1
|
Coelho MO, Quintas ST, Sarmento B, De Wever O, Castro F. Engineered dendritic cells-derived extracellular vesicles for cancer immunotherapy. J Control Release 2025; 381:113620. [PMID: 40088976 DOI: 10.1016/j.jconrel.2025.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Extracellular vesicles (EVs) have emerged as a cell-free therapeutic approach, garnering increasing attention for their potential to enhance the safety and efficacy of immunotherapy. This interest is primarily driven by the biocompatibility and cell/tissue tropism inherent to EVs, but also due to their reconfigurable content. This, termed as cargo, may comprise bioactive molecules as proteins, lipids, and nucleic acids that play a pivotal role in mediating intercellular communication. In particular, dendritic cells-derived extracellular vesicles (DC-EVs) facilitate the transfer of critical components, like antigens and immune-regulatory factors, and due to the expression of major histocompatibility complexes and co-stimulatory molecules on their surface can activate T cells, thereby modulating the immune response. Additionally, DC-EVs can be engineered to transport tumor-specific antigens, cytokines, or other agents in order to strength their immunotherapeutic potential, and even be used in vaccines formulation. In this review, the latest advancements in engineering DC-EVs to improve their immunotherapeutic potential is discussed in detail, while also addressing current challenges associated with DC-EVs therapies.
Collapse
Affiliation(s)
- Margarida Oliveira Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal; IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Olivier De Wever
- CRIG - Cancer Research Institute Ghent, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; LECR - Laboratory Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal.
| |
Collapse
|
2
|
Lee SW, Yun JS, Kim YJ, Jeong S, Noh JE, Kim HO, Cho HJ, Park CK, Oh IJ, Cho JH. Progressive accumulation of circulating CD27 -CD28 - effector/memory CD8 + T cells in patients with lung cancer blunts responses to immune checkpoint inhibitor therapy. Exp Mol Med 2025:10.1038/s12276-025-01448-7. [PMID: 40307573 DOI: 10.1038/s12276-025-01448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/30/2024] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
Suppression of tumor-reactive CD8+ T cells is common within the tumor microenvironment. However, little is known about how tumors systemically affect the overall CD8+ T cell compartment. Here we demonstrate that peripheral blood CD8+ T cells from patients with lung cancer showed altered compositions particularly within CD45RA-CCR7- effector memory subpopulation. Specifically, patients with lung cancer exhibited increased frequency of more differentiated effector memory cells, which are less susceptible to T cell-receptor-induced proliferation. Further analysis using single-cell RNA sequencing revealed that these alterations were correlated with reduced quiescence and increased spontaneous activation at a systemic level, indicative of homeostatic dysregulation of the entire CD8+ T cell population. This phenomenon was found to be correlated with a poor clinical response to immune checkpoint inhibitor therapy across four independent cohorts, consisting of a total of 224 patients with lung cancer. These findings suggest that lung cancers continue to counteract potentially tumor-reactive CD8+ T cells by inducing homeostatic dysregulation of the entire CD8+ T cell compartment systematically.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju Sik Yun
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun Hospital, Gwangju, Republic of Korea
| | - Young Ju Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Gwangju, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Gwangju, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Saei Jeong
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Gwangju, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Gwangju, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jeong Eun Noh
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Gwangju, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Gwangju, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee-Ok Kim
- Selecxine Inc., Seoul, Republic of Korea
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Gwangju, Republic of Korea
| | - Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Gwangju, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Gwangju, Republic of Korea.
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea.
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Gwangju, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Gwangju, Republic of Korea.
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Azmal M, Miah MM, Prima FS, Paul JK, Haque ASNB, Ghosh A. Advances and challenges in cancer immunotherapy: Strategies for personalized treatment. Semin Oncol 2025; 52:152345. [PMID: 40305928 DOI: 10.1016/j.seminoncol.2025.152345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Cancer immunotherapy has transformed oncology by harnessing the immune system to specifically target cancer cells, offering reduced systemic toxicity compared to traditional therapies. This review highlights key strategies, including adoptive cell transfer (ACT), immune checkpoint inhibitors, oncolytic viral (OV) therapy, monoclonal antibodies (mAbs), and mRNA-based vaccines. ACT reinfuses enhanced immune cells like tumor-infiltrating lymphocytes (TILs) to combat refractory cancers, while checkpoint inhibitors (eg, PD-1 and CTLA-4 blockers) restore T-cell activity. OV therapy uses engineered viruses (eg, T-VEC) to selectively lyse cancer cells, and advanced mAbs improve targeting precision. mRNA vaccines introduce tumor-specific antigens to trigger robust immune responses. Despite significant progress, challenges like immune-related side effects, high costs, and immunosuppressive tumor microenvironments persist. This review underscores the need for combination strategies and precision medicine to overcome these barriers and maximize the potential of immunotherapy in personalized cancer treatment.
Collapse
Affiliation(s)
- Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Munna Miah
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fatema Sultana Prima
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jibon Kumar Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Anm Shah Newaz Been Haque
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| |
Collapse
|
4
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
5
|
Lai N, Farman A, Byrne HM. The Impact of T-cell Exhaustion Dynamics on Tumour-Immune Interactions and Tumour Growth. Bull Math Biol 2025; 87:61. [PMID: 40172752 PMCID: PMC11965189 DOI: 10.1007/s11538-025-01433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
Tumours evade immune surveillance through a number of different immunosuppressive mechanisms. One such mechanism causes cytotoxic T-cells, a major driving force of the immune system, to differentiate to a state of 'exhaustion', rendering them less effective at killing tumour cells. We present a structured mathematical model that focuses on T-cell exhaustion and its effect on tumour growth. We compartmentalise cytotoxic T-cells into discrete subgroups based on their exhaustion level, which affects their ability to kill tumour cells. We show that the model reduces to a simpler system of ordinary differential equations (ODEs) that describes the time evolution of the total number of T-cells, their mean exhaustion level and the total number of tumour cells. Numerical simulations of the model equations reveal how the exhaustion distribution of T-cells changes over time and how it influences the tumour's growth dynamics. Complementary bifurcation analysis shows how altering key parameters significantly reduces the tumour burden, highlighting exhaustion as a promising target for immunotherapy. Finally, we derive a continuum approximation of the discrete ODE model, which admits analytical solutions that provide complementary insight into T-cell exhaustion dynamics and their effect on tumour growth.
Collapse
Affiliation(s)
- Nicholas Lai
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| | - Alexis Farman
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
- Department of Mathematics, University College London, London, WC1E 6BT, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
6
|
Wu Q, Liu M, Zhang H, Li G, Yang Z, Wu X, Tan G, Ji C, Jin Y. WO 3-x@Ferrocene-Folic Acid Composites Induce Cancer Cell Death and Activate Immunity via PTT/CDT. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500104. [PMID: 40051176 DOI: 10.1002/smll.202500104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/27/2025] [Indexed: 04/25/2025]
Abstract
At present, tumor immune escape is a major problem in the treatment of tumors. The complex network of tumor microenvironments significantly impairs the efficacy of immunotherapy. This paper reports the preparation and immunoantitumor activity of a novel multifunctional defect tungsten trioxide@ferrocene-folic acid composite (WO3-x@Fe-FA) with a high Fenton reaction rate. Ferrocene is modified on the surface of defective trioxide by the covalent coupling method for the first time, and the reaction rate of Fenton is increased by 10 times. WO3-x@Fe-FA induces immunogenic cell death (ICD) through the powerful synergistic anti-tumor effect of PTT/CDT and decomposes H2O2 to produce oxygen through the Fenton reaction, thus down-regulating the expression of immune checkpoint PD-L1 induced by tumor hypoxia. In vitro and in vivo experiments proved that WO3-x@Fe-FA reverses the immunosuppressive tumor microenvironment, transforms the immunosuppressive "cold tumor" into the immune "hot tumor", and activates the immune activity of the system. In vitro and in vivo experiments show that WO3-x@Fe-FA has excellent immunoantitumor activity, and it is expected to be a candidate drug for immunoantitumor therapy.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Mingyang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Hui Zhang
- College of Public Health, Mudanjiang Medical University, Mudanjiang, 157009, China
| | - Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Ziqing Yang
- School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Chenfeng Ji
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
7
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
8
|
Tong SY, Huo CM, Zuo YC, Gao S, Leong DT, Xue W, Zhu JY. Reversing cancer immunosuppression via K + capture and repolarization of tumor-associated macrophages. NANOSCALE HORIZONS 2025. [PMID: 40145334 DOI: 10.1039/d5nh00050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Immunosuppression from the tumor microenvironment plays a key role in the failure of cancer immunotherapy. The presence of potassium ions (K+) from dying tumor cells creates an immunosuppressive environment that encourages tumor-associated macrophages (TAMs) to adopt a pro-tumor M2-like phenotype. Alleviating immune suppression from the high K+ environment might boost innate immunity and fight tumor growth. Herein, disulfide-rich mesoporous silica modified with 18-crown-6 ether was developed as a nanocarrier (D-C) to load ML133, encapsulating with the DiR-embedded macrophage membrane (CM) to create D-C/M@CM/DiR. We first saturated the phagocytosis of the mononuclear phagocyte system (MPS) with blank nanocarriers to enhance the tumor accumulation of D-C/M@CM/DiR, which was coated with the same CM. 18-Crown-6 ether captures K+ to reduce immunosuppression, while ML133 promotes the polarization of TAMs to an anti-tumor M1 phenotype by targeting the K+ channel protein Kir2.1 on their membranes. This strategy activates the anti-tumor immune response and effectively inhibits tumor growth.
