1
|
Mdkhana B, Saheb Sharif-Askari N, Ramakrishnan RK, Al-Sheakly BK, Hafezi S, Saheb Sharif-Askari F, Bajbouj K, Hamid Q, Halwani R. Nucleic acid sensor STING drives remodeling and its inhibition enhances steroid responsiveness in chronic obstructive pulmonary disease. PLoS One 2023; 18:e0284061. [PMID: 37406004 DOI: 10.1371/journal.pone.0284061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/22/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is progressive and irreversible chronic lung inflammatory disease. Cigarette smoke, the main cause of COPD, is often associated with double-stranded DNA release which potentially activates DNA-sensing pathways, such as STING. This study, therefore, analyzed the role of STING pathway in inducing pulmonary inflammation, steroid resistance, and remodeling in COPD. METHODS Primary cultured lung fibroblasts were isolated from healthy non-smoker, healthy smoker, and smoker COPD individuals. The expression of STING pathway, remodeling, and steroid resistance signatures were investigated in these fibroblasts upon LPS stimulation and treatment with dexamethasone and/or STING inhibitor, at both mRNA and protein levels using qRT-PCR, western blot, and ELISA. RESULTS At baseline, STING was elevated in healthy smoker fibroblasts and to a higher extent in smoker COPD fibroblasts when compared to healthy non-smoker fibroblasts. Upon using dexamethasone as monotherapy, STING activity was significantly inhibited in healthy non-smoker fibroblasts but showed resistance in COPD fibroblasts. Treating both healthy and COPD fibroblasts with STING inhibitor in combination with dexamethasone additively inhibited STING pathway in both groups. Moreover, STING stimulation triggered a significant increase in remodeling markers and a reduction in HDAC2 expression. Interestingly, treating COPD fibroblasts with the combination of STING inhibitor and dexamethasone alleviated remodeling and reversed steroid hyporesponsiveness through an upregulation of HDAC2. CONCLUSION These findings support that STING pathway plays an important role in COPD pathogenesis, via inducing pulmonary inflammation, steroid resistance, and remodeling. This raises the possibility of using STING inhibitor as a potential therapeutic adjuvant in combination with common steroid treatment.
Collapse
Affiliation(s)
- Bushra Mdkhana
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Family and Community Medicine and Behavioural Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Baraa Khalid Al-Sheakly
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Kataria J, Kerr J, Lourenssen SR, Blennerhassett MG. Nintedanib regulates intestinal smooth muscle hyperplasia and phenotype in vitro and in TNBS colitis in vivo. Sci Rep 2022; 12:10275. [PMID: 35715562 PMCID: PMC9206006 DOI: 10.1038/s41598-022-14491-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation of the human intestine in Crohn’s disease (CD) causes bowel wall thickening, which typically progresses to stricturing and a recurrent need for surgery. Current therapies have limited success and CD remains idiopathic and incurable. Recent evidence shows a key role of intestinal smooth muscle cell (ISMC) hyperplasia in stricturing, which is not targeted by current anti-inflammatory therapeutics. However, progression of idiopathic pulmonary fibrosis, resembling CD in pathophysiology, is controlled by the tyrosine kinase inhibitors nintedanib (NIN) or pirfenidone, and we investigated these drugs for their effect on ISMC. In a culture model of rat ISMC, NIN inhibited serum- and PDGF-BB-stimulated growth and cell migration, and promoted the differentiated phenotype, while increasing secreted collagen. NIN did not affect signaling through PDGF-Rβ or NFκB but did inhibit cytokine-induced expression of the pro-inflammatory cytokines IL-1β and TNFα, supporting a transcriptional level of control. In TNBS-induced colitis in mice, which resembles CD, NIN decreased ISMC hyperplasia as well as expression of TNFα and IL-1β, without effect in control animals. NIN also inhibited growth of human ISMC in response to human serum or PDGF-BB, which further establishes a broad range of actions of NIN that support further trial in human IBD.
Collapse
Affiliation(s)
- Jay Kataria
- Gastrointestinal Diseases Research Unit, Department of Medicine, GIDRU Wing, Kingston General Hospital, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - Jack Kerr
- Gastrointestinal Diseases Research Unit, Department of Medicine, GIDRU Wing, Kingston General Hospital, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - Sandra R Lourenssen
- Gastrointestinal Diseases Research Unit, Department of Medicine, GIDRU Wing, Kingston General Hospital, Queen's University, Kingston, ON, K7L 2V7, Canada
| | - Michael G Blennerhassett
- Gastrointestinal Diseases Research Unit, Department of Medicine, GIDRU Wing, Kingston General Hospital, Queen's University, Kingston, ON, K7L 2V7, Canada.
| |
Collapse
|
3
|
WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme. Proc Natl Acad Sci U S A 2022; 119:e2201707119. [PMID: 35671428 PMCID: PMC9214544 DOI: 10.1073/pnas.2201707119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
WNT/β-catenin signaling is critical for lung development, and homeostasis and it has also been implicated in inflammatory lung diseases. However, the underlying molecular mechanisms, especially those at play during inflammatory conditions, are unclear. Here, we show that loss of the WNT coreceptor Related to receptor tyrosine kinase (RYK) specifically in mesenchymal cells results in lung inflammation. Our data indicate that RYK signaling through β-catenin and Nuclear Factor kappa B (NF-κB) is part of a safeguard mechanism against mesenchymal cell death, excessive inflammatory cytokine production, and inflammatory cell recruitment and accumulation. A number of inflammatory lung diseases, including chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and pneumonia, are modulated by WNT/β-catenin signaling. However, the underlying molecular mechanisms remain unclear. Here, starting with a forward genetic screen in mouse, we identify the WNT coreceptor Related to receptor tyrosine kinase (RYK) acting in mesenchymal tissues as a cell survival and antiinflammatory modulator. Ryk mutant mice exhibit lung hypoplasia and inflammation as well as alveolar simplification due to defective secondary septation, and deletion of Ryk specifically in mesenchymal cells also leads to these phenotypes. By analyzing the transcriptome of wild-type and mutant lungs, we observed the up-regulation of proapoptotic and inflammatory genes whose expression can be repressed by WNT/RYK signaling in vitro. Moreover, mesenchymal Ryk deletion at postnatal and adult stages can also lead to lung inflammation, thus indicating a continued role for WNT/RYK signaling in homeostasis. Our results indicate that RYK signaling through β-catenin and Nuclear Factor kappa B (NF-κB) is part of a safeguard mechanism against mesenchymal cell death, excessive inflammatory cytokine production, and inflammatory cell recruitment and accumulation. Notably, RYK expression is down-regulated in the stromal cells of pneumonitis patient lungs. Altogether, our data reveal that RYK signaling plays critical roles as an antiinflammatory modulator during lung development and homeostasis and provide an animal model to further investigate the etiology of, and therapeutic approaches to, inflammatory lung diseases.
