1
|
Wang C, Uddin M, Wani A, Graham Z, Ratanatharathorn A, Aiello A, Koenen K, Maggio M, Wildman D. The relationship between social adversity, micro-RNA expression and post-traumatic stress in a prospective, community-based cohort. RESEARCH SQUARE 2025:rs.3.rs-5867503. [PMID: 40166034 PMCID: PMC11957190 DOI: 10.21203/rs.3.rs-5867503/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Epigenetics influence and are influenced by the impact of social and environmental challenges on biological outcomes. Therefore, pinpointing epigenetic factors associated with social adversity and traumatic stress enables understanding of the mechanisms underlying vulnerability and resilience. We hypothesized that micro-RNAs (miRNAs) expression may be associated with post-traumatic stress disorder symptom severity (i.e., PTSS) following exposure to social adversity. To test this hypothesis, we leveraged blood-derived RNA samples (n=632) and social adversity data from 483 unique participants in the Detroit Neighborhood Health Study, a community-based, prospective cohort of predominantly African Americans. Results identified 86 miRNAs that are associated with social adversities (financial difficulties, perceived discrimination, cumulative trauma) and PTSS. These miRNAs are primarily involved in the immune response, brain and neural function, as well as cell cycle and differentiation, and 22(25%) have previously been associated with conditions related to PTSD, including traumatic brain injury and stress response. Our findings offer a fresh perspective on understanding the epigenetic role of miRNA in the interaction between social adversity and traumatic stress.
Collapse
|
2
|
Arunachalam V, Tran KN, Hoy W, Lea RA, Nagaraj SH. Regional autozygosity association with albumin-to-creatinine ratio reveals a novel FTO region in an Indigenous Australian population. Eur J Hum Genet 2025:10.1038/s41431-025-01799-9. [PMID: 39994404 DOI: 10.1038/s41431-025-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
The genetic distinctiveness of Indigenous Australian populations is well established, yet the Tiwi population remains underrepresented in genetic research. Due to their prolonged geographic isolation, these populations are prone to increased runs of homozygosity (ROH). We investigated the genetic diversity of the Tiwi population, isolated from mainland Australia for decades, based on ROH and their associations with clinical traits. We analyzed 455 whole genome sequences to identify population structure via PCA and performed a comparison with UK Biobank, Melanesian, and Polynesian cohorts. ROH assessment and genome-wide and regional measures of homozygosity were used to explore associations between clinical traits and autozygosity. Our analysis revealed distinct genetic characteristics of the Tiwi population that aligned closely with those of the Melanesian cohort. Tiwi individuals exhibited an increased burden of ROH, particularly in LINC0109, FMLN1, and RPL17P45 genes on chromosomes 2, 17, and 18, respectively, indicating prolonged isolation and genetic drift. A positive correlation was observed between genomic FROH and albumin-to-creatinine ratio (ACR) levels, suggesting a potential link between autozygosity and renal health markers. Furthermore, regional autozygosity association analysis revealed an association between elevated ACR and a region in FTO, implicating its role in obesity, kidney disease, and cardiovascular conditions. Importantly, we found that this association is strong under the recessive model. This research lays a robust foundation for further exploration of ROH mapping and its implications for disease susceptibility within Indigenous communities worldwide.
Collapse
Affiliation(s)
- Vignesh Arunachalam
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kim N Tran
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wendy Hoy
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rodney A Lea
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Velasco ER, Nabás JF, Torrents-Rodas D, Arias B, Torrubia R, Fullana MA, Andero R. The PAC1 receptor risk genotype does not influence fear acquisition, extinction, or generalization in women with no trauma/low trauma. Biol Psychol 2025; 194:108981. [PMID: 39733787 DOI: 10.1016/j.biopsycho.2024.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Women are known to have twice as much lifetime prevalence of post-traumatic stress disorder (PTSD) as men do. It has been reported that the risk genotype (CC) of a single nucleotide polymorphism (SNP) (rs2267735) in the pituitary adenylate cyclase-activating polypeptide (PACAP-PAC1R) system is associated with PTSD risk and altered fear conditioning and fear extinction in women. Surprisingly, no previous work has studied the effect of this SNP on fear conditioning, extinction, or generalization in non-traumatized/low trauma load women. Here, two separate groups of women underwent either a two-day fear conditioning and fear extinction paradigm, or a one-day fear conditioning and fear generalization paradigm. Results showed no significant differences between genotypes in conditioned stimulus discrimination, during fear acquisition, extinction, or generalization. These findings suggest that the previously reported fear processing impairments in traumatized CC women are not a consequence of this genotype alone, but likely dependent on the interaction between this genetic risk and the exposure to traumatic stressors.
Collapse
Affiliation(s)
- Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaime F Nabás
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - David Torrents-Rodas
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| | - Bárbara Arias
- Secció de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Torrubia
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
4
|
Zorkina YA, Golubeva EA, Gurina OI, Reznik AM, Morozova AY. [Genetic variants associated with the development of stress disorders: A systematic review of GWAS]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:12-26. [PMID: 40195096 DOI: 10.17116/jnevro202512503112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Studying the genetic basis of post-traumatic stress disorder (PTSD) can be useful in predicting its risk in a person with a history of severe traumatic stress and in facilitating earlier diagnosis and referral to a specialist. The aim of the study is to review all GWAS studies related to PTSD. In total, 20 studies were included, of which 5 meta-analyses and 9 included war veterans. The functions of genes and their associations were considered, which included single-cell polymorphisms in different groups of genes involved in embryogenesis, neuron formation, and cell functioning, as well as many DNA sequences with non-coding RNA transcribed. The repeatability of the results between studies and replicative samples was studied. Between the studies, the associations were repeated in the CAMKV, CDHR4, DCC, FAM120A, FOXP2 (3 studies), MAD1L1 (3 studies), MAPT, NCAM1, NOS1, SP4, ZMYM4, TCF4 genes. A new large-scale study with many found associations was considered individually. Studies regarding polygenic risk were also studied, and several studies showed genetic comorbidity with anxiety and bipolar disorder. However, the models developed by the authors explain a small percentage of variance and are weakly repeated in other samples. It may be possible to solve this problem by using larger samples and clearer homogeneous inclusion criteria. Thus, at the moment, there are few GWAS studies of PTSD; they are ambiguous and uninformative compared to the same studies for other mental disorders, but they have further potential for assessing the risks of developing the disease.
Collapse
Affiliation(s)
- Y A Zorkina
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
- Alekseev Psychiatric Clinical Hospital No. 1, Moscow, Russia
| | - E A Golubeva
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
| | - O I Gurina
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
| | - A M Reznik
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
- Russian University of Biotechnology, Moscow, Russia
| | - A Y Morozova
- V. Serbsky National Medical Resesarch Center for Psychiatry and Narcology, Moscow, Russia
- Alekseev Psychiatric Clinical Hospital No. 1, Moscow, Russia
| |
Collapse
|
5
|
Wellington NJ, Boucas AP, Lagopoulos J, Kuballa AV. Clinical potential of epigenetic and microRNA biomarkers in PTSD. J Neurogenet 2024; 38:79-101. [PMID: 39470065 DOI: 10.1080/01677063.2024.2419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Molecular studies identifying alterations associated with PTSD have predominantly focused on candidate genes or conducted genome-wide analyses, often encountering issues with replicability. This review aims to identify robust bi-directional epigenetic and microRNA (miRNA) regulators focusing on their functional impacts on post-traumatic stress disorder (PTSD) and their utility in clinical diagnosis, whilst examining knowledge gaps in the existing research. A systematic search was conducted across multiple databases, including Web of Science, Scopus, Global Health (CABI), and PubMed, augmented by grey literature, yielding 3465 potential articles. Ultimately, 92 studies met the inclusion criteria and were analysed to pinpoint significant epigenetic changes with clinically relevant potential in PTSD. The selected studies explored histone modifications, CpG sites, single nucleotide polymorphisms (SNPs), and miRNA biomarkers. Specifically, nine studies examined epigenetic markers, detailing the influence of methylation on chromatin accessibility at histone positions H3K4, H3K9, and H3K36 within a PTSD context. Seventy-three studies investigated DNA methylation, identifying 20 hypermethylated and five hypomethylated CpG islands consistently observed in PTSD participants. Nineteen studies linked 88 SNPs to PTSD, with only one SNP replicated within these studies. Furthermore, sixteen studies focused on miRNAs, with findings indicating 194 downregulated and 24 upregulated miRNAs were associated with PTSD. Although there are epigenetic mechanisms that are significantly affected by PTSD, a granular deconstruction of these mechanisms elucidates the need to incorporate more nuanced approaches to identifying the factors that contribute to PTSD. Technological advances in diagnostic tools are driving the need to integrate detailed participant characteristics, trauma type, genetic susceptibilities, and best practices for robust reporting. This comprehensive approach will be crucial for enhancing the translational potential of PTSD research for clinical application.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, Australia
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| | | | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| |
Collapse
|
6
|
Skolariki K, Vrahatis AG, Krokidis MG, Exarchos TP, Vlamos P. Assessing and Modelling of Post-Traumatic Stress Disorder Using Molecular and Functional Biomarkers. BIOLOGY 2023; 12:1050. [PMID: 37626936 PMCID: PMC10451531 DOI: 10.3390/biology12081050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder that develops following exposure to traumatic events. PTSD is influenced by catalytic factors such as dysregulated hypothalamic-pituitary-adrenal (HPA) axis, neurotransmitter imbalances, and oxidative stress. Genetic variations may act as important catalysts, impacting neurochemical signaling, synaptic plasticity, and stress response systems. Understanding the intricate gene networks and their interactions is vital for comprehending the underlying mechanisms of PTSD. Focusing on the catalytic factors of PTSD is essential because they provide valuable insights into the underlying mechanisms of the disorder. By understanding these factors and their interplay, researchers may uncover potential targets for interventions and therapies, leading to more effective and personalized treatments for individuals with PTSD. The aforementioned gene networks, composed of specific genes associated with the disorder, provide a comprehensive view of the molecular pathways and regulatory mechanisms involved in PTSD. Through this study valuable insights into the disorder's underlying mechanisms and opening avenues for effective treatments, personalized interventions, and the development of biomarkers for early detection and monitoring are provided.
Collapse
Affiliation(s)
| | | | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (K.S.); (A.G.V.); (T.P.E.); (P.V.)
| | | | | |
Collapse
|
7
|
Birch JN, Vanderheyden WM. The Molecular Relationship between Stress and Insomnia. Adv Biol (Weinh) 2022; 6:e2101203. [PMID: 35822937 DOI: 10.1002/adbi.202101203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
The bi-directional relationship between sleep and stress has been actively researched as sleep disturbances and stress have become increasingly common in society. Interestingly, the brain and underlying neural circuits important for sleep regulation may respond uniquely to stress that leads to post-traumatic stress disorder (PTSD) and stress that does not. In stress that does not lead to PTSD, the hypothalamic-pituitary-adrenal axis (HPA) pathway is activated normally that results in sympathetic nervous system activation that allows the brain and body to return to baseline functioning. However, exposure to stress that leads to PTSD, causes enhanced negative feedback of this same pathway and results in long-term physiological and psychological changes. In this review, how stress regulates glucocorticoid signaling pathways in brain glial cells called astrocytes, and then mediates stress-induced insomnia are examined. Astrocytes are critical sleep regulatory cells and their connections to sleep and stress due to disturbed glucocorticoid signaling provide a novel mechanism to explain how stress leads to insomnia. This review will examine the interactions of stress neurobiology, astrocytes, sleep, and glucocorticoid signaling pathways and will examine the how stress that leads to PTSD and stress that does not impacts sleep-regulatory processes.