Collapse
Affiliation(s)
- Si-Ye Tong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Cong-Min Huo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Yu-Cheng Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Shuo Gao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Jing-Yi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
10
|
Han Y, Jiang M, Sun Y, Chen W, Zhao Y, Guan X, Zhang W. Efficient chemo-immunotherapy leveraging minimalist electrostatic complex nanoparticle as "in situ" vaccine integrated tumor ICD and immunoagonist. J Adv Res 2025; 69:169-179. [PMID: 38499244 PMCID: PMC11954839 DOI: 10.1016/j.jare.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
INTRODUCTION Immunotherapy has unprecedentedly opened up a series of neoteric tactics for cancer treatment. As a burgeoning approach, chemo-immunotherapy has innovatively expanded the accomplishments of conventional chemotherapeutic agents for cancer governing. OBJECTIVES An efficacious chemo-immunotherapy leveraging minimalist electrostatic complex nanoparticle (NP) integrated tumor immunogenic cell death (ICD) and immunoagonist was developed as a watertight "in situ" vaccine for cancer therapy through convenient intratumoral administration with minimized systemic toxicity. METHODS Chemical-modified pH-sensitive cis-aconityl-doxorubicin (CAD) and immunoadjuvant unmethylated cytosine-phosphate-guanine (CpG) were co-packaged by polycationic polyethylenimine (PEI) though electrostatic-interaction to construct PEI/CpG/CAD NP. By intratumoral injection, this positively charged NP could be detained at tumor site and endocytosed by tumor cells effortlessly. Then, doxorubicin was released through cis-aconityl cleavage induced by endosomal-acidity and further triggered tumor ICD, the moribund tumor cells could release damage-associated molecular patterns (DAMPs) to recruit dendritic cells (DCs). Meanwhile, the entire tumor debris derived into diversified antigens and cooperated with immunostimulatory CpG to excite DC maturation and activated comprehensive antitumor immunity. RESULTS Prominent tumor suppression was achieved in aggressive mouse melanoma tumor model, which verified the feasibility and effectiveness of this minimalist CAD/CpG-codelivered NP. CONCLUSION This study has provided a convenient and promising paradigm for potent cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Yunfei Han
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Mingxia Jiang
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Yanju Sun
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Wenqiang Chen
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Yanli Zhao
- Shouguang Market Supervision and Administration Bureau, Shouguang 262700, China
| | - Xiuwen Guan
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China.
| | - Weifen Zhang
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China.
| |
Collapse
|
11
|
Jin K, Chu X, Qian J. Arginine and colorectal cancer: Exploring arginine-related therapeutic strategies and novel insights into cancer immunotherapies. Int Immunopharmacol 2025; 148:114146. [PMID: 39879835 DOI: 10.1016/j.intimp.2025.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Concerning the progression of societies and the evolution of lifestyle and dietary habits, the potential for the development of human malignancies, particularly colorectal cancer (CRC), has markedly escalated, positioning it as one of the most prevalent and lethal forms of cancer globally. Empirical evidence indicates that the metabolic processes of cancerous and healthy cells can significantly impact immune responses and the fate of tumors. Arginine, a multifaceted amino acid, assumes a crucial and paradoxical role in various metabolic pathways, as certain tumors exhibit arginine auxotrophy while others do not. Notably, CRC is classified as arginine non-auxotrophic, possessing the ability to synthesize arginine from citrulline. Systemic arginine deprivation and the inhibition of arginine uptake represent two prevalent therapeutic strategies in oncological treatment. However, given the divergent behaviors of tumors concerning the metabolism and synthesis of arginine, one of these therapeutic approaches-namely systemic arginine deprivation-does not apply to CRC. This review elucidates the characteristics of arginine uptake inhibition and systemic arginine deprivation alongside their respective benefits and limitations in CRC. Furthermore, the involvement of arginine in immunotherapeutic strategies is examined in light of the most recent discoveries on various human malignancies.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| | - Xiufeng Chu
- Department of General Surgery, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
12
|
Lv C, Chen J, Wang Y, Lin Y. Immunoregulatory role of exosomal circRNAs in the tumor microenvironment. Front Oncol 2025; 15:1453786. [PMID: 40034598 PMCID: PMC11872884 DOI: 10.3389/fonc.2025.1453786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/02/2025] [Indexed: 03/05/2025] Open
Abstract
As cancer incidence and mortality rates rise, there is an urgent need to develop effective immunotherapy strategies. Circular RNA (circRNA), a newly identified type of non-coding RNA, is abundant within cells and can be released via exosomes, facilitating communication between cells. Studies have demonstrated that exosomal circRNAs can alter the tumor microenvironment and modulate immune responses by influencing the functions of T cells, natural killer (NK) cells, and macrophages, thereby enabling tumors to evade the immune system. Moreover, exosomal circRNAs show potential as diagnostic biomarkers and therapeutic targets for cancer. This review summarizes the regulatory roles of exosomal circRNAs in immune cells and their potential applications in cancer progression and treatment, highlighting their promise in improving cancer immunotherapy. Future research should concentrate on understanding the mechanisms of key exosomal circRNAs and developing targeted immunotherapy methods.
Collapse
Affiliation(s)
- Cunming Lv
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jinhao Chen
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yuxiang Wang
- College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China
| | - Yichen Lin
- Department of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Gomari MM, Ghantabpour T, Pourgholam N, Rostami N, Hatfield SM, Namazifar F, Abkhiz S, Eslami SS, Ramezanpour M, Darestanifarahani M, Astsaturov I, Bencherif SA. Breaking barriers: Smart vaccine platforms for cancer immunomodulation. Cancer Commun (Lond) 2025. [PMID: 39901621 DOI: 10.1002/cac2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Despite significant advancements in cancer treatment, current therapies often fail to completely eradicate malignant cells. This shortfall underscores the urgent need to explore alternative approaches such as cancer vaccines. Leveraging the immune system's natural ability to target and kill cancer cells holds great therapeutic potential. However, the development of cancer vaccines is hindered by several challenges, including low stability, inadequate immune response activation, and the immunosuppressive tumor microenvironment, which limit their efficacy. Recent progress in various fields, such as click chemistry, nanotechnology, exosome engineering, and neoantigen design, offer innovative solutions to these challenges. These achievements have led to the emergence of smart vaccine platforms (SVPs), which integrate protective carriers for messenger ribonucleic acid (mRNA) with functionalization strategies to optimize targeted delivery. Click chemistry further enhances SVP performance by improving the encapsulation of mRNA antigens and facilitating their precise delivery to target cells. This review highlights the latest developments in SVP technologies for cancer therapy, exploring both their opportunities and challenges in advancing these transformative approaches.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taha Ghantabpour
- Department of Anatomy, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nima Pourgholam
- School of Nursing and Midwifery, Iran University of Medical Science, Tehran, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Arak University, Arak, Iran
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | | | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mahsa Ramezanpour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Darestanifarahani
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Polymers, Biopolymers Surfaces (PBS) Laboratory, National Center for Scientific Research (CNRS) Mixed Research Unit (UMR) 6270, University Rouen Normandie, Rouen, France
| |
Collapse
|
14
|
Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M, Ahmed HH. A review of the immunomodulatory properties of mesenchymal stem cells and their derived extracellular vesicles in small-cell and non-small-cell lung cancer cells. Int Immunopharmacol 2025; 146:113848. [PMID: 39689606 DOI: 10.1016/j.intimp.2024.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Among the most challenging diseases to treat is lung cancer (LC). While immunotherapy has a checkered history, it has lately shown great promise in the treatment of LC, and interest in this promising new approach is on the rise around the globe. Immunotherapy using mesenchymal stem cells (MSCs) is gaining popularity. Regenerative medicine, cell therapy, and immune modulation are three areas that have shown significant interest in MSCs. More than that, MSCs have recently attracted attention as potential anti-cancer drug delivery vehicles due to their inherent ability to go home to tumor locations. Making MSCs a double-edged sword in the fight against neoplastic illnesses, they are also known to impart pro-oncogenic properties. Additionally, multiple studies have proposed extracellular vesicles (EVs) secreted by MSCs as a potential therapeutic agent or method for delivering anti-cancer drugs. However, there has been conflicting evidence regarding the impact of MSCs or MSC-EV on the behavior of cancer cells, and the exact mechanism for this effect is still unknown. Our research has focused on MSCs and their key characteristics, such as their immunomodulatory capabilities for cancer therapy. Our research has also explored the potential of MSCs and their derivatives to treat small-cell and non-small-cell lung cancers (NSCLC and SCLC, respectively) by leveraging MSCs' immunomodulatory characteristics. At the end of this article, we covered the pros and cons of this therapy procedure, as well as what researchers want to do in the future to make it more suitable for clinical application in LC treatment.