Collapse
|
4
|
Pollard KM. Perspective: The Lung, Particles, Fibers, Nanomaterials, and Autoimmunity. Front Immunol 2020; 11:587136. [PMID: 33391263 PMCID: PMC7775503 DOI: 10.3389/fimmu.2020.587136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that a wide range of factors including drugs, chemicals, microbes, and other environmental agents can induce pre-clinical autoimmunity. However, only a few have been confidently linked to autoimmune diseases. Among these are exposures to inhaled particulates that are known to be associated with autoimmune diseases such as lupus and rheumatoid arthritis. In this article, the potential of particle, fiber, and nanomaterial exposures to induce autoimmunity is discussed. It is hypothesized that inhalation of particulate material known to be associated with human autoimmune diseases, such as cigarette smoke and crystalline silica, results in a complex interplay of a number of pathological processes, including, toxicity, oxidative stress, cell and tissue damage, chronic inflammation, post-translational modification of self-antigens, and the formation of lymphoid follicles that provide a milieu for the accumulation of autoreactive B and T cells necessary for the development and persistence of autoimmune responses, leading to disease. Although experimental studies show nanomaterials are capable of inducing several of the above features, there is no evidence that this matures to autoimmune disease. The procession of events hypothesized here provides a foundation from which to pursue experimental studies to determine the potential of other environmental exposures to induce autoimmunity and autoimmune disease.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
5
|
Ramakrishnan RK, Bajbouj K, Hachim MY, Mogas AK, Mahboub B, Olivenstein R, Hamoudi R, Halwani R, Hamid Q. Enhanced mitophagy in bronchial fibroblasts from severe asthmatic patients. PLoS One 2020; 15:e0242695. [PMID: 33253229 PMCID: PMC7704010 DOI: 10.1371/journal.pone.0242695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sub-epithelial fibrosis is a characteristic feature of airway remodeling in asthma which correlates with disease severity. Current asthma medications are ineffective in treating fibrosis. In this study, we aimed to investigate the mitochondrial phenotype in fibroblasts isolated from airway biopsies of non-asthmatic and severe asthmatic subjects by examining mitophagy as a mechanism contributing to fibroblast persistence and thereby, fibrosis in severe asthma. Methods Bioinformatics analysis of publicly available transcriptomic data was performed to identify the top enriched pathways in asthmatic fibroblasts. Endogenous expression of mitophagy markers in severe asthmatic and non-asthmatic fibroblasts was determined using qRT-PCR, western blot and immunofluorescence. Mitophagy flux was examined by using lysosomal protease inhibitors, E64d and pepstatin A. Mitochondrial membrane potential and metabolic activity were also evaluated using JC-1 assay and MTT assay, respectively. Results Bioinformatics analysis revealed the enrichment of Pink/Parkin-mediated mitophagy in asthmatic fibroblasts compared to healthy controls. In severe asthmatic fibroblasts, the differential expression of mitophagy genes, PINK1 and PRKN, was accompanied by the accumulation of PINK1, Parkin and other mitophagy proteins at baseline. The further accumulation of endogenous LC3BII, p62 and PINK1 in the presence of E64d and pepstatin A in severe asthmatic fibroblasts reinforced their enhanced mitophagy flux. Significantly reduced mitochondrial membrane potential and metabolic activity were also demonstrated at baseline confirming the impairment in mitochondrial function in severe asthmatic fibroblasts. Interestingly, these fibroblasts displayed neither an apoptotic nor senescent phenotype but a pro-fibrotic phenotype with an adaptive survival mechanism triggered by increased AMPKα phosphorylation and mitochondrial biogenesis. Conclusions Our results demonstrated a role for mitophagy in the pathogenesis of severe asthma where the enhanced turnover of damaged mitochondria may contribute to fibrosis in severe asthma by promoting the persistence and pro-fibrotic phenotype of fibroblasts.
Collapse
Affiliation(s)
- Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | - Andrea K. Mogas
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Rifat Hamoudi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
6
|
Hu Y, Chi L, Kuebler WM, Goldenberg NM. Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells 2020; 9:cells9112338. [PMID: 33105588 PMCID: PMC7690279 DOI: 10.3390/cells9112338] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Perivascular inflammation is a prominent pathologic feature in most animal models of pulmonary hypertension (PH) as well as in pulmonary arterial hypertension (PAH) patients. Accumulating evidence suggests a functional role of perivascular inflammation in the initiation and/or progression of PAH and pulmonary vascular remodeling. High levels of cytokines, chemokines, and inflammatory mediators can be detected in PAH patients and correlate with clinical outcome. Similarly, multiple immune cells, including neutrophils, macrophages, dendritic cells, mast cells, T lymphocytes, and B lymphocytes characteristically accumulate around pulmonary vessels in PAH. Concomitantly, vascular and parenchymal cells including endothelial cells, smooth muscle cells, and fibroblasts change their phenotype, resulting in altered sensitivity to inflammatory triggers and their enhanced capacity to stage inflammatory responses themselves, as well as the active secretion of cytokines and chemokines. The growing recognition of the interaction between inflammatory cells, vascular cells, and inflammatory mediators may provide important clues for the development of novel, safe, and effective immunotargeted therapies in PAH.
