.-G.); (L.V.M.-P.); (J.R.-H.); (J.C.H.-P.)
| | - Laura V. Mondragon-Peña
- Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (Y.d.l.C.-P.); (A.C.L.-G.); (L.V.M.-P.); (J.R.-H.); (J.C.H.-P.)
| | - Jair Reyes-Hernández
- Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (Y.d.l.C.-P.); (A.C.L.-G.); (L.V.M.-P.); (J.R.-H.); (J.C.H.-P.)
| | - José L. Bravo-Ramos
- Facultad de Bioanálisis, Región Veracruz, Universidad Veracruzana, Veracruz 91700, Mexico; (J.L.B.-R.); (M.-G.S.-O.)
| | - María-Guadalupe Sánchez-Otero
- Facultad de Bioanálisis, Región Veracruz, Universidad Veracruzana, Veracruz 91700, Mexico; (J.L.B.-R.); (M.-G.S.-O.)
| | - Javier C. Huerta-Peña
- Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (Y.d.l.C.-P.); (A.C.L.-G.); (L.V.M.-P.); (J.R.-H.); (J.C.H.-P.)
| | - Rosa I. Hernández-Herrera
- Laboratorio de Biotecnología Ambiental, Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (R.I.H.-H.); (P.S.M.-d.A.)
| | - Pablo San Martin-del Angel
- Laboratorio de Biotecnología Ambiental, Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (R.I.H.-H.); (P.S.M.-d.A.)
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| | - Ángel Rodríguez-Moreno
- Laboratorio de Geografía de la Biodiversidad, Pabellón Nacional de la Biodiversidad Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (Á.R.-M.); (V.S.-C.)
| | - Víctor Sánchez-Cordero
- Laboratorio de Geografía de la Biodiversidad, Pabellón Nacional de la Biodiversidad Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (Á.R.-M.); (V.S.-C.)
| | - Héctor Abelardo Rodríguez Martínez
- Laboratorio de Investigaciones Anatomopatológicas, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Estefania Grostieta
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (H.M.Z.-I.); (C.I.M.-C.); (M.S.-C.)
| | - Ingeborg Becker
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (H.M.Z.-I.); (C.I.M.-C.); (M.S.-C.)
| | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (H.M.Z.-I.); (C.I.M.-C.); (M.S.-C.)
- Facultad de Ciencias Biológicas y Agropecuarias, Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano, Veracruz 92870, Mexico; (Y.d.l.C.-P.); (A.C.L.-G.); (L.V.M.-P.); (J.R.-H.); (J.C.H.-P.)
| |
Collapse
|
2
|
Han X, Zhao S, Liu Z, Zhang Y, Zhao G, Zhang C, Tang L, Cui L, Wang Y. Bartonella, Blechomonas and Trypanosoma in fleas from the long-tailed ground squirrel ( Spermophilus undulatus) in northwestern China. Int J Parasitol Parasites Wildl 2024; 24:100958. [PMID: 39040597 PMCID: PMC11261052 DOI: 10.1016/j.ijppaw.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024]
Abstract
Fleas are known to be vectors for a variety of pathogens in veterinary medicine. However, no information is available on the presence of Bartonella and Trypanosomatidae in fleas of the long-tailed ground squirrel (LTGR, Spermophilus undulatus). The present study shows detection of these pathogens in LTGR fleas. During 2022-2023, a total of 396 fleas were collected from 91 LTGRs in 4 alpine regions of Xinjiang Uygur Autonomous Region (northwestern China) and grouped into 54 flea pools. Flea species were identified according to morphological characteristics and molecular data. In addition, all flea samples were analyzed for Bartonella with amplification and sequencing of a 380-bp part of the gltA gene and Trypanosomatidae with targeting the 18S rRNA (850-bp) and gGAPDH (820-bp) genes. The flea species included Frontopsylla elatoides elatoides (203), Neopsylla mana (49), and Citellophilus tesquorum dzetysuensis (144). Of 54 flea pools, seven (12.96%) tested positive for Bartonella, and three (5.56%) were positive for Trypanosomatidae. Based on BLASTn and phylogenetic analyses, i) Bartonella washoensis in F. elatoides elatoides and C. tesquorum dzetysuensis, and Bartonella rochalimae in F. elatoides elatoides were identified. Interestingly, a new haplotype within the species Ba. washoensis was discovered in C. tesquorum dzetysuensis; and ii) Blechomonas luni was confirmed in C. tesquorum dzetysuensis and Trypanosoma otospermophili in F. elatoides elatoides. Two Bartonella species and two Trypanosomatidae members were discovered for the first time in fleas from LTGRs. This study broadens our understanding of the geographic distribution and potential vectors for Bartonella and Trypanosomatidae.
Collapse
Affiliation(s)
- Xiaoshuang Han
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Shanshan Zhao
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Ziheng Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Yujiang Zhang
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, People's Republic of China
| | - Guoyu Zhao
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, People's Republic of China
| | - Chunju Zhang
- Tumushuk City Centers for Disease Control and Prevention, 17 Qianhai East Street, Tumushuk City, Xinjiang Uygur Autonomous Region, 843806, People's Republic of China
| | - Lijuan Tang
- Bayingol Vocational and Technical College, People's Republic of China
| | - Lin Cui
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| |
Collapse
|
3
|
Wang S, Wang S, Han X, Hornok S, Wang H, Wang N, Liu G, Yang M, Wang Y. Novel trypanosomatid species detected in Mongolian pikas (Ochotona pallasi) and their fleas in northwestern China. Parasit Vectors 2024; 17:152. [PMID: 38519971 PMCID: PMC10958963 DOI: 10.1186/s13071-024-06216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/25/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND In the family Trypanosomatidae, the genus Trypanosoma contains protozoan parasites that infect a diverse range of hosts, including humans, domestic animals, and wildlife. Wild rodents, as natural reservoir hosts of various pathogens, play an important role in the evolution and emergence of Trypanosomatidae. To date, no reports are available on the trypanosomatid infection of pikas (Lagomorpha: Ochotonidae). METHODS In this study, Mongolian pikas and their fleas were sampled at the China-Mongolia border, northwestern China. The samples were analyzed with polymerase chain reaction (PCR) and sequencing for the presence of Trypanosomatidae on the basis of both the 18S ribosomal RNA (18S rRNA) gene and the glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene. The morphology of trypomastigotes was also observed in peripheral blood smears by microscopy. RESULTS Molecular and phylogenetic analyses revealed a new genotype of the Trypanosoma lewisi clade that was found both in pika blood and flea samples. This genotype, which probably represents a new species, was provisionally designated as "Trypanosoma sp. pika". In addition, a novel genotype belonging to the genus Blechomonas of Trypanosomatidae was detected in fleas. On the basis of its molecular and phylogenetic properties, this genotype was named Blechomonas luni-like, because it was shown to be the closest related to B. luni compared with other flea-associated trypanosomatids. CONCLUSIONS To the best of our knowledge, this is the first study to report any trypanosomatid species in Mongolian pikas and their fleas. Further studies are needed to investigate the epidemiology of these protozoan parasites, as well as to evaluate their pathogenicity for humans or domestic animals.
Collapse
Affiliation(s)
- Shiyi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China
| | - Suwen Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China
| | - Xiaoshuang Han
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change, New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Huiqian Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China
| | - Nan Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China
| | - Gang Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China
| | - Meihua Yang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, Republic of China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China.
| |
Collapse
|
4
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
5
|
Tullume-Vergara PO, Caicedo KYO, Tantalean JFC, Serrano MG, Buck GA, Teixeira MMG, Shaw JJ, Alves JMP. Genomes of Endotrypanum monterogeii from Panama and Zelonia costaricensis from Brazil: Expansion of Multigene Families in Leishmaniinae Parasites That Are Close Relatives of Leishmania spp. Pathogens 2023; 12:1409. [PMID: 38133293 PMCID: PMC10747355 DOI: 10.3390/pathogens12121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The Leishmaniinae subfamily of the Trypanosomatidae contains both genus Zelonia (monoxenous) and Endotrypanum (dixenous). They are amongst the nearest known relatives of Leishmania, which comprises many human pathogens widespread in the developing world. These closely related lineages are models for the genomic biology of monoxenous and dixenous parasites. Herein, we used comparative genomics to identify the orthologous groups (OGs) shared among 26 Leishmaniinae species to investigate gene family expansion/contraction and applied two phylogenomic approaches to confirm relationships within the subfamily. The Endotrypanum monterogeii and Zelonia costaricensis genomes were assembled, with sizes of 29.9 Mb and 38.0 Mb and 9.711 and 12.201 predicted protein-coding genes, respectively. The genome of E. monterogeii displayed a higher number of multicopy cell surface protein families, including glycoprotein 63 and glycoprotein 46, compared to Leishmania spp. The genome of Z. costaricensis presents expansions of BT1 and amino acid transporters and proteins containing leucine-rich repeat domains, as well as a loss of ABC-type transporters. In total, 415 and 85 lineage-specific OGs were identified in Z. costaricensis and E. monterogeii. The evolutionary relationships within the subfamily were confirmed using the supermatrix (3384 protein-coding genes) and supertree methods. Overall, this study showed new expansions of multigene families in monoxenous and dixenous parasites of the subfamily Leishmaniinae.
