1
|
Shi L, Liu Y, Wang J, Chang C, Zhu X, Wei L, Chen X, Zhang Z. Selenomethionine attenuates Klebsiella pneumoniae-induced jejunal injury in rabbits by inhibiting the TLR4/NF-κB pathway. Microb Pathog 2025; 203:107510. [PMID: 40147555 DOI: 10.1016/j.micpath.2025.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Klebsiella pneumoniae (KP) infection often causes diarrhoea and intestinal barrier damage in young rabbits. The objective of this study was to explore whether selenomethionine (SeMet) can attenuate the jejunal injury caused by KP in rabbits. Therefore, we investigated the protective effect of SeMet by performing haematoxylin-eosin (HE), alcian blue periodic acid Schiff (AB-PAS), proliferating nuclear antigen (PCNA), TUNEL and immunofluorescence staining. In addition, the concentrations of Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Tumor necrosisfactor-α (TNF-α) and Interleukin-10 (IL-10) in the jejunal tissue were detected by enzyme-linked immunosorbent assay (ELISA). The results showed that after KP infection, the productivity of rabbits decreased, and the mucosal barrier of the jejunum was damaged. Moreover, KP induced jejunal inflammation, activated the TLR4/NF-κB signalling pathway, and promoted the expression of the IL-1β, IL-6, and TNF-α. In addition, KP increased the apoptotic response of intestinal cells and upregulated the expression of caspase-3 and caspase-9. SeMet pretreatment significantly decreased the degree of intestinal epithelial cell apoptosis. Therefore, we showed that SeMet can reduce inflammation and enhance intestinal barrier function to improve the production performance of rabbits infected with KP.
Collapse
Affiliation(s)
- Lihui Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
2
|
Wei L, Liu X, Tan Z, Zhang B, Wen C, Tang Z, Zhou Y, Zhang H, Chen Y. Chlorogenic acid mitigates avian pathogenic Escherichia coli-induced intestinal barrier damage in broiler chickens via anti-inflammatory and antioxidant effects: CHLOROGENIC ACID AND BROILER CHICKENS. Poult Sci 2025; 104:105005. [PMID: 40086255 PMCID: PMC11953978 DOI: 10.1016/j.psj.2025.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on intestinal health in broilers challenged with avian pathogenic Escherichia coli (APEC). One hundred and eighty one-day-old male broiler chicks were divided into three groups with six replicates of ten chicks each for a 21-day trial. The birds in the control and APEC groups were fed a basal diet, while birds in the CGA-treated group received a basal diet supplemented with 1000 mg/kg of CGA. At 14 days, birds in the APEC and CGA groups were administered with an APEC suspension Compared with the APEC group, CGA incorporation decreased mortality and cecal Escherichia coli colonies in bacterially challenged broilers (P < 0.05). Additionally, CGA reduced the relative weight of the heart, liver, kidney, gizzard, proventriculus, and intestine, as well as serum triglyceride level and alanine aminotransferase activity in APEC-challenged broilers (P < 0.05). Supplementing CGA reduced the concentrations of interferon-γ, tumor necrosis factor-α, interleukin-1β, and/or interleukin-6 in serum, duodenum, jejunum, and/or ileum in APEC-challenged broilers presumably through the inactivation of the toll-like receptor 4/myeloid differentiation factor 88 pathway (P < 0.05). CGA administration reduced serum diamine oxidase activity and d-lactate and endotoxin concentrations, but increased the ratio between villus height and crypt depth in duodenum and jejunum of APEC-infected chickens, accompanied by the restored intestinal expression of tight junction proteins (claudin-1, claudin-2, occludin, and zonula occludens-1) and genes involved in apoptosis (B cell lymphoma-2 associated X protein, B cell lymphoma-2, and cysteine-requiring aspartate protease 9) (P < 0.05). Additionally, CGA increased superoxide dismutase, glutathione peroxidase, and catalase activities, and glutathione levels in serum and intestinal mucosa, but inhibited the accumulation of intestinal malondialdehyde in APEC-challenged broilers possibly via activating the nuclear factor-erythroid 2-related factor-2/heme oxygenase-1 pathway (P < 0.05). The results suggested that CGA alleviated APEC-induced intestinal damage in broilers by inhibiting inflammation and oxidative stress. However, its potential application in practical poultry production is contingent upon both its efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Leyi Wei
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinghuo Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zichao Tan
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bingying Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhigang Tang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
3
|
Wang Q, Li J, Li G, Zang Y, Fan Q, Ye J, Wang Y, Jiang S. Protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota in yellow-feathered broilers under lipopolysaccharide challenge. Poult Sci 2025; 104:104688. [PMID: 39721279 PMCID: PMC11732448 DOI: 10.1016/j.psj.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