Collapse
Affiliation(s)
- Yijie Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Leon Chi
- Department of Physiology, University of Toronto, Toronto, ON M5B1W8, Canada;
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Departments of Physiology and Surgery, University of Toronto, Toronto, ON M5B1W8, Canada
- Institute of Physiology, Charité Universitäts Medizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-501
| | - Neil M. Goldenberg
- Departments of Physiology and Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5B1W8, Canada;
- Department of Anesthesia and Pain Medicine, Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5B1W8, Canada
| |
Collapse
|
7
|
Chiang CC, Chen CM, Suen JL, Su HH, Hsieh CC, Cheng CM. Stimulatory effect of gastroesophageal reflux disease (GERD) on pulmonary fibroblast differentiation. Dig Liver Dis 2020; 52:988-994. [PMID: 32727693 DOI: 10.1016/j.dld.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that prolonged micro-aspiration of gastric fluid is associated in gastroesophageal reflux disease with the development of chronic respiratory diseases, possibly caused by inflammation-related immunomodulation. Therefore, we sought to ascertain the effect of gastric fluid exposure on pulmonary residential cells. The expression of α-smooth muscle actin as a fibrotic marker was increased in both normal human pulmonary fibroblast cells and mouse macrophages. Gastric fluid enhanced the proliferation and migration of HFL-1 cells and stimulated the expression of inflammatory cytokines in an antibody assay. Elevated expression of the Rho signaling pathway was noted in fibroblast cells stimulated with gastric fluid or conditioned media. These results indicate that gastric fluid alone, or the mixture of proinflammatory mediators induced by gastric fluid in the pulmonary context, can stimulate pulmonary fibroblast cell inflammation, migration, and differentiation, suggesting that a wound healing process is initiated. Subsequent aberrant repair in pulmonary residential cells may lead to pulmonary fibroblast differentiation and fibrotic progression. The results point to a stimulatory effect of chronic GERD on pulmonary fibroblast differentiation, and this may promote the development of chronic pulmonary diseases in the long term.
Collapse
Affiliation(s)
- Cheng Che Chiang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, Chun Shan Medicine University, Taichung Taiwan
| | - Jau Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chong Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
8
|
Kim YH, Kang MK, Lee EJ, Kim DY, Oh H, Kim SI, Oh SY, Kim KH, Park SJ, Choi YJ, Kang YH. Dried Yeast Extracts Curtails Pulmonary Oxidative Stress, Inflammation and Tissue Destruction in a Model of Experimental Emphysema. Antioxidants (Basel) 2019; 8:antiox8090349. [PMID: 31480536 PMCID: PMC6769699 DOI: 10.3390/antiox8090349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary emphysema is characterized by a loss of alveolar integrity due to prolonged cigarette smoking and inhaled irritants. Dried yeast extracts (YE) are employed as food additives, savory flavorings, or creation of umami taste sensations. Despite being rich in nutrition, their application as nutraceuticals and functional foods is not investigated much and little is known about the inhibition of pulmonary emphysema. This study examined whether YE ameliorated pulmonary emphysema in mice is evoked by cigarette smoke (CS) and ovalbumin (OVA). Mice were orally administrated with 25–100 mg/kg YE for 8 weeks. Alveolar epithelial A549 cells exposed to lipopolysaccharide or CS extracts (CSE) were supplemented with 10–100 µg/mL YE. Oral YE administration reduced bronchoalveolar lavage fluid leukocytosis in CS-/OVA-exposed mice. YE reduced induction of inflammatory mediators and MMP-12, and diminished reactive oxygen species production and emphysematous alterations in CS-challenged airways. The YE treatment blunted bax/bcl-2 ratio and activation of p53 and caspases in CS-exposed lungs. Apoptotic death was dampened in CSE-loaded YE-supplemented A549 cells. YE curtailed tissue levels of MMP-12 in inflammatory OVA-exposed lungs. YE abrogated the secretion of TNF-α and MCP-1 through blocking NF-κB signaling in endotoxin-loaded A549 cells. Thus, the antioxidant YE may therapeutically ameliorate oxidative stress and inflammatory tissue destruction in emphysematous diseases.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Soo-Il Kim
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Su Yeon Oh
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | | | | | - Yean-Jung Choi
- Department of Bio-Food Science & Technology, Far East University, Eumseong 27601, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
9
|
Ali M, Heyob K, Tipple TE, Pryhuber GS, Rogers LK. Alterations in VASP phosphorylation and profilin1 and cofilin1 expression in hyperoxic lung injury and BPD. Respir Res 2018; 19:229. [PMID: 30463566 PMCID: PMC6249974 DOI: 10.1186/s12931-018-0938-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hyperoxia is a frequently employed therapy for prematurely born infants, induces lung injury and contributes to development of bronchopulmonary dysplasia (BPD). BPD is characterized by decreased cellular proliferation, cellular migration, and failure of injury repair systems. Actin binding proteins (ABPs) such as VASP, cofilin1, and profilin1 regulate cell proliferation and migration via modulation of actin dynamics. Lung mesenchymal stem cells (L-MSCs) initiate repair processes by proliferating, migrating, and localizing to sites of injury. These processes have not been extensively explored in hyperoxia induced lung injury and repair. METHODS ABPs and CD146+ L-MSCs were analyzed by immunofluorescence in human lung autopsy tissues from infants with and without BPD and by western blot in lung tissue homogenates obtained from our murine model of newborn hyperoxic lung injury. RESULTS Decreased F-actin content, ratio of VASPpS157/VASPpS239, and profilin 1 expression were observed in human lung tissues but this same pattern was not observed in lungs from hyperoxia-exposed newborn mice. Increases in cofilin1 expression were observed in both human and mouse tissues at 7d indicating a dysregulation in actin dynamics which may be related to altered growth. CD146 levels were elevated in human and newborn mice tissues (7d). CONCLUSION Altered phosphorylation of VASP and expression of profilin 1 and cofilin 1 in human tissues indicate that the pathophysiology of BPD involves dysregulation of actin binding proteins. Lack of similar changes in a mouse model of hyperoxia exposure imply that disruption in actin binding protein expression may be linked to interventions or morbidities other than hyperoxia alone.