Collapse
Affiliation(s)
- Jasmine N Birch
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, 412 E. Spokane Falls Blvd, Spokane, WA, 99 202, USA
| | - William M Vanderheyden
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Pharmaceutical and Biomedical Sciences Building, Room 213/Lab 230, 412 E. Spokane Falls Blvd, (Lab) 509-368-6809, Spokane, WA, 99 202, USA
| |
Collapse
|
8
|
Seligowski AV, Misganaw B, Duffy LA, Ressler KJ, Guffanti G. Leveraging Large-Scale Genetics of PTSD and Cardiovascular Disease to Demonstrate Robust Shared Risk and Improve Risk Prediction Accuracy. Am J Psychiatry 2022; 179:814-823. [PMID: 36069022 PMCID: PMC9633348 DOI: 10.1176/appi.ajp.21111113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Individuals with posttraumatic stress disorder (PTSD) are significantly more likely to be diagnosed with cardiovascular disease (CVD) (e.g., myocardial infarction, stroke). The evidence for this link is so compelling that the National Institutes of Health convened a working group to determine gaps in the literature, including the need for large-scale genomic studies to identify shared genetic risk. The aim of the present study was to address some of these gaps by utilizing PTSD and CVD genome-wide association study (GWAS) summary statistics in a large biobank sample to determine the shared genetic risk of PTSD and CVD. METHODS A large health care biobank data set was used (N=36,412), combined with GWAS summary statistics from publicly available large-scale PTSD and CVD studies. Disease phenotypes (e.g., PTSD) were collected from electronic health records. De-identified genetic data from the biobank were genotyped using Illumina SNP array. Summary statistics data sets were processed with the following quality-control criteria: 1) SNP heritability h2 >0.05, 2) compute z-statistics (z=beta/SE or z=log(OR)/SE), 3) filter nonvariable SNPs (0 RESULTS Significant genetic correlations were found between PTSD and CVD (rG=0.24, SE=0.06), and Mendelian randomization analyses indicated a potential causal link from PTSD to hypertension (β=0.20, SE=0.04), but not the reverse. PTSD summary statistics significantly predicted PTSD diagnostic status (R2=0.27), and this was significantly improved by incorporating summary statistics from CVD and major depressive disorder (R2=1.30). Further, pathway enrichment analyses indicated that genetic variants involved in shared PTSD-CVD risk included those involved in postsynaptic structure, synapse organization, and interleukin-7-mediated signaling pathways. CONCLUSIONS The results from this study suggest that PTSD and CVD may share genetic risk. Further, these results implicate PTSD as a risk factor leading to the development of hypertension and coronary artery disease. Additional research is needed to determine the clinical utility of these findings.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Burook Misganaw
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | | | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Guia Guffanti
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| |
Collapse
|
9
|
Post-traumatic stress disorder in the Canadian Longitudinal Study on Aging: A genome-wide association study. J Psychiatr Res 2022; 154:209-218. [PMID: 35952521 DOI: 10.1016/j.jpsychires.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Canada exhibits one of highest lifetime prevalence for post-traumatic stress disorder (PTSD), but the etiology of this debilitating mental health condition still remains largely unknown. This study aims to examine the genetics of PTSD in the Canadian Longitudinal Study on Aging (CLSA) to identify potential genetic factors involved in the development of PTSD. METHOD The CLSA sample was screened for primary (PTSD status) and secondary outcomes (avoidance, detachment, guardedness, and nightmares) based on the Primary Care PTSD Screen Scale (PC-PTSD). After GWAS quality control and whole-genome imputation, single-marker, gene-based, and polygenic risk score (PRS) analyses were performed. RESULTS Based on available genotype and phenotype data, N = 16,535 individuals were selected for the analyses. While genome-wide analyses did not show significant findings for our primary and secondary outcomes, PRS analyses showed variable levels of association between PC-PTSD items with trauma, major depressive disorder, schizophrenia, bipolar disorder, educational attainment, and insomnia (p < 5e-4). CONCLUSION This is the first GWAS of PTSD status and individual PC-PTSD items in a population sample of older adults from Canada. This study was also able to replicate findings from previous studies. Genetic investigations into individual symptom components of PTSD may help untangle the complex genetic architecture of PTSD.
Collapse
|
10
|
Katrinli S, Smith AK. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol Stress 2021; 15:100366. [PMID: 34355049 PMCID: PMC8322450 DOI: 10.1016/j.ynstr.2021.100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 11/01/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition that adversely affect mental and physical health. Recent studies have increasingly explored the role of the immune system in risk for PTSD and its related symptoms. Dysregulation of the immune system may lead to central nervous system tissue damage and impair learning and memory processes. Individuals with PTSD often have comorbid inflammatory or auto-immune disorders. Evidence shows associations between PTSD and multiple genes that are involved in immune-related or inflammatory pathways. In this review, we will summarize the evidence of immune dysregulation in PTSD, outlining the contributions of distinct cell types, genes, and biological pathways. We use the Human Leukocyte Antigen (HLA) locus to illustrate the contribution of genetic variation to function in different tissues that contribute to PTSD etiology, severity, and comorbidities.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Alicia K. Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
11
|
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder afflicting approximately 7% of the population. The diverse number of traumatic events and the wide array of symptom combinations leading to PTSD diagnosis contribute substantial heterogeneity to studies of the disorder. Genomic and complimentary-omic investigations have rapidly increased our understanding of the heritable risk for PTSD. In this review, we emphasize the contributions of genome-wide association, epigenome-wide association, transcriptomic, and neuroimaging studies to our understanding of PTSD etiology. We also discuss the shared risk between PTSD and other complex traits derived from studies of causal inference, co-expression, and brain morphological similarities. The investigations completed so far converge on stark contrasts in PTSD risk between sexes, partially attributed to sex-specific prevalence of traumatic experiences with high conditional risk of PTSD. To further understand PTSD biology, future studies should focus on detecting risk for PTSD while accounting for substantial cohort-level heterogeneity (e.g. civilian v. combat-exposed PTSD cases or PTSD risk among cases exposed to specific traumas), expanding ancestral diversity among study cohorts, and remaining cognizant of how these data influence social stigma associated with certain traumatic events among underrepresented minorities and/or high-risk populations.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
12
|
Ponomareva OY, Ressler KJ. Genomic factors underlying sex differences in trauma-related disorders. Neurobiol Stress 2021; 14:100330. [PMID: 33997155 PMCID: PMC8102626 DOI: 10.1016/j.ynstr.2021.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 12/26/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a devastating illness with treatment that is effective in only approximately half of the population. This limited rate of response highlights the necessity for research into underlying individual biological mechanisms that mediate development and progression of this disease, allowing for identification of patient-specific treatments. PTSD has clear sex differences in both risk and symptom patterns. Thus, one approach is to characterize trauma-related changes between men and women who exhibit differences in treatment efficacy and response to trauma. Recent technological advances in sequencing have identified several genomic loci and transcriptional changes that are associated with post-trauma symptomatology. However, although the diagnosis of PTSD is more prevalent in women, the genetic factors underlying sex differences remain poorly understood. Here, we review recent work that highlights current understanding and limitations in the field of sex differences in PTSD and related symptomatology.
Collapse
Affiliation(s)
- Olga Y Ponomareva
- Neuropsychiatry Translational Research Fellowship Program, Boston VA Healthcare System, Boston, MA, USA.,McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
13
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Malan-Müller S, de Souza VBC, Daniels WMU, Seedat S, Robinson MD, Hemmings SMJ. Shedding Light on the Transcriptomic Dark Matter in Biological Psychiatry: Role of Long Noncoding RNAs in D-cycloserine-Induced Fear Extinction in Posttraumatic Stress Disorder. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:352-369. [PMID: 32453623 DOI: 10.1089/omi.2020.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological psychiatry scholarship on posttraumatic stress disorder (PTSD) is making strides with new omics technologies. In this context, there is growing recognition that noncoding RNAs are vital for the regulation of gene and protein expression. Long noncoding RNAs (lncRNAs) can modulate splicing, influence RNA editing, messenger RNA (mRNA) stability, translation activation, and microRNA-mRNA interactions, are highly abundant in the brain, and have been implicated in neurodevelopmental disorders. The largest subclass of lncRNAs is long intergenic noncoding RNAs (lincRNAs). We report on lincRNAs and their predicted mRNA targets associated with fear extinction induced by co-administration of D-cycloserine and behavioral fear extinction in a PTSD animal model. Forty-three differentially expressed lincRNAs and 190 differentially expressed mRNAs were found to be associated with fear extinction. Eight lincRNAs were predicted to interact with and regulate 108 of these mRNAs, while seven lincRNAs were predicted to interact with 22 of their pre-mRNA transcripts. Based on the functions of their target mRNAs, we inferred that these lincRNAs bind to nucleotides, ribonucleotides, and proteins; subsequently influence nervous system development, morphology, and immune system functioning; and could be associated with nervous system and mental health disorders. We found the quantitative trait loci that overlapped with fear extinction-related lincRNAs included traits such as serum corticosterone level, neuroinflammation, anxiety, stress, and despair-related responses. To the best of our knowledge, this is the first study to identify lincRNAs and their RNA targets with a putative role in transcriptional regulation during fear extinction in the context of an animal model of PTSD.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Vladimir B C de Souza
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Willie M U Daniels
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Sex differences in PTSD are well-established with a 2:1 sex ratio favouring women. Less well-established is the basis of such differences. The purpose of this review is to explore recent research examining potential gender- and sex-based contributors to sex differences in PTSD. RECENT FINDINGS We identified 19 studies published since 2015. Masculinity is inconclusively associated with PTSD, but masculine ideals and masculine gender role stress are positively associated with PTSD. Among the sex-related factors, testosterone, oestradiol, progesterone, and ALLO/5α-progesterone ratio are believed to be involved in the development of PTSD. These factors likely affect PTSD risk directly and through epigenetic mechanisms. Findings suggest that gender and sex have multiple ways of affecting PTSD, including gender roles, genetic predisposition, and hormonal influences. These factors work together to put women at a particular risk of developing PTSD. By conducting more research, we may improve prediction, prevention, and treatment of PTSD.
Collapse
|
16
|
Maul S, Giegling I, Fabbri C, Corponi F, Serretti A, Rujescu D. Genetics of resilience: Implications from genome-wide association studies and candidate genes of the stress response system in posttraumatic stress disorder and depression. Am J Med Genet B Neuropsychiatr Genet 2020; 183:77-94. [PMID: 31583809 DOI: 10.1002/ajmg.b.32763] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Resilience is the ability to cope with critical situations through the use of personal and socially mediated resources. Since a lack of resilience increases the risk of developing stress-related psychiatric disorders such as posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), a better understanding of the biological background is of great value to provide better prevention and treatment options. Resilience is undeniably influenced by genetic factors, but very little is known about the exact underlying mechanisms. A recently published genome-wide association study (GWAS) on resilience has identified three new susceptibility loci, DCLK2, KLHL36, and SLC15A5. Further interesting results can be found in association analyses of gene variants of the stress response system, which is closely related to resilience, and PTSD and MDD. Several promising genes, such as the COMT (catechol-O-methyltransferase) gene, the serotonin transporter gene (SLC6A4), and neuropeptide Y (NPY) suggest gene × environment interaction between genetic variants, childhood adversity, and the occurrence of PTSD and MDD, indicating an impact of these genes on resilience. GWAS on PTSD and MDD provide another approach to identifying new disease-associated loci and, although the functional significance for disease development for most of these risk genes is still unknown, they are potential candidates due to the overlap of stress-related psychiatric disorders and resilience. In the future, it will be important for genetic studies to focus more on resilience than on pathological phenotypes, to develop reasonable concepts for measuring resilience, and to establish international cooperations to generate sufficiently large samples.
