1
|
Mentzel J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib. Int J Mol Sci 2024; 25:5629. [PMID: 38891817 PMCID: PMC11172136 DOI: 10.3390/ijms25115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies.
Collapse
Affiliation(s)
- Jacob Mentzel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Sun C, Chu A, Song R, Liu S, Chai T, Wang X, Liu Z. PARP inhibitors combined with radiotherapy: are we ready? Front Pharmacol 2023; 14:1234973. [PMID: 37954854 PMCID: PMC10637512 DOI: 10.3389/fphar.2023.1234973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
PARP was an enzyme found in the nucleus of eukaryotic cells that played a crucial role in repairing damaged DNA. Recently, PARP inhibitors have demonstrated great potential in cancer treatment. Thus, the FDA has approved several small-molecule PARP inhibitors for cancer maintenance therapy. The combination of PARP inhibitors and radiotherapy relies on synthetic lethality, taking advantage of the flaws in DNA repair pathways to target cancer cells specifically. Studies conducted prior to clinical trials have suggested that the combination of PARP inhibitors and radiotherapy can enhance the sensitivity of cancer cells to radiation, intensify DNA damage, and trigger cell death. Combining radiotherapy with PARP inhibitors in clinical trials has enhanced the response rate and progression-free survival of diverse cancer patients. The theoretical foundation of PARP inhibitors combined with radiotherapy is explained in detail in this article, and the latest advances in preclinical and clinical research on these inhibitors for tumor radiotherapy are summarized. The problems in the current field are recognized in our research and potential therapeutic applications for tumors are suggested. Nevertheless, certain obstacles need to be tackled when implementing PARP inhibitors and radiotherapies in clinical settings. Factors to consider when using the combination therapy are the most suitable schedule and amount of medication, identifying advantageous candidates, and the probable adverse effects linked with the combination. The combination of radiotherapy and PARP inhibitors can greatly enhance the effectiveness of cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongwen Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
4
|
Freis B, Ramirez MDLA, Kiefer C, Harlepp S, Iacovita C, Henoumont C, Affolter-Zbaraszczuk C, Meyer F, Mertz D, Boos A, Tasso M, Furgiuele S, Journe F, Saussez S, Bégin-Colin S, Laurent S. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023; 15:pharmaceutics15041104. [PMID: 37111590 PMCID: PMC10143744 DOI: 10.3390/pharmaceutics15041104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Collapse
|
5
|
Freis B, Ramírez MDLÁ, Furgiuele S, Journe F, Cheignon C, Charbonnière LJ, Henoumont C, Kiefer C, Mertz D, Affolter-Zbaraszczuk C, Meyer F, Saussez S, Laurent S, Tasso M, Bégin-Colin S. Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells. Int J Pharm 2023; 635:122654. [PMID: 36720449 DOI: 10.1016/j.ijpharm.2023.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.
Collapse
Affiliation(s)
- Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - María De Los Ángeles Ramírez
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Sonia Furgiuele
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Clémence Cheignon
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Loïc J Charbonnière
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Céline Henoumont
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Celine Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Christine Affolter-Zbaraszczuk
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Florent Meyer
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Sophie Laurent
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Mariana Tasso
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Sylvie Bégin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| |
Collapse
|
6
|
Chitsike L, Bertucci A, Vazquez M, Lee S, Unternaehrer JJ, Duerksen-Hughes PJ. GA-OH enhances the cytotoxicity of photon and proton radiation in HPV + HNSCC cells. Front Oncol 2023; 13:1070485. [PMID: 36845698 PMCID: PMC9950506 DOI: 10.3389/fonc.2023.1070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Treatment-related toxicity following either chemo- or radiotherapy can create significant clinical challenges for HNSCC cancer patients, particularly those with HPV-associated oropharyngeal squamous cell carcinoma. Identifying and characterizing targeted therapy agents that enhance the efficacy of radiation is a reasonable approach for developing de-escalated radiation regimens that result in less radiation-induced sequelae. We evaluated the ability of our recently discovered, novel HPV E6 inhibitor (GA-OH) to radio-sensitize HPV+ and HPV- HNSCC cell lines to photon and proton radiation. Methods Radiosensitivity to either photon or proton beams was assessed using various assays such as colony formation assay, DNA damage markers, cell cycle and apoptosis, western blotting, and primary cells. Calculations for radiosensitivity indices and relative biological effectiveness (RBE) were based on the linear quadratic model. Results Our results showed that radiation derived from both X-ray photons and protons is effective in inhibiting colony formation in HNSCC cells, and that GA-OH potentiated radiosensitivity of the cells. This effect was stronger in HPV+ cells as compared to their HPV- counterparts. We also found that GA-OH was more effective than cetuximab but less effective than cisplatin (CDDP) in enhancing radiosensitivity of HSNCC cells. Further tests indicated that the effects of GA-OH on the response to radiation may be mediated through cell cycle arrest, particularly in HPV+ cell lines. Importantly, the results also showed that GA-OH increases the apoptotic induction of radiation as measured by several apoptotic markers, even though radiation alone had little effect on apoptosis. Conclusion The enhanced combinatorial cytotoxicity found in this study indicates the strong potential of E6 inhibition as a strategy to sensitize cells to radiation. Future research is warranted to further characterize the interaction of GA-OH derivatives and other E6-specific inhibitors with radiation, as well as its potential to improve the safety and effectiveness of radiation treatment for patients with oropharyngeal cancer.
Collapse
Affiliation(s)
- Lennox Chitsike
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Antonella Bertucci
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Marcelo Vazquez
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Steve Lee
- Department of Otolaryngology & Head/Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | | |
Collapse
|
7
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
8
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
9
|
Nantajit D, Presta L, Sauter T, Tavassoli M. EGFR-induced suppression of HPV E6/E7 is mediated by microRNA-9-5p silencing of BRD4 protein in HPV-positive head and neck squamous cell carcinoma. Cell Death Dis 2022; 13:921. [PMID: 36333293 PMCID: PMC9636399 DOI: 10.1038/s41419-022-05269-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
EGFR upregulation is an established biomarker of treatment resistance and aggressiveness in head and neck cancers (HNSCC). EGFR-targeted therapies have shown benefits for HPV-negative HNSCC; surprisingly, inhibiting EGFR in HPV-associated HNSCC led to inferior therapeutic outcomes suggesting opposing roles for EGFR in the two HNSCC subtypes. The current study aimed to understand the link between EGFR and HPV-infected HNSCC particularly the regulation of HPV oncoproteins E6 and E7. We demonstrate that EGFR overexpression suppresses cellular proliferation and increases radiosensitivity of HPV-positive HNSCC cell lines. EGFR overexpression inhibited protein expression of BRD4, a known cellular transcriptional regulator of HPV E6/E7 expression and DNA damage repair facilitator. Inhibition of EGFR by cetuximab restored the expression of BRD4 leading to increased HPV E6 and E7 transcription. Concordantly, pharmacological inhibition of BRD4 led to suppression of HPV E6 and E7 transcription, delayed cellular proliferation and sensitised HPV-positive HNSCC cells to ionising radiation. This effect was shown to be mediated through EGFR-induced upregulation of microRNA-9-5p and consequent silencing of its target BRD4 at protein translational level, repressing HPV E6 and E7 transcription and restoring p53 tumour suppressor functions. These results suggest a novel mechanism for EGFR inhibition of HPV E6/E7 oncoprotein expression through an epigenetic pathway, independent of MAPK, but mediated through microRNA-9-5p/BRD4 regulation. Therefore, targeting EGFR may not be the best course of therapy for certain cancer types including HPV-positive HNSCC, while targeting specific signalling pathways such as BRD4 could provide a better and potentially new treatment to improve HNSCC therapeutic outcome.
Collapse
Affiliation(s)
- Danupon Nantajit
- grid.13097.3c0000 0001 2322 6764Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom ,grid.512982.50000 0004 7598 2416Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Luana Presta
- grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Thomas Sauter
- grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mahvash Tavassoli
- grid.13097.3c0000 0001 2322 6764Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
11
|
Suppression of Long Noncoding RNA SNHG1 Inhibits the Development of Hypopharyngeal Squamous Cell Carcinoma via Increasing PARP6 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1562219. [PMID: 35836822 PMCID: PMC9276473 DOI: 10.1155/2022/1562219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Purpose This study aimed to explore the function and molecular mechanism of long noncoding RNA Small Nucleolar RNA Host Gene 1 (SNHG1) in the development of hypopharyngeal squamous cell carcinoma (HSCC). Methods Human HSCC cell line FaDu was used in this study. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were measured by Transwell assay. The expression of PARP6, XRCC6, β-catenin, and EMT-related proteins (E-cadherin and N-cadherin) were determined using western blotting. Moreover, the regulatory relationship between SNHG1 and PARP6 was investigated. Furthermore, the effects of the SNHG1/PARP6 axis on tumorigenicity were explored in vivo. Results Suppression of SNHG1 suppressed the viability, migration, and invasion but promoted apoptosis of FaDu cells in vitro (P < 0.01). PARP6 is a target of SNHG1, which was upregulated by SNHG1 knockdown in FaDu cells (P < 0.01). SNHG1 suppression and RARP6 overexpression inhibited FaDu cell proliferation, migration, and invasion (P < 0.05). SNHG1 suppression and RARP6 overexpression also inhibited tumorigenicity of HSCC in vivo. Furthermore, the protein expression of E-cadherin was significantly increased and that of N-cadherin, β-catenin, and XRCC6 was dramatically decreased in HSCC after SNHG1 suppression or/and RARP6 overexpression both in vitro and in vivo (P < 0.01). Conclusions SNHG1 silencing inhibits HSCC malignant progression via upregulating PARP6. XRCC6/β-catenin/EMT axis may be a possible downstream mechanism of the SNHG1/PARP6 axis in HSCC. SNHG1/PARP6 can be used as a promising target for the treatment of HSCC.
