1
|
Orsatti FL, de Queiroz Freitas AC, Borges AVBE, Santato AS, de Oliveira Assumpção C, Souza MVC, da Silva MV, Orsatti CL. Unveiling the role of exercise in modulating plasma heat shock protein 27 levels: insights for exercise immunology and cardiovascular health. Mol Cell Biochem 2025; 480:1381-1401. [PMID: 39172352 DOI: 10.1007/s11010-024-05089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide, primarily driven by atherosclerosis, a chronic inflammatory condition contributing significantly to fatalities. Various biological determinants affecting cardiovascular health across different age and sex groups have been identified. In this context, recent attention has focused on the potential therapeutic and preventive role of increasing circulating levels of heat shock protein 27 (plasma HSP27) in combating atherosclerosis. Plasma HSP27 is recognized for its protective function in inflammatory atherogenesis, offering promising avenues for intervention and management strategies against this prevalent cardiovascular ailment. Exercise has emerged as a pivotal strategy in preventing and managing cardiovascular disease, with literature indicating an increase in plasma HSP27 levels post-exercise. However, there is limited understanding of the impact of exercise on the release of HSP27 into circulation. Clarifying these aspects is crucial for understanding the role of exercise in modulating plasma HSP27 levels and its potential implications for cardiovascular health across diverse populations. Therefore, this review aims to establish a more comprehensive understanding of the relationship between plasma HSP27 and exercise.
Collapse
Affiliation(s)
- Fábio Lera Orsatti
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil.
| | - Augusto Corrêa de Queiroz Freitas
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Anna Victória Bernardes E Borges
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | - Alexia Souza Santato
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Claudio de Oliveira Assumpção
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Markus Vinicius Campos Souza
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | | |
Collapse
|
2
|
Ceci R, Maldini M, La Rosa P, Sireno L, Antinozzi C, Olson ME, Dimauro I, Duranti G. The Effect of Moringa oleifera Leaf Extract on C2C12 Myoblast Proliferation and Redox Status Under Oxidative Insult. Antioxidants (Basel) 2024; 13:1460. [PMID: 39765789 PMCID: PMC11672862 DOI: 10.3390/antiox13121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Skeletal muscle tissue can regenerate after damage through the action of satellite cells, which proliferate as myoblasts when activated. Oxidative stress, marked by high rates of reactive oxygen species (e.g., hydrogen peroxide, H2O2), impairs this process by increasing myoblast cell death. Moringa oleifera leaf extract (MOLE), known for its antioxidant properties, was tested for its protective effects on C2C12 myoblasts under oxidative stress. We assessed MOLE's impact on total antioxidant capacity (TAC), glutathione homeostasis (GSH/GSSG), cell viability, and wound recovery. The metabolomic analysis of MOLE using an LC-MSMS ZenoTOF 7600 mass spectrometry system identified key compounds, including peculiar glucosinolates (42.1%) and flavonoids (18.8%), as well as phenolic acids (4.5%) and other significant metabolites (34.6%; among them, amino acids, vitamins, and fatty acids). H2O2 disrupted myoblast redox balance and caused cell death, but MOLE treatment restored the GSH/GSSG ratio, improved TAC, and increased cell viability. Additionally, MOLE promoted faster wound closure in myoblasts exposed to H2O2. These findings suggest that MOLE can protect C2C12 myoblasts by restoring redox balance and enhancing recovery under oxidative stress.
Collapse
Affiliation(s)
- Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy
| | | | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy;
| | - Laura Sireno
- Laboratory of Biology and Human Genetics, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (L.S.); (I.D.)