Collapse
Affiliation(s)
- Percy O. Tullume-Vergara
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Kelly Y. O. Caicedo
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jose F. C. Tantalean
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jeffrey J. Shaw
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Joao M. P. Alves
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| |
Collapse
|
6
|
Votýpka J, Stříbrná E, Modrý D, Bryja J, Bryjová A, Lukeš J. Unexpectedly high diversity of trypanosomes in small sub-saharan mammals. Int J Parasitol 2022; 52:647-658. [PMID: 35882298 DOI: 10.1016/j.ijpara.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
The extremely species-rich genus Trypanosoma has recently been divided into 16 subgenera, most of which show fairly high host specificity, including the subgenus Herpetosoma parasitizing mainly rodents. Although most Herpetosoma spp. are highly host-specific, the best-known representative, Trypanosoma lewisi, has a cosmopolitan distribution and low host specificity. The present study investigates the general diversity of small mammal trypanosomes in East and Central Africa and the penetration of invasive T. lewisi into communities of native rodents. An extensive study of blood and tissue samples from Afrotropical micromammals (1,528 rodents, 135 shrews, and five sengis belonging to 37 genera and 133 species) captured in the Central African Republic, Ethiopia, Kenya, Malawi, Mozambique, Tanzania, and Zambia revealed 187 (11.2%) trypanosome-positive individuals. The prevalence of trypanosomes in host genera ranged from 2.1% in Aethomys to 37.1% in Lemniscomys. The only previously known trypanosome detected in our dataset was T. lewisi, newly found in Ethiopia, Kenya, and Tanzania in a wide range of native rodent hosts. Besides T. lewisi, 18S rRNA sequencing revealed 48 additional unique Herpetosoma genotypes representing at least 15 putative new species, which doubles the known sequence-based diversity of this subgenus, and approaches the true species richness in the study area. The other two genotypes represent two new species belonging to the subgenera Ornithotrypanum and Squamatrypanum. The trypanosomes of white-toothed shrews (Crocidura spp.) form a new phylogroup of Herpetosoma, unrelated to flagellates previously detected in insectivores. With 13 documented species, Ethiopia was the richest region for trypanosome diversity, which corresponds to the very diverse environments and generally high biodiversity of this country. We conclude that besides T. lewisi, the subgenus Herpetosoma is highly host-specific (e.g., species parasitizing the rodent genera Acomys and Gerbilliscus). Furthermore, several newly detected trypanosome species are specific to their endemic hosts, such as brush-furred mice (Lophuromys), dormice (Graphiurus), and white-toothed shrews (Crocidura).
Collapse
Affiliation(s)
- Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Eva Stříbrná
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - David Modrý
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Josef Bryja
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Anna Bryjová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
7
|
Das S. Analysis of domain organization and functional signatures of trypanosomatid keIF4Gs. Mol Cell Biochem 2022; 477:2415-2431. [PMID: 35585276 DOI: 10.1007/s11010-022-04464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Translation initiation is the first step in three essential processes leading to protein synthesis. It is carried out by proteins called translation initiation factors and ribosomes on the mRNA. One of the critical translation initiation factors in eukaryotes is eIF4G which is a scaffold protein that helps assemble translation initiation complexes that carry out translation initiation which ultimately leads to polypeptide synthesis. Trypanosomatids are a large family of kinetoplastids, some of which are protozoan parasites that cause diseases in humans through transmission by vectors. While the protein translation mechanisms in eukaryotes and prokaryotes are well understood, the protein translation factors and mechanisms in trypanosomatids are poorly understood necessitating further studies. Unlike other eukaryotes, trypanosomatids contain five eIF4G orthologues with diversity in length and sequences. Here, I have used bioinformatics tools to look at trypanosomatid keIF4G orthologue sequences and report that there are similarities and considerable differences in their domains/motifs organization and signature amino acid sequences that are required for different functions as compared to human eIF4G. My analysis suggests that there is likely to be considerable diversity and complexity in trypanosomatid keIF4G functions as compared to other eukaryotes.
Collapse
Affiliation(s)
- Supratik Das
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
8
|
Kasozi KI, Zirintunda G, Ssempijja F, Buyinza B, Alzahrani KJ, Matama K, Nakimbugwe HN, Alkazmi L, Onanyang D, Bogere P, Ochieng JJ, Islam S, Matovu W, Nalumenya DP, Batiha GES, Osuwat LO, Abdelhamid M, Shen T, Omadang L, Welburn SC. Epidemiology of Trypanosomiasis in Wildlife-Implications for Humans at the Wildlife Interface in Africa. Front Vet Sci 2021; 8:621699. [PMID: 34222391 PMCID: PMC8248802 DOI: 10.3389/fvets.2021.621699] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
While both human and animal trypanosomiasis continue to present as major human and animal public health constraints globally, detailed analyses of trypanosome wildlife reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both livestock and wildlife carrying a significant risk of spillover and cross-transmission of species and strains between populations. Increased human activity together with pressure on land resources is increasing wildlife–livestock–human infections. Increasing proximity between human settlements and grazing lands to wildlife reserves and game parks only serves to exacerbate zoonotic risk. Communities living and maintaining livestock on the fringes of wildlife-rich ecosystems require to have in place methods of vector control for prevention of AAT transmission and for the treatment of their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans, and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini, Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae, Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae, and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is influenced by age, sex, species, and physiological condition and parasite challenge. Cyclic transmission through Glossina species occurs for T. congolense, T. simiae, T. vivax, T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi. T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection, but the delicate acquired balance between trypanotolerance and trypanosome challenge can be disrupted by an increase in challenge and/or the introduction of new more virulent species into the ecosystem. There is a need to protect wildlife, animal, and human populations from the infectious consequences of encroachment to preserve and protect these populations. In this review, we explore the ecology and epidemiology of Trypanosoma spp. in wildlife.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,School of Medicine, Kabale University, Kabale, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Fred Ssempijja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Bridget Buyinza
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Kevin Matama
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Helen N Nakimbugwe
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda.,Department of Agriculture, Faculty of Vocational Studies, Kyambogo University, Kampala, Uganda
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - David Onanyang
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Paul Bogere
- Faculty of Agriculture and Environmental Science, Muni University, Arua, Uganda
| | - Juma John Ochieng
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Saher Islam
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wycliff Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - David Paul Nalumenya
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Tianren Shen
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Leonard Omadang
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
9
|
Huggins LG, Colella V, Koehler AV, Schunack B, Traub RJ. A multipronged next-generation sequencing metabarcoding approach unearths hyperdiverse and abundant dog pathogen communities in Cambodia. Transbound Emerg Dis 2021; 69:1933-1950. [PMID: 34096687 DOI: 10.1111/tbed.14180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Recent surveys in Southeast Asia, including Cambodia, have identified canine vector-borne pathogens (VBPs), including those with zoonotic potential, as highly prevalent. The lack of veterinary care alongside the close association semidomesticated dogs have with humans in the region exacerbates these zoonotic risks. Nonetheless, the number of studies investigating such pathogens and the threats they pose to dog and human health is limited. Here, we utilize a next-generation sequencing (NGS)-based metabarcoding protocol to conduct an assumption-free characterization of the bacterial, apicomplexan, and kinetoplastid blood-borne pathogens of free-roaming dogs from across Cambodia. From 467 dogs at five field sites, 62% were infected with one of eight confirmed pathogens, comprising Anaplasma platys (32%), Ehrlichia canis (20%), Hepatozoon canis (18%), Babesia vogeli (14%), Mycoplasma haemocanis (13%), the zoonotic pathogen Bartonella clarridgeiae (3%), Candidatus Mycoplasma haematoparvum (0.2%), and Trypanosoma evansi (0.2%). Coinfections of between two and four VBPs were common with 28% of dogs found to have a mixed infection. Moreover, DNA from putatively infectious agents belonging to the bacterial family and genera Coxiella, Mycobacterium, Neisseria, Rickettsiaceae, Treponema, and two uncharacterized Mycoplasma species were identified, in addition to protozoan genera Colpodella, Parabodo, and Bodo. Using a multiple logistic regression model, the presence of ectoparasites, abnormal mucous membranes, anemia, and total protein were found as predictors of canine VBP exposure. This study represents the first time an NGS metabarcoding technique has been used to holistically detect the bacterial and protozoan hemoparasites communities of dogs through an in-depth survey, highlighting the power of such methods to unearth a wide spectrum of pathogenic organisms in an unbiased manner.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Vito Colella
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Dario MA, Lisboa CV, Silva MV, Herrera HM, Rocha FL, Furtado MC, Moratelli R, Rodrigues Roque AL, Jansen AM. Crithidia mellificae infection in different mammalian species in Brazil. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:58-69. [PMID: 33981571 PMCID: PMC8085711 DOI: 10.1016/j.ijppaw.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022]
Abstract
Crithidia mellificae, a monoxenous trypanosomatid considered restricted to insects, was recently reported to infect a bat. Herein, C. mellificae has been demonstrated to have a wider range of vertebrate hosts and distribution in Brazilian biomes than once thought. Parasites isolated from haemocultures were characterized using V7V8 SSU rDNA and glyceraldehyde 3-phosphate dehydrogenase genes. Coatis (Nasua nasua) in the Cerrado; marmosets (Callithrix sp.) and bats (Carollia perspicillata, Myotis lavali, M. izecksohni, Artibeus lituratus) in the Atlantic Forest; crab-eating foxes (Cerdocyon thous) and ocelot (Leopardus pardalis) in the Pantanal biomes were infected by trypanosomatids that displayed choanomastigote forms in haemoculture in Giemsa-stained slide smears. Molecular characterization and phylogenetic inference confirmed the infection of C. mellificae in these animals. Moreover, slight differences in C. mellificae sequences were observed. Crithidia mellificae growth curves were counted at 27°C, 36°C and 37°C, and the morphotypes were able to grow and survive for up to 16 days. Serological titers for C. mellificae were observed in nonhuman primates, demonstrating that this parasite is able to induce a humoral immune response in an infected mammal. These results showed that host specificity in trypanosomatids is complex and far from understood.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Varella Lisboa
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Vicente Silva
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fabiana Lopes Rocha
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental, Universidade Federal da Paraíba, Rio Tinto, Paraíba, Brazil
- IUCN SSC Species Survival Center. Parque das Aves, Foz do Iguaçú, Paraná, Brazil
| | | | - Ricardo Moratelli
- Fiocruz Mata Atlântica, Fundação Oswaldo Cruz Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Corresponding author.