Collapse
Affiliation(s)
- Stephan Maul
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ina Giegling
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Corponi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, Wang YN, Hu PS, Liu ZX, Zeng ZL, Zhao Q, Deng R, Zhu XF, Ju HQ, Xu RH. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer 2019; 18:174. [PMID: 31791342 PMCID: PMC6886219 DOI: 10.1186/s12943-019-1105-0] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play nonnegligible roles in the epigenetic regulation of cancer cells. This study aimed to identify a specific lncRNA that promotes the colorectal cancer (CRC) progression and could be a potential therapeutic target. METHODS We screened highly expressed lncRNAs in human CRC samples compared with their matched adjacent normal tissues. The proteins that interact with LINRIS (Long Intergenic Noncoding RNA for IGF2BP2 Stability) were confirmed by RNA pull-down and RNA immunoprecipitation (RIP) assays. The proliferation and metabolic alteration of CRC cells with LINRIS inhibited were tested in vitro and in vivo. RESULTS LINRIS was upregulated in CRC tissues from patients with poor overall survival (OS), and LINRIS inhibition led to the impaired CRC cell line growth. Moreover, knockdown of LINRIS resulted in a decreased level of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), a newly found N6-methyladenosine (m6A) 'reader'. LINRIS blocked K139 ubiquitination of IGF2BP2, maintaining its stability. This process prevented the degradation of IGF2BP2 through the autophagy-lysosome pathway (ALP). Therefore, knockdown of LINRIS attenuated the downstream effects of IGF2BP2, especially MYC-mediated glycolysis in CRC cells. In addition, the transcription of LINRIS could be inhibited by GATA3 in CRC cells. In vivo experiments showed that the inhibition of LINRIS suppressed the proliferation of tumors in orthotopic models and in patient-derived xenograft (PDX) models. CONCLUSION LINRIS is an independent prognostic biomarker for CRC. The LINRIS-IGF2BP2-MYC axis promotes the progression of CRC and is a promising therapeutic target.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Huan Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Jing Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Heng-Ying Pu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Nan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Shan Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
18
|
Howie H, Rijal CM, Ressler KJ. A review of epigenetic contributions
to post-traumatic stress disorder
. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:417-428. [PMID: 31949409 PMCID: PMC6952751 DOI: 10.31887/dcns.2019.21.4/kressler] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a syndrome which serves as a classic example of psychiatric disorders that result from the intersection of nature and nurture, or gene and environment. By definition, PTSD requires the experience of a traumatic exposure, and yet data suggest that the risk for PTSD in the aftermath of trauma also has a heritable (genetic) component. Thus, PTSD appears to require both a biological (genetic) predisposition that differentially alters how the individual responds to or recovers from trauma exposure. Epigenetics is defined as the study of changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself, and more recently it has come to refer to direct alteration of DNA regulation, but without altering the primary sequence of DNA, or the genetic code. With regards to PTSD, epigenetics provides one way for environmental exposure to be "written" upon the genome, as a direct result of gene and environment (trauma) interactions. This review provides an overview of the main currently understood types of epigenetic regulation, including DNA methylation, histone regulation of chromatin, and noncoding RNA regulation of gene expression. Furthermore, we examine recent literature related to how these methods of epigenetic regulation may be involved in differential risk and resilience for PTSD in the aftermath of trauma.
.
Collapse
Affiliation(s)
- Hunter Howie
- Aartners Healthcare, Boston, Massachusetts, US; McLean Hospital, Belmont, Massachusetts, US
| | - Chuda M Rijal
- Partners Healthcare, Boston, Massachusetts, US; McLean Hospital, Belmont, Massachusetts, US
| | - Kerry J Ressler
- Partners Healthcare, Boston, Massachusetts, US; McLean Hospital, Belmont, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US
| |
Collapse
|
19
|
Meier SM, Trontti K, Purves KL, Als TD, Grove J, Laine M, Pedersen MG, Bybjerg-Grauholm J, Bækved-Hansen M, Sokolowska E, Mortensen PB, Hougaard DM, Werge T, Nordentoft M, Breen G, Børglum AD, Eley TC, Hovatta I, Mattheisen M, Mors O. Genetic Variants Associated With Anxiety and Stress-Related Disorders: A Genome-Wide Association Study and Mouse-Model Study. JAMA Psychiatry 2019; 76:924-932. [PMID: 31116379 PMCID: PMC6537792 DOI: 10.1001/jamapsychiatry.2019.1119] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMPORTANCE Anxiety and stress-related disorders are among the most common mental disorders. Although family and twin studies indicate that both genetic and environmental factors play an important role underlying their etiology, the genetic underpinnings of anxiety and stress-related disorders are poorly understood. OBJECTIVES To estimate the single-nucleotide polymorphism-based heritability of anxiety and stress-related disorders; to identify novel genetic risk variants, genes, or biological pathways; to test for pleiotropic associations with other psychiatric traits; and to evaluate the association of psychiatric comorbidities with genetic findings. DESIGN, SETTING, PARTICIPANTS This genome-wide association study included individuals with various anxiety and stress-related diagnoses and controls derived from the population-based Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) study. Lifetime diagnoses of anxiety and stress-related disorders were obtained through the national Danish registers. Genes of interest were further evaluated in mice exposed to chronic social defeat. The study was conducted between June 2016 and November 2018. MAIN OUTCOMES AND MEASURES Diagnoses of a relatively broad diagnostic spectrum of anxiety and stress-related disorders. RESULTS The study sample included 12 655 individuals with various anxiety and stress-related diagnoses and 19 225 controls. Overall, 17 740 study participants (55.6%) were women. A total of 7308 participants (22.9%) were born between 1981-1985, 8840 (27.7%) between 1986-1990, 8157 (25.6%) between 1991-1995, 5918 (18.6%) between 1996-2000, and 1657 (5.2%) between 2001-2005. Standard association analysis revealed variants in PDE4B to be associated with anxiety and stress-related disorder (rs7528604; P = 5.39 × 10-11; odds ratio = 0.89; 95% CI, 0.86-0.92). A framework of sensitivity analyses adjusting for mental comorbidity supported this result showing consistent association of PDE4B variants with anxiety and stress-related disorder across analytical scenarios. In mouse models, alterations in Pde4b expression were observed in those mice displaying anxiety-like behavior after exposure to chronic stress in the prefrontal cortex (P = .002; t = -3.33) and the hippocampus (P = .001; t = -3.72). We also found a single-nucleotide polymorphism heritability of 28% (standard error = 0.027) and that the genetic signature of anxiety and stress-related overlapped with psychiatric traits, educational outcomes, obesity-related phenotypes, smoking, and reproductive success. CONCLUSIONS AND RELEVANCE This study highlights anxiety and stress-related disorders as complex heritable phenotypes with intriguing genetic correlations not only with psychiatric traits, but also with educational outcomes and multiple obesity-related phenotypes. Furthermore, we highlight the candidate gene PDE4B as a robust risk locus pointing to the potential of PDE4B inhibitors in treatment of these disorders.
Collapse
Affiliation(s)
- Sandra M. Meier
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany,now with the Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kalevi Trontti
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, Department of Psychology and Logopedics, Medicum, and SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Kirstin L. Purves
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Thomas Damm Als
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Department of Biomedicine, Aarhus University, Aarhus, Denmark,Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Department of Biomedicine, Aarhus University, Aarhus, Denmark,Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Mikaela Laine
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, Department of Psychology and Logopedics, Medicum, and SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækved-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ewa Sokolowska
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, Department of Psychology and Logopedics, Medicum, and SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Preben B. Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark,National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - David M. Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Danish Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Copenhagen University Hospital, Roskilde, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Mental Health Centre Copenhagen, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,National Institute for Health Research Biomedical Research Centre for Mental Health, South London and Maudsley National Health Service Trust, London, United Kingdom
| | - Anders D. Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Department of Biomedicine, Aarhus University, Aarhus, Denmark,Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Thalia C. Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Iiris Hovatta
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, Department of Psychology and Logopedics, Medicum, and SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark,Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany,Department of Biomedicine, Aarhus University, Aarhus, Denmark,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| |
Collapse
|
20
|
Sheerin CM, Kovalchick LV, Overstreet C, Rappaport LM, Williamson V, Vladimirov V, Ruggiero KJ, Amstadter AB. Genetic and Environmental Predictors of Adolescent PTSD Symptom Trajectories Following a Natural Disaster. Brain Sci 2019; 9:E146. [PMID: 31226868 PMCID: PMC6627286 DOI: 10.3390/brainsci9060146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
: Genes, environmental factors, and their interplay affect posttrauma symptoms. Although environmental predictors of the longitudinal course of posttraumatic stress disorder (PTSD) symptoms are documented, there remains a need to incorporate genetic risk into these models, especially in youth who are underrepresented in genetic studies. In an epidemiologic sample tornado-exposed adolescents (n = 707, 51% female, Mage = 14.54 years), trajectories of PTSD symptoms were examined at baseline and at 4-months and 12-months following baseline. This study aimed to determine if rare genetic variation in genes previously found in the sample to be related to PTSD diagnosis at baseline (MPHOSPH9, LGALS13, SLC2A2), environmental factors (disaster severity, social support), or their interplay were associated with symptom trajectories. A series of mixed effects models were conducted. Symptoms decreased over the three time points. Elevated tornado severity was associated with elevated baseline symptoms. Elevated recreational support was associated with lower baseline symptoms and attenuated improvement over time. Greater LGLAS13 variants attenuated symptom improvement over time. An interaction between MPHOSPH9 variants and tornado severity was associated with elevated baseline symptoms, but not change over time. Findings suggest the importance of rare genetic variation and environmental factors on the longitudinal course of PTSD symptoms following natural disaster trauma exposure.
Collapse
Affiliation(s)
- Christina M Sheerin
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Laurel V Kovalchick
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Cassie Overstreet
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Lance M Rappaport
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Department of Psychology, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | - Vernell Williamson
- Molecular Diagnostics Laboratory, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Vladimir Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Kenneth J Ruggiero
- Departments of Nursing and Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Ananda B Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
21
|
Misganaw B, Guffanti G, Lori A, Abu-Amara D, Flory JD, Mueller S, Yehuda R, Jett M, Marmar CR, Ressler KJ, Doyle FJ. Polygenic risk associated with post-traumatic stress disorder onset and severity. Transl Psychiatry 2019; 9:165. [PMID: 31175274 PMCID: PMC6555815 DOI: 10.1038/s41398-019-0497-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric illness with a highly polygenic architecture without large effect-size common single-nucleotide polymorphisms (SNPs). Thus, to capture a substantial portion of the genetic contribution, effects from many variants need to be aggregated. We investigated various aspects of one such approach that has been successfully applied to many traits, polygenic risk score (PRS) for PTSD. Theoretical analyses indicate the potential prediction ability of PRS. We used the latest summary statistics from the largest published genome-wide association study (GWAS) conducted by Psychiatric Genomics Consortium for PTSD (PGC-PTSD). We found that the PRS constructed for a cohort comprising veterans of recent wars (n = 244) explains a considerable proportion of PTSD onset (Nagelkerke R2 = 4.68%, P = 0.003) and severity (R2 = 4.35%, P = 0.0008) variances. However, the performance on an African ancestry sub-cohort was minimal. A PRS constructed with schizophrenia GWAS also explained a significant fraction of PTSD diagnosis variance (Nagelkerke R2 = 2.96%, P = 0.0175), confirming previously reported genetic correlation between the two psychiatric ailments. Overall, these findings demonstrate the important role polygenic analyses of PTSD will play in risk prediction models as well as in elucidating the biology of the disorder.