Collapse
Affiliation(s)
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | |
Collapse
|
15
|
Hasan AM, Cavalu S, Kira AY, Hamad RS, Abdel-Reheim MA, Elmorsy EA, El-kott AF, Morsy K, AlSheri AS, Negm S, Saber S. Localized Drug Delivery in Different Gastrointestinal Cancers: Navigating Challenges and Advancing Nanotechnological Solutions. Int J Nanomedicine 2025; 20:741-770. [PMID: 39845772 PMCID: PMC11752831 DOI: 10.2147/ijn.s502833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations. However, the localized delivery via oral administration faces many challenges related to the complex structure of GIT (varied pH levels and transit times) as well as the harsh environment within tumor cells (hypoxia, efflux pumps, and acidity). To overcome these obstacles, nano-drug delivery systems (NDDs) have been designed and proved their potential by exploiting these challenges in favor of offering a specific delivery to the desired target. The current review begins with an overview of different GI cancers and their impact globally. Then, it discusses the current treatment approaches and their corresponding limitations. Additionally, the different challenges associated with localized drug delivery for GI cancers are summarized. Finally, the review discusses in detail the recent therapeutic and diagnostic applications of NDDs that have been conducted in oral, esophageal, gastric, colon, and liver cancers, aiming to offer valuable insights into the current and future state of utilizing NDDs for the local treatment of GI cancers.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art, Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
16
|
Chen L, Yang H, Wei X, Liu J, Han X, Zhang C, Liu Y, Zhang Y, Xu Y, Li Y, Wang G, Feng J. Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC. Front Immunol 2025; 15:1487372. [PMID: 39850878 PMCID: PMC11754264 DOI: 10.3389/fimmu.2024.1487372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors. However, the detailed role and mechanism of R-loops in HCC progression remain elusive and require further exploration. This study aimed to construct an R-loop scoring signature centered on prognosis and lipid metabolism, thereby enhancing our understanding of HCC progression and identifying potential therapeutic targets. Methods In this study, we utilized the single-cell RNA-sequencing (scRNA-seq) data from HCC patients (GSE149614 and CRA002308) to construct an R-loop scoring model based on the identified R-loop regulator genes (RLRGs) related to HBV infection through WGCNA analysis. We also explored the tumor microenvironment and intercellular communication related to R-loop score. Additionally, a prognostic risk model based on the fatty acid metabolism-associated RLRGs was constructed using data from the TCGA database, and its association with immune infiltration, mutations, and drug sensitivity was analyzed. In vitro and in vivo experiments were performed to investigate the role of RLRG CLTC in lipid metabolism and HCC progression. Results Using scRNA-seq data from HCC, we established an R-loop scoring model based on identified RLRGs related to HBV infection. Moreover, the more suppressive tumor immune microenvironment and stronger intercellular communication were displayed in malignant cells with high R-loop scores. The cell trajectory and cellular metabolism analysis exhibited a significant association between lipid metabolism and RLRGs. Additionally, we constructed a prognostic risk model consisting of 8 RLRGs related to fatty acid metabolism, which effectively evaluated the prognostic value, status of tumor immune microenvironment, gene mutations, and chemotherapeutic drug sensitivity for HCC patients. Notably, validation experiments suggested that CLTC could regulate lipid metabolism through R-loop formation and facilitate tumor progression in HCC. Conclusion Collectively, our study proposes an R-loop scoring model associated with tumor immune microenvironment, lipid metabolism and prognostic value. CLTC, an R-loop regulator, emerges as a promising prognostic biomarker and therapeutic target, offering new insights into potential treatment strategies for HCC patients.
Collapse
Affiliation(s)
- Long Chen
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Houzhi Yang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xianfu Wei
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianchao Liu
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiuxin Han
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Chao Zhang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yongheng Liu
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yan Zhang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao Xu
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yiqin Li
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Guowen Wang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jinyan Feng
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin’s Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
17
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
SV S, Augustine D, Hosmani J, Pagnoni F, Reda R, Testarelli L, Patil S. Nanoparticle-based biomolecules in cancer diagnosis, therapy, drug delivery and prognosis. FRONTIERS IN DENTAL MEDICINE 2024; 5:1482166. [PMID: 39917652 PMCID: PMC11797830 DOI: 10.3389/fdmed.2024.1482166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/31/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Nanoparticles have orchestrated a paradigm shift in the landscape of cancer diagnosis and therapy, presenting a multifaceted approach to tackle the intricacies of malignancies. This comprehensive exposition delves deep into the forefront of nanomedicine, elucidating pivotal strategies and innovations primed to metamorphose the domain of cancer management. Methodology Nanoparticles transcend traditional boundaries, enabling meticulous, site-specific drug release while minimizing systemic toxicity. Intricately designed activation mechanisms, encompassing pH and enzymatic responsivity, along with concentration-dependent strategies, exploit the distinctive attributes of cancer cells, heralding an era characterized by unprecedented therapeutic precision. The pervasive influence of nanotechnology extends to diagnostics, unlocking the realm of early disease detection and personalized treatment. These versatile agents bestow empowering capabilities upon sensitive imaging modalities, affording real-time monitoring and theranostic potential. Results This exposition showcases the evolution of cutting-edge nanoplatforms, bridging the chasm between diagnosis and therapy, thereby redefining the confines of cancer care. This review elucidates strategies to combat drug resistance, a perennial challenge within cancer management. By targeting efflux transporters, modulating apoptotic pathways, and countering hypoxia-induced resistance, nanoparticles stand at the vanguard of therapeutic innovation, poised to reinvigorate treatment efficacy. Discussion & Conclusion Moreover, this exposé underscores the imminent clinical translation of nanoparticle-based drugs, accentuating their potential to metamorphose the landscape of cancer management. Liposomal vaccines, nano-pharmaceuticals, and nanochemodrugs, currently navigating the crucible of clinical trials, bear immense promise in advancing the realm of precision medicine. In this epoch of precision medicine, nanoparticle-fueled innovations stand poised to propel cancer diagnosis and therapy to unprecedented peaks.
Collapse
Affiliation(s)
- Sowmya SV
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, India
| | - Dominic Augustine
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, India
| | - Jagdish Hosmani
- Department of Diagnostic Dental Sciences, Oral Pathology Section, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Francesco Pagnoni
- Department of Oral and Maxillofacial Sciences, Sapienza University, University of Rome, Rome, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University, University of Rome, Rome, Italy
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University, University of Rome, Rome, Italy
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
- College of Graduate Studies, Roseman University of Health Science, South Jordan, UT, United States
| |
Collapse
|
19
|
Huang Y, Gui Z, Wu M, Zhang M, Jiang Y, Ding Q, Yang J, Ye Y, Zhang M. Tumor-infiltrating B cell-related lncRNA crosstalk reveals clinical outcomes and tumor immune microenvironment in ovarian cancer based on single-cell and bulk RNA-sequencing. Heliyon 2024; 10:e39496. [PMID: 39559246 PMCID: PMC11570495 DOI: 10.1016/j.heliyon.2024.e39496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background The tumor immune microenvironment (TIME) plays a pivotal role in determining ovarian cancer (OC) prognosis. Long non-coding RNAs (lncRNAs) are key regulators of immune response and tumor progression in OC. Among these, tumor-infiltrating B cells represent an emerging target in immune response pathways. However, the specific involvement of B cell-related lncRNAs (BCRLs) in OC remains unclarified. Methods Leveraging single-cell and bulk RNA-sequencing data, correlation analysis identified BCRLs in ovarian serous cystadenocarcinoma (OV) from the TCGA database. Subsequently, BCRLIs were filtered through COX survival analysis and the LASSO algorithm, leading to the development of a B cell-related lncRNA scoring system (BCRLss). The predictive accuracy of BCRLss for prognosis in TCGA-OV was assessed and externally validated in an independent cohort. Functional enrichment analyses were conducted to elucidate biological pathways associated with risk subgroups. Additionally, the relationship between BCRLss and TIME was investigated through multiple algorithms and consensus clustering, uncovering potential immune response targets. Drug sensitivity analyses further identified potential therapeutic options tailored to risk subgroups. The highest risk score lncRNA was selected for in vitro validation. Results The BCRLss was constructed using six BCRLIs. Survival analysis revealed an improved prognosis in the low-risk group, with results corroborated by external validation in the ICGC-OV cohort. ROC analysis and nomogram construction confirmed the strong prognostic accuracy of BCRLss. Enrichment analysis highlighted associations between risk subgroups and tumor immune pathways, with the low-risk group demonstrating a more robust immune response and elevated expression of immune checkpoint-related genes. Drug sensitivity tests revealed notable differences across risk subgroups. In vitro experiments confirmed elevated LINC01150 expression in OC cells, and LINC01150 knockdown significantly inhibited the proliferation, invasion, and migration of SKOV3 cells. Conclusions In conclusion, BCRLss provides a reliable prognostic tool for predicting clinical outcomes and the immune landscape of patients with OC, offering valuable guidance for immunotherapy target selection and personalized treatment strategies.