Collapse
Affiliation(s)
- Mehboob Ali
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 575 Children's Cross Road, Columbus, OH, USA.
| | - Kathryn Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 575 Children's Cross Road, Columbus, OH, USA
| | - Trent E Tipple
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 575 Children's Cross Road, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Cao L, Liu F, Liu Y, Liu T, Wu J, Zhao J, Wang J, Li S, Xu J, Dong L. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast. Exp Lung Res 2018; 44:288-301. [PMID: 30428724 DOI: 10.1080/01902148.2018.1536175] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Thymic stromal lymphopoietin (TSLP) acts as a critical cytokine involved in asthmatic airway remodeling. Our study aimed to characterize the crosstalk between airway epithelial cells and fibroblasts regulated by TSLP through the signaling pathways of Mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MATERIALS AND METHODS Human biopsy specimens and lung tissues from mice were stained with hematoxylin and eosin (H&E) and immunohistochemistry. Human lung fibroblasts were stimulated with human recombinant TSLP. The protein expression of phosphorylation of STAT3 (p-STAT3) and phosphorylation of MAPK as well as the expression of collagen I and alpha-smooth muscle actin (α-SMA) were detected by Western blotting and immunofluorescence. Co-culture was performed to detect the influence of TSLP secreted by airway epithelial cells on fibroblasts. An ovalbumin (OVA)-induced asthmatic murine model was established with or without intraperitoneal injection of SB203580 (inhibitor of p-38). Protein expression in lung tissue was detected by immunohistochemistry and western blotting. RESULT TSLP could activate MAPK in HLF-1. SB203580 could inhibit the activation of p38, attenuate phosphorylation of STAT3, and decrease the expression of collagen I and α-SMA consequently in human fibroblasts. Co-culture demonstrated that TSLP secreted by epithelial cells could promote the expression of collagen I and α-SMA and aggravates airway remodeling in fibroblasts. In vivo, expression of TSLP, collagen I, α-SMA, p-p38 and p-STAT3 was upregulated in airway tissue of OVA-challenged mice and downregulated in mice which were treated by SB203580. The tissue staining showed that airway structure change was attenuated by SB203580 compared with OVA challenged mice as well. CONCLUSIONS TSLP might promote asthmatic airway remodeling via p38 MAPK-STAT3 axis activation and the crosstalk between airway epithelial cells and fibroblasts could aggravate remodeling. Blockade of p38 could alleviate airway remodeling which might provide a new therapeutic target for asthma.
Collapse
Affiliation(s)
- Liuzhao Cao
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China.,b Department of Respiratory Medicine , Northern Jiangsu People's Hospital , Yangzhou , Jiangsu , People's Republic of China
| | - Fen Liu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China.,c Department of Respiratory Medicine , Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Yahui Liu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Tian Liu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jinxiang Wu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jiping Zhao
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Junfei Wang
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Shuo Li
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Jiawei Xu
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| | - Liang Dong
- a Department of Pulmonary Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , People's Republic of China
| |
Collapse
|
11
|
Kim YH, Choi YJ, Kang MK, Lee EJ, Kim DY, Oh H, Kang YH. Oleuropein Curtails Pulmonary Inflammation and Tissue Destruction in Models of Experimental Asthma and Emphysema. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7643-7654. [PMID: 29945446 DOI: 10.1021/acs.jafc.8b01808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Airway inflammation has been implicated in evoking progressive pulmonary disorders including chronic obstructive pulmonary disease (COPD) and asthma as a result of exposure to inhaled irritants, characterized by airway fibrosis, mucus hypersecretion, and loss of alveolar integrity. The current study examined whether oleuropein, a phenylethanoid found in olive leaves, inhibited pulmonary inflammation in experimental models of interleukin (IL)-4-exposed bronchial BEAS-2B epithelial cells and ovalbumin (OVA)- or cigarette smoke (CS)-exposed BALB/c mice. Nontoxic oleuropein at 1-20 μM diminished eotaxin-1-mediated induction of α-smooth muscle actin and mucin 5AC in epithelial cells stimulated by IL-4 at the transcriptional levels. Oral supplementation of 10-20 mg/kg oleuropein reduced the airway influx of eosinophils and lymphocytes as well as IL-4 secretion in lung promoted by OVA inhalation or CS. In addition, oleuropein suppressed infiltration of macrophages and neutrophils through blocking OVA inhalation- and CS-promoted induction of ICAM-1, F4/80, CD68, and CD11b in airways. OVA-exposed pulmonary fibrosis was detected, while alveolar emphysema was evident in CS-exposed mouse lungs. In alveolar epithelial A549 cells exposed to CS extracts, oleuropein attenuated apoptotic cell loss. Collectively, oleuropein inhibited pulmonary inflammation leading to asthmatic fibrosis and alveolar emphysema driven by influx of inflammatory cells in airways exposed OVA or CS. Therefore, oleuropein may be a promising anti-inflammatory agent for treating asthma and COPD.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Yean-Jung Choi
- Department of Bio-Food Science & Technology , Far East University , Eumseong , Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Young-Hee Kang
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| |
Collapse
|
12
|
Bernau K, Leet JP, Esnault S, Noll AL, Evans MD, Jarjour NN, Sandbo N. Eosinophil-degranulation products drive a proinflammatory fibroblast phenotype. J Allergy Clin Immunol 2018; 142:1360-1363.e3. [PMID: 29936102 DOI: 10.1016/j.jaci.2018.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/17/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Ksenija Bernau
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis
| | - Jonathan P Leet
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis
| | - Stephane Esnault
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis
| | - Andrea L Noll
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis
| | - Michael D Evans
- Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis
| | - Nizar N Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis
| | - Nathan Sandbo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis.