| |
Collapse
|
11
|
Magri A, Galuppi R, Fioravanti M. Autochthonous Trypanosoma spp. in European Mammals: A Brief Journey amongst the Neglected Trypanosomes. Pathogens 2021; 10:334. [PMID: 33805748 PMCID: PMC8000865 DOI: 10.3390/pathogens10030334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Trypanosoma includes flagellated protozoa belonging to the family Trypanosomatidae (Euglenozoa, Kinetoplastida) that can infect humans and several animal species. The most studied species are those causing severe human pathology, such as Chagas disease in South and Central America, and the human African trypanosomiasis (HAT), or infections highly affecting animal health, such as nagana in Africa and surra with a wider geographical distribution. The presence of these Trypanosoma species in Europe has been thus far linked only to travel/immigration history of the human patients or introduction of infected animals. On the contrary, little is known about the epidemiological status of trypanosomes endemically infecting mammals in Europe, such as Trypanosomatheileri in ruminants and Trypanosomalewisi in rodents and other sporadically reported species. This brief review provides an updated collection of scientific data on the presence of autochthonous Trypanosoma spp. in mammals on the European territory, in order to support epidemiological and diagnostic studies on Trypanosomatid parasites.
Collapse
Affiliation(s)
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (A.M.); (M.F.)
| | | |
Collapse
|
12
|
Frolov AO, Kostygov AY, Yurchenko V. Development of Monoxenous Trypanosomatids and Phytomonads in Insects. Trends Parasitol 2021; 37:538-551. [PMID: 33714646 DOI: 10.1016/j.pt.2021.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
In this review, we summarize the current data on development of monoxenous trypanosomatids and phytomonads in various insects. Of these, Diptera and Hemiptera are the main host groups, and, consequently, most available information concerns their parasites. Within the insect body, the midgut and hindgut are the predominant colonization sites; in addition, some trypanosomatids can invade the foregut, Malpighian tubules, hemolymph, and/or salivary glands. Differences in the intestinal structure and biology of the host determine the variety of parasites' developmental and transmission strategies. Meanwhile, similar mechanisms are used by unrelated trypanosomatids, reflecting the limited range of options to achieve the same goal.
Collapse
Affiliation(s)
- Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia.
| | - Alexei Y Kostygov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
13
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
14
|
Maruyama SR, Rogerio LA, Freitas PD, Teixeira MMG, Ribeiro JMC. Total Ortholog Median Matrix as an alternative unsupervised approach for phylogenomics based on evolutionary distance between protein coding genes. Sci Rep 2021; 11:3791. [PMID: 33589693 PMCID: PMC7884790 DOI: 10.1038/s41598-021-81926-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
The increasing number of available genomic data allowed the development of phylogenomic analytical tools. Current methods compile information from single gene phylogenies, whether based on topologies or multiple sequence alignments. Generally, phylogenomic analyses elect gene families or genomic regions to construct phylogenomic trees. Here, we presented an alternative approach for Phylogenomics, named TOMM (Total Ortholog Median Matrix), to construct a representative phylogram composed by amino acid distance measures of all pairwise ortholog protein sequence pairs from desired species inside a group of organisms. The procedure is divided two main steps, (1) ortholog detection and (2) creation of a matrix with the median amino acid distance measures of all pairwise orthologous sequences. We tested this approach within three different group of organisms: Kinetoplastida protozoa, hematophagous Diptera vectors and Primates. Our approach was robust and efficacious to reconstruct the phylogenetic relationships for the three groups. Moreover, novel branch topologies could be achieved, providing insights about some phylogenetic relationships between some taxa.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Patricia Domingues Freitas
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | | | - José Marcos Chaves Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway rm 2E32, Rockville, MD, 20852, USA.
| |
Collapse
|
15
|
Lukeš J, Tesařová M, Yurchenko V, Votýpka J. Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.). Eur J Protistol 2021; 79:125778. [PMID: 33706204 DOI: 10.1016/j.ejop.2021.125778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 01/28/2023]
Abstract
The expanding phylogenetic tree of trypanosomatid flagellates (Kinetoplastea: Trypanosomatidae) contains a long-known and phylogenetically well-supported species-rich lineage that was provisionally named as the 'jaculum' clade. Its members were found in representatives of several unrelated families of heteropteran bugs captured in South and Central America, Europe, Africa, and Asia. However, this group resisted introduction into the culture, a needed prerequisite for its proper characterization. Here we describe four new cultivable species, which parasitize various parts of their hosts' intestine, including the thoracic and abdominal part of the midgut, hindgut, and Malpighian tubules. Morphologically, the cultured flagellates vary from relatively short stumpy promastigotes to long slender leptomonad cells. Some species form straphangers (cyst-like amastigotes) both in vivo and in vitro, initially attached to the basal part of the flagellum of the mother cell, from which they subsequently detach. To formally classify this enigmatic monophyletic cosmopolitan clade, we erected Obscuromonas gen. nov., including five species: O. modryi sp. nov. (isolated from the true bug host species Riptortus linearis captured in the Philippines), O. volfi sp. nov. (from Catorhintha selector, Curaçao), O. eliasi sp. nov. (from Graptostethus servus, Papua New Guinea), O. oborniki sp. nov. (from Aspilocoryphus unimaculatus, Madagascar), and O. jaculum comb. nov. (from Nepa cinerea, France). Obscuromonas along with the genus Blastocrithidia belongs to the newly established Blastocrithidiinae subfam. nov.
Collapse
Affiliation(s)
- Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
16
|
Abstract
Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.
Collapse
|
17
|
Das S. Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids. Mol Cell Biochem 2020; 476:1037-1049. [PMID: 33169189 DOI: 10.1007/s11010-020-03970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023]
Abstract
Protein translation leading to polypeptide synthesis involves three distinct events, namely, initiation, elongation, and termination. Translation initiation is a multi-step process that is carried out by ribosomes on the mRNA with the assistance of a large number of proteins called translation initiation factors. Trypanosomatids are kinetoplastidas (flagellated protozoans), some of which cause acute disease syndromes in humans. Vector-borne transmission of protozoan parasites like Leishmania and Trypanosoma causes diseases that affect a large section of the world population and lead to significant morbidity and mortality. The mechanisms of translation initiation in higher eukaryotes are relatively well understood. However, structural and functional conservation of initiation factors in trypanosomatids are only beginning to be understood. Studies carried out so far suggests that at least in Leishmania and Trypanosoma eIF4E function may not be restricted to canonical translation initiation and some of the homologues may have alternate/non-canonical functions. Nonetheless, all of them bind the cap analogs, albeit with different efficiencies, indicating that this property may play an important role in the functionality of eIF4Es. Here, I give a brief background of trypanosomatid eIF4Es and revisit the cap-binding signatures of eIF4E orthologues in trypanosomatids, whose genome sequences are available, in detail, in comparison to human eIF4E1 and Trypanosoma cruzi eIF4E5, with an expanded list of members of this group in light of newer findings. The group 1 and 2 eIF4Es may use either a variation of heIF4E1 or T. cruzi eIF4E5 cap-4-binding signatures, while eIF4E5 and eIF4E6 use distinct amino acid contacts.
