1
|
Du X, Pian H, Zhao D, Zhang Y, Wu X, He J, Chen L, Liu F, Yu D. Enhancing gut-ovary health in aged laying hens: the impact of dietary betaine supplementation. Poult Sci 2025; 104:104894. [PMID: 40020408 PMCID: PMC11910711 DOI: 10.1016/j.psj.2025.104894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
The gut-ovary axis involves a complex interplay of various physiological and molecular mechanisms, which significantly impact poultry production and health. This study investigated the effects of betaine (Bet) on the gut-ovary axis of laying hens in aged laying hens. A total of 108 Hy-Line Brown hens, aged 500 days, were randomly divided into three groups (n = 36 per group) and fed diets containing 0, 1000, and 3000 mg/kg of Bet (designated as CON, l-Bet, and H-Bet, respectively) over a 42-day trial. The results indicated that dietary supplementation with Bet improved laying performance. Specifically, H-Bet Supplementation increased villus height (VH) and villus height/crypt depth ratio (VH/CD), and up-regulated the expression of Claudin-1 in the jejunal and ileal mucosa. Additionally, H-Bet enhanced the richness of Bacteroidetes and reduced Firmicutes/Bacterodietes ratio. LEfSe analysis revealed significant enrichment Eubacteriaceae, Merdibacter, Anaerorhabdus_furcosa_group, Syntrophococcus, and Clostridium_innocuum_group in Bet group. Transcriptome sequencing of small yellow follicles (SYFs) showed significant up-regulation of ATP6 and down-regulation of EGR1. KEGG enrichment analysis indicated that H-Bet influenced oxidative phosphorylation, peroxisome, and other pathways, with GESA was primarily enriched in oxidative phosphorylation, and MAPK signaling pathway. Furthermore, H-Bet supplementation increased SOD, CAT, Nrf2, NQO-1, and HO-1 expression in the jejunum, while only HO-1 expression was up-regulated in the ileum. In the ovary, H-Bet differentially affected GPX, and CAT expression. These results demonstrate that dietary supplementation with Bet improves intestinal and ovarian health in aged laying hens, likely due to enhanced antioxidant capacity and improved intestinal morphology.
Collapse
Affiliation(s)
- Xubin Du
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Biochemistry & Bioengineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dong Zhao
- School of Animal Medical, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, 225300, PR China
| | - Yuchen Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Jiawen He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Li Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Biochemistry & Bioengineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
2
|
Sarker MT, Wang S, Wang S, Xia W, Zhang Y, Jin C, Huang X, Li K, Elokil A, Lv Y, Zheng C, Chen W. Sodium butyrate alleviates high ambient temperature-induced oxidative stress, intestinal structural disruption, and barrier integrity for growth and production in growing layer chickens. BMC Vet Res 2025; 21:131. [PMID: 40025581 PMCID: PMC11874859 DOI: 10.1186/s12917-025-04583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND This study was conducted to evaluate the effects of dietary sodium butyrate (SB) supplementation on the antioxidant status, intestinal morphology, functional damage, and barrier integrity of heat-stressed Hy-Line Sonia (HYS) layer chicks. A total of 240 female HYS at 35 days of age with average body weights (415 ± 35 g) were divided into 6 groups with 10 replicates/group and 4 chickens per replicate. A 2 × 3 factorial design study was performed, including two conditions of ambient temperature (25 °C and 35 °C) and three dietary levels of SB (0, 0.5, and 1.0 SB g/kg diet). RESULTS HS decreased (P < 0.05) the performance parameters final body weight (FBW), average daily gain (ADG), and average daily feed intake (ADFI), and increased mortality; compared with the HS groups, supplementation with SB decreased mortality. Compared with thermoneutral conditions, the high-temperature conditions significantly decreased (P < 0.05) the thymus, liver, and heart weights, and the relative length of the jejunum, ileum, and cecum, whereas supplementation with 0.5 SB g/kg diet increased (P < 0.05) the weight of the spleen in growing layer chickens. High temperature decreased (P < 0.05) the villus height (VH) and VH/CD ratio, and increased the crypt depth (CD), and supplementation with SB and the T × SB interaction produced greater VH and VH/CD values in the LSB2 and HSB2 groups. SB decreased (P < 0.05) the concentration of serum malondialdehyde (MDA); however, high temperature decreased (P < 0.05) the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) antioxidant enzymes. The relative mRNA expression levels of the occluding, zonula occludens-1 (ZO-1), claudin-1, and interleukin-10 (IL-10) proteins were downregulated (P < 0.05) at high-temperatures, while that of transforming growth factor-β (TGFβ) was upregulated. Dietary supplementation decreased the expression of the inflammatory cytokines nuclear factor kappa B (NF-κB), transforming growth factor-β (TGFβ), and interferon-γ (IFNγ), and the T × SB interaction decreased TGFβ gene expression in the LSB2 and HSB2 groups compared with that in the other groups of growing layer chickens. CONCLUSION SB supplementation effectively alleviated HS-induced oxidative stress and structural and functional damage to the intestine in layer chickens in the growing phase.
Collapse
Affiliation(s)
- Md Touhiduzzaman Sarker
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shenglin Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shuang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Weiguang Xia
- College of Animal Science and Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yanan Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Chenglong Jin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuebing Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaichao Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Abdelmotaleb Elokil
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Yantai Lv
- College of Animal Science and Technology, Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Zhang R, Sun J, Wang Y, Yu H, Wang S, Feng X. Ameliorative effect of phenolic compound-pterostilbene on corticosterone-induced hepatic lipid metabolic disorder in broilers. J Nutr Biochem 2025; 137:109822. [PMID: 39645170 DOI: 10.1016/j.jnutbio.2024.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The aim of this study was to investigate the ameliorative effects of pterostilbene (PTE), a polyphenolic compound, on stress-induced lipid metabolic disorders in the liver of broiler chickens. Six hundred healthy, 1-day-old Arbor Acres with similar weight were randomly assigned to five groups, each consisting of eight replicates with 15 broilers per replicate. The groups included: a control group (fed a basal diet), and four groups treated with corticosterone (CORT) at varying dietary levels of PTE supplementation: CORT (0 mg/kg PTE), CORT-PT200 (200 mg/kg PTE), CORT-PT400 (400 mg/kg PTE), and CORT-PT600 (600 mg/kg PTE). The results indicated that PTE administration to corticosterone (CORT)-injected broilers significantly improved weight gain, reduced liver index, and lowered the elevation of serum aspartate aminotransferase, gamma-glutamyl transferase, glucose, total cholesterol, triglycerides, and lipoprotein cholesterol concentrations induced by CORT injection (P<.05), but had no significant effect on serum CORT concentration (P>.05). PTE also significantly reduced the increased rate of abdominal fat deposition induced by CORT, decreased the average size of adipocytes, and downregulated the expression of the FAS gene (P<.05). It reversed the increase in liver total cholesterol, triglycerides, lipoprotein cholesterol, and non-esterified fatty acids content induced by CORT (P<.05). PTE had no significant effect on the expression of the glucocorticoid receptor (P>.05), but significantly upregulated the protein expression of Sirt1 and p-AMPK (P<.05), promoted the expression of lipid autophagy genes MAP1LC3B and lipolytic genes LPL, but inhibited the expression of fatty acid synthesis genes SREBP-1c, ACC, and SCD (P<.05). The addition of PTE to the diet alleviated CORT-induced oxidative stress and inflammation by enhancing T-SOD and GSH-Px activities, reducing MDA content, inhibiting p-NF-κB p65 and NLRP3 expression and the release of TNF-α and IL-1β in the serum, and increasing IL-4 content (P<.05). Overall, dietary PTE effectively regulates lipid metabolism and antioxidant status, offering a potential strategy to mitigate stress-induced metabolic disruptions in broilers.