| | - Cristina Antinozzi
- Laboratory of Endocrinology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy;
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de CU S/N, Mexico City 04510, Mexico;
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetics, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (L.S.); (I.D.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy
| |
Collapse
|
3
|
Lei Y, Meng J, Shi H, Shi C, Li C, Yang Z, Zhang W, Zuo D, Wang F, Wang M. Mannan-binding lectin inhibits oxidative stress-induced senescence via the NAD+/Sirt1 pathway. Int Immunopharmacol 2024; 137:112468. [PMID: 38906004 DOI: 10.1016/j.intimp.2024.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Prolonged or excessive oxidative stress can lead to premature cellular and body aging. Mannan-binding lectin (MBL) is synthesized by the liver and plays an important role in innate immunity, anti-inflammation, and anti-oxidation, and has a positive impact on health and longevity. To date, few studies investigated the role of MBL in attenuating oxidative stress-induced senescence. In this study, we evaluated the role of MBL in oxidative stress-induced premature aging and explored its underlying mechanism in C57BL/6 mice and mouse embryonic fibroblasts (NIH/3T3). First, we established an oxidative premature senescence model induced by D-galactose in C57BL/6 mice. We found that MBL-deficient mice had a marked aging-like appearance, reduced learning and spatial exploration abilities, severe liver pathological damage, and significantly upregulated expression of Senescence-associated proteins (p53 and p21), inflammatory kinesins (IL-1β and IL-6), and the senescence β-galactosidase (SA-β-Gal) positive rate as compared with WT mice. In the H2O2-induced oxidative senescence model of NIH/3T3 cells, consistent results were obtained after MBL intervention. In addition, MBL effectively inhibited G1 phase arrest, ROS levels, DNA damage, and mitochondrial dysfunction in premature senescent cells. Mechanistically, we found that oxidative stress inhibited the nicotinamide adenine dinucleotide (NAD+)/ silent information regulator 1 (Sirt1) signaling pathway, while MBL activated the NAD+/Sirt1 signaling pathway inhibited by oxidative stress. In addition, MBL could activate the NAD+/Sirt1 pathway by upregulating NAMPT, which in turn inhibited p38 phosphorylation by activating the NAD+/Sirt1 pathway. In conclusion, MBL inhibits oxidative aging, which may facilitate the development of therapeutics to delay oxidative aging.
Collapse
Affiliation(s)
- Yiming Lei
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Meng
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Haiqiang Shi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chenchen Shi
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chao Li
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziyi Yang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Fanping Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; School of Medical Technology, Shangqiu Medical College, Shangqiu 476100, China.
| |
Collapse
|
4
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
5
|
Lisi V, Senesi G, Balbi C. Converging protective pathways: Exploring the linkage between physical exercise, extracellular vesicles and oxidative stress. Free Radic Biol Med 2023; 208:718-727. [PMID: 37739138 DOI: 10.1016/j.freeradbiomed.2023.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Physical Exercise (EXR) has been shown to have numerous beneficial effects on various systems in the human body. It leads to a decrease in the risk of mortality from chronic diseases, such as cardiovascular disease, cancer, metabolic and central nervous system disorders. EXR results in improving cardiovascular fitness, cognitive function, immune activity, endocrine action, and musculoskeletal health. These positive effects make EXR a valuable intervention for promoting overall health and well-being in individuals of all ages. These beneficial effects are partially mediated by the role of the regular EXR in the adaptation to redox homeostasis counteracting the sudden increase of ROS, the hallmark of many chronic diseases. EXR can trigger the release of numerous humoral factors, e.g. protein, microRNA (miRs), and DNA, that can be shuttled as cargo of Extracellular vesicles (EVs). EVs show different cargo modification after oxidative stress stimuli as well as after EXR. In this review, we aim to highlight the main studies on the role of EVs released during EXR and oxidative stress conditions in enhancing the antioxidant enzymes pathway and in the decrease of oxidative stress environment mediated by their cargo.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Giorgia Senesi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Carolina Balbi
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland
| |
Collapse
|
6
|