Collapse
Affiliation(s)
- Supratik Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
18
|
Winterhoff ML, Achmadi AS, Roycroft EJ, Handika H, Putra RTJ, Rowe KMC, Perkins SL, Rowe KC. Native and Introduced Trypanosome Parasites in Endemic and Introduced Murine Rodents of Sulawesi. J Parasitol 2020; 106:523-536. [PMID: 32931567 DOI: 10.1645/19-136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Indonesian island of Sulawesi is a globally significant biodiversity hotspot with substantial undescribed biota, particularly blood-borne parasites of endemic wildlife. Documenting the blood parasites of Sulawesi's murine rodents is the first fundamental step towards the discovery of pathogens likely to be of concern for the health and conservation of Sulawesi's endemic murines. We screened liver samples from 441 specimens belonging to 20 different species of murine rodents from 2 mountain ranges on Sulawesi, using polymerase chin reaction (PCR) primers targeting the conserved 18S rDNA region across the protozoan class Kinetoplastea. We detected infections in 156 specimens (10 host species) with a mean prevalence of 35.4% (95% confidence interval [CI] = 30.9-39.8%). Sequences from these samples identified 4 infections to the genus Parabodo, 1 to Blechomonas, and the remaining 151 to the genus Trypanosoma. Within Trypanosoma, we recovered 17 haplotypes nested within the Trypanosoma theileri clade infecting 117 specimens (8 host species) and 4 haplotypes nested within the Trypanosoma lewisi clade infecting 34 specimens (6 host species). Haplotypes within the T. theileri clade were related to regional Indo-Australian endemic trypanosomes, displayed geographic structuring but with evidence of long-term connectivity between mountains, and had substantial phylogenetic diversity. These results suggest T. theileri clade parasites are native to Sulawesi. Conversely, T. lewisi clade haplotypes were recovered from both endemic and introduced rodents, demonstrated complete geographic separation between clades, and had low genetic diversity. These results suggest that the T. lewisi clade parasites invaded Sulawesi recently and likely in 2 separate invasion events. Our results provide the first records of metakinetoplastids in Sulawesi's rodents and highlight the need for more extensive sampling for pathogens in this biodiversity hotspot.
Collapse
Affiliation(s)
- Monique L Winterhoff
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Center for Biology-LIPI, Jl. Raya Jakarta-Bogor Km. 46, Cibinong 16911, Indonesia
| | - Emily J Roycroft
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| | - Heru Handika
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
- Department of Biology and Museum of Natural Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | | | - Karen M C Rowe
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| | - Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024
- The City College of New York, 160 Convent Avenue, New York, New York 10031
| | - Kevin C Rowe
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| |
Collapse
|
19
|
Avelar GST, Gonçalves LO, Guimarães FG, Guimarães PAS, do Nascimento Rocha LG, Carvalho MGR, de Melo Resende D, Ruiz JC. Diversity and genome mapping assessment of disordered and functional domains in trypanosomatids. J Proteomics 2020; 227:103919. [PMID: 32721629 DOI: 10.1016/j.jprot.2020.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The proteins that have structural disorder exemplify a class of proteins which is part of a new frontier in structural biology that demands a new understanding of the paradigm of structure/function correlations. In order to address the location, relative distances and the functional/structural correlation between disordered and conserved domains, consensus disordered predictions were mapped together with CDD domains in Leishmania braziliensis M2904, Leishmania infantum JPCM5, Trypanosoma cruzi CL-Brener Esmeraldo-like, Trypanosoma cruzi Dm28c, Trypanosoma cruzi Sylvio X10, Blechomonas ayalai B08-376 and Paratrypanosoma confusum CUL13 predicted proteomes. Our results depicts the role of protein disorder in key aspects of parasites biology highlighting: a) statistical significant association between genome structural location of protein disordered consensus stretches and functional domains; b) that disordered protein stretches appear in greater percentage at upstream or downstream position of the predicted domain; c) a possible role of structural disorder in several gene expression, control points that includes but are not limited to: i) protein folding; ii) protein transport and degradation; and iii) protein modification. In addition, for values of protein with disorder content greater than 40%, a small percentage of protein binding sites in IDPs/IDRs, a higher hypothetical protein annotation frequency was observed than expected by chance and trypanosomatid multigene families linked with virulence are rich in protein with disorder content. SIGNIFICANCE: T. cruzi and Leishmania spp are the etiological agents of Chagas disease and leishmaniasis, respectively. Currently, no vaccine or effective drug treatment is available against these neglected diseases and the knowledge about the post-transcriptional and post-translational mechanisms of these organisms, which are key for this scenario, remain scarce. This study depicts the potential impact of the proximity between protein structural disorder and functional domains in the post-transcriptional regulation of pathogenic versus human non-pathogenic trypanosomatids. Our results revealed a significant statistical relationship between the genome structural locations of these two variables and disordered regions appearing more frequently at upstream or downstream positions of the CDD locus domain. This flexibility feature would maintain structural accessibility of functional sites for post-translational modifications, shedding light into this important aspect of parasite biology. This hypothesis is corroborated by the functional enrichment analysis of disordered proteins subset that highlight the involvement of this class of proteins in protein folding, protein transport and degradation and protein modification. Furthermore, our results pointed out: a) the impact of protein disorder in the process of genome annotation (proteins tend to be annotated as hypothetical when the disorder content reaches ~40%); b) that trypanosomatid multigenic families linked with virulence have a key protein disorder content.
Collapse
Affiliation(s)
- Grace Santos Tavares Avelar
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Leilane Oliveira Gonçalves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Frederico Gonçalves Guimarães
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Paul Anderson Souza Guimarães
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Luiz Gustavo do Nascimento Rocha
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - Daniela de Melo Resende
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.
| |
Collapse
|
20
|
Boucinha C, Caetano AR, Santos HLC, Helaers R, Vikkula M, Branquinha MH, dos Santos ALS, Grellier P, Morelli KA, d‘Avila-Levy CM. Analysing ambiguities in trypanosomatids taxonomy by barcoding. Mem Inst Oswaldo Cruz 2020; 115:e200504. [PMID: 32578684 PMCID: PMC7304411 DOI: 10.1590/0074-02760200504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.
Collapse
Affiliation(s)
- Carolina Boucinha
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Amanda R Caetano
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Helena LC Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Raphael Helaers
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Miikka Vikkula
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brasil
| | | | - Philippe Grellier
- Muséum National d‘Histoire Naturelle, Unité Molécules de Communication et Adaptation des Microorganisme, Paris, France
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | - Claudia Masini d‘Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| |
Collapse
|
21
|
Driscoll TP, Verhoeve VI, Gillespie JJ, Johnston JS, Guillotte ML, Rennoll-Bankert KE, Rahman MS, Hagen D, Elsik CG, Macaluso KR, Azad AF. A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biol 2020; 18:70. [PMID: 32560686 PMCID: PMC7305587 DOI: 10.1186/s12915-020-00802-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Fleas (Insecta: Siphonaptera) are small flightless parasites of birds and mammals; their blood-feeding can transmit many serious pathogens (i.e., the etiological agents of bubonic plague, endemic and murine typhus). The lack of flea genome assemblies has hindered research, especially comparisons to other disease vectors. Accordingly, we sequenced the genome of the cat flea, Ctenocephalides felis, an insect with substantial human health and veterinary importance across the globe. RESULTS By combining Illumina and PacBio sequencing of DNA derived from multiple inbred female fleas with Hi-C scaffolding techniques, we generated a chromosome-level genome assembly for C. felis. Unexpectedly, our assembly revealed extensive gene duplication across the entire genome, exemplified by ~ 38% of protein-coding genes with two or more copies and over 4000 tRNA genes. A broad range of genome size determinations (433-551 Mb) for individual fleas sampled across different populations supports the widespread presence of fluctuating copy number variation (CNV) in C. felis. Similarly, broad genome sizes were also calculated for individuals of Xenopsylla cheopis (Oriental rat flea), indicating that this remarkable "genome-in-flux" phenomenon could be a siphonapteran-wide trait. Finally, from the C. felis sequence reads, we also generated closed genomes for two novel strains of Wolbachia, one parasitic and one symbiotic, found to co-infect individual fleas. CONCLUSION Rampant CNV in C. felis has dire implications for gene-targeting pest control measures and stands to complicate standard normalization procedures utilized in comparative transcriptomics analysis. Coupled with co-infection by novel Wolbachia endosymbionts-potential tools for blocking pathogen transmission-these oddities highlight a unique and underappreciated disease vector.