Collapse
Affiliation(s)
- Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shenao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Yin B, Juan C, Zhang R, Yang S, Wang H, Liu Y, Song S, Yan Z, Yi Y, Zhao Z, Huang Z, Lin S. Physalis Calyx seu Fructus relieves chicken intestinal damage to heat via improving the antioxidant ability. Front Immunol 2025; 15:1536045. [PMID: 39877350 PMCID: PMC11772197 DOI: 10.3389/fimmu.2024.1536045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models in vitro and in vivo. The mitigating effect was assessed through the oxidation-related enzymes and key genes, histopathology, and inflammatory factors. The results demonstrated that 100 µg/mL JDL extract could effectively alleviate heat stress damage to chicken embryo duodenum cells at 42°C. A strong antioxidant capacity of 100 µg/mL JDL extract was shown in the downregulation of LDH (at 5 h, P < 0.01) and MDA (at 5 h, P < 0.05), in the upregulation of SOD (at 5 and 10 h, P < 0.01), CAT (at 5 h, P < 0.01), and GSH-PX and T-AOC (at 0 h, P < 0.01) as well as in the high transcription level of NQO1 (at 5 and 10 h, P < 0.05) and HO-1 (at 5 and 10 h, P < 0.01). Supplements with 1 and 3 g/kg b.wt, respectively, in the drinking water both suppressed the rise of body temperature and had light pathological lesions of chicken duodenal tissues caused by heat stress at 40 ± 1°C. Accordingly, the chicken of JDL extract groups showed a lower inflammatory response as manifested by a lower level of IL-10 and higher levels of IL-6 and TNF-α and a strong antioxidant capacity characterized by lower level of MDA and higher levels of SOD and GSH-PX in the serum as well as also showed a higher transcription level of Nrf2, NQO1, and HO-1 in the duodenal tissues. In conclusion, JDL extract relieved chicken intestinal damage to heat via improving the antioxidant ability and reducing the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Shuqian Lin
- Poultry Institute, Shandong Academy of Agricultural Science,
Jinan, Shandong, China
| |
Collapse
|
5
|
Jiang H, Shi L, Deng T, Hou G, Xun W. Effects of cardamonin on the growth performance, intestinal barrier function and intestinal microbiota of Danzhou chickens under heat stress. Poult Sci 2024; 103:104362. [PMID: 39426223 PMCID: PMC11536001 DOI: 10.1016/j.psj.2024.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
The aim of this study was to investigate the effects of cardamonin (CDN) on the growth performance, intestinal mucosal barrier function and intestinal microbiota of Danzhou chickens under heat stress. A total of 200 one-day-old female Danzhou chickens were randomly divided into 5 groups. The daytime temperature of heat stress (HS) was set at 36 ± 2°C, and the nighttime temperature was kept the same as in the control (CON) group at 25 ± 2°C. The formal experiment lasted for 21 d. The CON and HS groups were fed a basal diet, whereas the L-CDN, M-CDN, and H-CDN groups received a basal diet supplemented with 50, 100, and 200 mg/kg CDN, respectively. Compared with the HS group, the CDN group presented a significantly greater average daily gain (ADG) (P < 0.001) but a significantly lower feed-to-gain ratio (F/G) (P = 0.007). CDN supplementation also increased the villus height (VH) and the ratio of the villus height to crypt depth (V/C) (P < 0.001) and reduced intestinal permeability by increasing expression of the ZO-1 (P < 0.001), Occludin (P < 0.001), and Claudin-1 (P = 0.034) proteins and decreasing the content of D-lactic acid (D-LA) and the activity of diamine oxidase (DAO) in serum (P < 0.001). Additionally, CDN reduced the levels of the intestinal mucosal inflammatory factors (IL-1β (P = 0.031), IL-6 (P = 0.003), and TNF-α (P = 0.014)) while upregulating IL-10 (P < 0.001). Furthermore, it increased the total antioxidant capacity (T-AOC) (P = 0.004) and catalase (CAT) activity (P < 0.001) and reduced the malondialdehyde (MDA) content (P = 0.017), effectively reducing intestinal oxidative stress and inflammatory reactions. Expression of the Nrf2 pathway-related proteins Nrf2 (P = 0.012), HO-1 (P = 0.008), and NQO1 (P = 0.003) was also increased by CDN. Moreover, feeding CDN increased the proportion of beneficial bacteria such as Firmicutes and Bacteroidetes but decreased the proportion of harmful bacteria such as Proteobacteria, thus protecting the intestinal barrier. In summary, 200 mg/kg CDN in the diet improved growth performance, enhanced intestinal barrier function and improved intestinal flora disorders in heat stress-induced Danzhou chickens, which may be related to the Nrf2/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Haoran Jiang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Tanjie Deng
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Wenjuan Xun
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
6
|
He S, Bian G, Guo Y, Guo J. Hesperidin Helps Improve the Intestinal Structure, Maintain Barrier Function, and Reduce Inflammation in Yellow-Feathered Broilers Exposed to High Temperatures. Animals (Basel) 2024; 14:2585. [PMID: 39272369 PMCID: PMC11394609 DOI: 10.3390/ani14172585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
To investigate the possible protective effect of hesperidin on intestinal damage caused by high-temperature heat stress in yellow-feathered broilers, 960 broilers aged 21 days were randomly divided into four groups: HT, HT300, HT450, and HT600, with each group receiving different amounts of hesperidin supplementation (0, 300, 450, and 600 mg/kg). The dietary supplementation of hesperidin could mitigate the elevation of corticosterone (CORT) and adrenocorticotropic hormone (ATCH) levels in serum from yellow-feathered broilers induced by heat stress. The supplementation of 300 mg/kg and 450 mg/kg of hesperidin reduced crypt depth and increased the V/C ratio in the small intestine compared to the HT group. The dietary supplementation of hesperidin decreased endotoxin and D-lactic acid levels in the blood, and dietary supplementation of 300 mg/kg of hesperidin increased the expression of claudin-1 and ZO-1 mRNA in the jejunum compared with the HT group. Furthermore, the dietary supplementation of 300 mg/kg of hesperidin decreased serum IL-1β and IL-6 levels. In comparison, supplementation with 300 mg/kg and 450 mg/kg of hesperidin decreased serum TNF-α levels in yellow-feathered broilers compared to the HT group. Moreover, the dietary supplementation of hesperidin decreased NF-κB mRNA levels. Overall, these data suggest that dietary supplementation with hesperidin potentially improves intestinal injury caused by heat stress in yellow-feathered broilers.
Collapse
Affiliation(s)
- Shaoping He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Guozhi Bian
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiyu Guo
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| |
Collapse
|
7
|
Kim HW, Kim JH, Han GP, Kil DY. Increasing concentrations of dietary threonine, tryptophan, and glycine improve growth performance and intestinal health with decreasing stress responses in broiler chickens raised under multiple stress conditions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:145-153. [PMID: 39257858 PMCID: PMC11385068 DOI: 10.1016/j.aninu.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 09/12/2024]
Abstract
The current study aimed to compare the effects of increasing concentrations of dietary threonine (Thr), tryptophan (Trp), and glycine (Gly) on growth performance, stress biomarkers, and intestinal function in broiler chickens under multiple stress conditions. Five hundred sixty broiler chickens at 21 d old were randomly allotted to 5 treatments with 8 replicates. Birds in a positive control (PC) treatment were raised under low stock density (16.9 birds/m2 per cage) with recommended environmental conditions, whereas birds in 4 treatments were subjected to multiple stress conditions: a cyclic heat stress of 30 ± 0.3 °C for 10 h and 23 ± 0.2 °C for 14 h per day with high stock density (25.3 birds/m2 per cage). A basal diet was assigned to both PC and negative control (NC) treatments. Three additional diets were individually formulated to contain double concentrations of digestible Thr, Trp, or Gly + Ser compared with their concentrations in the basal diet. The experiment lasted for 14 d. Results showed that NC treatment had less growth performance (P < 0.001), jejunal goblet cell counts (P = 0.018), and trans-epithelial electrical resistance (TEER; P < 0.001), but greater (P = 0.026) feather corticosterone (CORT) concentrations than PC treatment. Thr treatment showed the least (P < 0.001) feed conversion ratio (FCR) among treatments under multiple stress conditions. Thr, Trp, and Gly treatments had less (P = 0.026) feather CORT concentrations, but had greater (P < 0.001) TEER than NC treatment. In conclusion, increasing concentrations of dietary Thr, Trp, or Gly improve the growth performance and intestinal health in broiler chickens with decreasing stress response under multiple stress conditions.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
8
|
Hu Y, Zhang W, Yang K, Lin X, Liu HC, Odle J, See MT, Cui X, Li T, Wang S, Liao X, Zhang L, Li S, Hu Y, Luo X. Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers. J Anim Sci Biotechnol 2024; 15:115. [PMID: 39217350 PMCID: PMC11366149 DOI: 10.1186/s40104-024-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. RESULTS The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. CONCLUSIONS Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.