Collapse
Affiliation(s)
- Burook Misganaw
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Guia Guffanti
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Duna Abu-Amara
- Steven and Alexandra Cohen Veterans Center for the Study of Posttraumatic Stress and Traumatic Brain Injury; and Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Janine D Flory
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susanne Mueller
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marti Jett
- Integrative Systems Biology, United States Army Medical Research and Material Command, United States Army Center for Environmental Health Research, Frederick, MD, USA
| | - Charles R Marmar
- Steven and Alexandra Cohen Veterans Center for the Study of Posttraumatic Stress and Traumatic Brain Injury; and Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Tamman AJF, Sippel LM, Han S, Neria Y, Krystal JH, Southwick SM, Gelernter J, Pietrzak RH. Attachment style moderates effects of FKBP5 polymorphisms and childhood abuse on post-traumatic stress symptoms: Results from the National Health and Resilience in Veterans Study. World J Biol Psychiatry 2019; 20:289-300. [PMID: 28891785 DOI: 10.1080/15622975.2017.1376114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objectives: To determine the main and interactive effects of four FKBP5 polymorphisms (rs9296158, rs3800373, rs1360780 and rs9470080), childhood abuse and attachment style in predicting severity of PTSD symptoms in two independent, nationally representative samples of US military veterans. Methods: Data were analysed from two independent samples of European-American US military veterans who participated in the National Health and Resilience in Veterans Study (N = 1,585 and 577 respectively). Results: Results revealed that carriage of two FKBP5 minor alleles, childhood abuse and insecure attachment style were associated with greater severity of PTSD symptoms. Gene × environment interactions were also observed, with the interaction of FKBP5 homozygous minor allele carriage and history of childhood abuse associated with greater severity of PTSD symptoms; however, these effects were fully counteracted by secure attachment style. Conclusions: Results of this study build on prior work demonstrating a gene × environment interaction between FKBP5 polymorphisms and childhood abuse in predicting risk for PTSD by suggesting that attachment style may moderate this effect. This study has implications for prevention and treatment efforts designed to promote a secure attachment style in veterans with high-risk FKBP5 genotypes and childhood abuse histories.
Collapse
Affiliation(s)
- Amanda J F Tamman
- a Division of Psychology and Language Sciences , University College London , London , UK.,b The PTSD Research and Treatment Program , Columbia University , New York , NY , USA.,c Anxiety Disorders Clinic , New York State Psychiatric Institute , New York , NY , USA.,d Department of Psychiatry , Yale University School of Medicine , New Haven , CT , USA
| | - Lauren M Sippel
- d Department of Psychiatry , Yale University School of Medicine , New Haven , CT , USA.,e Clinical Neurosciences Division , U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System , West Haven , CT , USA
| | - Shizhong Han
- f Department of Psychiatry , University of Iowa Carver College of Medicine , Iowa City , IA , USA
| | - Yuval Neria
- b The PTSD Research and Treatment Program , Columbia University , New York , NY , USA.,c Anxiety Disorders Clinic , New York State Psychiatric Institute , New York , NY , USA
| | - John H Krystal
- d Department of Psychiatry , Yale University School of Medicine , New Haven , CT , USA.,e Clinical Neurosciences Division , U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System , West Haven , CT , USA
| | - Steven M Southwick
- d Department of Psychiatry , Yale University School of Medicine , New Haven , CT , USA.,e Clinical Neurosciences Division , U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System , West Haven , CT , USA
| | - Joel Gelernter
- d Department of Psychiatry , Yale University School of Medicine , New Haven , CT , USA.,e Clinical Neurosciences Division , U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System , West Haven , CT , USA
| | - Robert H Pietrzak
- d Department of Psychiatry , Yale University School of Medicine , New Haven , CT , USA.,e Clinical Neurosciences Division , U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System , West Haven , CT , USA
| |
Collapse
|
23
|
Morrison FG, Miller MW, Logue MW, Assef M, Wolf EJ. DNA methylation correlates of PTSD: Recent findings and technical challenges. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:223-234. [PMID: 30503303 PMCID: PMC6314898 DOI: 10.1016/j.pnpbp.2018.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that epigenetic factors play a critical role in posttraumatic stress disorder (PTSD), by mediating the impact of environmental exposures to trauma on the regulation of gene expression. DNA methylation is one epigenetic process that has been highly studied in PTSD. This review will begin by providing an overview of DNA methylation (DNAm) methods, and will then highlight two major biological systems that have been identified in the epigenetic regulation in PTSD: (a) the immune system and (b) the stress response system. In addition to candidate gene approaches, we will review novel strategies to study epigenome-wide PTSD-related effects, including epigenome-wide algorithms that distill information from many loci into a single summary score (e.g., measures of "epigenetic age" which have been associated with PTSD). This review will also cover recent epigenome wide association studies (EWAS) of PTSD, and biological pathway models used to identify gene sets enriched in PTSD. Finally, we address technical and methodological advances and challenges to the field, and highlight exciting directions for future research.
Collapse
Affiliation(s)
- Filomene G Morrison
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA.
| | - Mark W Miller
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA; Biomedical Genetics, Boston University School of Medicine, USA; Department of Biostatistics, Boston University School of Public Health, USA
| | - Michele Assef
- Boston University, College of Health & Rehabilitation Sciences: Sargent College, USA
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System, USA; Department of Psychiatry, Boston University School of Medicine, USA
| |
Collapse
|
24
|
Radhakrishnan K, Aslan M, Harrington KM, Pietrzak RH, Huang G, Muralidhar S, Cho K, Quaden R, Gagnon D, Pyarajan S, Sun N, Zhao H, Gaziano M, Concato J, Stein MB, Gelernter J. Genomics of posttraumatic stress disorder in veterans: Methods and rationale for Veterans Affairs Cooperative Study #575B. Int J Methods Psychiatr Res 2019; 28:e1767. [PMID: 30767326 PMCID: PMC6877159 DOI: 10.1002/mpr.1767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Heritability in the risk for developing posttraumatic stress disorder (PTSD) has been established, but most genome-wide association studies (GWASs) of PTSD involve relatively small sample sizes and limited identification of associated genetic loci. This report describes the methodology of a Veterans Affairs (VA) Cooperative Studies Program GWAS of PTSD among combat-exposed U.S. veterans. METHODS Probable cases (with PTSD) and probable controls (without PTSD) were identified from among veterans enrolled in the VA Million Veteran Program (MVP) with an algorithm developed using questionnaire responses and electronic health record information. This algorithm, based on a statistical model, relied on medical chart reviews as a reference standard and was refined using telephone interviews. Subsequently, to evaluate the impact of probabilistic phenotyping on statistical power, the threshold probability for case-control selection was varied in simulations. RESULTS As of September 2018, >695,000 veterans have enrolled in MVP. For current analyses, genotyping data were available for >353,000 participants, including >83,000 combat-exposed veterans. A threshold probability of 0.7 for case and control designation yielded an interim >16,000 cases and >33,000 controls. CONCLUSIONS A formal methodological approach was used to identify cases and controls for subsequent GWAS analyses to identify genetic risk loci for PTSD.
Collapse
Affiliation(s)
- Krishnan Radhakrishnan
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Mihaela Aslan
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Kelly M. Harrington
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
- School of MedicineBoston UniversityBostonMassachusettsUSA
| | - Robert H. Pietrzak
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences DivisionVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Grant Huang
- Office of Research and DevelopmentVeterans Health AdministrationWashingtonDCUSA
| | - Sumitra Muralidhar
- Office of Research and DevelopmentVeterans Health AdministrationWashingtonDCUSA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Rachel Quaden
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
| | - David Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
- School of Public HealthBoston UniversityBostonMassachusettsUSA
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Ning Sun
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Hongyu Zhao
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC)VA Boston Healthcare SystemBostonMassachusettsUSA
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - John Concato
- Clinical Epidemiology Research Center (CERC)VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Murray B. Stein
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
- School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Joel Gelernter
- School of MedicineYale UniversityNew HavenConnecticutUSA
- Psychiatry ServiceVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
25
|
Nedic Erjavec G, Svob Strac D, Tudor L, Konjevod M, Sagud M, Pivac N. Genetic Markers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:53-93. [PMID: 31705490 DOI: 10.1007/978-981-32-9721-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric disorders such as addiction (substance use and addictive disorders), depression, eating disorders, schizophrenia, and post-traumatic stress disorder (PTSD) are severe, complex, multifactorial mental disorders that carry a high social impact, enormous public health costs, and various comorbidities as well as premature morbidity. Their neurobiological foundation is still not clear. Therefore, it is difficult to uncover new set of genes and possible genetic markers of these disorders since the understanding of the molecular imbalance leading to these disorders is not complete. The integrative approach is needed which will combine genomics and epigenomics; evaluate epigenetic influence on genes and their influence on neuropeptides, neurotransmitters, and hormones; examine gene × gene and gene × environment interplay; and identify abnormalities contributing to development of these disorders. Therefore, novel genetic approaches based on systems biology focused on improvement of the identification of the biological underpinnings might offer genetic markers of addiction, depression, eating disorders, schizophrenia, and PTSD. These markers might be used for early prediction, detection of the risk to develop these disorders, novel subtypes of the diseases and tailored, personalized approach to therapy.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marina Sagud
- School of Medicine, University of Zagreb, Salata 2, HR-10000, Zagreb, Croatia
- Department of Psychiatry, University Hospital Centre Zagreb, Kispaticeva 12, HR-10000, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
26
|
Mehta D, Czamara D. GWAS of Behavioral Traits. Curr Top Behav Neurosci 2019; 42:1-34. [PMID: 31407241 DOI: 10.1007/7854_2019_105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decade, genome-wide association studies (GWAS) have evolved into a powerful tool to investigate genetic risk factors for human diseases via a hypothesis-free scan of the genome. The success of GWAS for psychiatric disorders and behavioral traits have been somewhat mixed, partly owing to the complexity and heterogeneity of these traits. Significant progress has been made in the last few years in the development and implementation of complex statistical methods and algorithms incorporating GWAS. Such advanced statistical methods applied to GWAS hits in combination with incorporation of different layers of genomics data have catapulted the search for novel genes for behavioral traits and improved our understanding of the complex polygenic architecture of these traits.This chapter will give a brief overview on GWAS and statistical methods currently used in GWAS. The chapter will focus on reviewing the current literature and highlight some of the most important GWAS on psychiatric and other behavioral traits and will conclude with a discussion on future directions.