Collapse
Affiliation(s)
| | - Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Mark L Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Darren Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- MU Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Kaufer A, Stark D, Ellis J. A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. Int J Parasitol 2020; 50:449-460. [PMID: 32333942 DOI: 10.1016/j.ijpara.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, NSW 2010, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
23
|
Insect trypanosomatids in Papua New Guinea: high endemism and diversity. Int J Parasitol 2019; 49:1075-1086. [PMID: 31734337 DOI: 10.1016/j.ijpara.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022]
Abstract
The extreme biological diversity of Oceanian archipelagos has long stimulated research in ecology and evolution. However, parasitic protists in this geographic area remained neglected and no molecular analyses have been carried out to understand the evolutionary patterns and relationships with their hosts. Papua New Guinea (PNG) is a biodiversity hotspot containing over 5% of the world's biodiversity in less than 0.5% of the total land area. In the current work, we examined insect heteropteran hosts collected in PNG for the presence of trypanosomatid parasites. The diversity of insect flagellates was analysed, to our knowledge for the first time, east of Wallace's Line, one of the most distinct biogeographic boundaries of the world. Out of 907 investigated specimens from 138 species and 23 families of the true bugs collected in eight localities, 135 (15%) were infected by at least one trypanosomatid species. High species diversity of captured hosts correlated with high diversity of detected trypanosomatids. Of 46 trypanosomatid Typing Units documented in PNG, only eight were known from other geographic locations, while 38 TUs (~83%) have not been previously encountered. The widespread trypanosomatid TUs were found in both widely distributed and endemic/sub-endemic insects. Approximately one-third of the endemic trypanosomatid TUs were found in widely distributed hosts, while the remaining species were confined to endemic and sub-endemic insects. The TUs from PNG form clades with conspicuous host-parasite coevolutionary patterns, as well as those with a remarkable lack of this trait. In addition, our analysis revealed new members of the subfamilies Leishmaniinae and Strigomonadinae, potentially representing new genera of trypanosomatids.
Collapse
|
24
|
Abstract
In this study, we sequenced and analyzed the genomes of 40 strains, in addition to the already-reported two type strains, of two Crithidia species infecting bumblebees in Alaska and Central Europe and demonstrated that different strains of Crithidia bombi and C. expoeki vary considerably in terms of single nucleotide polymorphisms and gene copy number. Based on the genomic structure, phylogenetic analyses, and the pattern of copy number variation, we confirmed the status of C. expoeki as a separate species. The Alaskan populations appear to be clearly separated from those of Central Europe. This pattern fits a scenario of rapid host-parasite coevolution, where the selective advantage of a given parasite strain is only temporary. This study provides helpful insights into possible scenarios of selection and diversification of trypanosomatid parasites.IMPORTANCE A group of trypanosomatid flagellates includes several well-studied medically and economically important parasites of vertebrates and plants. Nevertheless, the vast majority of trypanosomatids infect only insects (mostly flies and true bugs) and, because of that, has attracted little research attention in the past. Of several hundred trypanosomatid species, only four can infect bees (honeybees and bumblebees). Because of such scarcity, these parasites are severely understudied. We analyzed whole-genome information for a total of 42 representatives of bee-infecting trypanosomatids collected in Central Europe and Alaska from a population genetics point of view. Our data shed light on the evolution, selection, and diversification in this important group of trypanosomatid parasites.
Collapse
|
25
|
Garcia HA, Rangel CJ, Ortíz PA, Calzadilla CO, Coronado RA, Silva AJ, Pérez AM, Lecuna JC, García ME, Aguirre AM, Teixeira MMG. Zoonotic Trypanosomes in Rats and Fleas of Venezuelan Slums. ECOHEALTH 2019; 16:523-533. [PMID: 31583491 DOI: 10.1007/s10393-019-01440-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Rattus spp. are reservoirs of many human zoonoses, but their role in domestic transmission cycles of human trypanosomiasis is underestimated. In this study, we report trypanosome-infected Rattus norvegicus and Rattus rattus in human dwellings in slums neighboring Maracay, a large city near Caracas, the capital of Venezuela. Blood samples of R. norvegicus and R. rattus examined by PCR and FFLB (fluorescent fragment length barcoding) revealed a prevalence of 6.3% / 31.1% for Trypanosoma lewisi (agent of rat- and flea-borne human emergent zoonosis), and 10.5% / 24.6% for Trypanosoma cruzi (agent of Chagas disease). Detection in flea guts of T. lewisi (76%) and, unexpectedly, T. cruzi (21.3%) highlighted the role of fleas as carriers and vectors of these trypanosomes. A high prevalence of rats infected with T. lewisi and T. cruzi and respective flea and triatomine vectors poses a serious risk of human trypanosomiasis in Venezuelan slums. Anthropogenic activities responsible for growing rat and triatomine populations within human dwellings drastically increased human exposure to trypanosomes. This scenario has allowed for the reemergence of Chagas disease as an urban zoonosis in Venezuela and can propitiate the emergence of atypical T. lewisi infection in humans.
Collapse
Affiliation(s)
- Herakles A Garcia
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II - Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, CEP: 05508-000, Brazil.
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela.
| | - Carlos J Rangel
- Department of Public Health, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Paola A Ortíz
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II - Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, CEP: 05508-000, Brazil
| | - Carlos O Calzadilla
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Raul A Coronado
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Arturo J Silva
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Arlett M Pérez
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Jesmil C Lecuna
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Maria E García
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Aixa M Aguirre
- Department of Veterinary Pathology, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Venezuela
| | - Marta M G Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II - Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, CEP: 05508-000, Brazil
| |
Collapse
|
26
|
Harvey E, Rose K, Eden JS, Lawrence A, Doggett SL, Holmes EC. Identification of diverse arthropod associated viruses in native Australian fleas. Virology 2019; 535:189-199. [PMID: 31319276 DOI: 10.1016/j.virol.2019.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Fleas are important vectors of zoonotic disease. However, little is known about the natural diversity and abundance of flea viruses, particularly in the absence of disease associations, nor the evolutionary relationships among those viruses found in different parasitic vector species. Herein, we present the first virome scale study of fleas, based on the meta-transcriptomic analysis of 52 fleas collected along the eastern coast of Australia. Our analysis revealed 18 novel RNA viruses belonging to nine viral families with diverse genome organizations, although the majority (72%) possessed single-stranded positive-sense genomes. Notably, a number of the viruses identified belonged to the same phylogenetic groups as those observed in ticks sampled at the same locations, although none were likely associated with mammalian infection. Overall, we identified high levels of genomic diversity and abundance of viruses in the flea species studied, and established that fleas harbor viruses similar to those seen to other vectors.
Collapse
Affiliation(s)
- Erin Harvey
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW, 2088, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia; Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Andrea Lawrence
- Medical Entomology, NSW Health Pathology, ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia; Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia; SpeeDx, Pty Ltd., Eveleigh, NSW, 2015, Australia
| | - Stephen L Doggett
- Department of Medical Entomology, NSWHP-ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
27
|
Votýpka J, Kment P, Kriegová E, Vermeij MJ, Keeling PJ, Yurchenko V, Lukeš J. High Prevalence and Endemism of Trypanosomatids on a Small Caribbean Island. J Eukaryot Microbiol 2018; 66:600-607. [DOI: 10.1111/jeu.12704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jan Votýpka
- Institute of Parasitology, Biology Centre; Czech Academy of Sciences; 370 05 České Budějovice (Budweis) Czech Republic
- Department of Parasitology; Faculty of Science; Charles University; 128 44 Prague Czech Republic
| | - Petr Kment
- Department of Entomology; National Museum; 148 00 Prague Czech Republic
| | - Eva Kriegová
- Institute of Parasitology, Biology Centre; Czech Academy of Sciences; 370 05 České Budějovice (Budweis) Czech Republic
| | - Mark J.A. Vermeij
- Carmabi Foundation; Willemstad Curaçao
- Institute for Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
| | - Patrick J. Keeling
- Department of Botany; University of British Columbia; Vancouver BC Canada
| | - Vyacheslav Yurchenko
- Institute of Parasitology, Biology Centre; Czech Academy of Sciences; 370 05 České Budějovice (Budweis) Czech Republic
- Faculty of Science; University of Ostrava; 710 00 Ostrava Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases; Sechenov University; Moscow Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre; Czech Academy of Sciences; 370 05 České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; 370 05 České Budějovice (Budweis) Czech Republic
| |
Collapse
|
28
|
Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus. mBio 2018; 9:e01932-18. [PMID: 30327446 PMCID: PMC6191543 DOI: 10.1128/mbio.01932-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching.IMPORTANCE Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects' flagellates.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
29
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
30
|
Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, Comini MA. Polyamine-Based Thiols in Trypanosomatids: Evolution, Protein Structural Adaptations, and Biological Functions. Antioxid Redox Signal 2018; 28:463-486. [PMID: 29048199 DOI: 10.1089/ars.2017.7133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Major pathogenic enterobacteria and protozoan parasites from the phylum Euglenozoa, such as trypanosomatids, are endowed with glutathione (GSH)-spermidine (Sp) derivatives that play important roles in signaling and metal and thiol-redox homeostasis. For some Euglenozoa lineages, the GSH-Sp conjugates represent the main redox cosubstrates around which entire new redox systems have evolved. Several proteins underwent molecular adaptations to synthesize and utilize the new polyamine-based thiols. Recent Advances: The genomes of closely related organisms have recently been sequenced, which allows mining and analysis of gene sequences that belong to these peculiar redox systems. Similarly, the three-dimensional structures of several of these proteins have been solved, which allows for comparison with their counterparts in classical redox systems that rely on GSH/glutaredoxin and thioredoxin. CRITICAL ISSUES The evolutionary and structural aspects related to the emergence and use of GSH-Sp conjugates in Euglenozoa are reviewed focusing on unique structural specializations that proteins developed to use N1,N8-bisglutathionylspermidine (trypanothione) as redox cosubstrate. An updated overview on the biochemical and biological significance of the major enzymatic activities is also provided. FUTURE DIRECTIONS A thiol-redox system strictly dependent on trypanothione is a feature unique to trypanosomatids. The physicochemical properties of the polyamine-GSH conjugates were a major driving force for structural adaptation of proteins that use these thiols as ligand and redox cofactor. In fact, the structural differences of indispensable components of this system can be exploited toward selective drug development. Future research should clarify whether additional cellular processes are regulated by the trypanothione system. Antioxid. Redox Signal. 28, 463-486.