Collapse
|
12
|
The dogma of Cetuximab and Radiotherapy in head and neck cancer – A dawn to dusk journey. Clin Transl Radiat Oncol 2022; 34:75-81. [PMID: 35356388 PMCID: PMC8958314 DOI: 10.1016/j.ctro.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cetuximab is routinely used in the radical treatment of head and neck cancers. Results of many important studies are out now and are not encouraging. Routine use of Cetuximab in this setting has to be re-evaluated again.
Since the introduction of Cetuximab as a biological molecule against Epidermal Growth Factor Receptor (EGFR), its use in the cancers of head and neck region is widely explored. With the recognition that EGFR expression is associated with radioresistance and poor prognosis, incorporation of an anti-EGFR agent along with Radiotherapy (RT) is a logical and attractive option. Cetuximab in combination with RT as Bio-Radiotherapy (BRT) is considered one of the standard treatment modalities in Locally Advanced Head and Neck Squamous Cell Cancers (LA-HNSCC). Many important phase-III clinical trials were undertaken simultaneously, where the use of Cetuximab BRT was tested in various clinical scenarios with different hypothesis. With the studies still ongoing and the results awaited, its use was continued in clinical practice. Today the results are out and definitely not encouraging. After the initial success, Cetuximab has miserably failed to win over cisplatin based chemoradiation which is the current standard of care in LA-HNSCC. Hence, it is the need of the hour to re-evaluate and define the present role of Cetuximab in the definitive management of LA-HNSCC in the light of the latest clinical evidence..
Collapse
|
13
|
Spiotto MT, Taniguchi CM, Klopp AH, Colbert LE, Lin SH, Wang L, Frederick MJ, Osman AA, Pickering CR, Frank SJ. Biology of the Radio- and Chemo-Responsiveness in HPV Malignancies. Semin Radiat Oncol 2021; 31:274-285. [PMID: 34455983 DOI: 10.1016/j.semradonc.2021.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In multiple anatomic sites, patients with cancers associated with the Human Papillomavirus (HPV) experience better locoregional control and overall survival after radiotherapy and/or chemoradiotherapy than patients with HPV-negative cancers. These improved outcomes suggest that relatively unique biological features in HPV-positive cancers may increase sensitivity to DNA damaging agents as well as an impaired DNA damage response. This review will address potential biological mechanisms driving this increased sensitivity of HPV-positive cancer to radiation and/or chemotherapy. This review will discuss the clinical and preclinical observations that support the intrinsic radiosensitivity and/or chemosensitivity of HPV-positive cancers. Furthermore, this review will highlight the molecular mechanisms for increased radiation sensitivity using the classical "4 Rs" of radiobiology: repair, reassortment, repopulation, and reoxygenation. First, HPV-positive cancers have increased DNA damage due to increased oxidative stress and impaired DNA damage repair due to the altered activity TP53, p16, TIP60, and other repair proteins. Second, irradiated HPV-positive cancer cells display increased G2/M arrest leading to reassortment of cancer cells in more radiosensitive phases of the cell cycle. In addition, HPV-positive cancers have less radioresistant cancer stem cell subpopulations that may limit their repopulation during radiotherapy. Finally, HPV-positive cancers may also have less hypoxic tumor microenvironments that make these cancers more sensitive to radiation than HPV-negative cells. We will also discuss extrinsic immune and microenvironmental factors enriched in HPV-positive cancers that facilities responses to radiation. Therefore, these potential biological mechanisms may underpin the improved clinical outcomes often observed in these virally induced cancers.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Li Wang
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | | | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Chitsike L, Duerksen-Hughes PJ. Targeted Therapy as a Potential De-Escalation Strategy in Locally Advanced HPV-Associated Oropharyngeal Cancer: A Literature Review. Front Oncol 2021; 11:730412. [PMID: 34490123 PMCID: PMC8418093 DOI: 10.3389/fonc.2021.730412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.
Collapse
|
15
|
Hintelmann K, Berenz T, Kriegs M, Christiansen S, Gatzemeier F, Struve N, Petersen C, Betz C, Rothkamm K, Oetting A, Rieckmann T. Dual Inhibition of PARP and the Intra-S/G2 Cell Cycle Checkpoints Results in Highly Effective Radiosensitization of HPV-Positive HNSCC Cells. Front Oncol 2021; 11:683688. [PMID: 34354944 PMCID: PMC8329549 DOI: 10.3389/fonc.2021.683688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In head and neck squamous cell carcinoma (HNSCC), tumors positive for human papillomavirus (HPV) represent a distinct biological entity with favorable prognosis. An enhanced radiation sensitivity of these tumors is evident in the clinic and on the cellular level when comparing HPV-positive and HPV-negative HNSCC cell lines. We could show that the underlying mechanism is a defect in DNA double-strand break repair associated with a profound and sustained G2 arrest. This defect can be exploited by molecular targeting approaches additionally compromising the DNA damage response to further enhance their radiation sensitivity, which may offer new opportunities in the setting of future de-intensified regimes. Against this background, we tested combined targeting of PARP and the DNA damage-induced intra-S/G2 cell cycle checkpoints to achieve effective radiosensitization. Enhancing CDK1/2 activity through the Wee1 inhibitor adavosertib or a combination of Wee1 and Chk1 inhibition resulted in an abrogation of the radiation-induced G2 cell cycle arrest and induction of replication stress as assessed by γH2AX and chromatin-bound RPA levels in S phase cells. Addition of the PARP inhibitor olaparib had little influence on these endpoints, irrespective of checkpoint inhibition. Combined PARP/Wee1 targeting did not result in an enhancement in the absolute number of residual, radiation induced 53BP1 foci as markers of DNA double-strand breaks but it induced a shift in foci numbers from S/G2 to G1 phase cells. Most importantly, while sole checkpoint or PARP inhibition induced moderate radiosensitization, their combination was clearly more effective, while exerting little effect in p53/G1 arrest proficient normal human fibroblasts, thus indicating tumor specificity. We conclude that the combined inhibition of PARP and the intra-S/G2 checkpoint is a highly effective approach for the radiosensitization of HPV-positive HNSCC cells and may represent a viable alternative for the current standard of concomitant cisplatin-based chemotherapy. In vivo studies to further evaluate the translational potential are highly warranted.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Berenz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes Oetting
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Carr RM, Jin Z, Hubbard J. Research on Anal Squamous Cell Carcinoma: Systemic Therapy Strategies for Anal Cancer. Cancers (Basel) 2021; 13:cancers13092180. [PMID: 34062753 PMCID: PMC8125190 DOI: 10.3390/cancers13092180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Anal cancer is rare with an estimated 9000 new cases predicted to occur in the United States in 2021. However, rates of new anal cancer cases and deaths from the disease are increasing by about 2% and 3% per year respectively. In light of these trends it is critical to better understand the nature of this disease and progress in its management. The present review focuses on the history and development of the role of systemic therapy in the treatment of anal cancer. Major trials establishing the role of chemotherapy in the management of locoregional and metastatic anal cancer are summarized. In addition, the rapidly evolving role of immunotherapy is discussed. Finally, major insights into the molecular pathobiology of anal cancer and opportunities for advancement in precision medicine in treatment of the disease. Abstract Anal squamous cell carcinoma (ASCC) is a rare malignancy, with most cases associated with human papilloma virus and an increased incidence in immunocompromised patients. Progress in management of ASCC has been limited not only due to its rarity, but also the associated lack of research funding and social stigma. Historically, standard of care for invasive ASCC has been highly morbid surgical resection, requiring a permanent colostomy. Surgery was associated with disease recurrence in approximately half of the patients. However, the use of chemotherapy (5-fluorouracil and mitomycin C) concomitantly with radiation in the 1970s resulted in disease regression, curing a subset of patients and sparing them from morbid surgery. Validation of the use of systemic therapy in prospective trials was not achieved until approximately 20 years later. In this review, advancements and shortcomings in the use of systemic therapy in the management of ASCC will be discussed. Not only will standard-of-care systemic therapies for locoregional and metastatic disease be reviewed, but the evolving role of novel treatment strategies such as immune checkpoint inhibitors, HPV-based vaccines, and molecularly targeted therapies will also be covered. While advances in ASCC treatment have remained largely incremental, with increased biological insight, an increasing number of promising systemic treatment modalities are being explored.