Collapse
Affiliation(s)
- Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Ke Yang
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sufen Li
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
9
|
Ge C, Luo X, Lv Y, Wu L, Hu Z, Huang W, Zhan S, Shen X, Hui C, Yu D, Liu B. Essential oils ameliorate the intestinal damages induced by nonylphenol exposure by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. CHEMOSPHERE 2024; 362:142571. [PMID: 38876325 DOI: 10.1016/j.chemosphere.2024.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.
Collapse
Affiliation(s)
- Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Hui
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Huang L, Cao C, Lin X, Lu L, Lin X, Liu HC, Odle J, See MT, Zhang L, Wu W, Luo X, Liao X. Zinc alleviates thermal stress-induced damage to the integrity and barrier function of cultured chicken embryonic primary jejunal epithelial cells via the MAPK and PI3K/AKT/mTOR signaling pathways. Poult Sci 2024; 103:103696. [PMID: 38593549 PMCID: PMC11016803 DOI: 10.1016/j.psj.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1 (ZO-1), PI3K, AKT and mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3K, and AKT mRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 μmol Zn/L was more effective than 100 μmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKT, and PKC mRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 μmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1, and mTOR mRNA levels. Therefore, supplemental Zn, especially 50 μmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunyu Cao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Li Z, Pu J, Chen X, Chen Y, Peng X, Cai J, Jia G, Zhao H, Tian G. Betaine addition to the diet alleviates intestinal injury in growing rabbits during the summer heat through the AAT/mTOR pathway. J Anim Sci Biotechnol 2024; 15:41. [PMID: 38454493 PMCID: PMC10921597 DOI: 10.1186/s40104-024-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/14/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The aim of this experiment was to investigate the effect of different levels of betaine (Bet) inclusion in the diet on the intestinal health of growing rabbits under summer heat. A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61 ± 38.59 g were randomly divided into 5 treatment groups: control group (basal diet) and Bet groups (basal diet + 0.75, 1.0, 1.5 or 2.0 g/kg Bet). The average daily temperature in the rabbitry during the experiment was 30.48 °C and the relative humidity was 69.44%. RESULTS Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits (P > 0.05), but it increased ileal secretory immunoglobulin A content compared to the control under summer heat (P < 0.05). Addition of 0.75 g/kg Bet up-regulated jejunal IL-4, down-regulated ileal TNF-α expression (P < 0.05). The addition of 1.0 g/kg Bet increased the villi height (VH) in the jejunum (P < 0.05). Serum glucose levels were reduced, and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet (P < 0.05). When added at 2.0 g/kg, Bet reduced serum HSP70 content, increased jejunal VH, and up-regulated duodenal SLC7A6, SLC38A2, mTOR and 4EBP-2 expression (P < 0.05). Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6, SLC38A2, SLC36A1 and IL-4 expression (P < 0.05). CONCLUSIONS Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway, improve the intestinal immune function, alleviate intestinal damage in growing rabbits caused by summer heat, and improve intestinal health.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junning Pu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanbin Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoyan Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
12
|
Al Sulaiman AR, Abudabos AM, Alhotan RA. Protective influence of supplementary betaine against heat stress by regulating intestinal oxidative status and microbiota composition in broiler chickens. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:279-288. [PMID: 38047943 DOI: 10.1007/s00484-023-02589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/16/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
To assess the impact of supplementing betaine (BT) under heat stress (HS) conditions on broiler performance and intestinal health from 21 to 42 days of age, a total of 150 male Ross 308 broilers were indiscriminately allotted to 3 treatments with 10 replications of 5 birds each. The control (CON) group was given a basal ration and accommodated at a thermoneutral condition (22 ± 1 °C), whereas the HS and HS + BT groups were raised under cyclic HS (33 ± 1 °C for 8 h and 22 ± 1 °C for 16 h per day) and received the basal ration without or with 1000 mg/kg BT, respectively. The HS reduced average daily gain (ADG); average daily feed intake; villus height (VH); VH to crypt depth (CD) ratio (VCR); activities of trypsin, lipase, glutathione peroxidase (GPX), and catalase; and enumeration of Lactobacillus and Bifidobacterium (P < 0.05) and augmented feed conversion ratio (FCR), CD, malondialdehyde (MDA) accumulation, and enumeration of Escherichia coli, Clostridium, and coliforms (P < 0.05). Conversely, BT supplementation heightened ADG, VH, VCR, trypsin activity, GPX activity, and populations of Lactobacillus and Bifidobacterium (P < 0.05) and lowered FCR, MDA accumulation, and Clostridium population (P < 0.05). Furthermore, the FCR value, trypsin and GPX activities, MDA content, and Bifidobacterium and Clostridium populations in the HS + BT group were nearly equivalent to those in the CON group. To conclude, feeding BT under HS conditions could improve broiler performance through improving intestinal health by specifically mitigating oxidative damage and enhancing the colonization of beneficial bacteria.
Collapse
Affiliation(s)
- Ali R Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia.
| | - Ala M Abudabos
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, Mississippi, 39096-7500, USA
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
13
|
Li Z, Pu J, Zeng T, Cai J, Jia G, Zhao H, Liu G, Zeng Q, Luo Y, Tian G. Effects of betaine on growth performance and intestinal health of rabbits fed different digestible energy diets. J Anim Sci 2024; 102:skae029. [PMID: 38290533 PMCID: PMC10889737 DOI: 10.1093/jas/skae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
An experiment was conducted to determine the effects of betaine on growth performance and intestinal health in rabbits fed diets with different levels of digestible energy. During a 36-d experiment, a total of 144 healthy 35-d-old weaned New Zealand white rabbits with a similar initial body weight (771.05 ± 41.79 g) were randomly distributed to a 2 × 3 factorial arrangement. Experimental treatments consisted of two levels of digestible energy (normal: 10.20 and low: 9.60 MJ/kg) and three levels of betaine (0, 500, and 1,000 mg/kg). Results indicated that rabbits fed the diet with low digestible energy (LDE) had reduced body gain/feed intake on days 1 to 14 and 1 to 36 (P < 0.05), increased the apparent total tract digestibility (ATTD) of neutral detergent fiber, acid detergent fiber (ADF), and n-free extract, and decreased the ATTD of gross energy (GE), crude fiber, and organic matter (OM; P < 0.05). The LDE diet upregulated the gene abundance levels of duodenum junctional adhesion molecule-3 (JAM-3) and downregulated the ileum toll-like receptor 4, myeloid differentiation factor 88, and interleukin-6 (IL-6; P < 0.05). Activities of amylase, lipase, trypsin, and the immunoglobulin M content in the jejunum were decreased in the LDE treatment group (P < 0.05). Dietary betaine supplementation increased the ATTD of GE, dry matter (DM), ADF, and n-free extract by LDE (P < 0.05). The villus height, crypt depth, and goblet cell numbers were decreased, and the villus-crypt ratio was increased in the duodenum (P < 0.05). The gene abundance levels of duodenum IL-2 were downregulated, and the duodenum JAM-2 and JAM-3 were upregulated (P < 0.05). Furthermore, the addition of betaine to the LDE diet increased the ATTD of GE, DM, and OM in rabbits (P < 0.05). Gene abundance levels of ileum IL-6 and duodenum JAM-3 were upregulated (P < 0.05). In summary, LDE diets can reduce the activity of intestinal digestive enzymes and decrease the ATTD of nutrients. However, the addition of betaine to LDE diets improved the intestinal barrier structure and nutrient ATTD in rabbits, with better results when betaine was added at an additive level of 500 mg/kg.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junning Pu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tingxuan Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
14
|