Collapse
Affiliation(s)
- Divya Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Darina Czamara
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
27
|
Wilker S, Schneider A, Conrad D, Pfeiffer A, Boeck C, Lingenfelder B, Freytag V, Vukojevic V, Vogler C, Milnik A, Papassotiropoulos A, J.-F. de Quervain D, Elbert T, Kolassa S, Kolassa IT. Genetic variation is associated with PTSD risk and aversive memory: Evidence from two trauma-Exposed African samples and one healthy European sample. Transl Psychiatry 2018; 8:251. [PMID: 30467376 PMCID: PMC6250662 DOI: 10.1038/s41398-018-0297-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 11/11/2022] Open
Abstract
The probability to develop posttraumatic stress disorder (PTSD), characterized by vivid, intrusive emotional memories of the encountered traumatic events, depends - among other factors - on the number of previous traumatic experiences (traumatic load) and individual genetic vulnerability. So far, our knowledge regarding the biological underpinnings of PTSD is relatively sparse. Genome-wide association studies (GWAS) followed by independent replication might help to discover novel, so far unknown biological mechanisms associated with the development of traumatic memories. Here, a GWAS was conducted in N = 924 Northern Ugandan rebel war survivors and identified seven suggestively significant single nucleotide polymorphisms (SNPs; p ≤ 1 × 10-5) for lifetime PTSD risk. Of these seven SNPs, the association of rs3852144 on chromosome 5 was replicated in an independent sample of Rwandan genocide survivors (N = 370, p < .01). While PTSD risk increased with accumulating traumatic experiences, the vulnerability was reduced in carriers of the minor G-allele in an additive manner. Correspondingly, memory for aversive pictures decreased with higher number of the minor G-allele in a sample of N = 2698 healthy Swiss individuals. Finally, investigations on N = 90 PTSD patients treated with Narrative Exposure Therapy indicated an additive effect of genotype on PTSD symptom change from pre-treatment to four months after treatment, but not between pre-treatment and the 10-months follow-up. In conclusion, emotional memory formation seems to decline with increasing number of rs3852144 G-alleles, rendering individuals more resilient to PTSD development. However, the impact on therapy outcome remains preliminary and further research is needed to determine how this intronic marker may affect memory processes in detail.
Collapse
Affiliation(s)
- Sarah Wilker
- Clinical & Biological Psychology, Ulm University, Ulm, Germany.
| | - Anna Schneider
- Clinical & Biological Psychology, Ulm University, Ulm, Germany.
| | - Daniela Conrad
- Clinical & Biological Psychology, Ulm University, Ulm, Germany. .,Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany.
| | - Anett Pfeiffer
- 0000 0001 0658 7699grid.9811.1Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Christina Boeck
- 0000 0004 1936 9748grid.6582.9Clinical & Biological Psychology, Ulm University, Ulm, Germany
| | - Birke Lingenfelder
- 0000 0001 0658 7699grid.9811.1Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Virginie Freytag
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Vanja Vukojevic
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Christian Vogler
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Annette Milnik
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Andreas Papassotiropoulos
- 0000 0004 1937 0642grid.6612.3Division of Molecular Neuroscience, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Dominique J.-F. de Quervain
- 0000 0004 1937 0642grid.6612.3Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Psychiatric University Clinics, University of Basel, Basel, Switzerland ,0000 0004 1937 0642grid.6612.3Division of Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Thomas Elbert
- 0000 0001 0658 7699grid.9811.1Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to contextualize findings from the first 25 years of PTSD genetics research, focusing on the most robust findings and interpreting results in light of principles that have emerged from modern genetics studies. RECENT FINDINGS Genome-wide association studies (GWAS) encompassing tens of thousands of participants enabled the first molecular genetic heritability and genetic correlation estimates for PTSD in 2017. In 2018, highly promising loci for PTSD were reported, including variants in and near the CAMKV, KANSL1, and TCF4 genes. Twin studies from 25 years ago established that PTSD is genetically influenced and foreshadowed the molecular genetic findings of today. Discoveries that were impossible with smaller studies have been achieved via collaborative/team-science efforts. Most promisingly, individual genomic loci offer entirely novel clues about PTSD etiology, providing the raw material for transformative discoveries, and the future of PTSD research is bright.
Collapse
Affiliation(s)
- Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Room 3320, Stanford, CA, 94305, USA.
| | | | - Hanyang Shen
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Room 3320, Stanford, CA, 94305, USA
| |
Collapse
|
29
|
Felger JC. Imaging the Role of Inflammation in Mood and Anxiety-related Disorders. Curr Neuropharmacol 2018; 16:533-558. [PMID: 29173175 PMCID: PMC5997866 DOI: 10.2174/1570159x15666171123201142] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have reported evidence that inflammation and release of inflammatory cytokines affect circuitry relevant to both reward and threat sensitivity to contribute to behavioral change. Of relevance to mood and anxiety-related disorders, biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of patients with major depressive disorder (MDD), bipolar disorder, anxiety disorders and post-traumatic stress disorder (PTSD). Methods This review summarized clinical and translational work demonstrating the impact of peripheral inflammation on brain regions and neurotransmitter systems relevant to both reward and threat sensitivity, with a focus on neuroimaging studies involving administration of inflammatory stimuli. Recent translation of these findings to further understand the role of inflammation in mood and anxiety-related disorders is also discussed. Results Inflammation was consistently found to affect basal ganglia and cortical reward and motor circuits to drive reduced motivation and motor activity, as well as anxiety-related brain regions including amygdala, insula and anterior cingulate cortex, which may result from cytokine effects on monoamines and glutamate. Similar relationships between inflammation and altered neurocircuitry have been observed in MDD patients with increased peripheral inflammatory markers, and such work is on the horizon for anxiety disorders and PTSD. Conclusion Neuroimaging effects of inflammation on reward and threat circuitry may be used as biomarkers of inflammation for future development of novel therapeutic strategies to better treat mood and anxiety-related disorders in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
30
|
Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci 2018; 19:535-551. [PMID: 30054570 PMCID: PMC6148363 DOI: 10.1038/s41583-018-0039-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a prevalent, debilitating and sometimes deadly consequence of exposure to severe psychological trauma. Although effective treatments exist for some individuals, they are limited. New approaches to intervention, treatment and prevention are therefore much needed. In the past few years, the field has rapidly developed a greater understanding of the dysfunctional brain circuits underlying PTSD, a shift in understanding that has been made possible by technological revolutions that have allowed the observation and perturbation of the macrocircuits and microcircuits thought to underlie PTSD-related symptoms. These advances have allowed us to gain a more translational knowledge of PTSD, have provided further insights into the mechanisms of risk and resilience and offer promising avenues for therapeutic discovery.
Collapse
Affiliation(s)
- Robert J Fenster
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
31
|
Levran O, Correa da Rosa J, Randesi M, Rotrosen J, Adelson M, Kreek MJ. A non-coding CRHR2 SNP rs255105, a cis-eQTL for a downstream lincRNA AC005154.6, is associated with heroin addiction. PLoS One 2018; 13:e0199951. [PMID: 29953524 PMCID: PMC6023117 DOI: 10.1371/journal.pone.0199951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/02/2023] Open
Abstract
Dysregulation of the stress response is implicated in drug addiction; therefore, polymorphisms in stress-related genes may be involved in this disease. An analysis was performed to identify associations between variants in 11 stress-related genes, selected a priori, and heroin addiction. Two discovery samples of American subjects of European descent (EA, n = 601) and of African Americans (AA, n = 400) were analyzed separately. Ancestry was verified by principal component analysis. Final sets of 414 (EA) and 562 (AA) variants were analyzed after filtering of 846 high-quality variants. The main result was an association of a non-coding SNP rs255105 in the CRH (CRF) receptor 2 gene (CRHR2), in the discovery EA sample (Pnominal = .00006; OR = 2.1; 95% CI 1.4-3.1). The association signal remained significant after permutation-based multiple testing correction. The result was corroborated by an independent EA case sample (n = 364). Bioinformatics analysis revealed that SNP rs255105 is associated with the expression of a downstream long intergenic non-coding RNA (lincRNA) gene AC005154.6. AC005154.6 is highly expressed in the pituitary but its functions are unknown. LincRNAs have been previously associated with adaptive behavior, PTSD, and alcohol addiction. Further studies are warranted to corroborate the association results and to assess the potential relevance of this lincRNA to addiction and other stress-related disorders.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, United States of America
| | - Joel Correa da Rosa
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, United States of America
| | - John Rotrosen
- NYU School of Medicine, New York, New York, United States of America
| | - Miriam Adelson
- Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Las Vegas, Nevada, United States of America
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
32
|
Kim GS, Smith AK, Nievergelt CM, Uddin M. Neuroepigenetics of Post-Traumatic Stress Disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:227-253. [PMID: 30072055 PMCID: PMC6474244 DOI: 10.1016/bs.pmbts.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While diagnosis of PTSD is based on behavioral symptom clusters that are most directly associated with brain function, epigenetic studies of PTSD in humans to date have been limited to peripheral tissues. Animal models of PTSD have been key for understanding the epigenetic alterations in the brain most directly relevant to endophenotypes of PTSD, in particular those pertaining to fear memory and stress response. This chapter provides an overview of neuroepigenetic studies based on animal models of PTSD, with an emphasis on the effect of stress on fear memory. Where relevant, we also describe human-based studies with relevance to neuroepigenetic insights gleaned from animal work and suggest promising directions for future studies of PTSD neuroepigenetics in living humans that combine peripheral epigenetic measures with measures of central nervous system activity, structure and function.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, United States
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Monica Uddin
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
33
|
Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:849-865. [PMID: 29559087 DOI: 10.1016/j.biopsych.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a pathologic response to trauma that impacts ∼8% of the population and is highly comorbid with other disorders, such as traumatic brain injury. PTSD affects multiple biological systems throughout the body, including the hypothalamic-pituitary-adrenal axis, cortical function, and the immune system, and while the study of the biological underpinnings of PTSD and related disorders are numerous, the roles of noncoding RNAs (ncRNAs) are just emerging. Moreover, deep sequencing has revealed that ncRNAs represent most of the transcribed mammalian genome. Here, we present developing evidence that ncRNAs are involved in critical aspects of PTSD pathophysiology. In that regard, we summarize the roles of three classes of ncRNAs in PTSD and related disorders: microRNAs, long-noncoding RNAs, and retrotransposons. This review evaluates findings from both animal and human studies with a special focus on the role of ncRNAs in hypothalamic-pituitary-adrenal axis abnormalities and glucocorticoid dysfunction in PTSD and traumatic brain injury. We conclude that ncRNAs may prove to be useful biomarkers to facilitate personalized medicines for trauma-related brain disorders.
Collapse
|
34
|
Nees F, Witt SH, Flor H. Neurogenetic Approaches to Stress and Fear in Humans as Pathophysiological Mechanisms for Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:810-820. [PMID: 29454655 DOI: 10.1016/j.biopsych.2017.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
In this review article, genetic variation associated with brain responses related to acute and chronic stress reactivity and fear learning in humans is presented as an important mechanism underlying posttraumatic stress disorder. We report that genes related to the regulation of the hypothalamic-pituitary-adrenal axis, as well as genes that modulate serotonergic, dopaminergic, and neuropeptidergic functions or plasticity, play a role in this context. The strong overlap of the genetic targets involved in stress and fear learning suggests that a dimensional and mechanistic model of the development of posttraumatic stress disorder based on these constructs is promising. Genome-wide genetic analyses on fear and stress mechanisms are scarce. So far, reliable replication is still lacking for most of the molecular genetic findings, and the proportion of explained variance is rather small. Further analysis of neurogenetic stress and fear learning needs to integrate data from animal and human studies.