| |
Collapse
|
13
|
Siebers K, Fink B, Zakrzewicz A, Agné A, Richter K, Konzok S, Hecker A, Zukunft S, Küllmar M, Klein J, McIntosh JM, Timm T, Sewald K, Padberg W, Aggarwal N, Chamulitrat W, Santoso S, Xia W, Janciauskiene S, Grau V. Alpha-1 Antitrypsin Inhibits ATP-Mediated Release of Interleukin-1β via CD36 and Nicotinic Acetylcholine Receptors. Front Immunol 2018; 9:877. [PMID: 29922281 PMCID: PMC5996888 DOI: 10.3389/fimmu.2018.00877] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
While interleukin (IL)-1β is a potent pro-inflammatory cytokine involved in host defense, high levels can cause life-threatening sterile inflammation including systemic inflammatory response syndrome. Hence, the control of IL-1β secretion is of outstanding biomedical importance. In response to a first inflammatory stimulus such as lipopolysaccharide, pro-IL-1β is synthesized as a cytoplasmic inactive pro-form. Extracellular ATP originating from injured cells is a prototypical second signal for inflammasome-dependent maturation and release of IL-1β. The human anti-protease alpha-1 antitrypsin (AAT) and IL-1β regulate each other via mechanisms that are only partially understood. Here, we demonstrate that physiological concentrations of AAT efficiently inhibit ATP-induced release of IL-1β from primary human blood mononuclear cells, monocytic U937 cells, and rat lung tissue, whereas ATP-independent IL-1β release is not impaired. Both, native and oxidized AAT are active, suggesting that the inhibition of IL-1β release is independent of the anti-elastase activity of AAT. Signaling of AAT in monocytic cells involves the lipid scavenger receptor CD36, calcium-independent phospholipase A2β, and the release of a small soluble mediator. This mediator leads to the activation of nicotinic acetylcholine receptors, which efficiently inhibit ATP-induced P2X7 receptor activation and inflammasome assembly. We suggest that AAT controls ATP-induced IL-1β release from human mononuclear blood cells by a novel triple-membrane-passing signaling pathway. This pathway may have clinical implications for the prevention of sterile pulmonary and systemic inflammation.
Collapse
Affiliation(s)
- Kathrin Siebers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Bijan Fink
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Alisa Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Sebastian Konzok
- Fraunhofer Institute for Toxicology and Experimental Medicine, German Centre for Lung Research, Hannover, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Sven Zukunft
- Institute of Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Jochen Klein
- Department of Pharmacology, Goethe University College of Pharmacy, Frankfurt, Germany
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, German Centre for Lung Research, Hannover, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Nupur Aggarwal
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research, Hannover, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Wendy Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, China
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| |
Collapse
|
14
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
15
|
Vitenberga Z, Pilmane M. Inflammatory, anti-inflammatory and regulatory cytokines in relatively healthy lung tissue as an essential part of the local immune system. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017. [PMID: 28627525 DOI: 10.5507/bp.2017.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The innate and adaptive immune systems in lungs are maintained not only by immune cells but also by non-immune tissue structures, locally providing wide intercellular communication networks and regulating the local tissue immune response. AIMS The aim of this study was to determine the appearance and distribution of inflammatory, anti-inflammatory and regulatory cytokines in relatively healthy lung tissue samples. MATERIAL AND METHODS We evaluated lung tissue specimens obtained from 49 patients aged 9-95 years in relatively healthy study subjects. Tissue samples were examined by hematoxylin and eosin staining. Interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-7 (IL-7), and interleukin-10 (IL-10) were detected by an immunohistochemistry (IMH) method. The number of positive structures was counted semiquantitatively by microscopy. Non-parametric tests were used to analyse the data. RESULTS IL-1-positive cells were mostly found in the bronchial cartilage and alveolar epithelium. Immunoreactive lung macrophages were also found. The numbers of IL-4, IL-6, IL-7, and IL-10 containing cells were also found in the bronchial epithelium (in addition to those previously listed). The number of positive structures varied from occasional to moderate, but was graded higher in cartilage. Overall, fewer IL-1-positive cells and more IL-10-positive cells were found. Almost no positive structures for all examined cytokines were found in connective tissue and bronchial glands. CONCLUSIONS Relatively healthy lung tissue exhibits anti-inflammatory response patterns. The cytokine distribution and appearance suggest persistent stimulation of cytokine expression in lung tissue and indicate the presence of local regulatory and modulating patterns. The pronounced cytokine distribution in bronchial cartilage suggests the involvement of a compensatory local immune response in the supporting tissue.
Collapse
Affiliation(s)
- Zane Vitenberga
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, Riga, LV-1010, Latvia
| | - Mara Pilmane
- Department of Morphology, Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, Riga, LV-1010, Latvia
| |
Collapse
|
16
|
Backhaus S, Zakrzewicz A, Richter K, Damm J, Wilker S, Fuchs-Moll G, Küllmar M, Hecker A, Manzini I, Ruppert C, McIntosh JM, Padberg W, Grau V. Surfactant inhibits ATP-induced release of interleukin-1β via nicotinic acetylcholine receptors. J Lipid Res 2017; 58:1055-1066. [PMID: 28404637 PMCID: PMC5454502 DOI: 10.1194/jlr.m071506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/22/2017] [Indexed: 01/04/2023] Open
Abstract
Interleukin (IL)-1β is a potent pro-inflammatory cytokine of innate immunity involved in host defense. High systemic IL-1β levels, however, cause life-threatening inflammatory diseases, including systemic inflammatory response syndrome. In response to various danger signals, the pro-form of IL-1β is synthesized and stays in the cytoplasm unless a second signal, such as extracellular ATP, activates the inflammasome, which enables processing and release of mature IL-1β. As pulmonary surfactant is known for its anti-inflammatory properties, we hypothesize that surfactant inhibits ATP-induced release of IL-1β. Lipopolysaccharide-primed monocytic U937 cells were stimulated with an ATP analog in the presence of natural or synthetic surfactant composed of recombinant surfactant protein (rSP)-C, palmitoylphosphatidylglycerol, and dipalmitoylphosphatidylcholine (DPPC). Both surfactant preparations dose-dependently inhibited IL-1β release from U937 cells. DPPC was the active constituent of surfactant, whereas rSP-C and palmitoylphosphatidylglycerol were inactive. DPPC was also effective in primary mononuclear leukocytes isolated from human blood. Experiments with nicotinic antagonists, siRNA technology, and patch-clamp experiments suggested that stimulation of nicotinic acetylcholine receptors (nAChRs) containing subunit α9 results in a complete inhibition of the ion channel function of ATP receptor, P2X7. In conclusion, the surfactant constituent, DPPC, efficiently inhibits ATP-induced inflammasome activation and maturation of IL-1β in human monocytes by a mechanism involving nAChRs.