Liu W, Liu H, Wang Y, Zhao Z, Balasubramanian B, Jha R. Effects of Enteromorpha prolifera polysaccharides on growth performance, intestinal barrier function and cecal microbiota in yellow-feathered broilers under heat stress. J Anim Sci Biotechnol 2023; 14:132. [PMID: 37814279 PMCID: PMC10563363 DOI: 10.1186/s40104-023-00932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Global warming leading to heat stress (HS) is becoming a major challenge for broiler production. This study aimed to explore the protective effects of seaweed (Enteromorpha prolifera) polysaccharides (EPS) on the intestinal barrier function, microbial ecology, and performance of broilers under HS. A total of 144 yellow-feathered broilers (male, 56 days old) with 682.59 ± 7.38 g were randomly assigned to 3 groups: 1) TN (thermal neutral zone, 23.6 ± 1.8 °C), 2) HS (heat stress, 33.2 ± 1.5 °C for 10 h/d), and 3) HSE (HS + 0.1% EPS). Each group contained 6 replicates with 8 broilers per replicate. The study was conducted for 4 weeks; feed intake and body weights were measured at the end of weeks 2 and 4. At the end of the feeding trial, small intestine samples were collected for histomorphology, antioxidant, secretory immunoglobulin A (sIgA) content, apoptosis, gene and protein expression analysis; cecal contents were also collected for microbiota analysis based on 16S rDNA sequencing. RESULTS Dietary EPS promoted the average daily gain (ADG) of broilers during 3-4 weeks of HS (P < 0.05). At the end of HS on broilers, the activity of total superoxide dismutase (T-SOD), glutathione S-transferase (GST), and the content of sIgA in jejunum were improved by EPS supplementation (P < 0.05). Besides, dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers (P < 0.05). Addition of EPS in HS group broilers' diet upregulated the relative mRNA expression of Occludin, ZO-1, γ-GCLc and IL-10 of the jejunum (P < 0.05), whereas downregulated the relative mRNA expression of NF-κB p65, TNF-α and IL-1β of the jejunum (P < 0.05). Dietary EPS increased the protein expression of Occludin and ZO-1, whereas it reduced the protein expression of NF-κB p65 and MLCK (P < 0.01) and tended to decrease the protein expression of TNF-α (P = 0.094) in heat-stressed broilers. Furthermore, the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression (P < 0.05) and negatively correlated with jejunal Occludin level (P < 0.05). However, the proportions of Lactobacillus, Barnesiella, Subdoligranulum, Megasphaera, Collinsella, and Blautia among the three groups were positively related to ADG (P < 0.05). CONCLUSIONS EPS can be used as a feed additive in yellow-feathered broilers. It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression. These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.
Collapse
Affiliation(s)
- Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Huimei Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Yaoyao Wang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | - Zhongxiang Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People's Republic of China
| | | | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
15
|
Kikusato M, Toyomizu M. Mechanisms underlying the Effects of Heat Stress on Intestinal Integrity, Inflammation, and Microbiota in Chickens. J Poult Sci 2023; 60:2023021. [PMID: 37560151 PMCID: PMC10406517 DOI: 10.2141/jpsa.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Poultry meat and egg production benefits from a smaller carbon footprint, as well as feed and water consumption, per unit of product, than other protein sources. Therefore, maintaining a sustainable production of poultry meat is important to meet the increasing global demand for this staple. Heat stress experienced during the summer season or in tropical/subtropical areas negatively affects the productivity and health of chickens. Crucially, its impact is predicted to grow with the acceleration of global warming. Heat stress affects the physiology, metabolism, and immune response of chickens, causing electrolyte imbalance, oxidative stress, endocrine disorders, inflammation, and immunosuppression. These changes do not occur independently, pointing to a systemic mechanism. Recently, intestinal homeostasis has been identified as an important contributor to nutrient absorption and the progression of systemic inflammation. Its mechanism of action is thought to involve neuroendocrine signaling, antioxidant response, the presence of oxidants in the diet, and microbiota composition. The present review focuses on the effect of heat stress on intestinal dysfunction in chickens and the underlying causative factors. Understanding these mechanisms will direct the design of strategies to mitigate the negative effect of heat stress, while benefiting both animal health and sustainable poultry production.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Tang Z, Yang Y, Wu Z, Ji Y. Heat Stress-Induced Intestinal Barrier Impairment: Current Insights into the Aspects of Oxidative Stress and Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5438-5449. [PMID: 37012901 DOI: 10.1021/acs.jafc.3c00798] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Heat stress (HS) occurs when the sensible temperature of animals exceeds their thermoregulatory capacity, a condition that exerts a detrimental impact on health and growth. The intestinal tract, as a highly sensitive organ, has been shown to respond to HS by exhibiting mucosal injury, intestinal leakage, and disturbances in the gut microbiota. Oxidative stress and endoplasmic reticulum stress (ERS) are both potential outcomes of long-term exposure to high temperatures and have been linked to apoptosis, autophagy, and ferroptosis. In addition, HS alters the composition of the gut microbiota accompanied by changed levels of bacterial components and metabolites, rendering the gut more vulnerable to stress-related injury. In this review, we present recent advances in mechanisms of oxidative stress-associated ERS in response to HS, which is destructive to intestinal barrier integrity. The involvement of autophagy and ferroptosis in ERS was highlighted. Further, we summarize the relevant findings regarding the engagement of gut microbiota-derived components and metabolites in modulation of intestinal mucosal injury induced by HS.
Collapse
Affiliation(s)
- Zhining Tang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Zhao W, Huang Y, Cui N, Wang R, Xiao Z, Su X. Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Front Microbiol 2023; 14:1100465. [PMID: 36937262 PMCID: PMC10020722 DOI: 10.3389/fmicb.2023.1100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to demonstrate the effects of glucose oxidase (GOD) on broilers as a potential antibiotic substitute. A total of four hundred twenty 1-day-old male Cobb500 broilers were randomly assigned into five dietary treatments, each with six replicates (12 chicks per replicate). The treatments included two control groups (a basal diet and a basal diet with 50 mg/kg aureomycin) and three GOD-additive groups involving three different concentrations of GOD. Analysis after the t-test showed that, on day 21, the feed:gain ratio significantly decreased in the 1,200 U/kg GOD-supplied group (GOD1200) compared to the antibiotic group (Ant). The same effect was also observed in GOD1200 during days 22-42 and in the 600 U/kg GOD-supplied group (GOD600) when compared to the control group (Ctr). The serum tests indicated that, on day 21, the TGF-β cytokine was significantly decreased in both GOD600 and GOD1200 when compared with Ctr. A decrease in malondialdehyde and an increase in superoxide dismutase in GOD1200 were observed, which is similar to the effects seen in Ant. On day 42, the D-lactate and glutathione peroxidase activity changed remarkably in GOD1200 and surpassed Ant. Furthermore, GOD upregulated the expression of the jejunal barrier genes (MUC-2 and ZO-1) in two phases relative to Ctr. In the aureomycin-supplied group, the secretory immunoglobulin A significantly decreased in the jejunum at 42 days. Changes in microbial genera were also discovered in the cecum by sequencing 16S rRNA genes at 42 days. The biomarkers for GOD supplementation were identified as Colidextribacter, Oscillibacter, Flavonifractor, Oscillospira, and Shuttleworthia. Except for Shuttleworthia, all the abovementioned genera were n-butyrate producers known for imparting their various benefits to broilers. The PICRUSt prediction of microbial communities revealed 11 pathways that were enriched in both the control and GOD-supplied groups. GOD1200 accounted for an increased number of metabolic pathways, demonstrating their potential in aiding nutrient absorption and digestion. In conclusion, a diet containing GOD can be beneficial to broiler health, particularly at a GOD concentration of 1,200 U/kg. The improved feed conversion ratio, immunity, antioxidative capacity, and intestinal condition demonstrated that GOD could be a valuable alternative to antibiotics in broiler breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Effects of the Vitamin D3 on Alleviating the Oxidative Stress Induced by Diquat in Wenchang Chickens. Animals (Basel) 2023; 13:ani13040711. [PMID: 36830496 PMCID: PMC9951941 DOI: 10.3390/ani13040711] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Vitamin D3 (VD3) is an indispensable micronutrient in livestock and poultry feed. Its function in antioxidant stress has been reported. We investigate whether the addition