This research was performed to investigate protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota of lipopolysaccharide-challenged broilers. Three hundred 1-day-old yellow-feathered broilers (male) were allocated randomly into 5 treatments, with 6 replicates per treatment, and 10 birds per replicate cage. Birds in both the control group (CON) and the lipopolysaccharide-challenged group were provided with a basal diet, while others were fed a basal diet supplemented with 20, 40, and 60 mg/kg carnosic acid (CA20, CA40, CA60), respectively. At 17, 19, and 21 days of age, birds were injected intraperitoneally with lipopolysaccharide (500 μg/kg body weight), except those in CON, which were injected with saline. Compared with challenged birds, the CA20, CA40, and CA60 increased (P < 0.05) the final body weight, average daily gain, and average daily feed intake, and the CA40 and CA60 also decreased diarrhea rate. Compared with challenged birds, carnosic acid reduced (P < 0.05) plasmal levels of D-lactic acid and endotoxin, increased (P < 0.05) the villus height to crypt depth ratio, and the number of goblet cells in duodenum. The CA40 and CA60 elevated (P < 0.05) relative expression of cell junction proteins (Claudin-1/-2 and ZO-1/-2/-3) and MUC-2 in duodenum, while decreased (P < 0.05) relative expression of TLR2, TLR4, and the concentrations of IL-6, IL-10, TNF-α, TGF-β1 in duodenum. CA40 also increased (P < 0.05) the α-diversity of the cecal microbiota and boosted (P < 0.05) the relative abundance of beneficial phyla and genera, particularly Firmicutes, Anaerofilum, and Papilibacter. In conclusion, dietary supplementation with carnosic acid showed protective effects on the growth performance and intestinal health in challenged broilers by down-regulating the expression of TLRs (TLR2/4) and inhibiting the production of inflammatory cytokines, strengthening the tight junction in intestinal epithelial cells, and enhancing the diversity of microbiota and the relative abundance of beneficial bacteria. When supplemented to diet of broilers, 40 mg/kg carnosic acid was recommended.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China; College of Veterinary Medicine, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, 430072, China
| | - Jiawei Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Guanhuo Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yingan Zang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qiuli Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Jingling Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Yibing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| | - Shouqun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Insawake K, Songserm T, Songserm O, Plaiboon A, Homwong N, Adeyemi KD, Rassmidatta K, Ruangpanit Y. Effects of isoquinoline alkaloids as an alternative to antibiotic on oxidative stress, inflammatory status, and cecal microbiome of broilers under high stocking density. Poult Sci 2025; 104:104671. [PMID: 39689480 PMCID: PMC11719387 DOI: 10.1016/j.psj.2024.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
This study investigated the effect of isoquinoline alkaloids as an alternative to bacitracin on growth performance, oxidative stress, inflammatory status, and ceca microbiome of broilers raised under high stocking density (HSD). A total of 1,500 one-day-old male Ross 308 chicks were randomly assigned to five treatment groups, with 10 replicate pens per group and 30 birds per pen, for 37 days. The treatments included normal stocking density (NSD, 10 birds/m²), HSD (15 birds/m²), HSD with 50 ppm Bacitracin (BCT50), HSD with 80 ppm isoquinoline alkaloids (IQA80), and HSD with 100 ppm isoquinoline alkaloids (IQA100). From days 11 to 24, HSD birds had lower feed efficiency (P < 0.05) compared to those in other treatments. The heterophil-to-lymphocyte ratio and malondialdehyde levels were lower in NSD and IQA80 birds compared to HSD and BCT50 birds (P < 0.05). HSD birds had higher IL-6 and a lower villus height and villus height-to-crypt depth ratio compared to birds in other groups (P < 0.05). Serum TNF-α was lower in NSD and IQA80 birds compared to those in the HSD group. Alpha diversity was not affected by the treatments; however, beta diversity was lower in HSD birds compared to other treatments. HSD birds showed reduced microbial diversity, with a higher prevalence of Enterococcaceae and Peptostreptococcaceae. NSD enhanced the abundance of Lactobacillaceae, Clostridiaceae, and Rikenellaceae. BCT50 increased and decreased the abundance of Enterococcaceae and Rikenellaceae respectively. IQA80 and IQA100 increased the abundance of Lachnospiraceae, Leuconostocaceae, and Coriobacteriaceae. HSD altered metabolic pathways related to carbohydrate and lipid metabolism, and amino acid biosynthesis. BCT50 modulated microbial functions, particularly those related to cell wall synthesis, while isoquinoline alkaloids upregulated pathways involved in energy production, secondary metabolite biosynthesis, and antioxidant production. Both Bacitracin and isoquinoline alkaloids were effective in mitigating the negative effects of HSD on immunity, gut health and microbiota in broilers. Given the concerns about antimicrobial resistance, isoquinoline alkaloids are a potent alternative to bacitracin, with IQA80 being particularly recommended.