Collapse
Affiliation(s)
- Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| |
Collapse
|
35
|
Nievergelt CM, Ashley-Koch AE, Dalvie S, Hauser MA, Morey RA, Smith AK, Uddin M. Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biol Psychiatry 2018; 83:831-839. [PMID: 29555185 PMCID: PMC5915904 DOI: 10.1016/j.biopsych.2018.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) after exposure to a traumatic event is a highly prevalent psychiatric disorder. Heritability estimates from twin studies as well as from recent molecular data (single nucleotide polymorphism-based heritability) indicate moderate to high heritability, yet robust genetic variants for PTSD have not yet been identified and the genetic architecture of this polygenic disorder remains largely unknown. To date, fewer than 10 large-scale genome-wide association studies of PTSD have been published, with findings that highlight the unique challenges for PTSD genomics, including a complex diagnostic entity with contingency of PTSD diagnosis on trauma exposure and the large genetic diversity of the study populations. The Psychiatric Genomics Consortium PTSD group has brought together more than 200 scientists with the goal to increase sample size for genome-wide association studies and other genomic analyses to sufficient numbers where robust discoveries of molecular signatures can be achieved. The sample currently includes more than 32,000 PTSD cases and 100,000 trauma-exposed control subjects, and collection is ongoing. The first results found a significant shared genetic risk of PTSD with other psychiatric disorders and sex-biased heritability estimates with higher heritability in female individuals compared with male individuals. This review describes the scope and current focus of the Psychiatric Genomics Consortium PTSD group and its expansion from the initial genome-wide association study group to nine working groups, including epigenetics, gene expression, imaging, and integrative systems biology. We further briefly outline recent findings and future directions of "omics"-based studies of PTSD, with the ultimate goal of elucidating the molecular architecture of this complex disorder to improve prevention and intervention strategies.
Collapse
Affiliation(s)
- Caroline M. Nievergelt
- University of California San Diego, Department of Psychiatry and Department of Family Medicine and Public Health,Veterans Affairs San Diego Healthcare System and Veterans Affairs Center of Excellence for Stress and Mental Health
| | | | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa, 7925
| | - Michael A. Hauser
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Rajendra A. Morey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham NC 27710, Durham VA Medical Center, Durham, NC 27705
| | - Alicia K. Smith
- Emory University, Department of Gynecology and Obstetrics,Emory University, Department of Psychiatry & Behavioral Sciences
| | - Monica Uddin
- University of Illinois Urbana-Champaign, Carl R. Woese Institute for Genomic Biology,University of Illinois Urbana-Champaign, Department of Psychology
| |
Collapse
|
36
|
Yuan Q, Chu H, Ge Y, Ma G, Du M, Wang M, Zhang Z, Zhang W. LncRNA PCAT1 and its genetic variant rs1902432 are associated with prostate cancer risk. J Cancer 2018; 9:1414-1420. [PMID: 29721051 PMCID: PMC5929086 DOI: 10.7150/jca.23685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/26/2018] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence has showed that lncRNAs and trait-associated loci in lncRNAs play a crucial role in the progression of cancer including prostate cancer (PCa).This study aimed to investigate the molecular mechanisms of lncRNA PCAT1 involved in PCa development and its genetic variant associated with PCa risk. We applied cell proliferation and apoptosis assays to assess the effect of PCAT1 on PCa cell phenotypes. In addition, the genome-wide profiling of gene expression was assessed from three pairs of DU145 cells transfected with PCAT1 overexpression vector or negative control (NC) vector. Furthermore, a case-control study was conducted to explore the associations of four tagging single nucleotide polymorphisms (tagSNPs) and PCa risk in 850 PCa cases and 860 cancer-free controls. Our results showed that lncRNA PCAT1 promoted cell proliferation and inhibited cell apoptosis. Ingenuity pathway analysis (IPA) indicated that dysregulated mRNAs induced by overexpression of PCAT1 were primarily enriched in androgen-independent prostate tumor term and implicated in the disease and functions networks, such as cell death and survival, cell proliferation and gene expression. Besides, rs1902432 in PCAT1 was significantly associated with increased risk of PCa (Additive model: OR = 1.19, P = 0.014; Co-dominant model: CC vs. TT, OR = 1.45, P =0.012; Recessive model: CC vs. TT/CT, OR= 1.34, P = 0.027). This study suggests that PCAT1 may act as an oncogene through promoting cell proliferation and suppressing cell apoptosis in PCa development, and genetic variant in PCAT1 contributes to the susceptibility to PCa.
Collapse
Affiliation(s)
- Qinbo Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Following a life-threatening traumatic exposure, about 10% of those exposed are at considerable risk for developing posttraumatic stress disorder (PTSD), a severe and disabling syndrome characterized by uncontrollable intrusive memories, nightmares, avoidance behaviors, and hyperarousal in addition to impaired cognition and negative emotion symptoms. This review will explore recent genetic and epigenetic approaches to PTSD that explain some of the differential risk following trauma exposure. RECENT FINDINGS A substantial portion of the variance explaining differential risk responses to trauma exposure may be explained by differential inherited and acquired genetic and epigenetic risk. This biological risk is complemented by alterations in the functional regulation of genes via environmentally induced epigenetic changes, including prior childhood and adult trauma exposure. This review will cover recent findings from large-scale genome-wide association studies as well as newer epigenome-wide studies. We will also discuss future "phenome-wide" studies utilizing electronic medical records as well as targeted genetic studies focusing on mechanistic ways in which specific genetic or epigenetic alterations regulate the biological risk for PTSD.
Collapse
|
38
|
Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE, Baker DG, Beckham JC, Bierut LJ, Bisson J, Bradley B, Chen CY, Dalvie S, Farrer LA, Galea S, Garrett ME, Gelernter JE, Guffanti G, Hauser MA, Johnson EO, Kessler RC, Kimbrel NA, King A, Koen N, Kranzler HR, Logue MW, Maihofer AX, Martin AR, Miller MW, Morey RA, Nugent NR, Rice JP, Ripke S, Roberts AL, Saccone NL, Smoller JW, Stein DJ, Stein MB, Sumner JA, Uddin M, Ursano RJ, Wildman DE, Yehuda R, Zhao H, Daly MJ, Liberzon I, Ressler KJ, Nievergelt CM, Koenen KC. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry 2018; 23:666-673. [PMID: 28439101 PMCID: PMC5696105 DOI: 10.1038/mp.2017.77] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/19/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
The Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group (PGC-PTSD) combined genome-wide case-control molecular genetic data across 11 multiethnic studies to quantify PTSD heritability, to examine potential shared genetic risk with schizophrenia, bipolar disorder, and major depressive disorder and to identify risk loci for PTSD. Examining 20 730 individuals, we report a molecular genetics-based heritability estimate (h2SNP) for European-American females of 29% that is similar to h2SNP for schizophrenia and is substantially higher than h2SNP in European-American males (estimate not distinguishable from zero). We found strong evidence of overlapping genetic risk between PTSD and schizophrenia along with more modest evidence of overlap with bipolar and major depressive disorder. No single-nucleotide polymorphisms (SNPs) exceeded genome-wide significance in the transethnic (overall) meta-analysis and we do not replicate previously reported associations. Still, SNP-level summary statistics made available here afford the best-available molecular genetic index of PTSD-for both European- and African-American individuals-and can be used in polygenic risk prediction and genetic correlation studies of diverse phenotypes. Publication of summary statistics for ∼10 000 African Americans contributes to the broader goal of increased ancestral diversity in genomic data resources. In sum, the results demonstrate genetic influences on the development of PTSD, identify shared genetic risk between PTSD and other psychiatric disorders and highlight the importance of multiethnic/racial samples. As has been the case with schizophrenia and other complex genetic disorders, larger sample sizes are needed to identify specific risk loci.
Collapse
Affiliation(s)
- L E Duncan
- Department of Psychiatry, Stanford University, Stanford, CA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Boston, MA, USA
- The Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - A E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - L M Almli
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - A B Amstadter
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - A E Ashley-Koch
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - D G Baker
- Veterans Affairs San Diego Healthcare System and Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - J C Beckham
- Veterans Affairs Durham Healthcare System, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - L J Bierut
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - J Bisson
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - B Bradley
- Atlanta VA Medical Center, Atlanta, GA, USA
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - C-Y Chen
- The Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard University, Cambridge, MA, USA
| | - S Dalvie
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - L A Farrer
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - S Galea
- Boston University School of Public Health, Boston, MA, USA
| | - M E Garrett
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - J E Gelernter
- Department of Psychiatry, Yale University School of Medicine and VA CT Healthcare System, New Haven, CT, USA
| | - G Guffanti
- Department of Psychiatry, Harvard University, Cambridge, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - M A Hauser
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - E O Johnson
- RTI International, Research Triangle Park, NC, USA
| | - R C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - N A Kimbrel
- Veterans Affairs Durham Healthcare System, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - A King
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - N Koen
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- MRC Unit on Anxiety & Stress Disorders, Groote Schuur Hospital, Cape Town, South Africa
| | - H R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine and VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA
| | - M W Logue
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - A X Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - A R Martin
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Boston, MA, USA
- The Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - M W Miller
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - R A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Durham VA Medical Center, Durham, NC, USA
| | - N R Nugent
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - J P Rice
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - S Ripke
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Boston, MA, USA
- The Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry and Psychotherapy, Charité, Campus Mitte, Berlin, Germany
| | - A L Roberts
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health Cambridge, MA, USA
| | - N L Saccone
- Department of Genetics, Washington University, St Louis, MO, USA
| | - J W Smoller
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - D J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- MRC Unit on Anxiety & Stress Disorders, Groote Schuur Hospital, Cape Town, South Africa
| | - M B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - J A Sumner
- Center for Cardiovascular Behavioral Health, Columbia University Medical Center, New York, NY, USA
| | - M Uddin
- Department of Psychology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - R J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - D E Wildman
- Department of Molecular & Integrative Physiology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - R Yehuda
- James J. Peters Bronx Veterans Affairs and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - H Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - M J Daly
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Boston, MA, USA
- The Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - I Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - K J Ressler
- Department of Psychiatry, Harvard University, Cambridge, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - C M Nievergelt
- Veterans Affairs San Diego Healthcare System and Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - K C Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Cambridge, MA, USA
| |
Collapse
|
39
|
Mota NP, Han S, Harpaz-Rotem I, Maruff P, Krystal JH, Southwick SM, Gelernter J, Pietrzak RH. Apolipoprotein E gene polymorphism, trauma burden, and posttraumatic stress symptoms in U.S. military veterans: Results from the National Health and Resilience in Veterans Study. Depress Anxiety 2018; 35:168-177. [PMID: 29172227 PMCID: PMC5794529 DOI: 10.1002/da.22698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/11/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous research examining the association between apolipoprotein E (APOE) gene polymorphism and risk for posttraumatic stress disorder (PTSD) has been inconsistent due to the use of small and select samples. This study examined the relation between APOE genotype and PTSD symptoms in two nationally representative samples of U.S. military veterans. The potential effect of cumulative trauma burden and social support in moderating this association was also evaluated. METHODS The main sample consisted of 1,386 trauma-exposed European American (EA) veterans (mean age: 62-63 years) who participated in the National Health and Resilience in Veterans Study (NHRVS) in 2011. The independent replication sample consisted of 509 trauma-exposed EA veterans from the 2013 NHRVS. RESULTS APOE ε4 allele carriers reported significantly greater severity of PTSD symptoms than noncarriers in the main, but not the replication, sample. In both samples, the interaction of APOE ε4 carrier status and cumulative trauma burden was associated with greater severity of PTSD symptoms (F range = 2.53-8.09, all P's < .01), particularly re-experiencing/intrusion symptoms (F range = 3.59-4.24, P's < .001). Greater social support was associated with lower severity of PTSD symptoms among APOE ε4 allele carriers with greater cumulative trauma burden (β range -.27 to -.60, P's < .05). CONCLUSION U.S. military veterans who are APOE ε4 allele carriers and exposed to a high number of traumas may be at increased risk for developing PTSD symptoms than ε4 noncarriers. Greater social support may moderate this association, thereby highlighting the potential importance of social support promoting interventions in mitigating the effect of ε4 × cumulative trauma burden on PTSD risk.