Collapse
Affiliation(s)
- Yi Huang
- Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, China
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Muyun Wu
- Internal Medicine Department of Oncology, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, 241000, China
| | - Mengmeng Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yue Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Qiaoqiao Ding
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, 230022, China
| | - Jinping Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
20
|
Liu R, Wang X, Zhou M, Zhai J, Sun J. PSF-lncRNA interaction as a target for novel targeted anticancer therapies. Biomed Pharmacother 2024; 180:117491. [PMID: 39332189 DOI: 10.1016/j.biopha.2024.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
The Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF), a component of the Drosophila Behavior/Human Splicing (DBHS) complex, plays a pivotal role in cancer pathogenesis. The epigenetic regulation mediated by PSF and long noncoding RNA (lncRNA), along with PSF's alternative splicing activity, has been implicated in promoting cancer cell proliferation, migration, invasion, metastasis, and drug resistance in various human cancers. Recent research highlights the therapeutic promise of targeting the PSF-lncRNA interaction to combat aggressive malignancies, making it a compelling target for cancer therapy. This review offers a detailed synthesis of the current understanding of PSF's role in oncogenic pathways and recent progress in identifying inhibitors of PSF-lncRNA interactions. Furthermore, it discusses the potential of using these inhibitors in cancer treatment strategies, especially as adjuncts to immune checkpoint blockade therapies to improve the efficacy of anti-PD-(L)1 treatments in Glioblastoma Multiforme (GBM). By outlining the interaction patterns of existing PSF-lncRNA inhibitors, this article aims to guide the development and refinement of future pharmacological interventions.
Collapse
Affiliation(s)
- Ren Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
21
|
Nickerson JL, Cyr C, Arseneau RJ, Lee SN, Condon-Oldreive S, Zogopoulos G, Roberts K, Kim CA, Ng SSW, Haider M, Villalba E, Stephenson L, Tsang E, Johnston B, Gala-Lopez B, Cooper V, Hannon B, Gangloff A, Gill S, Servidio-Italiano F, Ramjeesingh R. Canadian National Pancreas Conference 2023: A Review of Multidisciplinary Engagement in Pancreatic Cancer Care. Curr Oncol 2024; 31:6191-6204. [PMID: 39451765 PMCID: PMC11506161 DOI: 10.3390/curroncol31100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic cancer is a complex malignancy associated with poor prognosis and high symptom burden. Optimal patient care relies on the integration of various sectors in the healthcare field as well as innovation through research. The Canadian National Pancreas Conference (NPC) was co-organized and hosted by Craig's Cause Pancreatic Cancer Society and The Royal College of Physicians and Surgeons in November 2023 in Montreal, Canada. The conference sought to bridge the gap between Canadian healthcare providers and researchers who share the common goal of improving the prognosis, quality of life, and survival for patients with pancreatic cancer. The accredited event featured discussion topics including diagnosis and screening, value-based and palliative care, pancreatic enzyme replacement therapy, cancer-reducing treatment, and an overview of the current management landscape. The present article reviews the NPC sessions and discusses the presented content with respect to the current literature.
Collapse
Affiliation(s)
- Jessica L. Nickerson
- Allumiqs Corporation, Halifax, NS B3H 0A8, Canada;
- Craig’s Cause Pancreatic Cancer Society, Halifax, NS B3K 5M3, Canada; (C.C.); (R.J.A.); (S.N.L.); (S.C.-O.)
| | - Chloe Cyr
- Craig’s Cause Pancreatic Cancer Society, Halifax, NS B3K 5M3, Canada; (C.C.); (R.J.A.); (S.N.L.); (S.C.-O.)
- Department of Kinesiology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 0A2, Canada
| | - Riley J. Arseneau
- Craig’s Cause Pancreatic Cancer Society, Halifax, NS B3K 5M3, Canada; (C.C.); (R.J.A.); (S.N.L.); (S.C.-O.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 0A2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stacey N. Lee
- Craig’s Cause Pancreatic Cancer Society, Halifax, NS B3K 5M3, Canada; (C.C.); (R.J.A.); (S.N.L.); (S.C.-O.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 0A2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Stefanie Condon-Oldreive
- Craig’s Cause Pancreatic Cancer Society, Halifax, NS B3K 5M3, Canada; (C.C.); (R.J.A.); (S.N.L.); (S.C.-O.)
| | | | - Keith Roberts
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
| | - Christina A. Kim
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sylvia S. W. Ng
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Masoom Haider
- Joint Department of Medical Imaging, Sinai Health System, Toronto, ON M5G 1X6, Canada;
| | - Eva Villalba
- Quebec Cancer Coalition, Saint-Lambert, QC J4P 2J7, Canada;
| | | | - Erica Tsang
- Department of Medicine, Princess Margaret Cancer Centre, Toronto, ON M5G 2C4, Canada;
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Boris Gala-Lopez
- Department of Surgery, Dalhousie University, Halifax, NS B3H 2Y9, Canada;
| | - Valerie Cooper
- South East Local Health Integration Network, Belleville, ON K8N 5K3, Canada;
| | - Breffni Hannon
- Department of Supportive Care, Princess Margaret Cancer Centre, Toronto, ON M5G 2C4, Canada;
| | - Anne Gangloff
- Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
| | | | | | - Ravi Ramjeesingh
- Division of Medical Oncology, Dalhousie University, Halifax, NS B3H 2Y9, Canada
| |
Collapse
|
22
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
23
|
Zhang W, Park HB, An EK, Kim SJ, Ryu D, Kim D, Lim D, Hwang J, Kwak M, You S, Lee PCW, Jin JO. Fucoidan from Durvillaea Antarctica enhances the anti-cancer effect of anti-PD-L1 antibody by activating dendritic cells and T cells. Int J Biol Macromol 2024; 280:135922. [PMID: 39322135 DOI: 10.1016/j.ijbiomac.2024.135922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint inhibitors are showing groundbreaking results in tumor immunotherapy. However, there are cases where treatment efficiency is insufficient due to limitations in immune activity, and various trials to overcome this are being studied. In this study, we investigated the immune activation ability of fucoidan extracted from Durvillaea antarctica (FDA) and whether it can enhance the anti-cancer effects of immune checkpoint inhibitors. FDA treatment resulted in an elevation of co-stimulator and major histocompatibility complex molecule expression, as well as the production of pro-inflammatory cytokines in bone marrow-derived and splenic dendritic cells (DCs). Administration of 50 mg/kg FDA increased the number of splenic CD8 T cells by >1.4-fold compared to PBS administration. Additionally, 50 mg/kg FDA increased the production of IFN-γ in CD4 and CD8 T cells by 4.3-fold and 7.2-fold, respectively, compared to the PBS control. FDA promoted immune cell activation was TLR4 dependent. Furthermore, anti-PD-L1 antibody administration inhibited CT-26 tumor growth by approximately 3-fold compared to the PBS control group, whereas combined treatment with FDA and anti-PD-L1 antibody showed an 8.4-fold tumor growth inhibition effect compared to the PBS control group. Therefore, FDA may be used to enhance the anti-cancer effects of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Dayoung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Daeun Lim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
24
|
Li XP, Hou DY, Wu JC, Zhang P, Wang YZ, Lv MY, Yi Y, Xu W. Stimuli-Responsive Nanomaterials for Tumor Immunotherapy. ACS Biomater Sci Eng 2024; 10:5474-5495. [PMID: 39171865 DOI: 10.1021/acsbiomaterials.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cancer remains a significant challenge in extending human life expectancy in the 21st century, with staggering numbers projected by the International Agency for Research on Cancer for upcoming years. While conventional cancer therapies exist, their limitations, in terms of efficacy and side effects, demand the development of novel treatments that selectively target cancer cells. Tumor immunotherapy has emerged as a promising approach, but low response rates and immune-related side effects present significant clinical challenges. Researchers have begun combining immunotherapy with nanomaterials to optimize tumor-killing effects. Stimuli-responsive nanomaterials have become a focus of cancer immunotherapy research due to their unique properties. These nanomaterials target specific signals in the tumor microenvironment, such as pH or temperature changes, to precisely deliver therapeutic agents and minimize damage to healthy tissue. This article reviews the recent developments and clinical applications of endogenous and exogenous stimuli-responsive nanomaterials for tumor immunotherapy, analyzing the advantages and limitations of these materials and highlighting their potential for enhancing the immune response to cancer and improving patient outcomes.