Collapse
Affiliation(s)
- Kittisak Insawake
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Thaweesak Songserm
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University10900, Thailand
| | - Ornprapun Songserm
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Atthawoot Plaiboon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria
| | - Konkawat Rassmidatta
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Yuwares Ruangpanit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
5
|
Shahrajabian MH, Sun W. Study Rapid, Quantitative, and Simultaneous Detection of Drug Residues and Immunoassay in Chickens. Rev Recent Clin Trials 2025; 20:2-17. [PMID: 39171469 DOI: 10.2174/0115748871305331240724104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 08/23/2024]
Abstract
Different levels of residual drugs can be monitored within a relatively safe range without causing harm to human health if the appropriate dosing methodology is considered and the drug withdrawal period is controlled during poultry and livestock raising. Antimicrobials are factors that can suppress the growth of microorganisms, and antibiotic residues in livestock farming have been considered as a potential cause of antimicrobial resistance in animals and humans. Antimicrobial drug resistance is associated with the capability of a microorganism to survive the inhibitory effects of the antimicrobial components. Antibiotic residue presence in chicken is a human health concern due to its negative effects on consumer health. Neglected aspects related to the application of veterinary drugs may threaten the safety of both humans and animals, as well as their environment. The detection of chemical contaminants is essential to ensure food quality. The most important antibiotic families used in veterinary medicines are β-lactams (penicillins and cephalosporins), tetracyclines, chloramphenicols, macrolides, spectinomycin, lincosamide, sulphonamides, nitrofuranes, nitroimidazoles, trimethoprim, polymyxins, quinolones, and macrocyclics (glycopeptides, ansamycins, and aminoglycosides). Antibiotic residue presence is the main contributor to the development of antibiotic resistance, which is considered a chief concern for both human and animal health worldwide. The incorrect application and misuse of antibiotics carry the risk of the presence of residues in the edible tissues of the chicken, which can cause allergies and toxicity in hypersensitive consumers. The enforcement of the regulation of food safety depends on efficacious monitoring of antimicrobial residues in the foodstuff. In this review, we have explored the rapid detection of drug residues in broilers.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| |
Collapse
|
6
|
Sanjaya HL, Maharani BP, Baskara AP, Muhlisin, Martien R, Zuprizal. Effect of lipopolysaccharides from pathogenic bacteria on broiler chickens' productivity: a meta-analysis. Br Poult Sci 2024; 65:708-721. [PMID: 38940295 DOI: 10.1080/00071668.2024.2364331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
1. This meta-analysis investigated the impact of LPS and covariates (serotype, rearing period and administration route) on the productivity parameters of broiler chickens (average daily feed intake (ADFI), average daily gain (ADG) and feed conversion ratio (FCR)).2. Thirty-two eligible studies were included. Hedges' g effect size was determined using a random-effects model at 95% confidence interval.3. Results showed that LPS significantly decreased average daily feed intake (ADFI; p < 0.0001) and average daily gain (ADG; p < 0.0001) and increased FCR (p < 0.0001). The serotypes Escherichia coli 055: B5 (EC055: B5) and Escherichia coli 0127: B8 (EC 0127: B8) significantly reduced ADFI and ADG, and the serotype EC 055: B5 significantly increased the FCR (p < 0.05).4. The intraperitoneal administration of the LPS significantly reduced the productivity of broiler chickens (p < 0.05), but other administration routes did not show such effects. The reduction in ADFI and ADG was found in all rearing periods (p < 0.05), and the increase in FCR was observed in the starter (p = 0.0302) and grower periods (p = 0.0031).5. Exposure to LPS significantly reduced the productivity of broiler chickens (p < 0.05). However, no relationship was observed between LPS dosage and productivity as indicated by the meta-regression study.6. The findings indicated that LPS has detrimental effects on broiler chickens' ADFI, ADG and FCR across various LPS serotypes and rearing periods. These detrimental impacts of LPS remain consistent regardless of the administered dosage.
Collapse
Affiliation(s)
- H L Sanjaya
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - B P Maharani
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - A P Baskara
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhlisin
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - R Martien
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zuprizal
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Song R, Jiang Y, Zhang B, Jiao Z, Yang X, Zhang N. Effects of Hypericum attenuatum Choisy extract on the immunologic function and intestinal microflora of broilers under oxidative stress. Poult Sci 2024; 103:104189. [PMID: 39191003 PMCID: PMC11395763 DOI: 10.1016/j.psj.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigated the impact of Hypericum attenuatum Choisy extract (HYG) on immunological function and the cecum microflora in broilers. A total of 240 one-day-old AA broilers were randomly divided into 5 groups with 6 replicates of 8 broilers each: 1) the CN group, in which broilers were injected with saline and fed a basal diet; 2) the PC group, in which broilers were injected with lipolyaccharide (LPS) and fed a basal diet; 3) the HYG1 group, in which broilers were injected with LPS and fed a 400 mg/kg HYG-supplemented diet; 4) the HYG2 group, in which broilers were injected with LPS and fed a 800 mg/kg HYG-supplemented diet; 5) the HYG3 group, in which broilers were injected with LPS and fed a 1,200 mg/kg HYG-supplemented diet. Broilers were injected with 1 mg/kg LPS or the same amount saline 12 hours before sampling on d 21 and 42. The results revealed that dietary 400 mg/kg HYG supplementation alleviated spleen index and thymus index abnormalities, balanced the disturbance of serum immunoglobulin (Ig)M and IgA levels, and regulated the cytokine balance in the serum, liver, spleen and jejunum tissues included induced by LPS. Dietary supplementation with 400 mg/kg HYG also downregulated the relative expression of the inhibitor of kappa B kinase alpha (IKKα) and interleukin (IL)-6 mRNAs in the liver and upregulated the relative expression of the inhibitor kappa B alpha (IκBα) and IL-10 mRNAs in the spleen. Dietary HYG improved the cecal microflora balance at 42 d by increasing the relative abundance of beneficial bacteria, such as Alistipes and Phascolarctobacterium, while reducing the relative abundance of harmful bacteria, such as Helicobacter and Colidextribacter. Spearman correlation analysis revealed a negative correlation between activation of the NF-κB inhibitory pathway in the liver and the presence of Phascolarctobacterium, Erysipelatoclostridium, Subdoligranulum and Parabacteroides. Conclusions: The incorporation of 400 mg/kg HYG into the diet was optimal in improving broiler immunological function.