Collapse
|
17
|
Chaudhary R, Slebos RJC, Song F, McCleary-Sharpe KP, Masannat J, Tan AC, Wang X, Amaladas N, Wu W, Hall GE, Conejo-Garcia JR, Hernandez-Prera JC, Chung CH. Effects of checkpoint kinase 1 inhibition by prexasertib on the tumor immune microenvironment of head and neck squamous cell carcinoma. Mol Carcinog 2021; 60:138-150. [PMID: 33378592 PMCID: PMC7856233 DOI: 10.1002/mc.23275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
Prognosis for patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC) remains poor. Development of more effective and less toxic targeted therapies is necessary for HNSCC patients. Checkpoint kinase 1 (CHK1) plays a vital role in cell cycle regulation and is a promising therapeutic target in HNSCC. Prexasertib, a CHK1 inhibitor, induces DNA damage and cell death, however, its effect on the tumor immune microenvironment (TIME) is largely unknown. Therefore, we evaluated a short-term and long-term effects of prexasertib in HNSCC and its TIME. Prexasertib caused increased DNA damage and cell death in vitro and significant tumor regression and improved survival in vivo. The gene expression and multiplex immunohistochemistry (mIHC) analyses of the in vivo tumors demonstrated increased expression of genes that are related to T-cell activation and increased immune cell trafficking, and decreased expression of genes that related to immunosuppression. However, increased expression of genes related to immunosuppression emerged over time suggesting evasion of immune surveillances. These findings in gene expression analyses were confirmed using mIHC which showed differential modulation of TIME in the tumor margins and as well as cores over time. These results suggest that evasion of immune surveillance, at least in part, may contribute to the acquired resistance to prexasertib in HNSCC.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Robbert J. C. Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | | | - Jude Masannat
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt
Cancer Center, Tampa, Florida, USA
| | - Nelusha Amaladas
- Lilly Research Laboratories, Eli Lilly and Company,
Indianapolis, Indiana, USA
| | - Wenjuan Wu
- Lilly Research Laboratories, Eli Lilly and Company,
Indianapolis, Indiana, USA
| | - Gerald E. Hall
- Lilly Research Laboratories, Eli Lilly and Company,
Indianapolis, Indiana, USA
| | | | | | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt
Cancer Center, Tampa, Florida, USA
| |
Collapse
|
18
|
Guru N, Demétrio De Souza França P, Pirovano G, Huang C, Patel SG, Reiner T. [ 18F]PARPi Imaging Is Not Affected by HPV Status In Vitro. Mol Imaging 2021; 2021:6641397. [PMID: 34194286 PMCID: PMC8205605 DOI: 10.1155/2021/6641397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
Background Human papillomavirus- (HPV-) associated oropharyngeal squamous cell carcinomas (OPSCCs) are clinically and pathologically distinct from HPV-negative tumors. Here, we explore whether HPV affects functional biomarkers, including γH2AX, RAD51, and PARP1. Moreover, the role of [18F]PARPi as a broadly applicable imaging tool for head and neck carcinomas is investigated. Methods HPV-positive and HPV-negative cell lines were used to evaluate the γH2AX, RAD51, and PARP1 expression with immunoblotting and immunofluorescence. Effects of external beam ionizing radiation were investigated in vitro, and survival was investigated via colony-formation assay. [18F]PARPi uptake experiments were performed on HPV-negative and HPV-positive cell lines to quantify PARP1 expression. PARP1 IHC and γH2AX foci were quantified using patient-derived oropharyngeal tumor specimens. Results Differences in DNA repair were detected, showing higher RAD51 and γH2AX expression in HPV-positive cell lines. Clonogenic assays confirm HPV-positive cell lines to be significantly more radiosensitive. PARP1 expression levels were similar, irrespective of HPV status. Consequently, [18F]PARPi uptake assays demonstrated that this tracer is internalized in cell lines independently from their HPV status. Conclusion The HPV status, often used clinically to stratify patients, did not affect PARP1 levels, suggesting that PARP imaging can be performed in both HPV-positive and HPV-negative patients. This study confirms that the PET imaging agent [18F]PARPi could serve as a general clinical tool for oropharyngeal cancer patients.
Collapse
Affiliation(s)
- Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Paula Demétrio De Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, SP, Brazil
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Cien Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Snehal G. Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
19
|
Li D, Hu C, Yang J, Liao Y, Chen Y, Fu SZ, Wu JB. Enhanced Anti-Cancer Effect of Folate-Conjugated Olaparib Nanoparticles Combined with Radiotherapy in Cervical Carcinoma. Int J Nanomedicine 2020; 15:10045-10058. [PMID: 33328733 PMCID: PMC7735794 DOI: 10.2147/ijn.s272730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Radiotherapy (RT), one of the main treatments for cervical cancer, has tremendous potential for improvement in the efficacy. Poly (ADP-ribose) polymerase (PARP) is a key enzyme in the repair of DNA strand breaks (DSB). Olaparib (Ola) is a PARP inhibitor that is involved in preventing the release of PARP from RT-induced damaged DNA to potentiate the effect of RT. Although the basic mechanism of Ola's radiosensitization is well known, the radiosensitization mechanism of its nanomedicine is still unclear. In addition, the lack of tumor tissue targeting is a major obstacle for the clinical success of Ola. MATERIALS AND METHODS In this study, we developed folate-conjugated active targeting olaparib nanoparticles (ATO) and investigated the anti-tumor effect of ATO combined with radiotherapy (RT) in nude mice using cervical cancer xenograft models. We used folate (FA)-conjugated poly (ε-caprolactone)-poly (ethyleneglycol)-poly (e-caprolactone) (PCEC) copolymer to prepare ATO via emulsification/solvent diffusion. Further, we evaluated ATO particle size, potential, encapsulation efficiency, and in vitro release characteristics, and evaluated the shape of ATO via transmission electron microscopy (TEM). We then performed MTT and cell uptake assays to detect cytotoxicity and targeting uptake in vitro. We investigated the anti-tumor properties of ATO in vivo by apoptosis test, 18 F-FDG PET/CT, and immunohistochemical analysis. Finally, the xenografted tumor in nude mice was subjected to RT and/or ATO treatment. RESULTS The results confirmed that ATO in combination with RT significantly inhibited tumor growth and prolonged survival time of tumor-bearing mice. This may be related to the inhibition of tumor proliferation and DNA damage repair and induction of cell apoptosis in vivo. CONCLUSION The ATO developed in this study may represent a novel formulation for olaparib delivery and have promising potential for treating tumors with an over-expression of folate receptors.
Collapse
Affiliation(s)
- Dong Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Chuanfei Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Shao Zhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Jing Bo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| |
Collapse
|
20
|
EGFR overexpression increases radiotherapy response in HPV-positive head and neck cancer through inhibition of DNA damage repair and HPV E6 downregulation. Cancer Lett 2020; 498:80-97. [PMID: 33137407 DOI: 10.1016/j.canlet.2020.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023]
Abstract
High-risk Human Papillomavirus (HPV) infections have recently emerged as an independent risk factor in head and neck squamous cell carcinoma (HNSCC). There has been a marked increase in the incidence of HPV-induced HNSCC subtype, which demonstrates different genetics with better treatment outcome. Despite the favourable prognosis of HPV-HNSCC, the treatment modality, consisting of high dose radiotherapy (RT) in combination with chemotherapy (CT), remains similar to HPV-negative tumours, associated with toxic side effects. Epidermal growth factor receptor (EGFR) is overexpressed in over 80% of HNSCC and correlates with RT resistance. EGFR inhibitor Cetuximab is the only FDA approved targeted therapy for both HNSCC subtypes, however the response varies between HNSCC subtypes. In HPV-negative HNSCC, Cetuximab sensitises HNSCC to RT improving survival rates. To reduce adverse cytotoxicity of CT, Cetuximab has been approved for treatment de-escalation of HPV-positive HNSCC. The results of several recent clinical trials have concluded differing outcome to HPV-negative HNSCC. Here we investigated the role of EGFR in HPV-positive HNSCC response to RT. Remarkably, in HPV-positive HNSCC cell lines and in vivo tumour models, EGFR activation was strongly indicative of increased RT response. In response to RT, EGFR activation induced impairment of DNA damage repair and increased RT response. Furthermore, EGFR was found to downregulate HPV oncoproteinE6 expression and induced p53 activity in response to RT. Collectively, our data uncovers a novel role for EGFR in virally induced HNSCC and highlights the importance of using EGFR-targeted therapies in the context of the genetic makeup of cancer.