Collapse
Affiliation(s)
- Bruno Manta
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mariana Bonilla
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucía Fiestas
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Mattia Sturlese
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Gustavo Salinas
- 4 Worm Biology Lab, Institut Pasteur de Montevideo , Montevideo, Uruguay .,5 Departamento de Biociencias, Facultad de Química, Universidad de la República , Montevideo, Uruguay
| | - Massimo Bellanda
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Marcelo A Comini
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| |
Collapse
|
31
|
Dipeptidyl peptidase 3, a novel protease from Leishmania braziliensis. PLoS One 2018; 13:e0190618. [PMID: 29304092 PMCID: PMC5755878 DOI: 10.1371/journal.pone.0190618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
The increase of leishmaniasis cases worldwide and the emergence of Leishmania strains resistant to current treatments make necessary to find new therapeutic targets. Proteases are appealing drug targets because they play pivotal roles in facilitating parasite survival and promoting pathogenesis. Enzymes belonging to the dipeptidyl peptidase 3 (DPP3) group have been described in different organisms such as mammals, insects and yeast, in which these enzymes have been involved in both protein turnover and protection against oxidative damage. The aim of this work was to characterize the structure and function of the Leishmania braziliensis DPP3 (LbDPP3) protein as the first step to elucidate its suitability as a potential drug target. Sequence alignment showed 43% of identity between LbDPP3 and its human orthologous (hDPP3) enzyme. Although the modeled protein adopted a globally conserved three-dimensional (3D) structure, structural differences were found in the vicinity of the active site and the substrate binding-cleft. In addition, the Leishmania protein was expressed as a soluble recombinant protein and its kinetics parameters were determined using the z-Arginine-Arginine-AMC substrate. The LbDPP3 activity was maximal at pH values between 8.0–8.5. Interestingly, classical enzyme inhibitors such as the tynorphin and its derivative peptide IVYPW were found to actively inhibit the LbDPP3 activity. Moreover, these DPP3 inhibitors showed a detrimental effect upon parasite survival, decreasing the viability of promastigotes by up to 29%. Finally, it was observed that LbDPP3 was equally expressed along the in vitro differentiation from promastigotes to axenic amastigotes. In conclusion, these findings suggest that the L. brazileinsis DPP3 could be a promising drug target.
Collapse
|
32
|
Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, du Plessis L, Schmid-Hempel R, Zoller S. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS One 2018; 13:e0189738. [PMID: 29304093 PMCID: PMC5755769 DOI: 10.1371/journal.pone.0189738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki, we could produce high-quality and well resolved sequences. We find that these genomes are around 32 and 34 MB, with 7,808 and 7,851 annotated genes for C. bombi and C. expoeki, respectively-which is somewhat less than reported from other trypanosomatids, with few introns, and organized in polycistronic units. A large fraction of genes received plausible functional support in comparison primarily with Leishmania and Trypanosoma. Comparing the annotated genes of the two species with those of six other trypanosomatids (C. fasciculata, L. pyrrhocoris, L. seymouri, B. ayalai, L. major, and T. brucei) shows similar gene repertoires and many orthologs. Similar to other trypanosomatids, we also find signs of concerted evolution in genes putatively involved in the interaction with the host, a high degree of synteny between C. bombi and C. expoeki, and considerable overlap with several other species in the set. A total of 86 orthologous gene groups show signatures of positive selection in the branch leading to the two Crithidia under study, mostly of unknown function. As an example, we examined the initiating glycosylation pathway of surface components in C. bombi, finding it deviates from most other eukaryotes and also from other kinetoplastids, which may indicate rapid evolution in the extracellular matrix that is involved in interactions with the host. Bumble bees are important pollinators and Crithidia-infections are suspected to cause substantial selection pressure on their host populations. These newly sequenced genomes provide tools that should help better understand host-parasite interactions in these pollinator pathogens.
Collapse
Affiliation(s)
| | - Markus Aebi
- Institute of Microbiology, ETH Zurich, Zürich, Switzerland
| | - Seth Barribeau
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | | | - Louis du Plessis
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | | | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zurich, Zürich, Switzerland
| |
Collapse
|
33
|
Diagnosis and genetic analysis of the worldwide distributed Rattus-borne Trypanosoma (Herpetosoma) lewisi and its allied species in blood and fleas of rodents. INFECTION GENETICS AND EVOLUTION 2017; 63:380-390. [PMID: 28882517 DOI: 10.1016/j.meegid.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 02/01/2023]
Abstract
Trypanosoma (Herpetosoma) lewisi is a cosmopolitan parasite of rodents strongly linked to the human dispersal of Rattus spp. from Asia to the rest of the world. This species is highly phylogenetically related to trypanosomes from other rodents (T. lewisi-like), and sporadically infects other mammals. T. lewisi may opportunistically infect humans, and has been considered an emergent rat-borne zoonosis associated to poverty. We developed the THeCATL-PCR based on Cathepsin L (CATL) sequences to specifically detect T. (Herpetosoma) spp., and assess their genetic diversity. This method exhibited high sensitivity using blood samples, and is the first molecular method employed to search for T. lewisi in its flea vectors. THeCATL-PCR surveys using simple DNA preparation from blood preserved in ethanol or filter paper detected T. lewisi in Rattus spp. from human dwellings in South America (Brazil and Venezuela), East Africa (Mozambique), and Southeast Asia (Thailand, Cambodia and Lao PDR). In addition, native rodents captured in anthropogenic and nearby human settlements in natural habitats harbored T. (Herpetosoma) spp. PCR-amplified CATL gene fragments (253bp) distinguish T. lewisi and T. lewisi-like from other trypanosomes, and allow for assessment of genetic diversity and relationships among T. (Herpetosoma) spp. Our molecular surveys corroborated worldwide high prevalence of T. lewisi, incriminating Mastomys natalensis as an important carrier of this species in Africa, and supported its spillover from invader Rattus spp. to native rodents in Brazil and Mozambique. THeCATL-PCR provided new insights on the accurate diagnosis and genetic repertoire of T. (Herpetosoma) spp. in rodent and non-rodent hosts, revealing a novel species of this subgenus in an African gerbil. Phylogenetic analysis based on CATL sequences from T. (Herpetosoma) spp. and other trypanosomes (amplified using pan-trypanosome primers) uncovered rodents harboring, beyond mammal trypanosomes of different subgenera, some species that clustered in the lizard-snake clade of trypanosomes.
Collapse
|
34
|
Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006560. [PMID: 28800584 PMCID: PMC5568443 DOI: 10.1371/journal.ppat.1006560] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/23/2017] [Accepted: 07/29/2017] [Indexed: 01/06/2023] Open
Abstract
In nearly all eukaryotes, cellular differentiation is governed by changes in transcription, and stabilized by chromatin and DNA modification. Gene expression control in the pathogen Trypanosoma brucei, in contrast, relies almost exclusively on post-transcriptional mechanisms, so RNA binding proteins must assume the burden that is usually borne by transcription factors. T. brucei multiply in the blood of mammals as bloodstream forms, and in the midgut of Tsetse flies as procyclic forms. We show here that a single RNA-binding protein, RBP10, promotes the bloodstream-form trypanosome differentiation state. Depletion of RBP10 from bloodstream-form trypanosomes gives cells that can grow only as procyclic forms; conversely, expression of RBP10 in procyclic forms converts them to bloodstream forms. RBP10 binds to procyclic-specific mRNAs containing an UAUUUUUU motif, targeting them for translation repression and destruction. Products of RBP10 target mRNAs include not only the major procyclic surface protein and enzymes of energy metabolism, but also protein kinases and stage-specific RNA-binding proteins: this suggests that alterations in RBP10 trigger a regulatory cascade.