Collapse
Affiliation(s)
- Natalie P. Mota
- Department of Clinical Health Psychology, Max Rady College of Medicine, University of Manitoba, Canada
| | - Shizhong Han
- Department of Psychiatry, University of Iowa Carver College of Medicine,Iowa City, Iowa, USA
| | - Ilan Harpaz-Rotem
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, University of Melbourne and Cogstate, Ltd., Melbourne, Australia
| | - John H. Krystal
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Steven M. Southwick
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robert H. Pietrzak
- Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Morey RA, Davis SL, Garrett ME, Haswell CC, Marx CE, Beckham JC, McCarthy G, Hauser MA, Ashley-Koch AE. Genome-wide association study of subcortical brain volume in PTSD cases and trauma-exposed controls. Transl Psychiatry 2017; 7:1265. [PMID: 29187748 PMCID: PMC5802459 DOI: 10.1038/s41398-017-0021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Depending on the traumatic event, a significant fraction of trauma survivors subsequently develop PTSD. The additional variability in PTSD risk is expected to arise from genetic susceptibility. Unfortunately, several genome-wide association studies (GWAS) have failed to identify a consistent genetic marker for PTSD. The heritability of intermediate phenotypes such as regional brain volumes is often 80% or higher. We conducted a GWAS of subcortical brain volumes in a sample of recent military veteran trauma survivors (n = 157), grouped into PTSD (n = 66) and non-PTSD controls (n = 91). Covariates included PTSD diagnosis, sex, intracranial volume, ancestry, childhood trauma, SNP×PTSD diagnosis, and SNP×childhood trauma. We identified several genetic markers in high linkage disequilibrium (LD) with rs9373240 (p = 2.0 × 10-7, FDR q = 0.0375) that were associated with caudate volume. We also observed a significant interaction between rs9373240 and childhood trauma (p-values = 0.0007-0.002), whereby increased trauma exposure produced a stronger association between SNPs and increased caudate volume. We identified several SNPs in high LD with rs34043524, which is downstream of the TRAM1L1 gene that were associated with right lateral ventricular volume (p = 1.73 × 10-7; FDR q = 0.032) and were also associated with lifetime alcohol abuse or dependence (p = 2.49 × 10-7; FDR q = 0.0375). Finally, we identified several SNPs in high LD with rs13140180 (p = 2.58 × 10-7; FDR q = .0016), an intergenic region on chromosome 4, and several SNPs in the TMPRSS15 associated with right nucleus accumbens volume (p = 2.58 × 10-7; FDR q = 0.017). Both TRAM1L1 and TMPRSS15 have been previously implicated in neuronal function. Key results survived genome-wide multiple-testing correction in our sample. Leveraging neuroimaging phenotypes may offer a shortcut, relative to clinical phenotypes, in mapping the genetic architecture and neurobiological pathways of PTSD.
Collapse
Affiliation(s)
- Rajendra A Morey
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
| | - Sarah L Davis
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Melanie E Garrett
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Courtney C Haswell
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Christine E Marx
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Jean C Beckham
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Michael A Hauser
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Allison E Ashley-Koch
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| |
Collapse
|
41
|
Mehta D, Bruenig D, Carrillo-Roa T, Lawford B, Harvey W, Morris CP, Smith AK, Binder EB, Young RM, Voisey J. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta Psychiatr Scand 2017; 136:493-505. [PMID: 28795405 DOI: 10.1111/acps.12778] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Epigenetic modifications such as DNA methylation may play a key role in the aetiology and serve as biomarkers for post-traumatic stress disorder (PTSD). We performed a genomewide analysis to identify genes whose DNA methylation levels are associated with PTSD. METHOD A total of 211 individuals comprising Australian male Vietnam War veterans (n = 96) and males from a general population belonging to the Grady Trauma Project (n = 115) were included. Genomewide DNA methylation was performed from peripheral blood using the Illumina arrays. Data analysis was performed using generalized linear regression models. RESULTS Differential DNA methylation of 17 previously reported PTSD candidate genes was associated with PTSD symptom severity. Genomewide analyses revealed CpG sites spanning BRSK1, LCN8, NFG and DOCK2 genes were associated with PTSD symptom severity. We replicated the findings of DOCK2 in an independent cohort. Pathway analysis revealed that among the associated genes, genes within actin cytoskeleton and focal adhesion molecular pathways were enriched. CONCLUSION These data highlight the role of DNA methylation as biomarkers of PTSD. The results support the role of previous candidates and uncover novel genes associated with PTSD, such as DOCK2. This study contributes to our understanding of the biological underpinnings of PTSD.
Collapse
Affiliation(s)
- D Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - D Bruenig
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - T Carrillo-Roa
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - B Lawford
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - W Harvey
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - C P Morris
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - A K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA.,Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - E B Binder
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - R McD Young
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - J Voisey
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
42
|
Oxytocin receptor gene polymorphisms, attachment, and PTSD: Results from the National Health and Resilience in Veterans Study. J Psychiatr Res 2017; 94:139-147. [PMID: 28715704 PMCID: PMC5605420 DOI: 10.1016/j.jpsychires.2017.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/23/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023]
Abstract
The human oxytocin system is implicated in social behavior and stress recovery. Polymorphisms in the oxytocin receptor gene (OXTR) may interact with attachment style to predict stress-related psychopathology like posttraumatic stress disorder (PTSD). The objective of this study was to examine independent and interactive effects of the OXTR single nucleotide polymorphism (SNP) rs53576, which has been associated with stress reactivity, support-seeking, and PTSD in prior studies, and attachment style on risk for PTSD in a nationally representative sample of 2163 European-American (EA) U.S. military veterans who participated in two independent waves of the National Health and Resilience in Veterans Study (NHRVS). Results revealed that insecure attachment style [adjusted odds ratio (OR) = 4.29; p < 0.001] and the interaction of rs53576 and attachment style (OR = 2.58, p = 0.02) were associated with probable lifetime PTSD. Among individuals with the minor A allele, the prevalence of probable PTSD was significantly higher among those with an insecure attachment style (23.9%) than those with a secure attachment style (2.0%), equivalent to an adjusted OR of 10.7. We attempted to replicate these findings by utilizing dense marker data from a genome-wide association study of 2215 high-risk civilians; one OXTR variant, though not rs53576, was associated with PTSD. Exploratory analyses in the veteran sample revealed that the interaction between this variant and attachment style predicting probable PTSD approached statistical significance. Results indicate that polymorphisms in the OXTR gene and attachment style may contribute to vulnerability to PTSD in U.S. military veterans.
Collapse
|
43
|
Carvalho CM, Coimbra BM, Ota VK, Mello MF, Belangero SI. Single-nucleotide polymorphisms in genes related to the hypothalamic-pituitary-adrenal axis as risk factors for posttraumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 2017; 174:671-682. [PMID: 28686326 DOI: 10.1002/ajmg.b.32564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a common psychiatric disorder. The etiology of PTSD is multifactorial, depending on many environmental and genetic risk factors, and the exposure to life or physical integrity-threatening events. Several studies have shown significant correlations of many neurobiological findings with PTSD. Hypothalamic-pituitary-adrenal (HPA) axis dysfunction is strongly correlated with this disorder. One hypothesis is that HPA axis dysfunction may precede the traumatic event, suggesting that genes expressed in the HPA axis may be involved in the development of PTSD. This article reviews molecular genetic studies related to PTSD collected through a literature search performed in PubMed, MEDLINE, ScienceDirect, and Scientific Electronic Library Online (SciELO). The results of these studies suggest that several polymorphisms in the HPA axis genes, including FKBP5, NR3C1, CRHR1, and CRHR2, may be risk factors for PTSD development or may be associated with the severity of PTSD symptoms.
Collapse
Affiliation(s)
- Carolina M Carvalho
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,LINC-Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno M Coimbra
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vanessa K Ota
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,LINC-Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo F Mello
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia I Belangero
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,LINC-Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
44
|
Ratanatharathorn A, Boks MP, Maihofer AX, Aiello AE, Amstadter AB, Ashley-Koch AE, Baker DG, Beckham JC, Bromet E, Dennis M, Garrett ME, Geuze E, Guffanti G, Hauser MA, Kilaru V, Kimbrel NA, Koenen KC, Kuan PF, Logue MW, Luft BJ, Miller MW, Mitchell C, Nugent NR, Ressler KJ, Rutten BPF, Stein MB, Vermetten E, Vinkers CH, Youssef NA, Nievergelt CM, Smith AK, Smith AK. Epigenome-wide association of PTSD from heterogeneous cohorts with a common multi-site analysis pipeline. Am J Med Genet B Neuropsychiatr Genet 2017; 174:619-630. [PMID: 28691784 PMCID: PMC5592721 DOI: 10.1002/ajmg.b.32568] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/12/2017] [Indexed: 01/31/2023]
Abstract
Compelling evidence suggests that epigenetic mechanisms such as DNA methylation play a role in stress regulation and in the etiologic basis of stress related disorders such as Post traumatic Stress Disorder (PTSD). Here we describe the purpose and methods of an international consortium that was developed to study the role of epigenetics in PTSD. Inspired by the approach used in the Psychiatric Genomics Consortium, we brought together investigators representing seven cohorts with a collective sample size of N = 1147 that included detailed information on trauma exposure, PTSD symptoms, and genome-wide DNA methylation data. The objective of this consortium is to increase the analytical sample size by pooling data and combining expertise so that DNA methylation patterns associated with PTSD can be identified. Several quality control and analytical pipelines were evaluated for their control of genomic inflation and technical artifacts with a joint analysis procedure established to derive comparable data over the cohorts for meta-analysis. We propose methods to deal with ancestry population stratification and type I error inflation and discuss the advantages and disadvantages of applying robust error estimates. To evaluate our pipeline, we report results from an epigenome-wide association study (EWAS) of age, which is a well-characterized phenotype with known epigenetic associations. Overall, while EWAS are highly complex and subject to similar challenges as genome-wide association studies (GWAS), we demonstrate that an epigenetic meta-analysis with a relatively modest sample size can be well-powered to identify epigenetic associations. Our pipeline can be used as a framework for consortium efforts for EWAS.