Collapse
Affiliation(s)
- Rui Song
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China; Agricultural Technology Extension Center, Shuyang County Agriculture and Rural Affairs Bureau, Shuyang 223600, China
| | - Yanzhen Jiang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zimeng Jiao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Xing Yang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
8
|
Shang Q. Inulin alleviates inflammatory response and gut barrier dysfunction via modulating microbiota in lipopolysaccharide-challenged broilers. Int J Biol Macromol 2024; 282:137208. [PMID: 39489258 DOI: 10.1016/j.ijbiomac.2024.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study was conducted to explore the protective effects of inulin against lipopolysaccharide (LPS)-induced inflammatory response and intestinal barrier dysfunction in broilers. 108 broilers were allocated to 3 treatments: 1) non-challenged broilers (Control, CON); 2) LPS-challenged broilers (LPS); 3) LPS-challenged broilers fed the basal diet supplemented with 15 g/kg of inulin (Inulin + LPS). At 21 d of age, the LPS-challenged groups received an intraperitoneal injection of LPS, and the CON group received an equal volume of saline. After 4 h of LPS exposure, samples of blood, intestinal mucosa and cecal digesta were collected. The results showed that LPS challenge induced systemic inflammation and damaged intestinal barrier function, whereas inulin attenuated LPS-induced production of pro-inflammatory cytokines by inhibiting the activation of TLR4 and NF-κB p65, and enhanced intestinal barrier function. In addition, LPS stimulation caused cecal microbial dysbiosis as shown by increased abundance of pathogenic bacteria including Ruminococcus_torques_group, Escherichia-Shigella and Subdoligranulum, while supplementation of inulin increased abundance of beneficial bacteria Faecalibacterium and Anaeroplasma, and metabolite production including propionate and butyrate concentrations. In conclusion, dietary supplementation of inulin could partially alleviate LPS-induced inflammation and intestinal barrier injury by modulating intestinal microbiota, thereby minimizing growth retardation of broilers. Our results provide a basis for the rational utilization of inulin in alleviating immune stress in broiler production.
Collapse
Affiliation(s)
- Qinghui Shang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
9
|
Lai X, Fan P, Deng H, Jia G, Zuo Z, Hu Y, Wang Y, Cai D, Gou L, Wen Y, Yu S, Cao S, Shen L, Deng J, Ren Z. Effects of isochlorogenic acid A on mitochondrial dynamics imbalance and RLR damage in PAM cells induced by combined mycotoxins. Toxicology 2024; 508:153920. [PMID: 39137830 DOI: 10.1016/j.tox.2024.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.
Collapse
Affiliation(s)
- Xinuo Lai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Fan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guilin Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Bi R, Yang M, Liu X, Guo F, Hu Z, Huang J, Abbas W, Xu T, Liu W, Wang Z. Effects of chlorogenic acid on productive and reproductive performances, egg quality, antioxidant functions, and intestinal microenvironment in aged breeder laying hens. Poult Sci 2024; 103:104060. [PMID: 39033574 PMCID: PMC11326894 DOI: 10.1016/j.psj.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
This study investigated the effects of dietary chlorogenic acid (CGA) on the productive and reproductive performance, egg quality, antioxidant function, and intestinal microenvironment of laying hens. Thus, 162 healthy Hy-Line Brown breeding hens (63 weeks old) were randomly allocated to 3 groups, each receiving a basal diet plus supplementation: 0, 250, and 500 mg/kg CGA, respectively. Per the in vitro test, CGA had obvious inhibitory effects on Salmonella enteritis and avian pathogenic Escherichia coli and strong free radical scavenging ability. Per the breeder laying hen experiment, the CGA diets had no significant influence on egg production or reproductive performance (P < 0.05). Nevertheless, compared with the control diet, 250 mg/kg CGA significantly increased eggshell thickness, egg weight, yolk color, and Haugh unit (P < 0.05). Compared with the control diet and 500 mg/kg CGA, 250 mg/kg CGA significantly (P < 0.05) elevated antioxidant capacity by reducing serum malondialdehyde content, upregulating heme oxygenase-1, and downregulating heat shock proteins mRNA levels in the ileum. Compared with the control diet and 500 mg/kg CGA, 250 mg/kg CGA (P < 0.05) enhanced intestinal barrier function, shown by the upregulation of ileal Occludin and Mucin-2 mRNA levels; furthermore, 250 mg/kg CGA (P < 0.05) increased anti-apoptotic capacity by increasing B-cell leukemia/lymphoma 2 gene expression and downregulated Bcl2 Associated X mRNA levels in the liver and ileum of late breeder laying hens (P < 0.05). Lastly, 250 mg/kg CGA (P < 0.05) increased cecal g_CHKCI001 and short-chain fatty acid-producing bacteria g_Prevotellaceae UCG-001, positively related to gut health, and in the cecum, 500 mg/kg CGA significantly (P < 0.05) increased g_Shuttleworthia abundance, negatively related to gut health. Our findings suggest that dietary inclusion of 250 mg/kg CGA promotes egg quality, intestinal microbial composition, gut barrier integrity, and the antioxidant capacity of aged breeder laying hens.