Collapse
Affiliation(s)
- Sören Backhaus
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Jelena Damm
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Fuchs-Moll
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Ruppert
- Medical Clinic II, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
17
|
Ye L, Song D, Jin M, Wang X. Therapeutic roles of telocytes in OVA-induced acute asthma in mice. J Cell Mol Med 2017; 21:2863-2871. [PMID: 28524369 PMCID: PMC5661110 DOI: 10.1111/jcmm.13199] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Telocytes (TCs) newly discovered as the mesenchyme-derived interstitial cells were found to have supportive effects on mesenchymal stem cells (MSCs). The present study aimed at investigating effects of TCs or TCs gathered with MSCs on experimental airway inflammation and hyper-responsiveness. The TCs were isolated from the lung tissue of the female BALB/c mice. The ovalbumin (OVA)-induced asthma model was established. TCs (1 × 106 /2 × 106 ) and/or MSCs (1 × 106 ) were injected through mice tail vein for consecutive three days before OVA excited the mice. This study at first demonstrated that the transplantation of TCs could improve allergen-induced asthma by obviously inhibiting airway inflammation and airway hyper-responsiveness preclinically, with the down-regulation of Th2-related cytokine IL-4, transcription factor GATA-3 and Th2 cell differentiation, while up-regulation of Th1-related cytokine IFN-γ, transcription factor T-bet and Th1 cells proliferation in asthma, just like MSCs. Co-transplantation of TCs with MSCs showed better therapeutic effects on experimental asthma, even though the therapeutic effects of TCs alone were similar to those of MSCs alone. TCs and the combination of TCs with MSCs could improve the airway inflammation and airway hyper-responsiveness and can be a new alternative for asthma therapy.
Collapse
Affiliation(s)
- Ling Ye
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Dongli Song
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| | - Meiling Jin
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Naveed SUN, Clements D, Jackson DJ, Philp C, Billington CK, Soomro I, Reynolds C, Harrison TW, Johnston SL, Shaw DE, Johnson SR. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity. Am J Respir Crit Care Med 2017; 195:1000-1009. [PMID: 27967204 DOI: 10.1164/rccm.201604-0822oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. OBJECTIVES To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. METHODS Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. MEASUREMENTS AND MAIN RESULTS Airway smooth muscle cells generated pro-MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro-MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. CONCLUSIONS MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness.
Collapse
Affiliation(s)
- Shams-Un-Nisa Naveed
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Debbie Clements
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - David J Jackson
- 2 National Heart and Lung Institute, Imperial College London and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,3 Respiratory Medicine, Guy's and St Thomas' NHS Trust, London, United Kingdom; and
| | - Christopher Philp
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Irshad Soomro
- 4 Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Catherine Reynolds
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Timothy W Harrison
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Sebastian L Johnston
- 2 National Heart and Lung Institute, Imperial College London and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Dominick E Shaw
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- 1 Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Kim YH, Choi YJ, Kang MK, Park SH, Antika LD, Lee EJ, Kim DY, Kang YH. Astragalin Inhibits Allergic Inflammation and Airway Thickening in Ovalbumin-Challenged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:836-845. [PMID: 28064485 DOI: 10.1021/acs.jafc.6b05160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lung inflammation and oxidative stress are the major contributors to the development of obstructive pulmonary diseases. Macrophages are involved in pulmonary inflammation and alveolar damage in emphysema. Astragalin is an anti-inflammatory flavonoid present in persimmon leaves and green tea seeds. This study elucidated that astragalin inhibited inflammatory cell infiltration induced by 20 μM H2O2 and blocked airway thickening and alveolar emphysema induced by 20 μg of ovalbumin (OVA) in mice. OVA induced mouse pulmonary MCP-1, and H2O2 enhanced the expression of MCP-1/ICAM-1/αv integrin in bronchial airway epithelial BEAS-2B cells. Such induction was inhibited by supplying 10-20 mg/kg of astragalin to OVA-challenged mice and 1-20 μM astragalin to oxidant-stimulated cells. Oral administration of 20 mg/kg of astragalin reduced the induction of F4/80/CD68/CD11b in airways of mice challenged with OVA. Additionally, emphysema tissue damage was observed in OVA-exposed alveoli. Mast cell recruitment in the airway subepithelium was blocked by supplementing astragalin to OVA-challenged mice. Orally treating 20 mg/kg of astragalin reduced α-SMA induction in inflammation-occurring airways and appeared to reverse airway thickening and constriction induced by an OVA episode. These results revealed that astragalin may improve airway thickening and alveolar destruction with blockade of allergic inflammation in airways. Therefore, astragalin may be a therapeutic agent antagonizing asthma and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| |
Collapse
|
20
|
Wirsdörfer F, Jendrossek V. The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Front Immunol 2016; 7:591. [PMID: 28018357 PMCID: PMC5155013 DOI: 10.3389/fimmu.2016.00591] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein, lymphocytes represent a versatile and wide-ranged group of cells of the immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory, or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T lymphocytes and B lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions as well as the interaction and the intercellular cross talk between cells from the innate and adaptive immune systems and (damaged) resident epithelial cells and stromal cells (e.g., endothelial cells, mesenchymal stem cells, and fibroblasts). Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| |
Collapse
|
21
|
Mahemuti L, Chen Q, Coughlan MC, Zhang M, Florian M, Mailloux RJ, Cao XL, Scoggan KA, Willmore WG, Jin X. Bisphenol A exposure alters release of immune and developmental modulators and expression of estrogen receptors in human fetal lung fibroblasts. J Environ Sci (China) 2016; 48:11-23. [PMID: 27745655 DOI: 10.1016/j.jes.2016.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/06/2023]
Abstract
Bisphenol A (BPA) has been shown to exert biological effects through estrogen receptor (ER)-dependent and ER-independent mechanisms. Recent studies suggest that prenatal exposure to BPA may increase the risk of childhood asthma. To investigate the underlying mechanisms in the actions of BPA, human fetal lung fibroblasts (hFLFs) were exposed to varying doses of BPA in culture for 24hr. Effects of BPA on localization and uptake of BPA, cell viability, release of immune and developmental modulators, cellular localization and expression of ERα, ERβ and G-protein coupled estrogen receptor 30 (GPR30), and effects of ERs antagonists on BPA-induced changes in endothelin-1 (ET-1) release were examined. BPA at 0.01-100μmol/L caused no changes in cell viability after 24hr of exposure. hFLFs expresses all three ERs. BPA had no effects on either cellular distribution or protein expression of ERα, however, at 100μmol/L (or 23μmol/L intracellular BPA) increased ERβ protein levels in the cytoplasmic fractions and GPR30 protein levels in the nuclear fractions. These paralleled with increased release of growth differentiation factor-15, decreased phosphorylation of nuclear factor kappa B p65 at serine 536, and decreased release of ET-1, interleukin-6, and interferon gamma-induced protein 10. ERs antagonists had no effects on BPA-induced decrease in ET-1 release. These data suggest that BPA at 100μmol/L altered the release of immune and developmental modulators in hFLFs, which may negatively influence fetal lung development, maturation, and susceptibility to environmental stressors, although the role of BPA in childhood asthma remains to be confirmed in in vivo studies.