Collapse
Affiliation(s)
| | - Marco P Boks
- University Medical Center Utrecht, Brain Center Rudolf Magnus
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry
| | | | | | | | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry,Veterans Affairs San Diego Healthcare System,Veterans Affairs Center of Excellence for Stress and Mental Health
| | - Jean C Beckham
- VA Mid-Atlantic, Mental Illness Research, Education, and Clinical Center,Durham VA Medical Center,Duke University Medical Center, Department of Psychiatry and Behavioral Sciences
| | - Evelyn Bromet
- State University of New York, Epidemiology Research Group
| | - Michelle Dennis
- VA Mid-Atlantic, Mental Illness Research, Education, and Clinical Center,Duke University Medical Center, Department of Psychiatry and Behavioral Sciences
| | | | - Elbert Geuze
- University Medical Center Utrecht, Brain Center Rudolf Magnus,Military Mental Healthcare- Research Centre, Ministry of Defence
| | - Guia Guffanti
- McLean Hospital, Neurobiology of Fear Laboratory,Harvard T.H. Chan School of Public Health, Department of Epidemiology and Massachusetts General Hospital, Department of Psychiatry
| | | | - Varun Kilaru
- Emory University, Department of Gynecology and Obstetrics
| | - Nathan A Kimbrel
- VA Mid-Atlantic, Mental Illness Research, Education, and Clinical Center,Durham VA Medical Center,Duke University Medical Center, Department of Psychiatry and Behavioral Sciences
| | - Karestan C Koenen
- Harvard T.H. Chan School of Public Health, Department of Epidemiology,Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, and Department of Psychiatry,Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research
| | - Pei-Fen Kuan
- Stony Brook University, Department of Applied Mathematics and Statistics
| | - Mark W Logue
- Boston University, Department of Medicine (Biomedical Genetics),VA Boston Healthcare System
| | | | - Mark W Miller
- VA Boston Healthcare System,Boston University School of Medicine, Department of Psychiatry
| | | | - Nicole R Nugent
- Brown University, Psychiatry and Human Behavior, Department of Pediatric Research
| | - Kerry J Ressler
- McLean Hospital, Neurobiology of Fear Laboratory,Harvard T.H. Chan School of Public Health, Department of Epidemiology and Massachusetts General Hospital, Department of Psychiatry,Emory University, Department of Psychiatry & Behavioral Sciences
| | - Bart P F Rutten
- Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry,Veterans Affairs San Diego Healthcare System,University of California San Diego, Department of Family Medicine and Public Health
| | - Eric Vermetten
- University Medical Center Utrecht, Brain Center Rudolf Magnus,Leiden University Medical Center, Department of Psychiatry,Ministry of Defence, Military Mental Healthcare,Arq Psychotrauma Expert Group
| | | | - Nagy A Youssef
- Medical College of Georgia at Augusta University, Department of Psychiatry and Human Behavior and Office of Academic Affairs
| | | | | | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry,Veterans Affairs San Diego Healthcare System,Veterans Affairs Center of Excellence for Stress and Mental Health
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics,Emory University, Department of Psychiatry & Behavioral Sciences
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| |
Collapse
|
45
|
Heck A, Milnik A, Vukojevic V, Petrovska J, Egli T, Singer J, Escobar P, Sengstag T, Coynel D, Freytag V, Fastenrath M, Demougin P, Loos E, Hartmann F, Schicktanz N, Delarue Bizzini B, Vogler C, Kolassa IT, Wilker S, Elbert T, Schwede T, Beisel C, Beerenwinkel N, de Quervain DJF, Papassotiropoulos A. Exome sequencing of healthy phenotypic extremes links TROVE2 to emotional memory and PTSD. Nat Hum Behav 2017. [DOI: 10.1038/s41562-017-0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Genome-Wide Association Study of Post-Traumatic Stress Disorder in Two High-Risk Populations. Twin Res Hum Genet 2017; 20:197-207. [PMID: 28262088 DOI: 10.1017/thg.2017.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mexican Americans (MAs) and American Indians (AIs) constitute conspicuously understudied groups with respect to risk for post-traumatic stress disorder (PTSD), especially in light of findings showing racial/ethnic differences in trauma exposure and risk for PTSD. The purpose of this study was to examine genetic influences on PTSD in two minority cohorts. A genome-wide association study (GWAS) with sum PTSD symptoms for trauma-exposed subjects was run in each cohort. Six highly correlated variants in olfactory receptor family 11 subfamily L member 1 (OR11L1) were suggestively associated with PTSD in the MA cohort. These associations remained suggestively significant after permutation testing. A signal in a nearby olfactory receptor on chromosome 1, olfactory receptor family 2 subfamily L member 13 (OR2L13), tagged by rs151319968, was nominally associated with PTSD in the AI sample. Although no variants were significantly associated after correction for multiple testing in a meta-analysis of the two cohorts, pathway analysis of the top hits showed an enrichment cluster of terms related to sensory transduction, olfactory receptor activity, G-protein coupled receptors, and membrane. As previous studies have proposed a role for olfaction in PTSD, our results indicate this influence may be partially driven by genetic variation in the olfactory system.
Collapse
|
47
|
Dunn EC, Sofer T, Gallo LC, Gogarten SM, Kerr KF, Chen CY, Stein MB, Ursano RJ, Guo X, Jia Y, Qi Q, Rotter JI, Argos M, Cai J, Penedo FJ, Perreira K, Wassertheil-Smoller S, Smoller JW. Genome-wide association study of generalized anxiety symptoms in the Hispanic Community Health Study/Study of Latinos. Am J Med Genet B Neuropsychiatr Genet 2017; 174:132-143. [PMID: 27159506 PMCID: PMC5501086 DOI: 10.1002/ajmg.b.32448] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/14/2016] [Indexed: 01/25/2023]
Abstract
Although generalized anxiety disorder (GAD) is heritable and aggregates in families, no genomic loci associated with GAD have been reported. We aimed to discover potential loci by conducting a genome-wide analysis of GAD symptoms in a large, population-based sample of Hispanic/Latino adults. Data came from 12,282 participants (aged 18-74) in the Hispanic Community Health Study/Study of Latinos. Using a shortened Spielberger Trait Anxiety measure, we analyzed the following: (i) a GAD symptoms score restricted to the three items tapping diagnostic features of GAD as defined by DSM-V; and (ii) a total trait anxiety score based on summing responses to all ten items. We first calculated the heritability due to common variants (h2SNP ) and then conducted a genome-wide association study (GWAS) of GAD symptoms. Replication was attempted in three independent Hispanic cohorts (Multi-Ethnic Study of Atherosclerosis, Women's Health Initiative, Army STARRS). The GAD symptoms score showed evidence of modest heritability (7.2%; P = 0.03), while the total trait anxiety score did not (4.97%; P = 0.20). One genotyped SNP (rs78602344) intronic to thrombospondin 2 (THBS2) was nominally associated (P = 5.28 × 10-8 ) in the primary analysis adjusting for psychiatric medication use and significantly associated with the GAD symptoms score in the analysis excluding medication users (P = 4.18 × 10-8 ). However, meta-analysis of the replication samples did not support this association. Although we identified a genome-wide significant locus in this sample, we were unable to replicate this finding. Evidence for heritability was also only detected for GAD symptoms, and not the trait anxiety measure, suggesting differential genetic influences within the domain of trait anxiety. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin C. Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Linda C. Gallo
- Department of Psychology, San Diego State University, La Jolla, California
| | | | - Kathleen F. Kerr
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Robert J. Ursano
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda Maryland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx New York, New York
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Maria Argos
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Jianwen Cai
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Frank J Penedo
- Department of Medical Social Sciences, Northwestern University, Chicago, Illinois
| | - Krista Perreira
- College and Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx New York, New York
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
48
|
Bountress KE, Bacanu SA, Tomko RL, Korte KJ, Hicks T, Sheerin C, Lind MJ, Marraccini M, Nugent N, Amstadter AB. The Effects of a BDNF Val66Met Polymorphism on Posttraumatic Stress Disorder: A Meta-Analysis. Neuropsychobiology 2017; 76:136-142. [PMID: 29874672 PMCID: PMC6057796 DOI: 10.1159/000489407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Given evidence that posttraumatic stress disorder (PTSD) is moderately heritable, a number of studies utilizing candidate gene approaches have attempted to examine the potential contributions of theoretically relevant genetic variation. Some of these studies have found sup port for a brain-derived neurotrophic factor (BDNF) variant, Val66Met, in the risk of developing PTSD, while others have failed to find this link. METHODS This study sought to reconcile these conflicting findings using a meta-analysis framework. Analyses were also used to determine whether there is significant heterogeneity in the link between this variant and PTSD. We conducted a systematic review of the literature on BDNF and PTSD from the PsycINFO and PubMed databases. A total of 11 studies were included in the analysis. RESULTS Findings indicate a marginally significant effect of the BDNF Val66Met variant on PTSD (p < 0.1). However, of the 11 studies included, only 2 suggested an effect with a non-zero confidence interval, one of which showed a z score of 3.31. We did not find any evidence for heterogeneity. CONCLUSIONS Findings from this meta-analytic investigation of the published literature provide little support for the Val66Met variant of BDNF as a predictor of PTSD. Future well-powered agnostic genome-wide association studies with more refined phenotyping are needed to clarify genetic influences on PTSD.
Collapse
Affiliation(s)
- Kaitlin E. Bountress
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Rachel L. Tomko
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina
| | - Kristina J. Korte
- Department of Psychiatry, Division of Global Psychiatry, Massachusetts General Hospital
| | - Terrell Hicks
- Department of Psychology, Virginia Commonwealth University
| | - Christina Sheerin
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Mackenzie J. Lind
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | | | - Nicole Nugent
- Departments of Pediatrics and Psychiatry and Human Behavior at the Warren Alpert Medical School of Brown University
| | - Ananda B. Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| |
Collapse
|
49
|
Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 2017; 42:254-270. [PMID: 27510423 PMCID: PMC5143487 DOI: 10.1038/npp.2016.146] [Citation(s) in RCA: 463] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
The study of inflammation in fear- and anxiety-based disorders has gained interest as growing literature indicates that pro-inflammatory markers can directly modulate affective behavior. Indeed, heightened concentrations of inflammatory signals, including cytokines and C-reactive protein, have been described in posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), panic disorder (PD), and phobias (agoraphobia, social phobia, etc.). However, not all reports indicate a positive association between inflammation and fear- and anxiety-based symptoms, suggesting that other factors are important in future assessments of inflammation's role in the maintenance of these disorders (ie, sex, co-morbid conditions, types of trauma exposure, and behavioral sources of inflammation). The most parsimonious explanation of increased inflammation in PTSD, GAD, PD, and phobias is via the activation of the stress response and central and peripheral immune cells to release cytokines. Dysregulation of the stress axis in the face of increased sympathetic tone and decreased parasympathetic activity characteristic of anxiety disorders could further augment inflammation and contribute to increased symptoms by having direct effects on brain regions critical for the regulation of fear and anxiety (such as the prefrontal cortex, insula, amygdala, and hippocampus). Taken together, the available data suggest that targeting inflammation may serve as a potential therapeutic target for treating these fear- and anxiety-based disorders in the future. However, the field must continue to characterize the specific role pro-inflammatory signaling in the maintenance of these unique psychiatric conditions.
Collapse
|
50
|
Chen Y, Li X, Kobayashi I, Tsao D, Mellman TA. Expression and methylation in posttraumatic stress disorder and resilience; evidence of a role for odorant receptors. Psychiatry Res 2016; 245:36-44. [PMID: 27526315 PMCID: PMC5148136 DOI: 10.1016/j.psychres.2016.07.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/22/2016] [Accepted: 07/22/2016] [Indexed: 11/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a common and potentially disabling disorder that develops in 1/5 to 1/3 of people exposed to severe trauma. Twin studies indicate that genetic factors account for at least one third of the variance in the risk for developing PTSD, however, the specific role for genetic factors in the pathogenesis of PTSD is not well understood. We studied genome-wide gene expression and DNA methylation profiles in 12 participants with PTSD and 12 participants who were resilient to similar severity trauma exposure. Close to 4000 genes were differentially expressed with adjusted p<0.05, fold-change >2, with all but 3 upregulated with PTSD. Eight odorant/olfactory receptor related genes were up-regulated with PTSD as well as genes related to immune activation, the Gamma-Aminobutyric Acid A (GABAA) receptor, and vitamin D synthesis. No differences with adjusted significance for DNA methylation were found. We conclude that increased gene expression may play an important role in PTSD and this expression may not be a consequence of DNA methylation. The role of odorant receptor expression warrants independent replication.
Collapse
Affiliation(s)
- Yuanxiu Chen
- Department of Community Health and Family Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Xin Li
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University School of Medicine, Washington, DC, USA
| | - Ihori Kobayashi
- Department of Psychiatry, Howard University College of Medicine, Washington, DC, USA
| | - Daisy Tsao
- Howard University College of Medicine, Washington, DC, USA
| | - Thomas A Mellman
- Department of Psychiatry, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|