Collapse
|
35
|
Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors 2017; 10:287. [PMID: 28595622 PMCID: PMC5463341 DOI: 10.1186/s13071-017-2204-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids are protozoan parasites of the class Kinetoplastida predominately restricted to invertebrate hosts (i.e. possess a monoxenous life-cycle). However, several genera are pathogenic to humans, animals and plants, and have an invertebrate vector that facilitates their transmission (i.e. possess a dixenous life-cycle). Phytomonas is one dixenous genus that includes several plant pathogens transmitted by phytophagous insects. Trypanosoma and Leishmania are dixenous genera that infect vertebrates, including humans, and are transmitted by hematophagous invertebrates. Traditionally, monoxenous trypanosomatids such as Leptomonas were distinguished from morphologically similar dixenous species based on their restriction to an invertebrate host. Nonetheless, this criterion is somewhat flawed as exemplified by Leptomonas seymouri which reportedly infects vertebrates opportunistically. Similarly, Novymonas and Zelonia are presumably monoxenous genera yet sit comfortably in the dixenous clade occupied by Leishmania. The isolation of Leishmania macropodum from a biting midge (Forcipomyia spp.) rather than a phlebotomine sand fly calls into question the exclusivity of the Leishmania-sand fly relationship, and its suitability for defining the Leishmania genus. It is now accepted that classic genus-defining characteristics based on parasite morphology and host range are insufficient to form the sole basis of trypanosomatid taxonomy as this has led to several instances of paraphyly. While improvements have been made, resolution of evolutionary relationships within the Trypanosomatidae is confounded by our incomplete knowledge of its true diversity. The known trypanosomatids probably represent a fraction of those that exist and isolation of new species will help resolve relationships in this group with greater accuracy. This review incites a dialogue on how our understanding of the relationships between certain trypanosomatids has shifted, and discusses new knowledge that informs the present taxonomy of these important parasites.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - Joel Barratt
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
36
|
da Silva-Júnior R, Paiva TDS. Evaluating the role of morphological characters in the phylogeny of some trypanosomatid genera (Excavata, Kinetoplastea, Trypanosomatida). Cladistics 2017; 34:167-180. [DOI: 10.1111/cla.12199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Renato da Silva-Júnior
- Laboratório Interdisciplinar de Vigilância Entomológica em Diptera e Hemiptera; FIOCRUZ; Instituto Oswaldo Cruz; 21040-900 Rio de Janeiro RJ Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia; Universidade Federal Fluminense; Niterói RJ Brazil
| | - Thiago da Silva Paiva
- Laboratory of Evolutionary Protistology; Instituto de Biociências; Universidade de São Paulo; 05508-090 São Paulo SP Brazil
- Laboratório de Biologia Molecular “Francisco Mauro Salzano”; Instituto de Ciências Biológicas; Universidade Federal do Pará; 66075-110 Belém PA Brazil
| |
Collapse
|
37
|
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Eur J Protistol 2017; 57:85-98. [DOI: 10.1016/j.ejop.2016.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
|
38
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
39
|
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis 2016; 10:e0004349. [PMID: 26937644 PMCID: PMC4777430 DOI: 10.1371/journal.pntd.0004349] [Citation(s) in RCA: 572] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. METHODOLOGY AND PRINCIPAL FINDINGS Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? CONCLUSIONS AND SIGNIFICANCE We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l’Archet, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genetics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Prague, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l’Archet, Centre Hospitalier Universitaire de Nice, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l’Archet, Centre Hospitalier Universitaire de Nice, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Denis Sereno
- MIVEGEC, UMR CNRS-IRD-Université de Montpellier Centre IRD, Montpellier, France
- UMR177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
40
|
New Approaches to Systematics of Trypanosomatidae: Criteria for Taxonomic (Re)description. Trends Parasitol 2015; 31:460-469. [PMID: 26433249 DOI: 10.1016/j.pt.2015.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023]
Abstract
While dixenous trypanosomatids represent one of the most dangerous pathogens for humans and domestic animals, their monoxenous relatives have frequently become model organisms for studies of diversity of parasitic protists and host-parasite associations. Yet, the classification of the family Trypanosomatidae is not finalized and often confusing. Here we attempt to make a blueprint for future studies in this field. We would like to elicit a discussion about an updated procedure, as traditional taxonomy was not primarily designed to be used for protists, nor can molecular phylogenetics solve all the problems alone. The current status, specific cases, and examples of generalized solutions are presented under conditions where practicality is openly favored over rigid taxonomic codes or blind phylogenetic approach.
Collapse
|
41
|
d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, Duval L, Votýpka J, Yurchenko V, Grellier P, Lukeš J. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz 2015; 110:956-65. [PMID: 26602872 PMCID: PMC4708014 DOI: 10.1590/0074-02760150253] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.
Collapse
Affiliation(s)
- Claudia Masini d’Avila-Levy
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Carolina Boucinha
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Alexei Kostygov
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Russian Academy of Sciences, Zoological Institute, Laboratory of
Molecular Systematics, St Petersburg, Russia
| | - Helena Lúcia Carneiro Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto
Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | | | - Linda Duval
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Jan Votýpka
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- Charles University, Faculty of Science, Department of Parasitology,
Prague, Czech Republic
| | - Vyacheslav Yurchenko
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
| | - Philippe Grellier
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Julius Lukeš
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- University of South Bohemia, Faculty of Sciences, České Budejovice,
Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
42
|
Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, Yurchenko V, Votýpka J, Maslov DA. Host-specificity of Monoxenous Trypanosomatids: Statistical Analysis of the Distribution and Transmission Patterns of the Parasites from Neotropical Heteroptera. Protist 2015; 166:551-68. [PMID: 26466163 DOI: 10.1016/j.protis.2015.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/07/2015] [Accepted: 08/18/2015] [Indexed: 01/28/2023]
Abstract
Host-parasite relationships and parasite biodiversity have been the center of attention for many years; however the primary data obtained from large-scale studies remain scarce. Our long term investigations of trypanosomatid (Euglenozoa: Kinetoplastea) biodiversity from Neotropical Heteroptera have yielded almost one hundred typing units (TU) of trypanosomatids from one hundred twenty host species. Half of the parasites' TUs were documented in a single host species only but the rest were found parasitizing two to nine species of hosts, with logarithmic distribution best describing the observed distribution of parasites among hosts. Different host superfamilies did not show significant differences in numbers of trypanosomatid TUs they carry, with exception of Pyrrhocoroidea which showed higher parasite richness than any other group tested. Predatory reduviids shared significantly larger numbers of parasite TUs with phytophagous mirids and coreids than the numbers shared between any other groups. These results show that the specificity of trypanosomatid-heteropteran associations is not very strict: parasites seem to be transmissible between different host groups within the same niche and predatory hosts may acquire parasites from their prey.
Collapse
Affiliation(s)
- Eugene Kozminsky
- Zoological Institute, Russian Academy of Sciences, St.-Petersburg, 199034, Russia
| | - Natalya Kraeva
- Life Science Research Centre, University of Ostrava, 70200 Ostrava, Czech Republic
| | - Aygul Ishemgulova
- Life Science Research Centre, University of Ostrava, 70200 Ostrava, Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada
| | - Petr Kment
- Department of Entomology, National Museum, 19300 Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, University of Ostrava, 70200 Ostrava, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Jan Votýpka
- Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic; Department of Parasitology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Dmitri A Maslov
- Department of Biology, University of California - Riverside, Riverside, CA 91521, USA.
| |
Collapse
|
43
|
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J. Diversity of Trypanosomatids in Cockroaches and the Description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol 2015; 63:198-209. [PMID: 26352484 DOI: 10.1111/jeu.12268] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/01/2022]
Abstract
In this study, we surveyed six species of cockroaches, two synanthropic (i.e. ecologically associated with humans) and four wild, for intestinal trypanosomatid infections. Only the wild cockroach species were found to be infected, with flagellates of the genus Herpetomonas. Two distinct genotypes were documented, one of which was described as a new species, Herpetomonas tarakana sp. n. We also propose a revision of the genus Herpetomonas and creation of a new subfamily, Phytomonadinae, to include Herpetomonas, Phytomonas, and a newly described genus Lafontella n. gen. (type species Lafontella mariadeanei comb. n.), which can be distinguished from others by morphological and molecular traits.