Collapse
Affiliation(s)
- Laziyan Mahemuti
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada.
| | - Qixuan Chen
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Melanie C Coughlan
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Min Zhang
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada
| | - Maria Florian
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ryan J Mailloux
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Xu-Liang Cao
- Food Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ontario, Canada
| | - Kylie A Scoggan
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada; Sector Strategies Division, Risk Management Bureau, Safe Environments Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada
| | - William G Willmore
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Xiaolei Jin
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
22
|
Tao J, Sun LXJ, Le XC. Study of the effects of bisphenol A using human fetal lung fibroblasts. J Environ Sci (China) 2016; 48:6-10. [PMID: 27745673 DOI: 10.1016/j.jes.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lily Xiao Jing Sun
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
23
|
Hill AR, Donaldson JE, Blume C, Smithers N, Tezera L, Tariq K, Dennison P, Rupani H, Edwards MJ, Howarth PH, Grainge C, Davies DE, Swindle EJ. IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit. Tissue Barriers 2016; 4:e1206378. [PMID: 27583193 PMCID: PMC4993579 DOI: 10.1080/21688370.2016.1206378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/05/2023] Open
Abstract
The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection.
Collapse
Affiliation(s)
- Alison R Hill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton , Southampton, UK
| | - Jessica E Donaldson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton , Southampton, UK
| | - Cornelia Blume
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton , Southampton, UK
| | - Natalie Smithers
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton , Southampton, UK
| | - Liku Tezera
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton , Southampton, UK
| | - Kamran Tariq
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton , Southampton, UK
| | - Patrick Dennison
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton , Southampton, UK
| | - Hitasha Rupani
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | | | - Peter H Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - Christopher Grainge
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton , Southampton, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK; Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| | - Emily J Swindle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK; Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
Dessalle K, Narayanan V, Kyoh S, Mogas A, Halayko AJ, Nair P, Baglole CJ, Eidelman DH, Ludwig MS, Hamid Q. Human bronchial and parenchymal fibroblasts display differences in basal inflammatory phenotype and response to IL-17A. Clin Exp Allergy 2016; 46:945-56. [PMID: 27079765 DOI: 10.1111/cea.12744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Chronic inflammation, typified by increased expression of IL-17A, together with airway and parenchymal remodelling are features of chronic lung diseases. Emerging evidence suggests that phenotypic heterogeneity of repair and inflammatory capacities of fibroblasts may contribute to the differential structural changes observed in different regions of the lung. OBJECTIVE To investigate phenotypic differences in parenchymal and bronchial fibroblasts, either in terms of inflammation and remodelling or the ability of these fibroblasts to respond to IL-17A. METHODS Four groups of primary fibroblasts were used: normal human bronchial fibroblast (NHBF), normal human parenchymal fibroblast (NHPF), COPD human bronchial fibroblast (CHBF) and COPD human parenchymal fibroblast (CHPF). Cytokine and extracellular matrix (ECM) expression were measured at baseline and after stimulation with IL-17A. Actinomycin D was used to measure cytokine mRNA stability. RESULTS At baseline, we observed higher protein production of IL-6 in NHPF than NHBF, but higher levels of IL-8 and GRO-α in NHBF. IL-17A induced a higher expression of GRO-α (CXCL1) and IL-6 in NHPF than in NHBF, and a higher level of IL-8 expression in NHBF. IL-17A treatment decreased the mRNA stability of IL-6 in NHBF when compared with NHPF. CHPF expressed higher protein levels of fibronectin, collagen-I and collagen-III than CHBF, NHBF and NHPF. IL-17A increased fibronectin and collagen-III protein only in NHPF and collagen-III protein production in CHBF and CHPF. CONCLUSIONS AND CLINICAL RELEVANCE These findings provide insight into the inflammatory and remodelling processes that may be related to the phenotypic heterogeneity of fibroblasts from airway and parenchymal regions and in their response to IL-17A.