Moulton C, Grazioli E, Antinozzi C, Fantini C, Cerulli C, Murri A, Duranti G, Ceci R, Vulpiani MC, Pellegrini P, Nusca SM, Cavaliere F, Fabbri S, Sgrò P, Di Luigi L, Caporossi D, Parisi A, Dimauro I. Online Home-Based Physical Activity Counteracts Changes of Redox-Status Biomarkers and Fitness Profiles during Treatment Programs in Postsurgery Female Breast Cancer Patients. Antioxidants (Basel) 2023; 12:antiox12051138. [PMID: 37238004 DOI: 10.3390/antiox12051138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed types of cancer in women. Oxidative stress may contribute to cancer etiology through several mechanisms. A large body of evidence indicates that physical activity (PA) has positive effects on different aspects of BC evolution, including mitigation of negative effects induced by medical treatment. With the aim to verify the capacity of PA to counteract negative effects of BC treatment on systemic redox homeostasis in postsurgery female BC patients, we have examined the modulation of circulating levels of oxidative stress and inflammation markers. Moreover, we evaluated the impacts on physical fitness and mental well-being by measuring functional parameters, body mass index, body composition, health-related quality of life (QoL), and fatigue. Our investigation revealed that PA was effective in maintaining plasma levels of superoxide dismutase (SOD) activity and tGSH, as well as peripheral blood mononuclear cells' (PBMCs) mRNA levels of SOD1 and heat-shock protein 27. Moreover, we found a significant decrease in plasma interleukin-6 (≈0.57 ± 0.23-fold change, p < 0.05) and increases in both interleukin-10 (≈1.15 ± 0.35-fold change, p < 0.05) and PBMCs' mRNA level of SOD2 (≈1.87 ± 0.36-fold change, p < 0.05). Finally, PA improves functional parameters (6 min walking test, ≈+6.50%, p < 0.01; Borg, ≈-58.18%, p < 0.01; sit-and-reach, ≈+250.00%, p < 0.01; scratch right, ≈-24.12%, and left, ≈-18.81%, p < 0.01) and body composition (free fat mass, ≈+2.80%, p < 0.05; fat mass, ≈-6.93%, p < 0.05) as well as the QoL (physical function, ≈+5.78%, p < 0.05) and fatigue (cognitive fatigue, ≈-60%, p < 0.05) parameters. These results suggest that a specific PA program not only is effective in improving functional and anthropometric parameters but may also activate cellular responses through a multitude of actions in postsurgery BC patients undergoing adjuvant therapy. These may include modulation of gene expression and protein activity and impacting several signaling pathways/biological activities involved in tumor-cell growth; metastasis; and inflammation, as well as moderating distress symptoms known to negatively affect QoL.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Claudia Cerulli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Maria Chiara Vulpiani
- Department of Medical-Surgical and Translational Medicine Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pellegrini
- Department of Medical-Surgical and Translational Medicine Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Sveva Maria Nusca
- Department of Medical-Surgical and Translational Medicine Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Cavaliere
- Unit of Breast Surgery, Center of Breast of Belcolle Hospital, 01100 Viterbo, Italy
| | - Simona Fabbri
- Unit of Breast Surgery, Center of Breast of Belcolle Hospital, 01100 Viterbo, Italy
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
7
|
Lisi V, Moulton C, Fantini C, Grazioli E, Guidotti F, Sgrò P, Dimauro I, Capranica L, Parisi A, Di Luigi L, Caporossi D. Steady-state redox status in circulating extracellular vesicles: A proof-of-principle study on the role of fitness level and short-term aerobic training in healthy young males. Free Radic Biol Med 2023; 204:266-275. [PMID: 37182793 DOI: 10.1016/j.freeradbiomed.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Considering the role of redox homeostasis in exercise-induced signaling and adaptation, this study focuses on the exercise training-related intercellular communication of redox status mediated by circulating extracellular vesicles (EVs). 19 healthy young males were divided into trained (TG, 7) and untrained (UG, 12) subjects based on their VO2MAX. The UG subjects were further randomly distributed in experimental (UGEX, N = 7) and control (UGCTRL, N = 5) groups. The steady state of plasma EVs in TG and UGEX have been characterized for total number and size, as well as cargo redox status (antioxidants, transcription factors, HSPs) before, 3 and 24 h after a single bout of aerobic exercise (30', 70% HRM). Plasma EVs from UGEX and UGCTRL have been further characterized after 24 h from the last session of a 5-day consecutive aerobic training or no training, respectively. No differences were detected in the EVs' size and distribution at baseline in TG and UGEX (p>0.05), while the EVs cargo of UGEX showed a significantly higher concentration of protein carbonyl, Catalase, SOD2, and HSF1 compared to TG (p<0.05). 5 days of consecutive aerobic training in UGEX did not determine major changes in the steady-state number and size of EVs. The post-training levels of protein carbonyl, HSF1, Catalase, and SOD2 in EVs cargo of UGEX resulted significantly lower compared with UGEX before training and UGCTRL, resembling the steady-state levels in circulating EVs of TG subjects. Altogether, these preliminary data indicate that individual aerobic capacity influences the redox status of circulating EVs, and that short-term aerobic training impacts the steady-state redox status of EVs. Taking this pilot study as a paradigm for physio-pathological stimuli impacting redox homeostasis, our results offer new insights into the utilization of circulating EVs as biomarkers of exercise efficacy and of early impairment of oxidative-stress related diseases.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Elisa Grazioli
- Physical Exercise and Sport Sciences Unit, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Flavia Guidotti
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Laura Capranica
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Attilio Parisi
- Physical Exercise and Sport Sciences Unit, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy.