Collapse
Affiliation(s)
- Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meixue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangze Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- Mufeng Layer Breeding Co., LTD, Zhuozhou City, Hebei Province 072750, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Zha P, Liu W, Zhou Y, Chen Y. Protective effects of chlorogenic acid on the intestinal barrier of broiler chickens: an immunological stress model study. Poult Sci 2024; 103:103949. [PMID: 38917604 PMCID: PMC11251075 DOI: 10.1016/j.psj.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3β, as well as the translocation of nuclear β-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
12
|
Yan Y, Li Q, Yang F, Shen L, Guo K, Zhou X. Chlorogenic acid ameliorates intestinal inflammation via miRNA-microbe axis in db/db mice. FASEB J 2024; 38:e23665. [PMID: 38780085 DOI: 10.1096/fj.202400382r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Chlorogenic acid improves diabetic symptoms, including inflammation, via the modulation of the gut microbiota. However, the mechanism by which the microbiota is regulated by chlorogenic acid remains unknown. In this study, we firstly explored the effects of chlorogenic acid on diabetic symptoms, colonic inflammation, microbiota composition, and microRNA (miRNA) expression in db/db mice. The results showed that chlorogenic acid decreased body weight, improved glucose tolerance and intestinal inflammation, altered gut microbiota composition, and upregulated the expression level of five miRNAs, including miRNA-668-3p, miRNA-467d-5p, miRNA-129-1-3p, miRNA-770-3p, and miRNA-666-5p in the colonic content. Interestingly, the levels of these five miRNAs were positively correlated with the abundance of Lactobacillus johnsonii. We then found that miRNA-129-1-3p and miRNA-666-5p promoted the growth of L. johnsonii. Importantly, miRNA-129-1-3p mimicked the effects of chlorogenic acid on diabetic symptoms and colonic inflammation in db/db mice. Furthermore, L. johnsonii exerted beneficial effects on db/db mice similar to those of chlorogenic acid. In conclusion, chlorogenic acid regulated the gut microbiota composition via affecting miRNA expression and ameliorated intestinal inflammation via the miRNA-microbe axis in db/db mice.
Collapse
Affiliation(s)
- Yongwang Yan
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
| | - Qing Li
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
- Department of Pathology, Changsha Health Vocational College, Changsha, China
| | - Fengluan Yang
- Obstetrics and Gynecology, 921 Hospital of the Chinese People's Liberation Army, Changsha, China
| | - Ling Shen
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
| | - Kangxiao Guo
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xu Zhou
- Department of Spleen, Stomach and Liver Diseases, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Zhang R, Bai D, Zhen W, Hu X, Zhang H, Zhong J, Zhang Y, Ito K, Zhang B, Yang Y, Li J, Ma Y. Aspirin eugenol ester affects ileal barrier function, inflammatory response and microbiota in broilers under lipopolysaccharide-induced immune stress conditions. Front Vet Sci 2024; 11:1401909. [PMID: 38872795 PMCID: PMC11169880 DOI: 10.3389/fvets.2024.1401909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Aims The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on ileal immune function in broilers under lipopolysaccharide (LPS)-induced immune stress. Methods Two hundred and forty one-day-old male Arbor Acres chicks were randomly divided into four groups (saline, LPS, saline + AEE and LPS + AEE) with six replicates of ten broilers each. The saline group and LPS group were fed the normal diet, while the other two groups received normal diet plus 0.1 g/kg AEE. Broilers in the LPS and LPS + AEE groups were injected intraperitoneally with 0.5 mg/kg B.W LPS in saline for seven consecutive days beginning at 14 days of age, while broilers in the saline and saline + AEE groups were injected with saline only. Results The results showed that AEE improved the ileal morphology and increased the ratio of villus height to crypt depth of immune-stressed broilers. LPS-induced immune stress significantly reduced the expression of the genes for the tight junction proteins occludin, zonula occludens-1 (ZO-1), claudin-1 and claudin-2, in the ileum, while AEE significantly up-regulated the expression of these genes. Compared with the saline group, the LPS-treated chickens showed significantly increased mRNA expression of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), and microsomal Prostaglandin E Synthesase-1 (mPGES-1) in the ileum, while they were significantly decreased by AEE supplementation. In addition, analysis of the ileal bacterial composition showed that compared with saline and LPS + AEE groups, the proportion of Firmicutes and Lactobacillus in the LPS group was lower, while the proportion of Proteobacteria and Escherichia-Shigella was higher. Similarly, Line Discriminant Analysis Effect Size (LEfSe) analysis showed that compared with the LPS group, Brevibacillus was dominant in the saline group, while the LPS + AEE group was rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, Faecalibacterium, Negativibacillus, Oscillospiraceae, and Flavonifractor. Conclusion These results indicate that dietary supplementation with 0.1 g/kg AEE could protect the intestinal health by improving the intestinal villus morphology, enhancing the expression of tight junction genes and alleviating inflammation to resist the immune stress caused by LPS stimulation in broilers, and the mechanism may involve COX-2-related signal transduction and improved intestinal microbiota composition.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science and Technology Innovation Center for Completed Set Equipment, Luoyang, China
| |
Collapse
|
14
|
Hu W, Du L, Shao J, Qu Y, Zhang L, Zhang D, Cao L, Chen H, Bi S. Molecular and metabolic responses to immune stress in the jejunum of broiler chickens: transcriptomic and metabolomic analysis. Poult Sci 2024; 103:103621. [PMID: 38507829 PMCID: PMC10966091 DOI: 10.1016/j.psj.2024.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
In the large poultry industry, where farmed chickens are fed at high density, the prevalence of pathogens and repeated vaccinations induce immune stress, which can significantly decrease the production performance and increase the mortality. This study was designed to shed light on the molecular mechanisms and metabolic pathways involved in immune stress through an in-depth analysis of transcriptomic and metabolomic changes in jejunum samples from the broilers. Two groups were established for the experiment: a control group and an LPS group. LPS group received an intraperitoneal injection of LPS solution at a dose of 250 μg per kg at 12, 14, 33, and 35 d of age, whereas the control group received a sterile saline injection. The severity of immune stress was assessed using the Disease Activity Index. A jejunal section was collected to measure the intestinal villus structure (villus length and crypt depth). RNA sequencing and metabolomics data analysis were conducted to reveal differentially expressed genes and metabolites. The results showed that the DAI index was increased and jejunal villus height/crypt depth was decreased in the LPS group. A total of 96 differentially expressed genes and 672 differentially accumulating metabolites were detected in the jejunum by LPS group compared to the control group. The comprehensive analysis of metabolomic and transcriptomic data showed that 23 pathways were enriched in the jejunum and that appetite, nutrient absorption, energy and substance metabolism disorders and ferroptosis play an important role in immune stress in broilers. Our findings provide a deeper understanding of the molecular and metabolic responses in broilers to LPS-induced immune stress, suggesting potential targets for therapeutic strategies to improve the production performance of broiler chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianjian Shao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yiwen Qu
- Bureau of Agricultural and Rural of Guanghan City, Guanghan, Sichuan, 618399, P. R. China
| | - Li Zhang
- Hanzhong Animal Disease Prevention and Control Center, Hanzhong, Shanxi, 723099, P. R. China
| | - Dezhi Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Hongwei Chen
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China; Institute of Traditional Chinese Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China.