of different concentrations of VD3 to the diet affects the production performance, slaughter performance, meat quality, organ index, and gut injury on the diquat (DQ)-induced model of oxidative stress in Wenchang chickens. Four hundred and eighty one-day-old chickens were randomly divided into six groups: control (basal diet), 4000 VD (basal diet + VD3 4000 IU per kg feed intake), 1000 VD+DI (DQ, basal diet + VD3 1000 IU per kg feed intake), 2000 VD+DI (DQ, basal diet + VD3 2000 IU per kg feed intake), and 4000 VD+DI (DQ, basal diet + VD3 4000 IU per kg feed intake). The results showed that the addition of VD3 to the diet promoted DQ-induced weight loss and reduced ADFI, slaughter rate, splenic index, and pH after 1 h and 24 h in the leg muscles. VD3 decreased the increase in content of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) among proinflammatory cytokines (p < 0.05) and increased the reduction in anti-inflammatory cytokines content of interleukin-10 (IL-10) (p < 0.05) induced by DQ. In addition, liver and kidney injury biomarkers and the intestinal permeability index in serum were disordered after treatment with DQ (p < 0.05). VD3 perfected the increase of D-lactic acid (D-LA), diamine oxidase (DAO), total cholesterol (T-CHO), creatinine (CR), blood urea nitrogen (BUN), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) content, aspartate transaminase (AST), alanine transaminase (ALT), and lactate dehydrogenase (LDH) activity (p < 0.05); it increased the decrease of albumin (ALB) content (p < 0.05). Meanwhile, VD3 regulated the intestinal morphology and intestinal barrier. Moreover, DQ induced a decrease in total antioxidant capacity and antioxidant enzyme activity in the serum, liver, and jejunum (p < 0.05), and an increase in malonaldehyde (MDA) content (p < 0.05). However, the addition of different levels of VD3 could alleviate the above phenomenon of oxidative stress in Wenchang chickens to different degrees. Thus, this research suggested that the addition of VD3 can relieve the DQ-induced oxidative stress of Wenchang chickens, and the level of VD3 acquisition is positively correlated with the remission effect.
Collapse
|
19
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2023:1-14. [PMID: 36607291 DOI: 10.1080/00071668.2022.2160626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. This experiment investigated the efficacy of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to one of nine treatment groups (six pens/treatment with 20 birds/pen) according to a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other eight groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).2. There were EB × BT × CT interactions for body weight (BW) at 24 d (P = 0.038) and average daily gain (ADG) during the 10-24 d period (P = 0.049), with the greatest values found with concurrent supplementation of three supplements.3. Inclusion of EB resulted in greater (P < 0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, digestible energy (DE) and the coefficient of apparent ileal digestibility (CAID) of dry matter, crude protein, and fat However, feed conversion ratio, mortality rate and heterophile to lymphocyte ratio were lower (P < 0.05).4. Dietary BT supplementation improved (P < 0.05) all performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth and the CAID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P < 0.05) in ADG (d 10-24) and a decrease (P < 0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).5. In conclusion, dietary supplementation of either EB or BT alone or in combination ameliorated some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- J Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - K Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - H A Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | - M Akbari Gharaei
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Y Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - F Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
20
|
Peng XY, Xing T, Li JL, Zhang L, Jiang Y, Gao F. Guanidinoacetic acid supplementation improves intestinal morphology, mucosal barrier function of broilers subjected to chronic heat stress. J Anim Sci 2023; 101:skac355. [PMID: 36283032 PMCID: PMC9831137 DOI: 10.1093/jas/skac355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/23/2022] [Indexed: 01/13/2023] Open
Abstract
The current study is designed to investigate dietary guanidinoacetic acid (GAA) supplementation on the growth performance, intestinal histomorphology, and jejunum mucosal barrier function of broilers that are subjected to chronic heat stress (HS). A total of 192 male broilers (28-d old) were randomly allocated to four groups. A chronic HS model (at a temperature of 32 °C and 50%-60% relative humidity for 24 h daily) was applied in the experiment. Normal control (NC, ad libitum feeding, 22 °C), HS group (HS, ad libitum feeding, 32 °C), pair-fed group (PF, received food equivalent to that consumed by the HS group on the previous day, 22 °C), guanidinoacetic acid group (HG, ad libitum feeding, supplementing the basal diet with 0.6 g/kg GAA, 32 °C). The experiment lasted from 28 to 35 and 28 to 42 d of age of broilers. Our results showed that broilers subjected to HS had lower average daily feed intake and average daily gain (P < 0.05), higher feed-to-gain ratio and relative length of the small intestine (P < 0.05), as well as lower relative weight and weight per unit length of the small intestine (P < 0.05). HS damaged the small intestinal histomorphology by decreasing the small intestinal VH and the VH/CD (P < 0.05). Compared with the HS group, supplementation with 0.6 g/kg GAA increased jejunal VH and VH/CD (P < 0.05), but decreased relative weight and relative length of the small intestine (P < 0.05). Moreover, in comparison with NC, HS elevated intestinal permeability (D-Lactic acid concentration and diamine oxidase activity) and mRNA expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α (P < 0.05), reduced jejunal mucus thickness, number of goblet cells, IgA + cell density, and mucin2 mRNA expression level of broilers (P < 0.05). Compared with the HS group, dietary GAA elevated jejunal mucus thickness, goblet cell number and IgA+ cell density (P < 0.05), and up-regulated jejunal mRNA expression of interleukin-1β and tumor necrosis factor-α (P < 0.05). In conclusion, HS impaired growth performance, and the intestinal mucosal barrier function of broilers. Dietary supplementation with 0.6 g/kg GAA alleviated HS-induced histomorphology changes of small intestine and jejunal mucosal barrier dysfunction.
Collapse
Affiliation(s)
- Xu Y Peng
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jiao L Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People’s Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
21
|
Chen X, Li Z, Pu J, Cai J, Zhao H, Jia G, Liu G, Tian G. Dietary Betaine improves the intestinal health and growth performance of heat-stressed growing rabbits in summer. J Anim Sci 2023; 101:skad363. [PMID: 37875147 PMCID: PMC10684048 DOI: 10.1093/jas/skad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
The main objective of this study is to explore how various amounts of Bet affect growth performance, nutritional digestibility, and intestinal health of growing rabbits under high-temperature environment in summer. A total of 150 healthy 35-d-old weaned QiXing meat rabbits (Germany White rabbit × Sichuan White rabbit) were individually assigned to five treatments, each with 30 replicates and one rabbit per replicate. The control group was fed with basal diet, while the experimental group received a basal diet supplemented with 0.75, 1.0, 1.5, and 2.0 g Bet/kg diet, respectively. During the whole experimental stage, all animals can eat and drink freely, and they were kept in the rabbit house with an average daily temperature of 30.11 ± 0.5 ℃ and a relative humidity of 71.02 ± 5.07%. The results showed that dietary supplementation with 1.5 g/kg Bet increased average daily gain and decreased feed to gain ratio from days 1 to 42 as compared to the control group (P < 0.05), adding 0.75, 1.0, 1.5, and 2.0 g/kg Bet increased average daily gain and average daily feed intake from days 22 to 42 (P < 0.05), and increased the nutritional digestibility of acid detergent fiber (P < 0.05). Furthermore, dietary supplementation with 1.0, 1.5, and 2.0 g/kg Bet reduced d-lactate content and diamine oxidase activity in the serum (P < 0.05). Compared to the control group, supplementation of 0.75 and 1.5 g/kg Bet improved glutathione peroxidase activities in the duodenum and ileum, adding 0.75, 1.0, 1.5, and 2.0 g/kg Bet decreased malonaldehyde content in the duodenum and jejunum (P < 0.05). Moreover, the supplement of 1.5 and 2.0 g/kg Bet upregulated JAM-2 and IL-10 levels in the jejunum (P < 0.05). In conclusion, supplementation with Bet in the diet improves the growth performance, nutrient digestibility, and intestinal health of growing rabbits under high-temperature environments, and the 1.5 g Bet/kg diet group has the best effect.