Collapse
Affiliation(s)
- Xiang-Peng Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Jiong-Cheng Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Peng Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yue-Ze Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Mei-Yu Lv
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Yu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| |
Collapse
|
25
|
Song Y, Teng L, Chen Y, Dong CM. Glycopolypeptide Coordinated Nanovaccine: Fabrication, Characterization, and Antitumor Immune Response. CHEM & BIO ENGINEERING 2024; 1:633-646. [PMID: 39974696 PMCID: PMC11835264 DOI: 10.1021/cbe.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 02/21/2025]
Abstract
Cancer nanovaccine is a frontier immunotherapy strategy, in which the delivery carrier can protect antigen and adjuvant from degradation, increase blood circulation half-life, and improve antigen permeability and presentation, thus enhancing the security and potency of nanovaccine. To address the barriers of antigen delivery, we design and fabricate a kind of intracellular pH-sensitive glycopolypeptide coordinated nanovaccine (OVA-HPGM-Mn) with ∼30% loading capacity of ovalbumin (OVA). The nanovaccine OVA-HPGM-Mn could specifically deliver antigen to dendritic cells (DCs) and effectively escape from endolysosomes to cytoplasm after 6 h of incubation, while the blank counterpart HPGM-Mn acted as an adjuvant to promote DCs maturation and increase the percentage of maturated cells to 26.5% from 11.8% in vitro. Furthermore, the mannosylated polypeptide nanovaccine prolonged the retention time of OVA for 72 h to facilitate 29.5% DCs maturation in lymph nodes, activated 48.8% CD8+T cells in spleen, increased the CD8+/CD4+T cell ratio twice to 1.06, and upregulated the levels of pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-6, thus inhibiting the tumor growth of ∼80%. Consequently, this work provides a versatile strategy for the fabrication of glycosylated polypeptide coordinated nanomaterials for antigen delivery and cancer immunotherapy.
Collapse
Affiliation(s)
- Yingying Song
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Teng
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanzheng Chen
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
26
|
Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, Majumdar M, Dasgupta R, Mukherjee S, Das S, Ghose I, Pavek P, Raja Karuppiah MP, Chuturgoon AA, Anand K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug Chem 2024; 35:1089-1115. [PMID: 38990186 PMCID: PMC11342303 DOI: 10.1021/acs.bioconjchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Subhrojyoti Ghosh
- Department
of Biotechnology, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Souvadra Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shinjini Sen
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Priyanka Kumar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Madhurima Majumdar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Renesa Dasgupta
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Sampurna Mukherjee
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shrimanti Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Indrilla Ghose
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Muruga Poopathi Raja Karuppiah
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod District, Kerala 671320, India
| | - Anil A. Chuturgoon
- Discipline
of Medical Biochemistry, School of Laboratory Medicine and Medical
Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| |
Collapse
|
27
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
28
|
Jiang Q, He J, Zhang H, Chi H, Shi Y, Xu X. Recent advances in the development of tumor microenvironment-activatable nanomotors for deep tumor penetration. Mater Today Bio 2024; 27:101119. [PMID: 38966042 PMCID: PMC11222818 DOI: 10.1016/j.mtbio.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer represents a significant threat to human health, with the use of traditional chemotherapy drugs being limited by their harsh side effects. Tumor-targeted nanocarriers have emerged as a promising solution to this problem, as they can deliver drugs directly to the tumor site, improving drug effectiveness and reducing adverse effects. However, the efficacy of most nanomedicines is hindered by poor penetration into solid tumors. Nanomotors, capable of converting various forms of energy into mechanical energy for self-propelled movement, offer a potential solution for enhancing drug delivery to deep tumor regions. External force-driven nanomotors, such as those powered by magnetic fields or ultrasound, provide precise control but often necessitate bulky and costly external equipment. Bio-driven nanomotors, propelled by sperm, macrophages, or bacteria, utilize biological molecules for self-propulsion and are well-suited to the physiological environment. However, they are constrained by limited lifespan, inadequate speed, and potential immune responses. To address these issues, nanomotors have been engineered to propel themselves forward by catalyzing intrinsic "fuel" in the tumor microenvironment. This mechanism facilitates their penetration through biological barriers, allowing them to reach deep tumor regions for targeted drug delivery. In this regard, this article provides a review of tumor microenvironment-activatable nanomotors (fueled by hydrogen peroxide, urea, arginine), and discusses their prospects and challenges in clinical translation, aiming to offer new insights for safe, efficient, and precise treatment in cancer therapy.
Collapse
Affiliation(s)
- Qianyang Jiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haorui Chi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
29
|
Aghakhani A, Pezeshki PS, Rezaei N. The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy. Expert Opin Investig Drugs 2024; 33:721-740. [PMID: 38795060 DOI: 10.1080/13543784.2024.2360209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors. AREAS COVERED This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments. EXPERT OPINION By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
31
|
Yado S, Dassa B, Zoabi R, Reich-Zeliger S, Friedman N, Geiger B. Molecular mechanisms underlying the modulation of T-cell proliferation and cytotoxicity by immobilized CCL21 and ICAM1. J Immunother Cancer 2024; 12:e009011. [PMID: 38866588 PMCID: PMC11177851 DOI: 10.1136/jitc-2024-009011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Adoptive cancer immunotherapy, using engineered T-cells, expressing chimeric antigen receptor or autologous tumor infiltrating lymphocytes became, in recent years, a major therapeutic approach for diverse types of cancer. However, despite the transformative potential of adoptive cancer immunotherapy, this field still faces major challenges, manifested by the apparent decline of the cytotoxic capacity of effector CD8+ T cells upon their expansion. To address these challenges, we have developed an ex vivo "synthetic immune niche" (SIN), composed of immobilized CCL21 and ICAM1, which synergistically induce an efficient expansion of antigen-specific CD8+ T cells while retaining, and even enhancing their cytotoxic potency. METHODS To explore the molecular mechanisms through which a CCL21+ICAM1-based SIN modulates the interplay between the proliferation and cytotoxic potency of antigen-activated and CD3/CD28-activated effector CD8+ T cells, we performed integrated analysis of specific differentiation markers via flow cytometry, together with gene expression profiling. RESULTS On day 3, the transcriptomic effect induced by the SIN was largely similar for both dendritic cell (DC)/ovalbumin (OVA)-activated and anti-CD3/CD28-activated cells. Cell proliferation increased and the cells exhibited high killing capacity. On day 4 and on, the proliferation/cytotoxicity phenotypes became radically "activation-specific"; The DC/OVA-activated cells lost their cytotoxic activity, which, in turn, was rescued by the SIN treatment. On longer incubation, the cytotoxic activity further declined, and on day7, could not be rescued by the SIN. SIN stimulation following activation with anti-CD3/CD28 beads induced a major increase in the proliferative phenotype while transiently suppressing their cytotoxicity for 2-3 days and fully regaining their killing activity on day 7. Potential molecular regulatory pathways of the SIN effects were identified, based on transcriptomic and multispectral imaging profiling. CONCLUSIONS These data indicate that cell proliferation and cytotoxicity are negatively correlated, and the interplay between them is differentially regulated by the mode of initial activation. The SIN stimulation greatly enhances the cell expansion, following both activation modes, while displaying high survival and cytotoxic potency at specific time points following stimulation, suggesting that it could effectively reinforce adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Sofi Yado
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rawan Zoabi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Liu Z, Chen M, Zheng W, Yuan S, Zhao W. Insights into the prognostic value and immunological role of CD74 in pan-cancer. Discov Oncol 2024; 15:222. [PMID: 38861249 PMCID: PMC11166624 DOI: 10.1007/s12672-024-01081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND CD74 is a non-polymorphic type II transmembrane glycoprotein. It is involved in the regulation of T and B cell development, and dendritic cell (DC) motility. Numerous studies have found that CD74 exerts an essential role in tumor immunity, but the expression profile of CD74 is still not systematically reported, and its value in human pan-cancer analysis is unknown. In this study, we analyzed the expression pattern of CD74 in 33 cancers, and evaluated the significance of CD74 in prognosis prediction and cancer immunity. METHODS Pan-cancer dataset from UCSC Xena.We used the Sangerbox website combined with R software' Timer, CIBERSORT method and IOBR package to analyze and plot the data. Survival was assessed using the Kaplan-Meier method and log-rank test for 33 cancer types (p < 0.05). In addition, to explore the relationship between CD74 expression and immune checkpoints, immune cell infiltration, tumor mutational burden (TMB) and microsatellite instability (MSI), Spearman correlation analysis was performed. RESULTS This study comprehensively analyzed CD74 expression in 33 different tumor types, revealing that CD74 play an crucial role in cancer formation and development. CONCLUSIONS CD74 gene expression in different cancers is associated with immune cell infiltration and immunomodulators and may provide a promising target for survival and immunotherapy. Our study shows that CD74 has an essential role as a biomarker of prognosis during tumor development, which highlights the possibility of new targeted therapies.