| |
Collapse
|
8
|
The Impact of Spermidine on C2C12 Myoblasts Proliferation, Redox Status and Polyamines Metabolism under H2O2 Exposure. Int J Mol Sci 2022; 23:ijms231910986. [PMID: 36232289 PMCID: PMC9569770 DOI: 10.3390/ijms231910986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts’ cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts’ viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.
Collapse
|
9
|
Rhibi F, Abderrahman AB, Prioux J, Clark CCT, Bideau B, Besbes S, Hackney AC, Granacher U, Zouhal H. Effects of different training intensities in high-intensity interval training (HIIT) on maximal aerobic velocity, hematological and muscle-damage markers in healthy young adults. BMC Sports Sci Med Rehabil 2022; 14:158. [PMID: 35996161 PMCID: PMC9396849 DOI: 10.1186/s13102-022-00550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/12/2022] [Indexed: 11/12/2022]
Abstract
This study aimed to examine the effects of two high-intensity interval training programs (HIIT) on maximal aerobic velocity (MAV), hematological variations and muscle damage markers in young healthy adults. Twenty-nine male physical education students, aged 20.3 ± 3.3 years, volunteered to participate in this study, and were randomly assigned to a control group (CG, n = 9) or two intervention groups (group 1 or 2). Intervention group 1 (n = 10) exercised at 100% of their MAV (EG100) while group 2 (n = 10) exercised at 110% MAV (EG110). Before and after the eight week training program, blood samples were drawn at rest, before, and after an intermittent exercise. Aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), C reactive protein (CRP), creatine kinase (CK) concentrations and hematological parameters (white blood cells [WBC], monocytes [MO], lymphocytes [LY], neutrophil [NE]) and lactate dehydrogenase (LDH) were measured. Post-hoc tests showed that MAV was significantly higher in EG110 compared to EG100 after HIIT (p < 0.01, ηp2 = 0.05), whilst ALAT, ASAT, and CPR were significantly lower (p < 0.01; 0.02 < ηp2 < 0.11) in EG110 compared to EG100. Moreover, post-hoc tests indicated that LY decreased significantly (p < 0.001, ηp2 = 0.21) only for EG110. Furthermore, there were significant positive correlations for both EG100 and EG110 between MAV and ALAT (r = 0.66, p = 0.044 and r = 0.64, p = 0.041 respectively), CK (r = 0.67, p = 0.031 and r = 0.86, p = 0.030, respectively), LDH (r = 0.74, p = 0.014, and r = 0.071, p = 0.021, respectively). In addition, there was a significant positive correlation for both, EG100 and EG110 between MAV and LY (r = 0.79, p < 0.01; r = 0.72, p < 0.05, respectively). Concerning the relationship between MAV and NE, there was a significant positive correlation (r = 0.66; p < 0.05) only for EG110. Findings from this study revealed that HIIT at 110% MAV was more efficient to improve MAV and reduce muscle damage. In addition, we observed significant associations between performance improvements (MAV) and markers of muscle damage.
Collapse
Affiliation(s)
- Fatma Rhibi
- Laboratory of Biomonitoring of the Environment, Faculty of Science of Bizerte, University of Carthage, Bizerte, Tunisia.,Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France
| | | | - Jacques Prioux
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Benoît Bideau
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France
| | - Sophia Besbes
- Biochemical Laboratory, Hospital of Kassab, La Manouba, Tunis, Tunisia
| | - Anthony C Hackney
- Department of Exercise and Sport Science, Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Sandfangweg 4, 79102, Freiburg, Germany.