Collapse
Affiliation(s)
- Xiang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junning Pu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
22
|
Zhao N, Yang Y, Chen C, Jing T, Hu Y, Xu H, Wang S, He Y, Liu E, Cui J. Betaine supplementation alleviates dextran sulfate sodium-induced colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota. Food Funct 2022; 13:12814-12826. [PMID: 36422855 DOI: 10.1039/d2fo02942a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammatory bowel disease (IBD) is a multifaceted and recurrent immune disorder that occurs in the gastrointestinal tract. Betaine is a natural compound that exerts beneficial anti-inflammatory effects. However, the role of betaine in protecting IBD is still unclear. Therefore, the aim of our study was to investigate the anti-inflammatory effect of betaine in dextran sulfate sodium (DSS)-induced colitis. The results showed that betaine greatly increased the body weight and decreased the disease activity index score of DSS-treated mice. Furthermore, betaine effectively downregulated the protein levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and upregulated tight junction proteins (occludin and ZO-1) in the mice. Additionally, betaine exposure remarkably restricted the DSS-induced phosphorylation of IκB and NF-κB p65 in mice. Similarly, betaine pretreatment improved the inflammatory response and intestinal barrier of Caco-2 cells. Betaine altered the gut microbiota composition, markedly decreasing the relative abundance of Firmicutes and Proteobacteria and considerably increasing the relative abundance of Bacteroidota and Campylobacterota in DSS-induced mice. In conclusion, betaine could attenuate colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota and is conducive to developing new drugs for treating human diseases.
Collapse
Affiliation(s)
- Nannan Zhao
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yuhang Yang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Chen Chen
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Tengfang Jing
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Haixu Xu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Shuai Wang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yu He
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Enqi Liu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Jue Cui
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| |
Collapse
|
23
|
Sun S, Yin Q, Li B, Deng Y, Li J, Xiong Y, Shaojun H. Effects of betaine on viability, apoptosis, function protein expression and oxidative status in heat-stressed IEC-6 cells. J Therm Biol 2022; 110:103348. [DOI: 10.1016/j.jtherbio.2022.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
|
24
|
Gao X, Hu Y, Tao Y, Liu S, Chen H, Li J, Zhao Y, Sheng J, Tian Y, Fan Y. Cymbopogon citratus (DC.) Stapf aqueous extract ameliorates loperamide-induced constipation in mice by promoting gastrointestinal motility and regulating the gut microbiota. Front Microbiol 2022; 13:1017804. [PMID: 36267178 PMCID: PMC9578511 DOI: 10.3389/fmicb.2022.1017804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Slow transit constipation (STC) is the most common type of functional constipation. Drugs with good effects and few side effects are urgently needed form the treatment of STC. Cymbopogon citratus (DC.) Stapf (CC) is an important medicinal and edible spice plant. The wide range of biological activities suggested that CC may have laxative effects, but thus far, it has not been reported. In this study, the loperamide-induced STC mouse model was used to evaluate the laxative effect of the aqueous extract of CC (CCAE), and the laxative mechanism was systematically explored from the perspectives of the enteric nervous system (ENS), neurotransmitter secretion, gastrointestinal motility factors, intestinal inflammation, gut barrier and gut microbiota. The results showed that CCAE not only decreased the serum vasoactive intestinal polypeptide (VIP), induced nitric oxide synthases (iNOS), and acetylcholinesterase (AchE) in STC mice but also increased the expression of gastrointestinal motility factors in colonic interstitial cells of Cajal (ICCs) and smooth muscle cells (SMCs), thereby significantly shortening the defecation time and improving the gastrointestinal transit rate. The significantly affected gastrointestinal motility factors included stem cell factor receptor (c-Kit), stem cell factor (SCF), anoctamin 1 (Ano1), ryanodine receptor 3 (RyR3), smooth muscle myosin light chain kinase (smMLCK) and Connexin 43 (Cx43). Meanwhile, CCAE could repair loperamide-induced intestinal inflammation and intestinal barrier damage by reducing the expression of the pro-inflammatory factor IL-1β and increasing the expression of the anti-inflammatory factor IL-10, chemical barrier (Muc-2) and mechanical barrier (Cldn4, Cldn12, Occludin, ZO-1, and ZO-2). Interestingly, CCAE could also partially restore loperamide-induced gut microbial dysbiosis in various aspects, such as microbial diversity, community structure and species composition. Importantly, we established a complex but clear network between gut microbiota and host parameters. Muribaculaceae, Lachnospiraceae and UCG-010 showed the most interesting associations with the laxative phenotypes; several other specific taxa showed significant associations with serum neurotransmitters, gastrointestinal motility factors, intestinal inflammation, and the gut barrier. These findings suggested that CCAE might promote intestinal motility by modulating the ENS-ICCs-SMCs network, intestinal inflammation, intestinal barrier and gut microbiota. CC may be an effective and safe therapeutic choice for STC.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yifan Hu
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yafei Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangfeng Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haowen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jiayi Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- Department of Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jun Sheng,
| | - Yang Tian
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
- Yang Tian,
| | - Yuanhong Fan
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
- Yuanhong Fan,
| |
Collapse
|
25
|
Hosseindoust A, Kang HK, Kim JS. Quantifying heat stress; the roles on metabolic status and intestinal integrity in poultry, a review. Domest Anim Endocrinol 2022; 81:106745. [PMID: 35716584 DOI: 10.1016/j.domaniend.2022.106745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/03/2022]
Abstract
Heat stress adversely affects intestinal barrier integrity ranging from minor enterocyte injury to fatal inflammatory heat shocks. The current review discusses the physiological mechanisms of the adaptive response of poultry and the nutritional interventions to improve intestinal integrity during heat stress. There are several possible metabolic mechanisms of protection including stress adaptation signaling pathways, blood flow, intestinal barrier permeability, epithelial cell proliferation, antioxidant status, microbiota composition, expression of heat shock proteins, inflammatory responses, and energy metabolism. The current review discusses the methods of intestinal permeability determination in order to estimate the extent of damage in the farm. There is a lack of knowledge about the nutritional strategies and the interaction between nutrients to reduce intestinal barrier damage and elucidate mechanisms in heat stress.
Collapse
Affiliation(s)
- A Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - H K Kang
- Poultry Division, National Institute of Animal Science, Rural Development Administration, 321-11, Daegwallyeongmaru-gil, Daegwallyeong-myeon, Pyeongchang-gun, Gangwon-do 25342, Korea.
| | - J S Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
26
|
Yousefi J, Taherpour K, Ghasemi HA, Akbari Gharaei M, Mohammadi Y, Rostami F. RETRACTED ARTICLE: Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br Poult Sci 2022. [PMID: 36103130 DOI: 10.1080/00071668.2022.2124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. This experiment investigated the efficiency of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions.2. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to nine treatment groups (six pens/treatment with 20 birds/pen) in a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other 8 groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).3. There were EB × BT × CT interactions for body weight (BW) at 24 d (P=0.038) and average daily gain (ADG) during the 10-24 d period (P=0.049), with the greatest values with concurrent supplementation of all three ingredients.4. Inclusion of EB resulted in greater (P<0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility (AID) of dry matter, crude protein and fat, but lower (P<0.05) feed conversion ratio, mortality rate and heterophile to lymphocyte ratio.5. Dietary BT supplementation improved (P<0.05) overall performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth, AID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P<0.05) in ADG (d 10-24) and a decrease (P<0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).6. In conclusion, dietary supplementation of either EB or BT alone or in combination can ameliorate some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.