Collapse
|
21
|
Hintelmann K, Kriegs M, Rothkamm K, Rieckmann T. Improving the Efficacy of Tumor Radiosensitization Through Combined Molecular Targeting. Front Oncol 2020; 10:1260. [PMID: 32903756 PMCID: PMC7438822 DOI: 10.3389/fonc.2020.01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoradiation, either alone or in combination with surgery or induction chemotherapy, is the current standard of care for most locally advanced solid tumors. Though chemoradiation is usually performed at the maximum tolerated doses of both chemotherapy and radiation, current cure rates are not satisfactory for many tumor entities, since tumor heterogeneity and plasticity result in chemo- and radioresistance. Advances in the understanding of tumor biology, a rapidly growing number of molecular targeting agents and novel technologies enabling the in-depth characterization of individual tumors, have fuelled the hope of entering an era of precision oncology, where each tumor will be treated according to its individual characteristics and weaknesses. At present though, molecular targeting approaches in combination with radiotherapy or chemoradiation have not yet proven to be beneficial over standard chemoradiation treatment in the clinical setting. A promising approach to improve efficacy is the combined usage of two targeting agents in order to inhibit backup pathways or achieve a more complete pathway inhibition. Here we review preclinical attempts to utilize such dual targeting strategies for future tumor radiosensitization.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Zhou C, Parsons JL. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev Mol Med 2020; 22:e3. [PMID: 32611474 PMCID: PMC7754878 DOI: 10.1017/erm.2020.4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/04/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with reported incidences of ~800 000 cases each year. One of the critical determinants in patient response to radiotherapy, particularly for oropharyngeal cancers, is human papillomavirus (HPV) status where HPV-positive patients display improved survival rates and outcomes particularly because of increased responsiveness to radiotherapy. The increased radiosensitivity of HPV-positive HNSCC has been largely linked with defects in the signalling and repair of DNA double-strand breaks. Therefore, strategies to further radiosensitise HPV-positive HNSCC, but also radioresistant HPV-negative HNSCC, have focussed on targeting key DNA repair proteins including PARP, DNA-Pk, ATM and ATR. However, inhibitors against CHK1 and WEE1 involved in cell-cycle checkpoint activation have also been investigated as targets for radiosensitisation in HNSCC. These studies, largely conducted using established HNSCC cell lines in vitro, have demonstrated variability in the response dependent on the specific inhibitors and cell models utilised. However, promising results are evident targeting specifically PARP, DNA-Pk, ATR and CHK1 in synergising with radiation in HNSCC cell killing. Nevertheless, these preclinical studies require further expansion and investigation for translational opportunities for the effective treatment of HNSCC in combination with radiotherapy.
Collapse
Affiliation(s)
- Chumin Zhou
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| | - Jason L. Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| |
Collapse
|
23
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 636] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
24
|
Wang L, Cao J, Wang X, Lin E, Wang Z, Li Y, Li Y, Chen M, Wang X, Jiang B, Zhang R, Sahoo N, Zhang X, Zhu XR, Myers JN, Frank SJ. Proton and photon radiosensitization effects of niraparib, a PARP-1/-2 inhibitor, on human head and neck cancer cells. Head Neck 2020; 42:2244-2256. [PMID: 32323895 DOI: 10.1002/hed.26155] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Combining photon or proton radiotherapy with targeted therapy shows promise for head and neck cancer (HNSCC). The poly (adenosine diphosphate [ADP]-ribose) polymerase-1/2 inhibitor niraparib targets DNA damage repair (DDR). We evaluated the effects of niraparib in combination with photons or protons, and its effects on the relative biological effectiveness (RBE) of protons, in human HNSCC cell lines. METHODS Radiosensitivity was assessed and RBE was calculated with clonogenic survival assays; unrepaired DNA double-strand breaks were evaluated using immunocytochemical analysis of 53BP1 foci. RESULTS Niraparib reduced colony formation in two of the four cell lines tested (P < .05), enhanced radiosensitivity in all four cell lines, delayed DDR (P < .05), and increased proton vs photon RBE. CONCLUSION Niraparib enhanced the sensitivity of four HNSCC cell lines to both photons and protons and increased the RBE of protons, possibly by inhibiting DDR. Niraparib may enhance the effectiveness of both photon and proton radiotherapy for patients with HNSCC.
Collapse
Affiliation(s)
- Li Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianzhong Cao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eric Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeming Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuting Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yupeng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mei Chen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xianliang Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Jiang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruiping Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey N Myers
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Molkentine JM, Molkentine DP, Bridges KA, Xie T, Yang L, Sheth A, Heffernan TP, Clump DA, Faust AZ, Ferris R, Myers JN, Frederick MJ, Mason KA, Meyn RE, Pickering CR, Skinner HD. Targeting DNA damage response in head and neck cancers through abrogation of cell cycle checkpoints. Int J Radiat Biol 2020; 97:1121-1128. [PMID: 32073931 PMCID: PMC7483862 DOI: 10.1080/09553002.2020.1730014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Head and neck cancers (HNSCC) are routinely treated with radiotherapy; however, normal tissue toxicity remains a concern. Therefore, it is important to validate treatment modalities combining molecularly targeted agents with radiotherapy to improve the therapeutic ratio. The aim of this study was to assess the ability of the PARP inhibitor niraparib (MK-4827) alone, or in combination with cell cycle checkpoint abrogating drugs targeting Chk1 (MK-8776) or Wee1 (MK-1775), to radiosensitize HNSCCs in the context of HPV status. MATERIALS AND METHODS PARP1, PARP2, Chk1 or Wee1 shRNA constructs were analyzed from an in vivo shRNA screen of HNSCC xenografts comparing radiosensitization differences between HPV(+) and HPV(-) tumors. Radiosensitization by niraparib alone or in combination with MK-8776 or MK-1775 was assessed by clonogenic survival in HPV(-) and HPV(+) cells; and the role of p16 in determining response was explored. Relative expressions of DNA repair genes were compared by PCR array in HPV(+) and HPV(-) cells, and following siRNA-mediated knockdown of TRIP12 in HPV(-) cells. RESULTS In vivo shRNA screening showed a modest preferential radiosensitization by Wee1 and PARP2 in HPV(-) and Chk1 in HPV(+) tumor models. Niraparib alone enhanced the radiosensitivity of all HNSCC cell lines tested. However, HPV(-) cells were sensitized to a greater degree, as suggested by the shRNA screen. When combined with MK-8776 or MK-1775, radiosensitization was further enhanced in an HPV dependent manner with HPV(+) cells enhanced by MK-8776 and HPV(-) cells enhanced by MK-1775. A PCR array for DNA repair genes showed PARP and HR proteins BRCA1 and RAD51 were much lower in HPV(+) cells than in HPV(-). Similarly, directly knocking down p16-dependent TRIP12 decreased expression of these same genes. Overexpressing p16 decreased TRIP12 expression and increased radiosensitivity in HPV(-) HN5. However, while PARP inhibition led to significant radiosensitization in the control, it led to no further significant radiosensitization in p16 overexpressing cells. Forced p16 expression in HPV(-) HN5 increased accumulation in G1 and subG1 and limited progression to S phase, thus reducing effectiveness of PARP inhibition. CONCLUSIONS Niraparib effectively radiosensitizes HNSCCs with a greater benefit seen in HPV(-). HPV status also plays a role in response to MK-8776 or MK-1775 when combined with niraparib due to differences in DNA repair mechanisms. This study suggests that using cell cycle abrogators in combination with PARP inhibitors may be a beneficial treatment option in HNSCC, but also emphasizes the importance of HPV status when considering effective treatment strategies.