Collapse
Affiliation(s)
- Zebiao Liu
- Pathology, Huizhou First Hospital, Huizhou, 516000, China
| | - Mingquan Chen
- Pathology, Huizhou First Hospital, Huizhou, 516000, China
| | - Wanhua Zheng
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shicheng Yuan
- Pathology, Huizhou First Hospital, Huizhou, 516000, China
| | - Wenli Zhao
- Pathology, Huizhou First Hospital, Huizhou, 516000, China.
| |
Collapse
|
33
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
34
|
Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Pohl P, Klimczak A, Jamroz P. Comprehensive studies on the biological activities of human metastatic (MDA-MB-231) and non-metastatic (MCF-7) breast cancer cell lines, directly or combinedly treated using non-thermal plasma-based approaches. Toxicol In Vitro 2024; 98:105846. [PMID: 38754599 DOI: 10.1016/j.tiv.2024.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Progressive incidence and a pessimistic survival rate of breast cancer in women worldwide remains one of the most concerning topics. Progressing research indicates a potentially high effectiveness of use cold atmospheric plasma (CAP) systems. The undoubted advantage seems its simplicity in combination with other anti-cancer modalities. Following observed trend of studies, one inventory CAP system was applied to directly treat human breast cancer cell lines and culturing in two different Plasma Activated Media (PAM) for combined utilization. Proposed CAP treatments on MCF-10 A, MCF-7, and MDA-MB-231 cell lines were studied in terms of impact on cell viability by MTT assay. Disturbances in cell motility following direct and combined CAP application were assessed by scratch test. Finally, the induction of apoptosis and necrosis was verified with annexin V and propidium iodide staining. Reactive species generated during CAP treatment were determined based on optical emission spectrometry analysis along with colorimetric methods to qualitatively assess the NO2-, NO3-, H2O2, and total ROS with free radicals concentration. The most effective approach for CAP utilization was combined treatment, leading to significant disruption in cell viability, motility and mostly apoptosis induction in breast cancer cell lines. Determined CAP dose allows for mild outcome, showing insignificant harm for the non-cancerous MCF-10 A cell line, while the highly aggressive MDA-MB-231 cell line shows the highest sensitivity on proposed CAP treatment. Direct CAP treatment seems to drive the cells into the sensitive state in which the effectiveness of PAM is boosted. Observed anti-cancer response of CAP treatment was mostly triggered by RNS (mostly NO2- ions) and ROS along with free radicals (such as H2O2, OH•, O2-•, 1O2, HO2•). The combined application of one CAP source represent a promising alternative in the development of new and effective modalities for breast cancer treatment.
Collapse
Affiliation(s)
- Dominik Terefinko
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Pawel Pohl
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Piotr Jamroz
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
35
|
Wu C, Zhang H, Guo Y, Sun X, Hu Z, Teng L, Zeng Z. Porous Hydrogels for Immunomodulatory Applications. Int J Mol Sci 2024; 25:5152. [PMID: 38791191 PMCID: PMC11121438 DOI: 10.3390/ijms25105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed.
Collapse
Affiliation(s)
- Cuifang Wu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Honghong Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yangyang Guo
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiaomin Sun
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Lijing Teng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
36
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
37
|
Nam EJ, Cho I, Park H, Paik SR. Multifactorial drug carrier system bringing both chemical and physical therapeutics to the treatment of tumor heterogeneity. J Control Release 2024; 369:101-113. [PMID: 38508524 DOI: 10.1016/j.jconrel.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/22/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Tumor heterogeneity and drug resistance have been invincible features of cancer for its complete cure. Despite the advent of immunotherapy, the expansion and diversification of cancer cells evolved even in the absence or presence of drug treatment discourage additional therapeutic interventions. For the eradication of cancer cells, therefore, an 'all-at-once' strategy is required, which exploits both target-selective chemotherapy and non-selective physicotherapy. Multifactorial microcapsules comprising gold nanoparticles (AuNPs) and a self-assembly protein of α-synuclein (αS) were fabricated, in which hydrophobic and hydrophilic drugs could be separately encapsulated by employing lipid-based inverted micelles (IMs). Their combined physico-chemical therapeutic effects were examined since they also contained both membrane-disrupting IMs and heat-generating AuNPs upon irradiation as physicotherapeutic agents. For the optimal enclosure of IMs containing hydrophilic drugs, a porous inner skeleton made of poly(lactic-co-glycolic acid) was introduced, which would play the roles of not only compartmentalizing the internal space but also enhancing proteolytic disintegration of the microcapsules to discharge and stabilize IMs to the outside. In fact, hydrophobic paclitaxel and hydrophilic doxorubicin showed markedly enhanced drug efficacy when delivered in the IM-containing microcapsules exhibiting the 'quantal' release of both drugs into the cells whose integrity could be also affected by the IMs. In addition, the remnants of αS-AuNP microcapsules produced via proteolysis also caused cell death through photothermal effect. The multifactorial microcapsules are therefore considered as a promising anti-cancer drug carrier capable of performing combinatorial selective and non-selective chemical and physical therapies to overcome tumor heterogeneity and drug resistance.
Collapse
Affiliation(s)
- Eun-Jeong Nam
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Inyoung Cho
- Interdisciplinary program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeji Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
38
|
Howell LM, Manole S, Reitter AR, Forbes NS. Controlled production of lipopolysaccharides increases immune activation in Salmonella treatments of cancer. Microb Biotechnol 2024; 17:e14461. [PMID: 38758181 PMCID: PMC11100551 DOI: 10.1111/1751-7915.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 05/18/2024] Open
Abstract
Immunotherapies have revolutionized cancer treatment. These treatments rely on immune cell activation in tumours, which limits the number of patients that respond. Inflammatory molecules, like lipopolysaccharides (LPS), can activate innate immune cells, which convert tumour microenvironments from cold to hot, and increase therapeutic efficacy. However, systemic delivery of lipopolysaccharides (LPS) can induce cytokine storm. In this work, we developed immune-controlling Salmonella (ICS) that only produce LPS in tumours after colonization and systemic clearance. We tuned the expression of msbB, which controls production of immunogenic LPS, by optimizing its ribosomal binding sites and protein degradation tags. This genetic system induced a controllable inflammatory response and increased dendritic cell cross-presentation in vitro. The strong off state did not induce TNFα production and prevented adverse events when injected into mice. The accumulation of ICS in tumours after intravenous injection focused immune responses specifically to tumours. Tumour-specific expression of msbB increased infiltration of immune cells, activated monocytes and neutrophils, increased tumour levels of IL-6, and activated CD8 T cells in draining lymph nodes. These immune responses reduced tumour growth and increased mouse survival. By increasing the efficacy of bacterial anti-cancer therapy, localized production of LPS could provide increased options to patients with immune-resistant cancers.
Collapse
Affiliation(s)
- Lars M. Howell
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Simin Manole
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Alec R. Reitter
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Neil S. Forbes
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Institute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
39
|
Tabar MMM, Fathi M, Kazemi F, Bazregari G, Ghasemian A. STING pathway as a cancer immunotherapy: Progress and challenges in activating anti-tumor immunity. Mol Biol Rep 2024; 51:487. [PMID: 38578532 DOI: 10.1007/s11033-024-09418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.