Collapse
Affiliation(s)
- Jalal Yousefi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | | | - Yahya Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Farhad Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
27
|
Li C, Li S, Liu J, Cai H, Liu G, Deng X, Chang W. Escherichia coli O88 induces intestinal damage and inflammatory response through the oxidative phosphorylation and ribosome pathway in Pekin ducks. Front Cell Infect Microbiol 2022; 12:940847. [PMID: 36061867 PMCID: PMC9433110 DOI: 10.3389/fcimb.2022.940847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Colibacillosis is one of the major health threats in the poultry industry worldwide. Understanding the pathogenic mechanisms involved in Escherichia coli-induced inflammatory response may lead to the development of new therapies to combat the disease. To address this, a total of 96 1-day-old male lean Pekin ducklings were employed and randomly allocated to two treatments, each with six replicates of eight ducks. Ducks in the experiment group (EG) and the control group (CG) were separately orally administered with 0.2 ml of pathogenic E. coli O88 (3 × 109 CFU/ml) or equivalent volumes of 0.9% sterile saline solution on day 7, two times with an 8-h interval. Serum and intestinal samples were collected on days 9, 14, and 28. Results showed that ducks challenged with E. coli had lower average daily gain and higher feed intake/weight gain during days 9–14 and overall (P < 0.05). Histopathological examination showed that E. coli decreased the villus height and the ratio of villus height/crypt depth in the jejunum (P < 0.05) on days 9 and 14. The intestinal barrier was disrupted, presenting in E. coli ducks having higher serum DAO and D-LA on days 9 and 14 (P < 0.05) and greater content of serum LPS on day 9 (P < 0.05). Escherichia coli infection also triggered a systemic inflammatory response including the decrease of the serum IgA, IgM, and jejunal sIgA on day 14 (P < 0.05). In addition to these, 1,062 differentially expressed genes were detected in the jejunum tissues of ducks by RNA-seq, consisting of 491 upregulated and 571 downregulated genes. Based on the KEGG database, oxidative phosphorylation and the ribosome pathway were the most enriched. These findings reveal the candidate pathways and genes that may be involved in E. coli infection, allow a better understanding of the molecular mechanisms of inflammation progression and may facilitate the genetic improvement of ducks, and provide further insights to tackle the drug sensitivity and animal welfare issues.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jinmei Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Research and Development Department, National Engineering Research Center of Biological Feed, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xuejuan Deng
- Research and Development Department, National Engineering Research Center of Biological Feed, Beijing, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- *Correspondence: Wenhuan Chang,
| |
Collapse
|
28
|
Guo F, Jing M, Zhang A, Yu Y, Gao P, Wang Q, Wang L, Xu Z, Ma J, Zhang Y. Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene. Animals (Basel) 2022; 12:ani12151899. [PMID: 35892549 PMCID: PMC9330308 DOI: 10.3390/ani12151899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The poultry meat we eat is the skeletal muscle which comprises approximately three-quarters of the body weight of a chicken. In the modern poultry industry, the intensively raised broilers face the risk of exposure to environmental factors which can cause acute or chronic systemic inflammation. Inflammation, in return, contributes to the pathology of skeletal muscle diseases which are characterized by the loss of skeletal muscle mass. By adding betaine, a natural component, into the water of the newly hatched broilers for two weeks, we found that inflammation-related gene expression in the leg muscle was remarkably reduced. Specifically, we found that betaine inhibited the LPS-induced abnormal expression of IL-6 and TLR4. Further study indicated that the methylation modulation of the gene may be involved in betaine’s action. We suggest that betaine could be considered a safe and cheap preventive reagent candidate for chicken skeletal muscle inflammatory diseases. Abstract Betaine was found to alleviate inflammation in different studies. Here, newly hatched broilers were randomly divided into control and betaine consumptive groups, who had access to normal drinking water and water with betaine at a dose of 1000 mg/L, respectively. At the age of two weeks, the boilers were intraperitoneally treated with LPS. The protective effects of betaine against LPS-induced skeletal muscle inflammation were studied. Betaine attenuated the LPS-induced overexpression of IL-6 significantly in the leg muscle. Furthermore, LPS lowered the expression of TLR4 and TLR2 but increased the expression of MyD88. Betaine eliminated the effect of LPS on the expression of TLR4 but not TLR2 and MyD88. LPS also increased the expression of Tet methylcytosine dioxygenase 2 (Tet2), and this effect was also eliminated by betaine consumption. MeDIP-qPCR analysis showed that the methylation level in the promoter region of IL-6 was decreased by LPS treatment, whilst betaine cannot prevent this effect. On the contrary, LPS significantly increase the methylation level in the promoter region of TLR4, which was decreased by the consumption of betaine. Our findings suggest that betaine can alleviate LPS-induced muscle inflammation in chicken, and the regulation of aberrant DNA methylation might be a possible mechanism.
Collapse
|
29
|
The Role of Betaine in Patients With Chronic Kidney Disease: a Narrative Review. Curr Nutr Rep 2022; 11:395-406. [PMID: 35792998 DOI: 10.1007/s13668-022-00426-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This narrative review aimed to explore the functions of betaine and discuss its role in patients with chronic kidney disease (CKD). RECENT FINDINGS Some studies on CKD animal models have shown the benefits of betaine supplementation, including decreased kidney damage, antioxidant recovery status, and decreased inflammation. Betaine (N-trimethylglycine) is an N-trimethylated amino acid with an essential regulatory osmotic function. Moreover, it is a methyl donor and has anti-inflammatory and antioxidant properties. Additionally, betaine has positive effects on intestinal health by regulating the osmolality and gut microbiota. Due to these crucial functions, betaine has been studied in several diseases, including CKD, in which betaine plasma levels decline with the progression of the disease. Low betaine levels are linked to increased kidney damage, inflammation, oxidative stress, and intestinal dysbiosis. Furthermore, betaine is considered an essential metabolite for identifying CKD stages.
Collapse
|
30
|
Mao J, Wang Y, Wang W, Duan T, Yin N, Guo T, Guo H, Liu N, An X, Qi J. Effects of Taraxacum mongolicum Hand.-Mazz. (dandelion) on growth performance, expression of genes coding for tight junction protein and mucin, microbiota composition and short chain fatty acids in ileum of broiler chickens. BMC Vet Res 2022; 18:180. [PMID: 35568942 PMCID: PMC9107267 DOI: 10.1186/s12917-022-03278-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Dandelion is becoming an exploitable alternative to the widely prohibited antibiotics in the poultry production. This research aimed to investigate the effects of dandelion on the growth performance and intestinal barrier function of broiler chickens maintained under standard condition of management. One-hundred and sixty 1-day-old Arbor Acres (AA) male broiler chickens were randomly divided into four groups, with five replicates of eight birds each. The birds were fed a basal diet supplemented without (control group, [CON]) or with 500 (low dose [LD]) or 1000 (high dose [HD]) mg/kg dandelion or with 250 mg/kg chlortetracycline 20% premix (CTC) for 42 days, including the starter phase (d 1 to 21) and the grower phase (d 22 to 42). Body weight (BW) of each bird and feed consumption of each replicate were measured at d 21 and d 42. The ileal tissues were collected on day 21 and 42 to determine expression of genes coding for tight junction protein and mucin as well as ELISA analysis for immune factor. The ileal digesta was collected for microbiota and short chain fatty acids analysis. Results Compared with CON group, during day 1–21, the average daily feed intake (ADFI) and feed/gain ratio (F/G) of LD group were lower (P < 0.05); during day 22–42, the F/G of LD and CTC group tended to be lower (P = 0.07); during the overall phase, the ADFI of HD and CTC groups were decreased (P < 0.05), and the F/G of dandelion and CTC groups tended to be decreased (P = 0.07). On day 21, the relative mRNA expression of claudin, occludin-1 and mucin1 in dandelion groups were up-regulated (P < 0.05), and the ZO-1 mRNA expression in CTC group was increased (P < 0.05); on day 42, the claudin and mucin1 transcripts in LD group and ZO-1 transcripts in HD and CTC group were up-regulated (P < 0.05), while the occludin-1 and mucin1 transcripts in CTC group was significantly down-regulated (P < 0.05). In addition, the contents of TNF-α in dandelion groups were lower than that in CTC group (P < 0.05). In the analysis of ileal microbiota, on day 21, decreased α-diversity was observed in HD and CTC groups (P < 0.05). Meanwhile, on day 21, the relative abundance of Firmicutes in dandelion groups tended to be higher (P = 0.09), the relative abundance of Lactobacillus in LD and CTC group were increased (P < 0.05), while Bacteroidete, Bacteroides, and Alistipes relative abundance in dandelion and CTC groups were decreased (P < 0.05). On day 42, the Actinobacteriota relative abundance in CTC group tended to be higher (P = 0.05), and Lysinibacillus relative abundance of CTC group was higher (P = 0.02). Compared with CON group, on day 21, the propionic acid and butyric acid content in CTC group were higher, the butyric acid content in HD group was lower (P < 0.10). Conclusion In summary, dietary dandelion supplementation at 500 mg/kg of diet enhanced growth performance of broilers by improving the intestinal barrier function. Dandelion can be supplemented in the diet as an antibiotics alternative to enhance production in poultry industry.