Collapse
Affiliation(s)
- Jessica M. Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, USA
| | - David P. Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, USA
| | - Kathleen A. Bridges
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Liangpeng Yang
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Aakash Sheth
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, USA
| | - Timothy P. Heffernan
- Institute for Applied Cancer Science, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - David A. Clump
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, USA
| | - Alma Z. Faust
- College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, USA
| | - Robert Ferris
- Department of Otolaryngology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, USA
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Mitchell J. Frederick
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, USA
| | - Kathryn A. Mason
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Raymond E. Meyn
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, USA
| |
Collapse
|
26
|
Huang DY, Chen WY, Chen CL, Wu NL, Lin WW. Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation. Cancers (Basel) 2020; 12:cancers12020489. [PMID: 32093123 PMCID: PMC7072502 DOI: 10.3390/cancers12020489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Syk is a non-receptor tyrosine kinase involved in the signalling of immunoreceptors and growth factor receptors. Previously, we reported that Syk mediates epidermal growth factor receptor (EGFR) signalling and plays a negative role in the terminal differentiation of keratinocytes. To understand whether Syk is a potential therapeutic target of cancer cells, we further elucidated the role of Syk in disease progression of squamous cell carcinoma (SCC), which is highly associated with EGFR overactivation, and determined the combined effects of Syk and PARP1 inhibitors on SCC viability. We found that pharmacological inhibition of Syk could attenuate the EGF-induced phosphorylation of EGFR, JNK, p38 MAPK, STAT1, and STAT3 in A431, CAL27 and SAS cells. In addition, EGF could induce a Syk-dependent IL-8 gene and protein expression in SCC. Confocal microscopic data demonstrated the ability of the Syk inhibitor to change the subcellular distribution patterns of EGFR after EGF treatment in A431 and SAS cells. Moreover, according to Kaplan-Meier survival curve analysis, higher Syk expression is correlated with poorer patient survival rate and prognosis. Notably, both Syk and EGFR inhibitors could induce PARP activation, and synergistic cytotoxic actions were observed in SCC cells upon the combined treatment of the PARP1 inhibitor olaparib with Syk or the EGFR inhibitor. Collectively, we reported Syk as an important signalling molecule downstream of EGFR that plays crucial roles in SCC development. Combining Syk and PARP inhibition may represent an alternative therapeutic strategy for treating SCC.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
- Department of Pathology, Taipei Medical University Hospital, Taipei 106, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City 251, Taiwan;
- Department of Dermatology, Mackay Memorial Hospital, Taipei 104, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-223-123-456 (ext. 88315); Fax: +886-223-513-716
| |
Collapse
|
27
|
Chowdhury P, Dey P, De D, Ghosh U. Gamma ray-induced in vitro cell migration via EGFR/ERK/Akt/p38 activation is prevented by olaparib pretreatment. Int J Radiat Biol 2020; 96:651-660. [PMID: 31914341 DOI: 10.1080/09553002.2020.1711461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose: Radiotherapy using gamma ray is still the main therapeutic modality for the treatment of various cancers. However, local recurrence and increase of metastasis after radiotherapy is still a major therapeutic challenge. Aim of this work was to check cell migration along with activity and expression of some marker proteins involved in epithelial-mesenchymal transition (EMT) pathway in three different human cancer cells after exposure with gamma radiation in combination with PARP inhibitor olaparib.Materials and methods: Here, we presented cell viability, in vitro cell migration, activity of MMPs by gelatin zymography, expression of few EMT marker proteins and the signaling cascade involved in transcriptional regulation of MMPs after gamma irradiation with and without olaparib pretreatment in highly metastatic three human cancer cell lines-A549, HeLa and U2OS.Results: We observed that gamma irradiation alone increased in vitro cell migration, MMP-2,-9 activity, expression of N-cadherin, vimentin and the signaling molecules EGFR, ERK1/2, Akt, p38 that enhanced NF-kB expression in all three cell types. Olaparib treatment alone reduced in vitro cell migration along with reduction of expression of all the above-mentioned marker proteins of the EMT pathway. However, 4 h olaparib pretreatment prevented gamma ray induced activation of all these marker proteins in all three cell types.Conclusions: This data implicates that olaparib treatment in combination with gamma therapy could be promising in protecting patients from gamma-induced metastasis.
Collapse
Affiliation(s)
- Priyanka Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Payel Dey
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Debapriya De
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Utpal Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
28
|
Özcan-Wahlbrink M, Schifflers C, Riemer AB. Enhanced Radiation Sensitivity of Human Papillomavirus-Driven Head and Neck Cancer: Focus on Immunological Aspects. Front Immunol 2019; 10:2831. [PMID: 31849993 PMCID: PMC6901628 DOI: 10.3389/fimmu.2019.02831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC), emerging in the mucosa of the upper aerodigestive tract, are associated with either the classical risk factors, tobacco and alcohol consumption, or with infections with high-risk types of the human papillomavirus (HPV). Depending on the involvement of HPV, HNSCC follow different pathways of carcinogenesis and show distinct clinical presentations regarding survival, prognosis and treatment response. For instance, HPV-driven HNSCC exhibit an enhanced radiation response compared to their typically radioresistant HPV-negative counterparts. Although radiosensitivity of HNSCC has been studied by many research groups, the major causes for the difference in radiation responses between HPV-driven and HPV-negative HNSCC are still an open question. In this mini review, we discuss the reported cellular and immunological factors involved in the enhanced radiation response in HPV-driven HNSCC, focusing on the vital role of the immune response in the outcome of HNSCC radiotherapy.
Collapse
Affiliation(s)
- Mine Özcan-Wahlbrink
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Christoph Schifflers
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany.,Cell Biology Research Unit (URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Angelika B Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Lee TW, Wong WW, Dickson BD, Lipert B, Cheng GJ, Hunter FW, Hay MP, Wilson WR. Radiosensitization of head and neck squamous cell carcinoma lines by DNA-PK inhibitors is more effective than PARP-1 inhibition and is enhanced by SLFN11 and hypoxia. Int J Radiat Biol 2019; 95:1597-1612. [PMID: 31490091 DOI: 10.1080/09553002.2019.1664787] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background and purpose: Poly(ADP-ribose)polymerase-1 (PARP1) and DNA-dependent protein kinase (DNA-PK) play key roles in the repair of radiation-induced DNA double strand breaks, but it is unclear which is the preferred therapeutic target in radiotherapy. Here we compare small molecule inhibitors of both as radiosensitizers of head and neck squamous cell carcinoma (HNSCC) cell lines.Methods: Two PARP1 inhibitors (olaparib, veliparib) and two DNA-PK inhibitors (KU57788, IC87361) were tested in 14 HNSCC cell lines and two non-tumorigenic lines (HEK-293 and WI-38/Va-13), with drug exposure for 6 or 24 h post-irradiation, using regrowth assays. For three lines (UT-SCC-54C, -74B, -76B), radiosensitization was also assessed by clonogenic assay under oxia and acute (6 h) anoxia, and for 54C cells under chronic hypoxia (0.2% O2 for 48 h). Relationships between sensitizer enhancement ratios (SER) and gene expression, assessed by RNA sequencing, were evaluated.Results: The inhibitors were minimally cytotoxic in the absence of radiation, with 74B and 54C cells the most sensitive to both olaparib and KU57788. Median SER values for each inhibitor at 1.1 µM were 1.12 (range 1.02-1.24) for olaparib, 1.08 (1.04-1.13) for veliparib, 1.35 (1.10-1.64) for IC87361 and 1.77 (1.41-2.38) for KU57788. The higher SER values for the DNA-PK inhibitors were observed with all cell lines (except HEK-293) and all concentrations tested and were confirmed by clonogenic assay. Radiosensitization by the DNA-PK inhibitors correlated with expression of SLFN11 mRNA. Radiosensitization by IC87361 and olaparib was significantly enhanced under acute anoxia and chronic hypoxia.Conclusions: The DNA-PK inhibitors KU57788 and IC87361 are more effective radiosensitizers than the PARP-1 inhibitors olaparib and veliparib at non-cytotoxic concentrations in HNSCC cell cultures and their activity is enhanced by SLFN11 and hypoxia.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Way Wua Wong
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Gary J Cheng
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
30
|
Reduction of metastatic potential by inhibiting EGFR/Akt/p38/ERK signaling pathway and epithelial-mesenchymal transition after carbon ion exposure is potentiated by PARP-1 inhibition in non-small-cell lung cancer. BMC Cancer 2019; 19:829. [PMID: 31438892 PMCID: PMC6704719 DOI: 10.1186/s12885-019-6015-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Carbon ion (12C) radiotherapy is becoming very promising to kill highly metastatic cancer cells keeping adjacent normal cells least affected. Our previous study shows that combined PARP-1 inhibition with 12C ion reduces MMP-2,-9 synergistically in HeLa cells but detailed mechanism are not clear. To understand this mechanism and the rationale of using PARP-1 inhibitor with 12C ion radiotherapy for better outcome in controlling metastasis, we investigated metastatic potential in two non-small cell lung cancer (NSCLC) A549 and H1299 (p53-deficient) cells exposed with 12C ion in presence and absence of PARP-1 inhibition using siRNA or olaparib. METHODS We monitored cell proliferation, in-vitro cell migration, wound healing, expression and activity of MMP-2, - 9 in A549 and p53-deficient H1299 cell lines exposed with 12C ion with and without PARP-1 inhibitor olaparib/DPQ. Expression and phosphorylation of NF-kB, EGFR, Akt, p38, ERK was also observed in A549 and H1299 cells exposed with 12C ion with and without PARP-1 inhibition using siRNA or olaparib. We also checked expression of few marker genes involved in epithelial-mesenchymal transition (EMT) pathways like N-cadherin, vimentin, anillin, claudin-1, - 2 in both NSCLC. To determine the generalized effect of 12C ion and olaparib in inhibition of cell's metastatic potential, wound healing and activity of MMP-2, - 9 was also studied in HeLa and MCF7 cell lines after 12C ion exposure and in combination with PARP-1 inhibitor olaparib. RESULTS Our experiments show that 12C ion and PARP-1 inhibition separately reduces cell proliferation, cell migration, wound healing, phosphorylation of EGFR, Akt, p38, ERK resulting inactivation of NF-kB. Combined treatment abolishes NF-kB expression and hence synergistically reduces MMP-2, - 9 expressions. Each single treatment reduces N-cadherin, vimentin, anillin but increases claudin-1, - 2 leading to suppression of EMT process. However, combined treatment synergistically alters these proteins to suppress EMT pathways significantly. CONCLUSION The activation pathways of transcription of MMP-2,-9 via NF-kB and key marker proteins in EMT pathways are targeted by both 12C ion and olaparib/siRNA. Hence, 12C ion radiotherapy could potentially be combined with olaparib as chemotherapeutic agent for better control of cancer metastasis.