Collapse
Affiliation(s)
| | - Mahnaz Fathi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Kazemi
- Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ghazal Bazregari
- Department of Hematology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
40
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
41
|
Pandey R, Chiu CC, Wang LF. Immunotherapy Study on Non-small-Cell Lung Cancer (NSCLC) Combined with Cytotoxic T Cells and miRNA34a. Mol Pharm 2024; 21:1364-1381. [PMID: 38291993 PMCID: PMC10915804 DOI: 10.1021/acs.molpharmaceut.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapy has emerged as a promising approach for cancer treatment, and the use of microRNAs (miRNAs) as therapeutic agents has gained significant attention. In this study, we investigated the effectiveness of immunotherapy utilizing miRNA34a and Jurkat T cells in inducing cell death in non-small-cell lung cancer cells, specifically A549 cells. Moreover, we explored the impact of Jurkat T cell activation and miRNA34a delivery using iron oxide nanorods (IONRs) on the killing of cancer cells. A549 cells were cocultured with both activated and inactivated Jurkat T cells, both before and after the delivery of miRNA34a. Surprisingly, our results revealed that even inactive Jurkat T cells were capable of inducing cell death in cancer cells. This unexpected observation suggested the presence of alternative mechanisms by which Jurkat T cells can exert cytotoxic effects on cancer cells. We stimulated Jurkat T cells using anti-CD3/CD28 and analyzed their efficacy in killing A549 compared to that of the inactive Jurkat T cells in conjunction with miRNA34a. Our findings indicated that the activation of Jurkat T cells significantly enhanced their cytotoxic potential against cancer cells compared to their inactive counterparts. The combined treatment of A549 cells with activated Jurkat T cells and miRNA34a demonstrated the highest level of cancer cell death, suggesting a synergistic effect between Jurkat T cell activation and miRNA therapy. Besides the apoptosis mechanism for the Jurkat T cells' cytotoxic effects on A549 cells, we furthermore investigated the ferroptosis pathway, which was found to have an impact on the cancer cell killing due to the presence of miRNA34a and IONRs as the delivery agent inside the cancer cells.
Collapse
Affiliation(s)
- Richa Pandey
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department
of Biotechnology, Kaohsiung Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, No.70 Lien-Hai Road, Kaohsiung 804201, Taiwan
| |
Collapse
|
42
|
Verma N, Renauer PA, Dong C, Xin S, Lin Q, Zhang F, Glazer PM, Chen S. Genome scale CRISPR screens identify actin capping proteins as key modulators of therapeutic responses to radiation and immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575614. [PMID: 38293095 PMCID: PMC10827061 DOI: 10.1101/2024.01.14.575614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Radiotherapy (RT), is a fundamental treatment for malignant tumors and is used in over half of cancer patients. As radiation can promote anti-tumor immune effects, a promising therapeutic strategy is to combine radiation with immune checkpoint inhibitors (ICIs). However, the genetic determinants that impact therapeutic response in the context of combination therapy with radiation and ICI have not been systematically investigated. To unbiasedly identify the tumor intrinsic genetic factors governing such responses, we perform a set of genome-scale CRISPR screens in melanoma cells for cancer survival in response to low-dose genotoxic radiation treatment, in the context of CD8 T cell co-culture and with anti-PD1 checkpoint blockade antibody. Two actin capping proteins, Capza3 and Capg, emerge as top hits that upon inactivation promote the survival of melanoma cells in such settings. Capza3 and Capg knockouts (KOs) in mouse and human cancer cells display persistent DNA damage due to impaired homology directed repair (HDR); along with increased radiation, chemotherapy, and DNA repair inhibitor sensitivity. However, when cancer cells with these genes inactivated were exposed to sublethal radiation, inactivation of such actin capping protein promotes activation of the STING pathway, induction of inhibitory CEACAM1 ligand expression and resistance to CD8 T cell killing. Patient cancer genomics analysis reveals an increased mutational burden in patients with inactivating mutations in CAPG and/or CAPZA3, at levels comparable to other HDR associated genes. There is also a positive correlation between CAPG expression and activation of immune related pathways and CD8 T cell tumor infiltration. Our results unveil the critical roles of actin binding proteins for efficient HDR within cancer cells and demonstrate a previously unrecognized regulatory mechanism of therapeutic response to radiation and immunotherapy.
Collapse
Affiliation(s)
- Nipun Verma
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Immunobiology Program, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
43
|
Zhang S, Liu Y, Sun Y, Liu Q, Gu Y, Huang Y, Zeng Z, Tang F, Ouyang Y. Aberrant R-loop-mediated immune evasion, cellular communication, and metabolic reprogramming affect cancer progression: a single-cell analysis. Mol Cancer 2024; 23:11. [PMID: 38200551 PMCID: PMC10777569 DOI: 10.1186/s12943-023-01924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Dysregulation of R-loop homeostasis is closely related to various human diseases, including cancer. However, the causality of aberrant R-loops in tumor progression remains unclear. In this study, using single-cell RNA-sequencing datasets from lung adenocarcinoma (LUAD), we constructed an R-loop scoring model to characterize the R-loop state according to the identified R-loop regulators related to EGFR mutations, tissue origins, and TNM stage. We then evaluated the relationships of the R-loop score with the tumor microenvironment (TME) and treatment response. Furthermore, the potential roles of FANCI-mediated R-loops in LUAD were explored using a series of in vitro experiments. Results showed that malignant cells with low R-loop scores displayed glycolysis and epithelial-mesenchymal transition pathway activation and immune escape promotion, thereby hampering the antitumor therapeutic effects. Cell communication analysis suggested that low R-loop scores contributed to T cell exhaustion. We subsequently validated the prognostic value of R-loop scores by using bulk transcriptome datasets across 33 tumor types. The R-loop scoring model well predicted patients' therapeutic response to targeted therapy, chemotherapy, or immunotherapy in 32 independent cohorts. Remarkably, changes in R-loop distribution mediated by FANCI deficiency blocked the activity of Ras signaling pathway, suppressing tumor-cell proliferation and dissemination. In conclusion, this study reveals the underlying molecular mechanism of metabolic reprogramming and T cell exhaustion under R-loop score patterns, and the changes in R-loops mediated by R-loop regulators resulting in tumor progression. Therefore, incorporating anticancer methods based on R-loop or R-loop regulators into the treatment schemes of precision medicine may be beneficial.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yang Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yichi Sun
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Gu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
44
|
Raghani NR, Chorawala MR, Mahadik M, Patel RB, Prajapati BG, Parekh PS. Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. Med Oncol 2024; 41:51. [PMID: 38195781 DOI: 10.1007/s12032-023-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
Cancer, characterized by the uncontrolled proliferation of aberrant cells, underscores the imperative for innovative therapeutic approaches. Immunotherapy has emerged as a pivotal constituent in cancer treatment, offering improved prognostic outcomes for a substantial patient cohort. Noteworthy for its precision, immunotherapy encompasses strategies such as adoptive cell therapy and checkpoint inhibitors, orchestrating the immune system to recognize and selectively target malignant cells. Exploiting the specificity of the immune response renders immunotherapy efficacious, as it selectively targets the body's immune milieu. Diverse mechanisms underlie cancer immunotherapies, leading to distinct toxicity profiles compared to conventional treatments. A remarkable clinical stride in the anticancer resources is immunotherapy. Remarkably, certain recalcitrant cancers like skin malignancies exhibit resistance to radiation or chemotherapy, yet respond favorably to immunotherapeutic interventions. Notably, combination therapies involving chemotherapy and immunotherapy have exhibited synergistic effects, enhancing overall therapeutic efficacy. Understanding the pivotal role of immunotherapy elucidates its complementary value, bolstering the therapeutic landscape. In this review, we elucidate the taxonomy of cancer immunotherapy, encompassing adoptive cell therapy and checkpoint inhibitors, while scrutinizing their distinct adverse event profiles. Furthermore, we expound on the unprecedented potential of immunogenic vaccines to bolster the anticancer immune response. This comprehensive analysis underscores the significance of immunotherapy in modern oncology, unveiling novel prospects for tailored therapeutic regimens.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mayuresh Mahadik
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA, 52242, USA
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
| | - Priyajeet S Parekh
- A V Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
45
|
Guerra A, Betancourt-Mar JA, Llanos-Pérez JA, Mansilla R, Nieto-Villar JM. Metastasis Models: Thermodynamics and Complexity. Methods Mol Biol 2024; 2745:45-75. [PMID: 38060179 DOI: 10.1007/978-1-0716-3577-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The thermodynamic formalism of nonequilibrium systems together with the theory of complex systems and systems biology offer an appropriate theoretical framework to explain the complexity observed at the macroscopic level in physiological phenomena. In turn, they allow the establishment of an appropriate conceptual and operational framework to address the study of phenomena such as the emergence and evolution of cancer.This chapter is organized as follows: In Subheading 1, an integrated vision of these disciplines is offered for the characterization of the emergence and evolution of cancer, seen as a nonlinear dynamic system, temporally and spatially self-organized out of thermodynamic equilibrium. The development of the various mathematical models and different techniques and approaches used in the characterization of cancer metastasis is presented in Subheading 2. Subheading 3 is devoted to the time course of cancer metastasis, with particular emphasis on the epithelial-mesenchymal transition (EMT henceforth) as well as chronotherapeutic treatments. In Subheading 4, models of the spatial evolution of cancer metastasis are presented. Finally, in Subheading 5, some conclusions and remarks are presented.