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France. .,Insitut International Des Sciences du Sport (2I2S), 35850, Irodouer, France.
| |
Collapse
|
10
|
Antinozzi C, Grazioli E, De Santis M, Motta F, Sgrò P, Mari F, Mauri C, Parisi A, Caporossi D, Duranti G, Ceci R, Di Luigi L, Dimauro I. The Preventive Role of Physical Activity in Systemic Sclerosis: A Cross-Sectional Study on the Correlation with Clinical Parameters and Disease Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10303. [PMID: 36011938 PMCID: PMC9407825 DOI: 10.3390/ijerph191610303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Although exercise is associated with improved health in many medical conditions, little is known about the possible influences of physical activity (PA) habits pre- and post- a diagnosis of systemic sclerosis (SSc) on disease activity and progression. This cross-sectional study assessed, for the first time, self-reported pre- and post-diagnostic PA levels with the aim to verify if changes in these levels were correlated with demographic/anthropometric data (e.g., weight, height, gender, age, BMI), disease duration, diagnostic/clinical parameters (e.g., skin involvement, pulmonary hemodynamic/echocardiographic data, disease activity) related to disease activity and progression, and quality of life in a population-based sample of patients with SSc. Adult participants (n = 34, age 56.6 ± 13.3 years) with SSc (limited cutaneous SSc, lcSSc, n = 20; diffuse cutaneous SSc, dcSSc, n = 9; sine scleroderma SSc, n = 5) were enrolled at the Division of Rheumatology and Clinical Immunology of the Humanitas Research Hospital. All medical data were recorded during periodic clinical visits by a rheumatologist. Moreover, all subjects included in this study completed extensive questionnaires to evaluate their health-related quality of life (HRQOL), and others related to health-related physical activity performed before (PRE) and after (POST) the diagnosis of disease. The linear regression analysis has shown that either a high Sport_index or Leisure_index in the PRE-diagnostic period was correlated with lower disease duration in dcSSc patients. Physical load during sport activity and leisure time accounted for ~61.1% and ~52.6% of the individual variation in disease duration, respectively. In lcSSc patients, a high PRE value related to physical load during sporting activities was correlated with a low pulmonary artery systolic pressure (sPAP) and the POST value of the Work_index was positively correlated with the left ventricular ejection fraction (LVEF), and negatively with creatine kinase levels (CK). Interestingly, the univariate analysis showed that Work_index accounts for ~29.4% of the variance in LVEF. Our analysis clearly reinforces the concept that high levels of physical load may play a role in primary prevention-delaying the onset of the disease in those subjects with a family history of SSc-as well as in secondary prevention, improving SSc management through a positive impact on different clinical parameters of the disease. However, it remains a priority to identify a customized physical load in order to minimize the possible negative effects of PA.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Maria De Santis
- IRCCS Humanitas Research Hospital—Division of Rheumatology and Clinical Immunology, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Francesca Motta
- IRCCS Humanitas Research Hospital—Division of Rheumatology and Clinical Immunology, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Federico Mari
- Unit of Bioengineering and Neuromechanics of Movement, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Caterina Mauri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Human Genetic, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry of Movement, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry of Movement, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Human Genetic, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| |
Collapse
|
11
|
Antinozzi C, Duranti G, Ceci R, Lista M, Sabatini S, Caporossi D, Di Luigi L, Sgrò P, Dimauro I. Hydrogen Peroxide Stimulates Dihydrotestosterone Release in C2C12 Myotubes: A New Perspective for Exercise-Related Muscle Steroidogenesis? Int J Mol Sci 2022; 23:ijms23126566. [PMID: 35743011 PMCID: PMC9223901 DOI: 10.3390/ijms23126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a "performance-enhancing" drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
- Correspondence: (G.D.); (P.S.)
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Marco Lista
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Daniela Caporossi
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
- Correspondence: (G.D.); (P.S.)