Collapse
|
31
|
Rieckmann T, Kriegs M. The failure of cetuximab-based de-intensified regimes for HPV-positive OPSCC: A radiobiologists perspective. Clin Transl Radiat Oncol 2019; 17:47-50. [PMID: 31206086 PMCID: PMC6558227 DOI: 10.1016/j.ctro.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 01/17/2023] Open
Abstract
Recent trial results show inferiority of cetuximab- to cisplatin-radiotherapy in HPV+ OPSCC. Previous data also question the benefit of cetuximab in HNSCC in the curative setting. The data provide guidance for research on radiosensitization through molecular targeting.
Human Papillomavirus-positive oropharyngeal cancer is a rising tumor entity with unique characteristics and favorable prognosis. Because current multimodal therapies are associated with severe toxicity, different strategies for treatment de-intensification are being tested in clinical trials. In this context two phase 3 studies, which examined the potential of the monoclonal anti-EGFR antibody cetuximab to replace concomitant cisplatin-based chemotherapy, have concordantly reported inferiority of this de-intensification approach. In this opinion article we discuss these recent negative results in the light of previous clinical and preclinical research on the combination of EGFR-inhibition and irradiation. Collectively these data question the effectiveness of EGFR-inhibition in the curative treatment of both HPV-positive and HPV-negative head and neck cancer but provide guidance for future translational research.
Collapse
Affiliation(s)
- Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Corresponding author at: Laboratory of Radiobiology & Department of Otolaryngology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Taberna M, Oliva M, Mesía R. Cetuximab-Containing Combinations in Locally Advanced and Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. Front Oncol 2019; 9:383. [PMID: 31165040 PMCID: PMC6536039 DOI: 10.3389/fonc.2019.00383] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 12/29/2022] Open
Abstract
Cetuximab remains to date the only targeted therapy approved for the treatment of head and neck squamous cell carcinoma (HNSCC). The EGFR pathway plays a key role in the tumorigenesis and progression of this disease as well as in the resistance to radiotherapy (RT). While several anti-EGFR agents have been tested in HNSCC, cetuximab, an IgG1 subclass monoclonal antibody against EGFR, is the only drug with proven efficacy for the treatment of both locoregionally-advanced (LA) and recurrent/metastatic (R/M) disease. The addition of cetuximab to radiotherapy is a validated treatment option in LA-HNSCC. However, its use has been limited to patients who are considered unfit for standard of care chemoradiotherapy (CRT) with single agent cisplatin given the lack of direct comparison of these two regimens in randomized phase III trials and the inferiority suggested by metanalysis and phase II studies. The current use of cetuximab in HNSCC is about to change given the recent results from randomized prospective clinical trials in both the LA and R/M setting. Two phase III studies evaluating RT-cetuximab vs. CRT in Human Papillomavirus (HPV)-positive LA oropharyngeal squamous cell carcinoma (De-ESCALaTE and RTOG 1016) showed inferior overall survival and progression-free survival for RT-cetuximab combination, and therefore CRT with cisplatin remains the standard of care in this disease. In the R/M HNSCC, the EXTREME regimen has been the standard of care as first-line treatment for the past 10 years. However, the results from the KEYNOTE-048 study will likely position the anti-PD-1 agent pembrolizumab as the new first line treatment either alone or in combination with chemotherapy in this setting based on PD-L1 status. Interestingly, cetuximab-mediated immunogenicity through antibody dependent cell cytotoxicity (ADCC) has encouraged the evaluation of combined approaches with immune-checkpoint inhibitors in both LA and R/M-HNSCC settings. This article reviews the accumulated evidence on the role of cetuximab in HNSCC in the past decade, offering an overview of its current impact in the treatment of LA and R/M-HNSCC disease and its potential use in the era of immunotherapy.
Collapse
Affiliation(s)
- Miren Taberna
- Medical Oncology Department, Catalan Institute of Oncology, ONCOBELL, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Medicine Department, Barcelona University, Barcelona, Spain
| | - Marc Oliva
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Ricard Mesía
- B-ARGO Group, Medical Oncology Department, Catalan Institute of Oncology, Badalona, Spain
| |
Collapse
|
33
|
Zhang M, Han N, Jiang Y, Wang J, Li G, Lv X, Li G, Qiao Q. EGFR confers radioresistance in human oropharyngeal carcinoma by activating endoplasmic reticulum stress signaling PERK-eIF2α-GRP94 and IRE1α-XBP1-GRP78. Cancer Med 2018; 7:6234-6246. [PMID: 30414263 PMCID: PMC6308109 DOI: 10.1002/cam4.1862] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/16/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
The activation of epidermal growth factor receptor (EGFR) is associated with radioresistance in malignant tumors. Specifically, radiation can destroy endoplasmic reticulum (ER) homeostasis to induce ER stress (ERS). However, the effect of EGFR‐mediated regulation of ERS signaling pathway on radiosensitivity has not yet been reported. The present study showed that silencing EGFR increased radiosensitivity of both radiosensitive and radioresistant oropharyngeal squamous cell carcinoma (OSCC) cells by inhibiting ER stress signaling (PERK‐eIF2α‐GRP94 and IRE1α‐XBP1‐GRP78). This effect was abolished by pretreatment with EGF, however. In addition, knockdown of EGFR in OSCC cells inhibited DNA double‐stand break repair and autophagy while increased radiation‐induced apoptosis. Conversely, activating ERS inhibited the aforementioned functions. Furthermore, EGF increased ER stress‐independent ERK and AKT signaling upon irradiation of OSCC cells. Immunohistochemical analysis of 80 tissue samples from OSCC patients showed that co‐expression of EGFR and PERK was associated with poor prognosis. It thus appears EGFR confers radioresistance in OSCC by activating ER stress signaling. These results suggested that the cooperative effects of radiotherapy and EGFR‐targeted inhibitor therapy can be further improved by inhibiting PERK‐eIF2α‐GRP94 and IRE1α‐GRP78 in non‐response oropharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Han
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gaiyan Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xintong Lv
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
34
|
Kriegs M, Kasten-Pisula U, Riepen B, Hoffer K, Struve N, Myllynen L, Braig F, Binder M, Rieckmann T, Grénman R, Petersen C, Dikomey E, Rothkamm K. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests. Oncotarget 2018; 7:45122-45133. [PMID: 27281611 PMCID: PMC5216710 DOI: 10.18632/oncotarget.9161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.
Collapse
Affiliation(s)
- Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Ulla Kasten-Pisula
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Britta Riepen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Nina Struve
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Laura Myllynen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Friederike Braig
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, 20521 Turku, Finland
| | - Cordula Petersen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg - Eppendorf, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, 20246 Hamburg, Germany
| |
Collapse
|
35
|
Busch CJ, Becker B, Kriegs M, Gatzemeier F, Krüger K, Möckelmann N, Fritz G, Petersen C, Knecht R, Rothkamm K, Rieckmann T. Similar cisplatin sensitivity of HPV-positive and -negative HNSCC cell lines. Oncotarget 2017; 7:35832-35842. [PMID: 27127883 PMCID: PMC5094966 DOI: 10.18632/oncotarget.9028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
Patients with HPV-positive head and neck squamous cell carcinoma (HNSCC) show better survival rates than those with HPV-negative HNSCC. While an enhanced radiosensitivity of HPV-positive tumors is clearly evident from single modality treatment, cisplatin is never administered as monotherapy and therefore its contribution to the enhanced cure rates of HPV-positive HNSCC is not known. Both cisplatin and radiotherapy can cause severe irreversible side effects and therefore various clinical studies are currently testing deintensified regimes for patients with HPV-positive HNSCC. One strategy is to omit cisplatin-based chemotherapy or replace it by less toxic treatments but the risk assessment of these approaches remains difficult. In this study we have compared the cytotoxic effects of cisplatin in a panel of HPV-positive and -negative HNSCC cell lines alone and when combined with radiation. While cisplatin-treated HPV-positive strains showed a slightly stronger inhibition of proliferation, there was no difference regarding colony formation. Cellular responses to the drug, namely cell cycle distribution, apoptosis and γH2AX-induction did not differ between the two entities but assessment of cisplatin-DNA-adducts suggests differences regarding the mechanisms that determine cisplatin sensitivity. Combining cisplatin with radiation, we generally observed an additive but only in a minority of strains from both entities a clear synergistic effect on colony formation. In summary, HPV-positive and -negative HNSCC cells were equally sensitive to cisplatin. Therefore replacing cisplatin may be feasible but the substituting agent should be of similar efficacy in order not to jeopardize the high cure rates for HPV-positive HNSCC.