Collapse
Affiliation(s)
- Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice (Budweis), Czech Republic
| | - Alexei Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.,Zoological Institute, Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Jolana Havlová
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | | | - Tereza Ševčíková
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice (Budweis), Czech Republic.,Canadian Institute for Advanced Research, Toronto, Ontorio, M5G 1Z8, Canada
| | - Jan Ševčík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice (Budweis), Czech Republic.,Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| |
Collapse
|
44
|
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, Leštinová T, Votýpka J, Volf P, Opperdoes F, Flegontov P, Lukeš J, Yurchenko V. Leptomonas seymouri: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with Leishmania donovani. PLoS Pathog 2015; 11:e1005127. [PMID: 26317207 PMCID: PMC4552786 DOI: 10.1371/journal.ppat.1005127] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
The co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented. The main opportunistic parasite has been identified as Leptomonas seymouri of the sub-family Leishmaniinae. The molecular mechanisms allowing a parasite of insects to withstand elevated temperature and substantially different conditions of vertebrate tissues are not understood. Here we demonstrate that L. seymouri is well adapted for the environment of the warm-blooded host. We sequenced the genome and compared the whole transcriptome profiles of this species cultivated at low and high temperatures (mimicking the vector and the vertebrate host, respectively) and identified genes and pathways differentially expressed under these experimental conditions. Moreover, Leptomonas seymouri was found to persist for several days in two species of Phlebotomus spp. implicated in Leishmania donovani transmission. Despite of all these adaptations, L. seymouri remains a predominantly monoxenous species not capable of infecting vertebrate cells under normal conditions.
Collapse
Affiliation(s)
- Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jana Hlaváčová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexei Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Jitka Myškova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred Opperdoes
- de Duve Institute and Université catholique de Louvain, Brussels, Belgium
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ravoet J, Schwarz RS, Descamps T, Yañez O, Tozkar CO, Martin-Hernandez R, Bartolomé C, De Smet L, Higes M, Wenseleers T, Schmid-Hempel R, Neumann P, Kadowaki T, Evans JD, de Graaf DC. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J Invertebr Pathol 2015; 130:21-7. [PMID: 26146231 DOI: 10.1016/j.jip.2015.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 01/23/2023]
Abstract
Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor.
Collapse
Affiliation(s)
- Jorgen Ravoet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium.
| | - Ryan S Schwarz
- USDA-ARS Bee Research Laboratory, Beltsville Agricultural Research Center - East, Beltsville, United States
| | - Tine Descamps
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Cansu Ozge Tozkar
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Spain
| | - Lina De Smet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium
| | - Mariano Higes
- Bee Pathology Laboratory, Centro Apícola Regional, Marchamalo, Spain
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, K.U. Leuven, Leuven, Belgium
| | - Regula Schmid-Hempel
- Institute of Integrative Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu, China
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville Agricultural Research Center - East, Beltsville, United States
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Shimanovich U, Lipovsky A, Eliaz D, Zigdon S, Knowles TPJ, Nitzan Y, Michaeli S, Gedanken A. Tetracycline nanoparticles as antibacterial and gene-silencing agents. Adv Healthc Mater 2015; 4:723-8. [PMID: 25425122 DOI: 10.1002/adhm.201400631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/03/2014] [Indexed: 11/10/2022]
Abstract
The spread of antibiotic-resistant bacteria and parasites calls for the development of new therapeutic strategies with could potentially reverse this trend. Here, a proposal is presented to exploit a sonochemical method to restore the antibiotic activity of tetracycline (TTCL) against resistant bacteria by converting the antibiotic into a nanoparticulate form. The demonstrated sonochemical method allows nanoscale TTCL assembly to be driven by supramolecular hydrogen bond formation, with no further modification to the antibiotic's chemical structure. It is shown that tetracycline nanoparticles (TTCL NPs) can act as antibacterial agents, both against TTCL sensitive and against resistant bacterial strains. Moreover, the synthesized antibiotic nanoparticles (NPs) can act as effective gene-silencing agents through the use of a TTCL repressor in Trypanosome brucei parasites. It is demonstrated that the NPs are nontoxic to human cells and T. brucei parasites and are able to release their monomer components in an active form in a manner that results in enhanced antimicrobial activity relative to a homogeneous solution of the precursor monomer. As the TTCL NPs are biocompatible and biodegradable, sonochemical formation of TTCL NPs represents a new promising approach for generation of pharmaceutically active nanomaterials.
Collapse
Affiliation(s)
- Ulyana Shimanovich
- Department of Chemistry; University of Cambridge; Lensfield road Cambridge CB2 1EW UK
| | - Anat Lipovsky
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Dror Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Sally Zigdon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Tuomas P. J. Knowles
- Department of Chemistry; University of Cambridge; Lensfield road Cambridge CB2 1EW UK
| | - Yeshayahu Nitzan
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Aharon Gedanken
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| |
Collapse
|
47
|
Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J Eukaryot Microbiol 2015; 62:567-83. [PMID: 25712037 DOI: 10.1111/jeu.12209] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 01/03/2023]
Abstract
Trypanosomatids are increasingly recognized as prevalent in European honey bees (Apis mellifera) and by default are attributed to one recognized species, Crithidia mellificae Langridge and McGhee, 1967. We provide reference genetic and ultrastructural data for type isolates of C. mellificae (ATCC 30254 and 30862) in comparison with two recent isolates from A. mellifera (BRL and SF). Phylogenetics unambiguously identify strains BRL/SF as a novel taxonomic unit distinct from C. mellificae strains 30254/30862 and assign all four strains as lineages of a novel clade within the subfamily Leishmaniinae. In vivo analyses show strains BRL/SF preferably colonize the hindgut, lining the lumen as adherent spheroids in a manner identical to previous descriptions from C. mellificae. Microscopy images show motile forms of C. mellificae are distinct from strains BRL/SF. We propose the binomial Lotmaria passim n. gen., n. sp. for this previously undescribed taxon. Analyses of new and previously accessioned genetic data show C. mellificae is still extant in bee populations, however, L. passim n. gen., n. sp. is currently the predominant trypanosomatid in A. mellifera globally. Our findings require that previous reports of C. mellificae be reconsidered and that subsequent trypanosomatid species designations from Hymenoptera provide genetic support.
Collapse
Affiliation(s)
- Ryan S Schwarz
- Bee Research Laboratory, Beltsville Agricultural Research Center - East, U.S. Department of Agriculture, Bldg 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Gary R Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center - West, U.S. Department of Agriculture, Bldg 012, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Charles A Murphy
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center - West, U.S. Department of Agriculture, Bldg 012, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Jorgen Ravoet
- Laboratory of Zoophysiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Zoophysiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Jay D Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center - East, U.S. Department of Agriculture, Bldg 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| |
Collapse
|
48
|
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 2015; 96:55-67. [PMID: 25557487 DOI: 10.1111/mmi.12920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 01/19/2023]
Abstract
Trypanosomatids are a very diverse group composed of monoxenous and dixenous parasites belonging to the excavate class Kinetoplastea. Here we studied the respiration of five monoxenous species (Blechomonas ayalai, Herpetomonas muscarum, H. samuelpessoai, Leptomonas pyrrhocoris and Sergeia podlipaevi) introduced into culture, each representing a novel yet globally distributed and/or species-rich clade, and compare them with well-studied flagellates Trypanosoma brucei, Phytomonas serpens, Crithidia fasciculata and Leishmania tarentolae. Differences in structure and activities of respiratory chain complexes, respiration and other biochemical parameters recorded under laboratory conditions reveal their substantial diversity, likely a reflection of different host environments. Phylogenetic relationships of the analysed trypanosomatids do not correlate with their biochemical parameters, with the differences within clades by far exceeding those among clades. As the S. podlipaevi canonical respiratory chain complexes have very low activities, we believe that its mitochondrion is utilised for purposes other than oxidative phosphorylation. Hence, the single reticulated mitochondrion of diverse trypanosomatids seems to retain multipotency, with the capacity to activate its individual components based on the host environment.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
49
|
Grybchuk-Ieremenko A, Losev A, Kostygov AY, Lukeš J, Yurchenko V. High prevalence of trypanosome co-infections in freshwater fishes. Folia Parasitol (Praha) 2014. [DOI: 10.14411/fp.2014.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 2014; 165:825-38. [PMID: 25460233 DOI: 10.1016/j.protis.2014.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
Compared to their relatives, the diversity of endosymbiont-containing Trypanosomatidae remains under-investigated, with only two new species described in the past 25 years, bringing the total to six. The possible reasons for such a poor representation of this group are either their overall scarcity or susceptibility of their symbionts to antibiotics that are traditionally used for cultivation of flagellates. In this work we describe the isolation, cultivation, as well as morphological and molecular characterization of a novel endosymbiont-harboring trypanosomatid species, Kentomonas sorsogonicus sp. n. The newly erected genus Kentomonas gen. n. shares many common features with the genera Angomonas and Strigomonas, such as the presence of an extensive system of peripheral mitochondrial branches distorting the corset of subpellicular microtubules, large and loosely packed kinetoplast, and a rudimentary paraflagellar rod. Here we also propose to unite all endosymbiont-bearing trypanosomatids into the new subfamily Strigomonadinae subfam. n.
Collapse
Affiliation(s)
- Jan Votýpka
- Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Martina Tesařová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|