| |
Collapse
|
15
|
Liu H, Meng H, Du M, Lv H, Wang Y, Zhang K. Chlorogenic acid ameliorates intestinal inflammation by inhibiting NF-κB and endoplasmic reticulum stress in lipopolysaccharide-challenged broilers. Poult Sci 2024; 103:103586. [PMID: 38442474 PMCID: PMC11067738 DOI: 10.1016/j.psj.2024.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
16
|
Chengcheng Z, Qingqing Z, Xiaomiao H, Wei L, Xiaorong Z, Yantao W. IFI16 plays a critical role in avian reovirus induced cellular immunosuppression and suppresses virus replication. Poult Sci 2024; 103:103506. [PMID: 38335672 PMCID: PMC10869280 DOI: 10.1016/j.psj.2024.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Avian reovirus (ARV), which commonly induces viral arthritis or tenosynovitis and immunosuppression in chickens, is associated with the nonstructural protein p17 that plays a crucial role in viral replication and regulates cellular signaling pathways through its interaction with cellular proteins. In our previous study, we identified the host protein IFN-γ-inducible protein-16 (IFI16) as an interacting partner of ARV p17 through yeast two-hybrid screening. In the current study, we further confirmed the interaction between IFI16 and p17 protein using coimmunoprecipitation, glutathione S-transferase (GST)-pulldown assay, and laser confocal microscopy techniques. Additionally, we found that the amino acid of p1761-119 is responsible for mediating the interaction with the HINa and HINb domains of IFI16. Interestingly, we observed a significant increase in IFI16 expression upon ARV infection or p17 protein exposure. Moreover, the replication of ARV was found to be largely influenced by the quantity of IFI16 protein. Overexpression of IFI16 led to a significant decrease in ARV replication, while knockdown of the IFI16 expression led to the contrary result. Additionally, our findings demonstrate that IFI16 plays a crucial role in the induction of inflammatory cytokines IFN-β and IL-1β during ARV infection as confirmed by qRT-PCR and ELISA analyses. In conclusion, our study provides novel insights into the functional role of p17 protein and the pathogenic mechanism underlying ARV infection, particularly its association with inflammatory response. Furthermore, it offers new perspectives for identifying potential therapeutic targets against ARV infection.
Collapse
Affiliation(s)
- Zhang Chengcheng
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Zhang Qingqing
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Hu Xiaomiao
- Yangzhou Vocational University, Yangzhou 225009, China
| | - Li Wei
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Zhang Xiaorong
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Wu Yantao
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
17
|
Ji Y, Liu X, Lv H, Guo Y, Nie W. Effects of Lonicerae flos and Turmeric extracts on growth performance and intestinal health of yellow-feathered broilers. Poult Sci 2024; 103:103488. [PMID: 38335669 PMCID: PMC10869291 DOI: 10.1016/j.psj.2024.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
This experiment aimed to investigate the effect of Lonicerae flos and Turmeric extracts (LTE) added to diets on growth performance and intestinal health of broilers. A total of 720 healthy 21-day-old yellow-feathered broilers were randomly divided into 3 treatment groups, with 6 replicates and 40 broilers per replicate. These 3 dietary treatments included a basal diet + 0 g/t LTE (CON), a basal diet + 300 g/t LTE (LTE300), and a basal diet + 500 g/t LTE (LTE500). The results showed that dietary supplementation of LTE linearly increased (P < 0.05) average daily gain (d 21-38) and average daily feed intake (d 21-60). At d 60, LTE300 had the highest serum total antioxidant capacity and total superoxide dismutase (P < 0.05), and LTE500 had the lowest malondialdehyde level (P < 0.05) among the three groups. Moreover, compared to CON, LTE300 significantly (P < 0.05) reduced endotoxin (d 38 and d 60) and diamine oxidase activity (d 38); LTE500 significantly (P < 0.05) reduced endotoxin (d 38 and d 60) and diamine oxidase levels (d 60) in the serum. LTE groups significantly (P < 0.05) increased ileal the ratio of villus height to crypt depth and serum immunoglobulin G. Furthermore, dietary supplementation of LTE also improved the intestinal epithelial barrier by the up-regulated mRNA expression of Claudin-1, Occludin and zonula occludens-1, and decreased the mRNA expression of interleukin-2, interleukin-8, tumor necrosis factor-α, nuclear factor κB, myeloid differentiation factor 88 and toll-like receptor 4. Compared to CON, 16S rRNA sequencing analysis showed that LTE300 had a better effect on the microbial diversity and composition in the ileum, and Bacillus and Lactobacillus_agilis were significantly enriched in LTE300. PICRUSt results showed that LTE300 was significantly (P < 0.05) enriched in four pathway pathways at KEGG level 2. In conclusion, dietary supplementation with LTE improved growth performance and intestinal health by enhancing antioxidant capacity, intestinal barrier and immune function, and regulating intestinal flora of yellow-feathered broilers.