Collapse
Affiliation(s)
- Chia-Jung Busch
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Benjamin Becker
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Katharina Krüger
- Institute of Toxicology, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Nikolaus Möckelmann
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gerhard Fritz
- Institute of Toxicology, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rainald Knecht
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Ziemann F, Seltzsam S, Dreffke K, Preising S, Arenz A, Subtil FSB, Rieckmann T, Engenhart-Cabillic R, Dikomey E, Wittig A. Roscovitine strongly enhances the effect of olaparib on radiosensitivity for HPV neg. but not for HPV pos. HNSCC cell lines. Oncotarget 2017; 8:105170-105183. [PMID: 29285242 PMCID: PMC5739629 DOI: 10.18632/oncotarget.22005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.
Collapse
Affiliation(s)
- Frank Ziemann
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Steve Seltzsam
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Kristin Dreffke
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Stefanie Preising
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Andrea Arenz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Florentine S B Subtil
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Thorsten Rieckmann
- Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany.,Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital GieΔen and Marburg, Marburg, Germany
| |
Collapse
|
37
|
Glorieux M, Dok R, Nuyts S. Novel DNA targeted therapies for head and neck cancers: clinical potential and biomarkers. Oncotarget 2017; 8:81662-81678. [PMID: 29113422 PMCID: PMC5655317 DOI: 10.18632/oncotarget.20953] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide and despite advances in treatment over the last years, there is still a relapse rate of 50%. New therapeutic agents are awaited to increase the survival of patients. DNA repair targeted agents in combination with standard DNA damaging therapies are a recent evolution in cancer treatment. These agents focus on the DNA damage repair pathways in cancer cells, which are often involved in therapeutic resistance. Interesting targets to overcome these cancer defense mechanisms are: PARP, DNA-PK, PI3K, ATM, ATR, CHK1/2, and WEE1 inhibitors. The application of DNA targeted agents in head and neck squamous cell cancer showed promising preclinical results which are translated to multiple ongoing clinical trials, although no FDA approval has emerged yet. Biomarkers are necessary to select the patients that can benefit the most from this treatment, although adequate biomarkers are limited and validation is needed to predict therapeutic response.
Collapse
Affiliation(s)
- Mary Glorieux
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
38
|
Lesueur P, Chevalier F, Austry JB, Waissi W, Burckel H, Noël G, Habrand JL, Saintigny Y, Joly F. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget 2017; 8:69105-69124. [PMID: 28978184 PMCID: PMC5620324 DOI: 10.18632/oncotarget.19079] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors are becoming important actors of anti-neoplasic agents landscape, with recent but narrow FDA's approvals for ovarian BRCA mutated cancers and prostatic cancer. Nevertheless, PARP inhibitors are also promising drugs for combined treatments particularly with radiotherapy. More than seven PARP inhibitors have been currently developed. Central Role of PARP in DNA repair, makes consider PARP inhibitor as potential radiosensitizers, especially for tumors with DNA repair defects, such as BRCA mutation, because of synthetic lethality. Furthermore the replication-dependent activity of PARP inhibitor helps to maintain the differential effect between tumoral and healthy tissues. Inhibition of chromatin remodeling, G2/M arrest, vasodilatory effect induced by PARP inhibitor, also participate to their radio-sensitization effect. MATERIALS AND METHODS Here, after highlighting mechanisms of PARP inhibitors radiosensitization we methodically searched PubMed, Google Scholar, Cochrane Databases and meeting proceedings for human pre-clinical and clinical studies that evaluated PARP inhibitor radiosensitizing effect. Enhancement ratio, when available, was systematically reported. RESULTS Sixty four studies finally met our selection criteria and were included in the analysis. Only three pre-clinical studies didn't find any radiosensitizing effect. Median enhancement ratio vary from 1,3 for prostate tumors to 1,5 for lung cancers. Nine phase I or II trials assessed safety data. CONCLUSION PARP inhibitors are promising radiosensitizers, but need more clinical investigation. The next ten years will be determining for judging their real potential.
Collapse
Affiliation(s)
- Paul Lesueur
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France.,Centre Francois Baclesse Centre de Lutte Contre le Cancer, Radiotherapy Unit, 14000 Caen, France
| | - François Chevalier
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France
| | - Jean-Baptiste Austry
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France
| | - Waisse Waissi
- EA 3430, Laboratoire de Radiobiologie, Centre Paul Strauss, 67000 Strasbourg, France
| | - Hélène Burckel
- EA 3430, Laboratoire de Radiobiologie, Centre Paul Strauss, 67000 Strasbourg, France
| | - Georges Noël
- EA 3430, Laboratoire de Radiobiologie, Centre Paul Strauss, 67000 Strasbourg, France
| | - Jean-Louis Habrand
- Centre Francois Baclesse Centre de Lutte Contre le Cancer, Radiotherapy Unit, 14000 Caen, France
| | - Yannick Saintigny
- Laboratoire d'Accueil et de Recherche avec les Ions Accélérés, CEA, CIMAP-GANIL, 14000 Caen, France
| | - Florence Joly
- Centre Francois Baclesse Centre de Lutte Contre le Cancer, Clinical Research Unit, 14000 Caen, France
| |
Collapse
|
39
|
PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget 2016; 7:9732-41. [PMID: 26799421 PMCID: PMC4891080 DOI: 10.18632/oncotarget.6947] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
There is a need to develop new, more efficient therapies for head and neck cancer (HNSCC) patients. It is currently unclear whether defects in DNA repair genes play a role in HNSCCs' resistance to therapy. PARP1 inhibitors (PARPi) were found to be “synthetic lethal” in cancers deficient in BRCA1/2 with impaired homologous recombination. Since tumors rarely have these particular mutations, there is considerable interest in finding alternative determinants of PARPi sensitivity. Effectiveness of combined irradiation and PARPi olaparib was evaluated in ten HNSCC cell lines, subdivided into HR-proficient and HR-deficient cell lines using a GFP-based reporter assay. Both groups were equally sensitive to PARPi alone. Combined treatment revealed stronger synergistic interactions in the HR-deficient group. Because HR is mainly active in S-Phase, replication processes were analyzed. A stronger impact of treatment on replication processes (p = 0.04) and an increased number of radial chromosomes (p = 0.003) were observed in the HR-deficient group. We could show that radiosensitization by inhibition of PARP1 strongly correlates with HR competence in a replication-dependent manner. Our observations indicate that PARP1 inhibitors are promising candidates for enhancing the therapeutic ratio achieved by radiotherapy via disabling DNA replication processes in HR-deficient HNSCCs.
Collapse
|
40
|
Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol 2016; 63:44-51. [PMID: 27938999 DOI: 10.1016/j.oraloncology.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/29/2016] [Accepted: 11/06/2016] [Indexed: 12/28/2022]
Abstract
Radiation therapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet therapeutic efficacy is hindered by treatment-associated toxicity and tumor recurrence. In comparison to other cancers, innovation has proved challenging, with the epidermal growth factor receptor (EGFR) antibody cetuximab being the only new radiosensitizing agent approved by the FDA in over half a century. This review examines the physiological mechanisms that contribute to radioresistance in HNSCC as well as preclinical and clinical data regarding novel radiosensitizing agents, with an emphasis on those with highest translational promise.
Collapse
Affiliation(s)
- Vicky N Yamamoto
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David S Thylur
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael Bauschard
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Isaac Schmale
- Department of Otolaryngology-Head & Neck Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Uttam K Sinha
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
41
|
Abstract
Cervical cancer is the fourth most common cause of cancer of women worldwide. In the developing world, it comprises 12% of all cancers of women. Since 1999, the mainstay of treatment for locally advanced cervical cancer (LACC) has been concurrent cisplatin-based chemoradiation. However, outcomes in this disease remain suboptimal, with long-term progression-free survival and overall survival rates of approximately 60%. There are several new strategies of combined modality treatment under evaluation in LACC, including chemotherapy before and after treatment as well as novel agents such as poly-adenosine diphosphate ribose polymerase inhibitors, antiangiogenic blockage, and immunotherapy. We provide a brief overview of these strategies and their potential in the treatment of women with LACC.
Collapse
|
42
|
Isaacsson Velho PH, Castro G, Chung CH. Novel Targeted Agents in Head and Neck Squamous Cell Carcinoma. Hematol Oncol Clin North Am 2015; 29:993-1009. [PMID: 26568544 DOI: 10.1016/j.hoc.2015.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Based on currently available genomic data, most head and neck squamous cell carcinoma have few targetable aberrations and immediate clinical translation is challenging. However, potential therapeutic agents listed in this article need to be thoroughly evaluated because there are compelling scientific rationales supporting their development. Concerted effort is required to identify better predictive biomarkers of clinical benefit and improve the therapeutic index. Clinicians need to better understand resistance mechanisms, generate novel hypotheses for appropriate combination regimens and dosing schedules, develop more accurate model systems, and conduct innovative clinical trials.