Collapse
Affiliation(s)
- A Guerra
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Havana, Cuba
| | | | | | - R Mansilla
- Centro Peninsular en Humanidades y Ciencias Sociales (CEPHCIS), National Autonomous University of Mexico (UNAM), Mérida, Mexico
| | - J M Nieto-Villar
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Havana, Cuba.
| |
Collapse
|
46
|
Laureano RS, Vanmeerbeek I, Sprooten J, Govaerts J, Naulaerts S, Garg AD. The cell stress and immunity cycle in cancer: Toward next generation of cancer immunotherapy. Immunol Rev 2024; 321:71-93. [PMID: 37937803 DOI: 10.1111/imr.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
The cellular stress and immunity cycle is a cornerstone of organismal homeostasis. Stress activates intracellular and intercellular communications within a tissue or organ to initiate adaptive responses aiming to resolve the origin of this stress. If such local measures are unable to ameliorate this stress, then intercellular communications expand toward immune activation with the aim of recruiting immune cells to effectively resolve the situation while executing tissue repair to ameliorate any damage and facilitate homeostasis. This cellular stress-immunity cycle is severely dysregulated in diseased contexts like cancer. On one hand, cancer cells dysregulate the normal cellular stress responses to reorient them toward upholding growth at all costs, even at the expense of organismal integrity and homeostasis. On the other hand, the tumors severely dysregulate or inhibit various components of organismal immunity, for example, by facilitating immunosuppressive tumor landscape, lowering antigenicity, and increasing T-cell dysfunction. In this review we aim to comprehensively discuss the basis behind tumoral dysregulation of cellular stress-immunity cycle. We also offer insights into current understanding of the regulators and deregulators of this cycle and how they can be targeted for conceptualizing successful cancer immunotherapy regimen.
Collapse
Affiliation(s)
- Raquel S Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Li X, Chen G, Wu K, Zheng H, Tian Z, Xu Z, Zhao W, Weng J, Min Y. Imaging and monitoring of granzyme B in the immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1928. [PMID: 37715320 DOI: 10.1002/wnan.1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Significant progress has been made in tumor immunotherapy that uses the human immune response to kill and remove tumor cells. However, overreactive immune response could lead to various autoimmune diseases and acute rejection. Accurate and specific monitoring of immune responses in these processes could help select appropriate therapies and regimens for the patient and could reduce the risk of side effects. Granzyme B (GzmB) is an ideal biomarker for immune response, and its peptide substrate could be coupled with fluorescent dyes or contrast agents for the synthesis of imaging probes activated by GzmB. These small molecules and nanoprobes based on PET, bioluminescence imaging, or fluorescence imaging have proved to be highly GzmB specific and accuracy. This review summarizes the design of different GzmB-responsive imaging probes and their applications in monitoring of tumor immunotherapy and overreactive immune response. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiangxia Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Kecheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Haocheng Zheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Zuotong Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weidong Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
48
|
Genc E, Bulut I. Investigation of usage, attitudes toward complementary and alternative medicine among cancer patients in Turkey during the COVID-19 pandemic1. Work 2024; 78:1161-1172. [PMID: 38701169 DOI: 10.3233/wor-230195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Complementary and alternative medicines (CAM) are being uses more often with cancer patients. OBJECTIVE This study aimed to investigate attitudes, use and influencing factors of CAM among cancer patients during the COVID-19 pandemic. METHODS This descriptive, cross-sectional study was conducted on 407 cancer patients in Turkey. The study was conducted during July-September 2021 using a Questionnaire that included a Complementary, Alternative and Conventional Medicine Attitude Scale (CACMAS). Pearson's Chi-Squared Test, Mann-Whitney U, Kruskal Wallis, and logistic regression were all utilized. RESULTS The findings revealed that 76.2% of the participants stated that they used CAM methods while undergoing cancer treatment, and 65.2% of those who did so kept from sharing this information to medical professionals. Phytotherapy was the most common CAM method used by patients. The use of CAM was found to be significantly higher among those who were 55-64 years of age, married, secondary school graduates, non-smokers, CAM users before their cancer diagnosis, and who had a family history of cancer (p < 0.05). The participants' average CACMAS scores were 112.20±16.53. Among those who used CAM during treatment, non-smoking, overweight-obese participants had higher CACMAS scores (p < 0.05). CONCLUSION Due to the high prevalence of CAM usage among cancer patients and possible interaction effects with chemotherapy medications, it is important for healthcare professionals to assess and educate cancer patients regarding CAM use. Additional research is needed to determine potential interactions, as well as pros and cons of CAM use during cancer treatment.
Collapse
Affiliation(s)
- Ezgi Genc
- Department of Therapy and Rehabilitation, Vocational School of Health Services, Fırat University, Elazig, Turkey
| | - Irem Bulut
- Department of Public Health, Faculty of Medicine, Fırat University, Elazig, Turkey
| |
Collapse
|
49
|
Qu Z, Dong J, Zhang ZY. Protein tyrosine phosphatases as emerging targets for cancer immunotherapy. Br J Pharmacol 2023:10.1111/bph.16304. [PMID: 38116815 PMCID: PMC11186978 DOI: 10.1111/bph.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Contemporary strategies in cancer immunotherapy, despite remarkable success, remain constrained by inherent limitations such as suboptimal patient responses, the emergence of drug resistance, and the manifestation of pronounced adverse effects. Consequently, the need for alternative strategies for immunotherapy becomes clear. Protein tyrosine phosphatases (PTPs) wield a pivotal regulatory influence over an array of essential cellular processes. Substantial research has underscored the potential in targeting PTPs to modulate the immune responses and/or regulate antigen presentation, thereby presenting a novel paradigm for cancer immunotherapy. In this review, we focus on recent advances in genetic and biological validation of several PTPs as emerging targets for immunotherapy. We also highlight recent development of small molecule inhibitors and degraders targeting these PTPs as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Zihan Qu
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
50
|
Mohaghegh N, Ahari A, Zehtabi F, Buttles C, Davani S, Hoang H, Tseng K, Zamanian B, Khosravi S, Daniali A, Kouchehbaghi NH, Thomas I, Serati Nouri H, Khorsandi D, Abbasgholizadeh R, Akbari M, Patil R, Kang H, Jucaud V, Khademhosseini A, Hassani Najafabadi A. Injectable hydrogels for personalized cancer immunotherapies. Acta Biomater 2023; 172:67-91. [PMID: 37806376 DOI: 10.1016/j.actbio.2023.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The field of cancer immunotherapy has shown significant growth, and researchers are now focusing on effective strategies to enhance and prolong local immunomodulation. Injectable hydrogels (IHs) have emerged as versatile platforms for encapsulating and controlling the release of small molecules and cells, drawing significant attention for their potential to enhance antitumor immune responses while inhibiting metastasis and recurrence. IHs delivering natural killer (NK) cells, T cells, and antigen-presenting cells (APCs) offer a viable method for treating cancer. Indeed, it can bypass the extracellular matrix and gradually release small molecules or cells into the tumor microenvironment, thereby boosting immune responses against cancer cells. This review provides an overview of the recent advancements in cancer immunotherapy using IHs for delivering NK cells, T cells, APCs, chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. First, we introduce IHs as a delivery matrix, then summarize their applications for the local delivery of small molecules and immune cells to elicit robust anticancer immune responses. Additionally, we discuss recent progress in IHs systems used for local combination therapy, including chemoimmunotherapy, radio-immunotherapy, photothermal-immunotherapy, photodynamic-immunotherapy, and gene-immunotherapy. By comprehensively examining the utilization of IHs in cancer immunotherapy, this review aims to highlight the potential of IHs as effective carriers for immunotherapy delivery, facilitating the development of innovative strategies for cancer treatment. In addition, we demonstrate that using hydrogel-based platforms for the targeted delivery of immune cells, such as NK cells, T cells, and dendritic cells (DCs), has remarkable potential in cancer therapy. These innovative approaches have yielded substantial reductions in tumor growth, showcasing the ability of hydrogels to enhance the efficacy of immune-based treatments. STATEMENT OF SIGNIFICANCE: As cancer immunotherapy continues to expand, the mode of therapeutic agent delivery becomes increasingly critical. This review spotlights the forward-looking progress of IHs, emphasizing their potential to revolutionize localized immunotherapy delivery. By efficiently encapsulating and controlling the release of essential immune components such as T cells, NK cells, APCs, and various therapeutic agents, IHs offer a pioneering pathway to amplify immune reactions, moderate metastasis, and reduce recurrence. Their adaptability further shines when considering their role in emerging combination therapies, including chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. Understanding IHs' significance in cancer therapy is essential, suggesting a shift in cancer treatment dynamics and heralding a novel period of focused, enduring, and powerful therapeutic strategies.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90024, USA
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, USA
| | - Benjamin Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ariella Daniali
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran
| | - Isabel Thomas
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hamed Serati Nouri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Rameshwar Patil
- Department of Basic Science and Neurosurgery, Division of Cancer Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | | |
Collapse
|