Collapse
Affiliation(s)
- Yunru Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xingbo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huiyuan Lv
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Hu X, Zhen W, Bai D, Zhong J, Zhang R, Zhang H, Zhang Y, Ito K, Zhang B, Ma Y. Effects of dietary chlorogenic acid on cecal microbiota and metabolites in broilers during lipopolysaccharide-induced immune stress. Front Microbiol 2024; 15:1347053. [PMID: 38525083 PMCID: PMC10957784 DOI: 10.3389/fmicb.2024.1347053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Aims The aim of this study was to investigate the effects of chlorogenic acid (CGA) on the intestinal microorganisms and metabolites in broilers during lipopolysaccharide (LPS)-induced immune stress. Methods A total of 312 one-day-old Arbor Acres (AA) broilers were randomly allocated to four groups with six replicates per group and 13 broilers per replicate: (1) MS group (injected with saline and fed the basal diet); (2) ML group (injected with 0.5 mg LPS/kg and fed the basal diet); (3) MA group (injected with 0.5 mg LPS/kg and fed the basal diet supplemented with 1,000 mg/kg CGA); and (4) MB group (injected with saline and fed the basal diet supplemented with 1,000 mg/kg CGA). Results The results showed that the abundance of beneficial bacteria such as Bacteroidetes in the MB group was significantly higher than that in MS group, while the abundance of pathogenic bacteria such as Streptococcaceae was significantly decreased in the MB group. The addition of CGA significantly inhibited the increase of the abundance of harmful bacteria such as Streptococcaceae, Proteobacteria and Pseudomonas caused by LPS stress. The population of butyric acid-producing bacteria such as Lachnospiraceae and Coprococcus and beneficial bacteria such as Coriobacteriaceae in the MA group increased significantly. Non-targeted metabonomic analysis showed that LPS stress significantly upregulated the 12-keto-tetrahydroleukotriene B4, riboflavin and mannitol. Indole-3-acetate, xanthurenic acid, L-formylkynurenine, pyrrole-2-carboxylic acid and L-glutamic acid were significantly down-regulated, indicating that LPS activated inflammation and oxidation in broilers, resulting in intestinal barrier damage. The addition of CGA to the diet of LPS-stimulated broilers significantly decreased 12-keto-tetrahydro-leukotriene B4 and leukotriene F4 in arachidonic acid metabolism and riboflavin and mannitol in ABC transporters, and significantly increased N-acetyl-L-glutamate 5-semialdehyde in the biosynthesis of amino acids and arginine, The presence of pyrrole-2-carboxylic acid in D-amino acid metabolism and the cecal metabolites, indolelactic acid, xanthurenic acid and L-kynurenine, indicated that CGA could reduce the inflammatory response induced by immune stress, enhance intestinal barrier function, and boost antioxidant capacity. Conclusion We conclude that CGA can have a beneficial effect on broilers by positively altering the balance of intestinal microorganisms and their metabolites to inhibit intestinal inflammation and barrier damage caused by immune stress.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science & Technology Innovation Center for Completed Set Equipment, Luoyang, China
| |
Collapse
|
19
|
Wu D, Liang S, Du X, Xiao J, Feng H, Ren Z, Yang X, Yang X. Effects of fecal microbiota transplantation and fecal virome transplantation on LPS-induced intestinal injury in broilers. Poult Sci 2024; 103:103316. [PMID: 38128454 PMCID: PMC10776634 DOI: 10.1016/j.psj.2023.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
The interesting roles and efficiencies of fecal microbiota transplantation (FMT) have attracted considerable attention and have been gradually evidenced in specific animal models. While the growing evidence that bacteriophages play roles in FMT efficacy has attracted considerable interest. In this study, we aimed to explore the effects of FMT and fecal virome transplantation (FVT) in improving inflammatory damage and ileal microbiota disorder in broilers. A total of 224 Arbor Acres broilers were selected at 1-day-old and randomly divided into the following 4 groups, with 56 broilers in each group: the CON group (the negative control group, sterile physiological saline injection + sterile phosphate-buffered saline (PBS) solution gavage), LPS group (the positive control group, lipopolysaccharide (LPS) injection + sterile PBS solution gavage), LPS + FMT group (LPS injection + FMT solution gavage), LPS + FVT group (LPS injection + FVT solution gavage). The results showed that: LPS injection significantly upregulated the mRNA expression levels of IFN-γ (P < 0.05) and IL-8 (P < 0.001) in ileal mucosa of broilers at 11th day of age (D11), while LPS + FMT and LPS + FVT did not; LPS injection significantly upregulated the mRNA expression of ZO-1 in ileal mucosa at D11 (P < 0.01), while LPS + FMT and LPS + FVT did not; at D11, compare to CON group, LPS injection and LPS + FMT significantly increased the relative abundance of virulence factor Rab2 interacting conserved protein A-related genes in broiler ileum contents (P < 0.05), while LPS + FVT had no significant difference with CON group (P > 0.05); at D11, LPS injection significantly downregulated the biosynthesis of antibiotics pathway (P < 0.05) in the ileal contents, while LPS + FVT did not. In conclusion, both FMT and FVT could promote the recovery of inflammation caused by LPS. Furthermore, FVT had shown less disadvantage stimulation on the broilers and could reduce the risk of transmission of pathogenic genes, compared to FMT.