Collapse
Affiliation(s)
- Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China. .,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China. .,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China.
| | - Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Ting Duan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Na Yin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Tao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Hui Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| |
Collapse
|
31
|
Effects of Chlorogenic Acid on Performance, Anticoccidial Indicators, Immunity, Antioxidant Status, and Intestinal Barrier Function in Coccidia-Infected Broilers. Animals (Basel) 2022; 12:ani12080963. [PMID: 35454210 PMCID: PMC9030001 DOI: 10.3390/ani12080963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/11/2023] Open
Abstract
The effects of chlorogenic acid (CGA) on growth performance, anticoccidial indicators (oocysts per gram of excreta, cecal lesion score, and bloody diarrhea score), immunity, antioxidant status, and intestinal barrier function in coccidia-infected broilers were investigated. A total of 240 one-day-old Arbor Acres broilers were randomly divided into four groups with six replicates of ten broilers each for 42 days. Four treatments included control diet (non-infected control, NC), control diet +Eimeria infection (infected control, IC), control diet +0.5 g/kg CGA + Eimeria infection (CGA0.5), and control diet +1 g/kg CGA + Eimeria infection (CGA1). At day 14, each broiler in IC, CGA0.5, and CGA1 groups was orally inoculated with 1 mL saline containing 4 × 105 sporulated oocysts. The results showed that the CGA1 group increased the average daily gain by 12.57% (p < 0.001) and decreased the feed/gain ratio (p = 0.010) and mortality (p = 0.030) by 13.00% and 77.76%, respectively, of broilers from 14 to 42 days compared with the IC group. The CGA1 group decreased the oocysts per gram of excreta (p < 0.001) and bloody diarrhea score (p = 0.001) compared with the IC group. The CGA0.5 and CGA1 groups increased total antioxidant capacity (p < 0.001) at day 21 and villus height (p < 0.001) in the duodenum and jejunum at day 42, and decreased the levels of interleukin 6 (IL-6) (p = 0.002), malondialdehyde (MDA) (p < 0.001), D-lactic acid (p < 0.001), and diamine oxidase (DAO) (p < 0.001) at day 21 and the levels of MDA (p < 0.001) and D-lactic acid (p = 0.003) at day 42 compared with the IC group. In the CGA1 group, villus height in the duodenum (p < 0.001) and jejunum (p = 0.017) increased at day 21 and in the ileum (p < 0.001) at day 42, and the level of DAO (p < 0.001) decreased at day 42 compared with the IC group. Broilers in the IC group had a higher IL-6 level (p = 0.048) at day 42 and lower IL-10 (p = 0.027) and immunoglobulin A (p = 0.042) levels at day 21, and IL-10 level (p = 0.017) at day 42 than those in the NC group, while no significant differences were observed among the NC, CGA0.5, and CGA1 groups. In conclusion, dietary supplementation with 1 g/kg CGA improved growth performance, immunity, antioxidant status, and intestinal barrier function in coccidia-infected broilers.
Collapse
|
32
|
Wang Y, Sun W, Wu E, Wang K, Chen X, Cui Y, Zhang G, Lv F, Wang Y, Peng X, Si H. Polysaccharides From Abrus cantoniensis Hance Modulate Intestinal Microflora and Improve Intestinal Mucosal Barrier and Liver Oxidative Damage Induced by Heat Stress. Front Vet Sci 2022; 9:868433. [PMID: 35445100 PMCID: PMC9013755 DOI: 10.3389/fvets.2022.868433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The protective effects of polysaccharides from Abrus cantoniensis Hance (ACP) on antioxidant capacity, immune function, the hypothalamus-pituitary-adrenal (HPA) axis balance, the intestinal mucosal barrier, and intestinal microflora in heat stress (HS)-induced heat-injured chickens are rarely reported. The purpose of this study was to investigate the protective effects of ACP on HS-injured chickens by enhancing antioxidant capacity and immune function, repairing the intestinal mucosal barrier, and regulating intestinal microflora. A total of 120 native roosters in Guangxi were randomly divided into 5 groups to evaluate the protective effect of ACP on chickens injured by HS (33 ± 2°C). The results showed that ACP increased the body weight and the immune organ index of heat-injured chickens, regulated the oxidative stress kinase secretion, and restored the antioxidant level of heat-injured birds. ACP significantly inhibited the secretion of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (COR) and reversed the disorder of hormone levels caused by HS. ACP significantly regulated the secretion levels of immune cytokines and restored the immune function of the body. ACP significantly improved the intestinal morphology and increased the expression levels of tight junction proteins, which had a positive effect on protecting intestinal health. The results of high-throughput sequencing of the 16S rRNA gene showed that HS led to an increase in the abundance of harmful bacteria and an abnormal increase in the abundance of intestinal microflora and that ACP restored the HS-induced intestinal microflora imbalance. In conclusion, this study provides a scientific basis for ACP as an antioxidant activity enhancer to reduce liver injury, regulate intestinal microflora, and protect intestinal mucosal damage in chickens.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Enyun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
33
|
Siddiqui SH, Khan M, Kang D, Choi HW, Shim K. Meta-Analysis and Systematic Review of the Thermal Stress Response: Gallus gallus domesticus Show Low Immune Responses During Heat Stress. Front Physiol 2022; 13:809648. [PMID: 35153835 PMCID: PMC8832064 DOI: 10.3389/fphys.2022.809648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Heat stress, which affects broiler growth performance and immunity, is a major concern in the poultry industry. This meta-analysis aimed to demonstrate the significant effect of heat stress on broiler mass gain and immunoglobulin levels, which regulates the mortality rate of broilers. A total of 2,585 studies were downloaded from PubMed, Web of Science, and Google Scholar from January 1, 2015, to September 1, 2021. Eventually, 28 studies were selected based on specific criteria. The results for body mass gain, total mass of immune organs (thymus, spleen, and bursa of Fabricius), immunoglobulin (IgA, IgG, and IgM) levels, and mortality rate were analyzed using odds ratio or the random-effects model (REM) at a confidence interval (CI) of 95%. Compared to the control, heat stress significantly decreased body mass gain (10 trials: REM = 1.35, 95% CI: 1.21, 1.50). Compared to that in the control, heat stress significantly increased immunoglobulin levels: IgA (7 trials: REM = 1.69, 95% CI: 0.90, 3.16), IgG (6 trials: REM = 1.24, 95% CI: 0.85, 1.81), IgM (8 trials: REM = 0.69, 95% CI: 0.44, 1.08), and heat stress also increased the broiler mortality rate (6 trials: REM = 0.06, 95% CI: 0.01, 0.27). However, there were no significant changes in the immune organs between the control and heat-stressed groups. In conclusion, heat stress remarkably alters the mass gain and immunoglobulin levels of broilers, which may be a cause of the high mortality rate.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Hyun Woo Choi
- Department of Animal Science, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Kwanseob Shim
| |
Collapse
|
34
|
Chuang KB, Yu YH. Ganoderma Lucidum Extract Regulates Gut Morphology and Microbial Community in Lipopolysaccharide-Challenged Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - YH Yu
- National Ilan University, Taiwan
| |
Collapse
|