Collapse
Affiliation(s)
- K Dessalle
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - V Narayanan
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - S Kyoh
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - A Mogas
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - A J Halayko
- Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - P Nair
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - C J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - D H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - M S Ludwig
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Q Hamid
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,College of Medicine, University of Sharjah, UAE
| |
Collapse
|
25
|
van Dijk EM, Menzen MH, Spanjer AIR, Middag LDC, Brandsma CAA, Gosens R. Noncanonical WNT-5B signaling induces inflammatory responses in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1166-76. [PMID: 27036869 DOI: 10.1152/ajplung.00226.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/24/2016] [Indexed: 01/25/2023] Open
Abstract
COPD is a progressive chronic lung disease characterized by pulmonary inflammation. Several recent studies indicate aberrant expression of WNT ligands and Frizzled receptors in the disease. For example, WNT-5A/B ligand expression was recently found to be increased in lung fibroblasts of COPD patients. However, possible effects of WNT-5A and WNT-5B on inflammation have not been investigated yet. In this study, we assessed the regulation of inflammatory cytokine release in response to WNT-5A/B signaling in human lung fibroblasts. Primary human fetal lung fibroblasts (MRC-5), and primary lung fibroblasts from COPD patients and non-COPD controls were treated with recombinant WNT-5A or WNT-5B to assess IL-6 and CXCL8 cytokine secretion and gene expression levels. Following WNT-5B, and to a lesser extent WNT-5A stimulation, fibroblasts showed increased IL-6 and CXCL8 cytokine secretion and mRNA expression. WNT-5B-mediated IL-6 and CXCL8 release was higher in fibroblasts from COPD patients than in non-COPD controls. In MRC-5 fibroblasts, WNT-5B-induced CXCL8 release was mediated primarily via the Frizzled-2 receptor and TAK1 signaling, whereas canonical β-catenin signaling was not involved. In further support of noncanonical signaling, we showed activation of JNK, p38, and p65 NF-κB by WNT-5B. Furthermore, inhibition of JNK and p38 prevented WNT-5B-induced IL-6 and CXCL8 secretion, whereas IKK inhibition prevented CXCL8 secretion only, indicating distinct pathways for WNT-5B-induced IL-6 and CXCL8 release. WNT-5B induces IL-6 and CXCL8 secretion in pulmonary fibroblasts. In summary, WNT-5B mediates this via Frizzled-2 and TAK1. As WNT-5 signaling is increased in COPD, this WNT-5-induced inflammatory response could represent a therapeutic target.
Collapse
Affiliation(s)
- Eline M van Dijk
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Anita I R Spanjer
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Laurens D C Middag
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Corry-Anke A Brandsma
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands; and Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
The matrix protein Fibulin-5 is at the interface of tissue stiffness and inflammation in fibrosis. Nat Commun 2015; 6:8574. [PMID: 26469761 PMCID: PMC4634219 DOI: 10.1038/ncomms9574] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/04/2015] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a pervasive disease in which the excessive deposition of extracellular matrix (ECM) compromises tissue function. Although the underlying mechanisms are mostly unknown, matrix stiffness is increasingly appreciated as a contributor to fibrosis rather than merely a manifestation of the disease. Here we show that the loss of Fibulin-5, an elastic fibre component, not only decreases tissue stiffness, but also diminishes the inflammatory response and abrogates the fibrotic phenotype in a mouse model of cutaneous fibrosis. Increasing matrix stiffness raises the inflammatory response above a threshold level, independent of TGF-β, to stimulate further ECM secretion from fibroblasts and advance the progression of fibrosis. These results suggest that Fibulin-5 may be a therapeutic target to short-circuit this profibrotic feedback loop.
Collapse
|
27
|
Marriott S, Baskir RS, Gaskill C, Menon S, Carrier EJ, Williams J, Talati M, Helm K, Alford CE, Kropski JA, Loyd J, Wheeler L, Johnson J, Austin E, Nozik-Grayck E, Meyrick B, West JD, Klemm DJ, Majka SM. ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. Am J Physiol Cell Physiol 2014; 307:C684-98. [PMID: 25122876 PMCID: PMC4200000 DOI: 10.1152/ajpcell.00114.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Abstract
Genesis of myofibroblasts is obligatory for the development of pathology in many adult lung diseases. Adult lung tissue contains a population of perivascular ABCG2(pos) mesenchymal stem cells (MSC) that are precursors of myofibroblasts and distinct from NG2 pericytes. We hypothesized that these MSC participate in deleterious remodeling associated with pulmonary fibrosis (PF) and associated hypertension (PH). To test this hypothesis, resident lung MSC were quantified in lung samples from control subjects and PF patients. ABCG2(pos) cell numbers were decreased in human PF and interstitial lung disease compared with control samples. Genetic labeling of lung MSC in mice enabled determination of terminal lineage and localization of ABCG2 cells following intratracheal administration of bleomycin to elicit fibrotic lung injury. Fourteen days following bleomycin injury enhanced green fluorescent protein (eGFP)-labeled lung MSC-derived cells were increased in number and localized to interstitial areas of fibrotic and microvessel remodeling. Finally, gene expression analysis was evaluated to define the response of MSC to bleomycin injury in vivo using ABCG2(pos) MSC isolated during the inflammatory phase postinjury and in vitro bleomycin or transforming growth factor-β1 (TGF-β1)-treated cells. MSC responded to bleomycin treatment in vivo with a profibrotic gene program that was not recapitulated in vitro with bleomycin treatment. However, TGF-β1 treatment induced the appearance of a profibrotic myofibroblast phenotype in vitro. Additionally, when exposed to the profibrotic stimulus, TGF-β1, ABCG2, and NG2 pericytes demonstrated distinct responses. Our data highlight ABCG2(pos) lung MSC as a novel cell population that contributes to detrimental myofibroblast-mediated remodeling during PF.
Collapse
Affiliation(s)
- Shennea Marriott
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Rubin S Baskir
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennesse
| | - Christa Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Swapna Menon
- Pulmonary Vascular Research Institute Kochi and AnalyzeDat Consulting Services, Kerala, India
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Janice Williams
- Vanderbilt Ingram Cancer Center, Electron Microscopy-Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Megha Talati
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Karen Helm
- Cancer Center Flow Cytometry Shared Resource, University of Colorado, Aurora, Colorado
| | - Catherine E Alford
- Department of Pathology and Laboratory Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - James Loyd
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Lisa Wheeler
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - Joyce Johnson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Eva Nozik-Grayck
- Department of Pediatrics or Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado; and
| | - Barbara Meyrick
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse
| | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse; Vanderbilt Pulmonary Circulation Center, Vanderbilt University, Nashville, Tennessee
| | - Dwight J Klemm
- Department of Pediatrics or Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado; and
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennesse; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Pulmonary Circulation Center, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennesse;
| |
Collapse
|