Collapse
Affiliation(s)
- Dengyu Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoqian Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jinhao Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hongyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
20
|
Lv H, Chen P, Wang Y, Xu L, Zhang K, Zhao J, Liu H. Chlorogenic acid protects against intestinal inflammation and injury by inactivating the mtDNA-cGAS-STING signaling pathway in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103274. [PMID: 38043405 PMCID: PMC10711517 DOI: 10.1016/j.psj.2023.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
This study aimed to determine the effects of chlorogenic acid (CGA) on the growth performance, intestinal health, immune response, and mitochondrial DNA (mtDNA)-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in broilers under necrotic enteritis (NE) challenge. The 180 one-day-old male Cobb 500 broilers with similar body weight of 44.59 ± 1.39 g were randomly allocated into 3 groups. The groups were control diet (Control group), control diet + NE challenge (NE group), and control diet + 500 mg/kg CGA + NE challenge (NE + CGA group), with 6 replicates per treatment. All broilers except the Control group were given sporulated coccidian oocysts (d 14) and Clostridium perfringens (d 19-21) by oral gavage. Our findings showed that CGA improved the growth performance and intestinal morphology in broilers under NE challenge. CGA supplementation elevated the barrier function in broilers under NE challenge, which reflected in the decreased serum concentrations of D-lactate and diamine oxidase, and upregulated jejunal protein expression of occludin. CGA supplementation also improved the immune function, which reflected in the increased concentrations and gene expressions of anti-inflammatory factors, and decreased concentrations and gene expressions of proinflammatory factors. CGA supplementation further enhanced intestinal cell proliferation and differentiation, which manifested in the increased number of goblet cells and positive cells of proliferating cell nuclear antigen on d 28 and 42. Furthermore, CGA supplementation decreased the mtDNA (d 42) and mitochondrial reactive oxygen species levels (d 28 and 42), and increased the mitochondrial membrane potential (d 42) and mitochondrial complex I (d 28 and 42) or III (d 28) activity. Broilers challenged with NE had upregulated jejunal protein expressions of cGAS, phospho-TANK-binding kinase 1, and phospho-interferon regulatory factor 7 compared with the Control group, which were downregulated after CGA supplementation. In conclusion, dietary supplementation CGA could protect against intestinal inflammation and injury by reducing the leakage of mtDNA and inactivating the cGAS-STING signaling pathway in broilers under NE challenge.
Collapse
Affiliation(s)
- Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lianbin Xu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
21
|
Vaghela PB, Navale AM, Patel CB, Patidar NH, Nahar PD, Patel F, Pathan Z, Kumari B. Protective Effects of Chia Seeds and Omega-3 Fatty Acid against Cyclophosphamide-Induced Oligospermia in Male Wistar Rats: Potential Risks of Adverse Drug Interaction with Chia Seeds. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:455-465. [PMID: 38161578 PMCID: PMC10751874 DOI: 10.59249/paej4854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Objectives: The aim of this study was to investigate whether chia (Salvia hispanica) seeds, which are rich in omega-3 fatty acids, amino acids, and vitamins with antioxidant properties, can mitigate the negative effects on male reproductive function caused by cyclophosphamide, a frequently used chemotherapeutic agent. Methods: Male wistar rats are divided into seven groups (n=6). All groups except the normal control (NC) received cyclophosphamide (30mg/kg, i.p.) for the first 5 days. The standard group received clomiphene citrate (0.25 mg/kg, p.o.). Treatment groups T1%, T5%, T10%, and ω-3 received 1%, 5%, and 10% chia seeds in the diet, and 880 mg/kg omega-3 fatty acid (p.o) respectively for 15 days. The effect on the reproductive system was evaluated by analysis of epididymal sperm characteristics, biochemical parameters, and serum testosterone level. Results: Clomiphene citrate improved oligospermia via hormone mediated effect. Chia seeds and omega-3 fatty acid treatment also showed improvement in reproductive parameters including oxidative stress and histological features of the testes. Omega-3 fatty acid treatment was more effective for the prevention of cyclophosphamide toxicity on testes as compared to chia seeds. Nasal bleeding was noted in several animals subjected to chia seed treatment. This occurrence might be attributed to chia seeds' impact on coagulation and/or platelet function, potentially heightened due to chemotherapy associated bone marrow suppression. Conclusions: In our study, chia seeds as well as omega-3 fatty acid treatment were found to be protective against cyclophosphamide-induced reproductive toxicity in rats. However, the adverse effect of hemorrhage associated with drug interaction of chia seeds with cytotoxic chemotherapeutic drugs needs careful attention and further investigation.
Collapse
Affiliation(s)
- Prince B. Vaghela
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Archana M. Navale
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Chirangi B. Patel
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Nishant H. Patidar
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Prachi D. Nahar
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Farmi Patel
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Zainab Pathan
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Barsha Kumari
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| |
Collapse
|