Collapse
Affiliation(s)
- Pedro H Isaacsson Velho
- Department of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto Castro
- Department of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine H Chung
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, 1550 Orleans Street CRB-2 Room 546, Baltimore, MD 21287-0014, USA; Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, 1550 Orleans Street CRB-2 Room 546, Baltimore, MD 21287-0014, USA.
| |
Collapse
|
43
|
Mirghani H, Amen F, Tao Y, Deutsch E, Levy A. Increased radiosensitivity of HPV-positive head and neck cancers: Molecular basis and therapeutic perspectives. Cancer Treat Rev 2015; 41:844-52. [PMID: 26476574 DOI: 10.1016/j.ctrv.2015.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 12/27/2022]
Abstract
Human papillomavirus driven head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), are characterized by a significant survival advantage over their HPV-negative counterparts. Although the reasons behind this are still not fully elucidated, it is widely accepted that these tumors have a higher response to ionizing radiation that might explain their favorable outcomes. Potential underlying intrinsic mechanisms include impaired DNA repair abilities, differences in activated repopulation-signaling pathways and cell cycle control mechanisms. The role of the microenvironment is increasingly highlighted, particularly tumor oxygenation and the immune response. Recent studies have shown a distinct pattern of intratumoral immune cell infiltrates, according to HPV status, and have suggested that an increased cytotoxic T-cell based antitumor immune response is involved in improved prognosis of patients with HPV-positive OPSCC. These significant milestones, in the understanding of HPV-induced HNSCC, pave the way to new therapeutic opportunities. This article reviews the current evidence on the biological basis of increased radiosensitivity in HPV-positive HNSCC and discusses potential therapeutic implications.
Collapse
Affiliation(s)
- Haïtham Mirghani
- Department of Otolaryngology - Head and Neck Surgery, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France.
| | - Furrat Amen
- Department of Otolaryngology, Peterborough City Hospital and Addenbrooke's Hospital, Cambridge, UK
| | - Yungan Tao
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France; Université Paris Sud, Faculté de Médecine, Kremlin Bicêtre 94270, France; INSERM U1030 Molecular Radiotherapy, Cancer Research Institute, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France; Université Paris Sud, Faculté de Médecine, Kremlin Bicêtre 94270, France; INSERM U1030 Molecular Radiotherapy, Cancer Research Institute, Villejuif, France
| |
Collapse
|
44
|
Samuels SE, Eisbruch A, Beitler JJ, Corry J, Bradford CR, Saba NF, van den Brekel MWM, Smee R, Strojan P, Suárez C, Mendenhall WM, Takes RP, Rodrigo JP, Haigentz M, Rapidis AD, Rinaldo A, Ferlito A. Management of locally advanced HPV-related oropharyngeal squamous cell carcinoma: where are we? Eur Arch Otorhinolaryngol 2015; 273:2877-94. [PMID: 26463714 DOI: 10.1007/s00405-015-3771-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
HPV-related (HPV+) oropharyngeal cancer (OPC) has a better prognosis compared to HPV unrelated (HPV-) OPC. This review summarizes and discusses several of the controversies regarding the management of HPV+ OPC, including the mechanism of its treatment sensitivity, modern surgical techniques, chemotherapy regimens, and treatment de-intensification protocols. We also discuss and reconsider potential adverse prognostic factors such as tumor EGFR expression, tumor hypoxia, and patient smoking history, as well as the significance of retropharyngeal adenopathy. Finally, we discuss elective nodal treatment of uninvolved lymph node stations. While this review does not exhaust all controversies related to the management of HPV+ OPC, it aims to highlight some of the most clinically relevant ones.
Collapse
Affiliation(s)
- Stuart E Samuels
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan J Beitler
- Departments of Radiation Oncology, Otolaryngology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - June Corry
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Carol R Bradford
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Michiel W M van den Brekel
- Department of Head and Neck Surgery and Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, NSW, Australia
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Carlos Suárez
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | | | - Robert P Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Missak Haigentz
- Division of Oncology, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Alexander D Rapidis
- Department of Head and Neck Surgery, Greek Anticancer Institute, Saint Savvas Hospital, Athens, Greece
| | | | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy.
| |
Collapse
|
45
|
Weaver AN, Cooper TS, Rodriguez M, Trummell HQ, Bonner JA, Rosenthal EL, Yang ES. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma. Oncotarget 2015; 6:26995-7007. [PMID: 26336991 PMCID: PMC4694969 DOI: 10.18632/oncotarget.4863] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/12/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with human papillomavirus-positive (HPV+) head and neck squamous cell carcinomas (HNSCCs) have increased response to radio- and chemotherapy and improved overall survival, possibly due to an impaired DNA damage response. Here, we investigated the correlation between HPV status and repair of DNA damage in HNSCC cell lines. We also assessed in vitro and in vivo sensitivity to the PARP inhibitor veliparib (ABT-888) in HNSCC cell lines and an HPV+ patient xenograft. Repair of DNA double strand breaks (DSBs) was significantly delayed in HPV+ compared to HPV- HNSCCs, resulting in persistence of γH2AX foci. Although DNA repair activators 53BP1 and BRCA1 were functional in all HNSCCs, HPV+ cells showed downstream defects in both non-homologous end joining and homologous recombination repair. Specifically, HPV+ cells were deficient in protein recruitment and protein expression of DNA-Pk and BRCA2, key factors for non-homologous end joining and homologous recombination respectively. Importantly, the apparent DNA repair defect in HPV+ HNSCCs was associated with increased sensitivity to the PARP inhibitor veliparib, resulting in decreased cell survival in vitro and a 10-14 day tumor growth delay in vivo. These results support the testing of PARP inhibition in combination with DNA damaging agents as a novel therapeutic strategy for HPV+ HNSCC.
Collapse
Affiliation(s)
- Alice N. Weaver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Tiffiny S. Cooper
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Marcela Rodriguez
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Hoa Q. Trummell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - James A. Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Eben L. Rosenthal
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| |
Collapse
|
46
|
Welsh L, Panek R, McQuaid D, Dunlop A, Schmidt M, Riddell A, Koh DM, Doran S, Murray I, Du Y, Chua S, Hansen V, Wong KH, Dean J, Gulliford S, Bhide S, Leach MO, Nutting C, Harrington K, Newbold K. Prospective, longitudinal, multi-modal functional imaging for radical chemo-IMRT treatment of locally advanced head and neck cancer: the INSIGHT study. Radiat Oncol 2015; 10:112. [PMID: 25971451 PMCID: PMC4438605 DOI: 10.1186/s13014-015-0415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Radical chemo-radiotherapy (CRT) is an effective organ-sparing treatment option for patients with locally advanced head and neck cancer (LAHNC). Despite advances in treatment for LAHNC, a significant minority of these patients continue to fail to achieve complete response with standard CRT. By constructing a multi-modality functional imaging (FI) predictive biomarker for CRT outcome for patients with LAHNC we hope to be able to reliably identify those patients at high risk of failing standard CRT. Such a biomarker would in future enable CRT to be tailored to the specific biological characteristics of each patients' tumour, potentially leading to improved treatment outcomes. METHODS/DESIGN The INSIGHT study is a single-centre, prospective, longitudinal multi-modality imaging study using functional MRI and FDG-PET/CT for patients with LAHNC squamous cell carcinomas receiving radical CRT. Two cohorts of patients are being recruited: one treated with, and another treated without, induction chemotherapy. All patients receive radical intensity modulated radiotherapy with concurrent chemotherapy. Patients undergo functional imaging before, during and 3 months after completion of radiotherapy, as well as at the time of relapse, should that occur within the first two years after treatment. Serum samples are collected from patients at the same time points as the FI scans for analysis of a panel of serum markers of tumour hypoxia. DISCUSSION The primary aim of the INSIGHT study is to acquire a prospective multi-parametric longitudinal data set comprising functional MRI, FDG PET/CT, and serum biomarker data from patients with LAHNC undergoing primary radical CRT. This data set will be used to construct a predictive imaging biomarker for outcome after CRT for LAHNC. This predictive imaging biomarker will be used in future studies of functional imaging based treatment stratification for patients with LAHNC. Additional objectives are: defining the reproducibility of FI parameters; determining robust methods for defining FI based biological target volumes for IMRT planning; creation of a searchable database of functional imaging data for data mining. The INSIGHT study will help to establish the role of FI in the clinical management of LAHNC. TRIAL REGISTRATION NCRI H&N CSG ID 13860.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Chemoradiotherapy/mortality
- Female
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/therapy
- Humans
- Longitudinal Studies
- Magnetic Resonance Imaging/methods
- Male
- Middle Aged
- Multimodal Imaging/methods
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Staging
- Positron-Emission Tomography/methods
- Prognosis
- Prospective Studies
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Intensity-Modulated/methods
- Tomography, X-Ray Computed/methods
- Young Adult
Collapse
Affiliation(s)
- Liam Welsh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
- Clinical Research Fellow, Head and Neck Unit, Royal Marsden Hospital, Sutton, Surrey, SM2 5PT, UK.
| | - Rafal Panek
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Dualta McQuaid
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Alex Dunlop
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Maria Schmidt
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Angela Riddell
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Dow-Mu Koh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Simon Doran
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Iain Murray
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Yong Du
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Sue Chua
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Vibeke Hansen
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kee H Wong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Jamie Dean
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Sarah Gulliford
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Shreerang Bhide
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Martin O Leach
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Christopher Nutting
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kevin Harrington
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Kate Newbold
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|