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| |
Collapse
|
12
|
Mahdavi N, Joukar S, Najafipour H, Naderi-boldaji V. Promotion of aging heart function and its redox balance following hind-limb blood flow restriction plus endurance exercise training in rats: klotho and PGC1-α as involving candidate molecules. Pflugers Arch 2022; 474:699-708. [DOI: 10.1007/s00424-022-02702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
13
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
14
|
Systemic Response of Antioxidants, Heat Shock Proteins, and Inflammatory Biomarkers to Short-Lasting Exercise Training in Healthy Male Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1938492. [PMID: 34853628 PMCID: PMC8629640 DOI: 10.1155/2021/1938492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Regular physical activity can enhance immune function and effectively prevents the spread of the cytokine response, thus reducing systemic low-grade inflammation and improving various immune markers. Moreover, regular exercise maintains redox homeostasis in skeletal muscle and other tissues, including immune cells, but the interconnection between the anti-inflammatory effects of exercise with the redox status of immune cells is still poorly understood. With the aim to verify the overall beneficial effect of regular training on the immune system, we have examined the acute and short-term effect of a 5-day exercise program on the modulation of protein and lipid oxidation, antioxidants (i.e., superoxide dismutase-1 (SOD1) and superoxide dismutase-2 (SOD2), glutathione peroxide 1 (GPx1), thioredoxin reductase-1 (TrxR1), and catalase (CAT)), and heat shock protein expression (i.e., heat shock protein-70 (HSP70) and heat shock protein-27 (HSP27)), at both mRNA and protein levels, as well as the activation of the nuclear factor kappa light chain enhancer of activated B cells (NFκB) in peripheral blood mononuclear cells (PBMCs). Moreover, plasmatic markers of oxidative stress, inflammation, and stress response (i.e., protein carbonyl content, interleukin-6 (IL6), interleukin-8 (IL8), interleukin-10 (IL10), interleukin-17E (IL17E), interleukin-17F (IL17F), interleukin-21 (IL21), interleukin-22 (IL22), and interleukin-23 (IL23)) were analyzed in active untrained young adult subjects. Even in the absence of an increased amount of protein or lipid oxidation, we confirmed a PBMC upregulation of SOD1 (1.26 ± 0.07 fold change, p < 0.05), HSP70 (1.59 ± 0.28 fold change, p < 0.05), and HSP27 gene expression (1.49 ± 0.09 fold change, p < 0.05) after 3 hours from the first bout of exercise, followed by an increase in proteins' amount at 24 hours (SOD1, 1.80 ± 0.34 fold change; HSP70, 3.40 ± 0.58 fold change; and HSP27, 1.81 ± 0.20 fold change, p < 0.05) and return to basal levels after the 5 days of aerobic training. Indeed, the posttraining basal levels of oxidized molecules in plasma and PBMCs were statistically lower than the pretraining levels (carbonyl content, 0.50 ± 0.05 fold change, p < 0.01), paralleled by a lower expression of SOD2, Gpx1, and TrxR1, at mRNA (SOD2, 0.63 ± 0.06; GPx1, 0.69 ± 0.07; and TrxR1, 0.69 ± 0.12 fold change, p < 0.05) and protein (TrxR1, 0.49 ± 0.11 fold change, p < 0.05) levels. These results verified the existence of an early phase of redox adaptation to physical exercise already achievable after 5 days of moderate, regular aerobic training. More interestingly, this phenomenon was paralleled by the degree of NFκB activation in PBMCs and the decrease of plasmatic proinflammatory cytokines IL8, IL21, and IL22 in the posttraining period, suggesting an interconnected, short-term efficacy of aerobic exercise towards systemic oxidative stress and inflammation.
Collapse
|
15
|
Effect of Tadalafil Administration on Redox Homeostasis and Polyamine Levels in Healthy Men with High Level of Physical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18199962. [PMID: 34639267 PMCID: PMC8508218 DOI: 10.3390/ijerph18199962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Background: The phosphodiesterase type 5 inhibitor (PDE5I) tadalafil, in addition to its therapeutic role, has shown antioxidant effects in different in vivo models. Supplementation with antioxidants has received interest as a suitable tool for preventing or reducing exercise-related oxidative stress, possibly leading to the improvement of sport performance in athletes. However, the use/abuse of these substances must be evaluated not only within the context of amateur sport, but especially in competitions where elite athletes are more exposed to stressful physical practice. To date, very few human studies have addressed the influence of the administration of PDE5Is on redox balance in subjects with a fitness level comparable to elite athletes; therefore, the aim of this study was to investigate for the first time whether acute ingestion of tadalafil could affect plasma markers related to cellular damage, redox homeostasis, and blood polyamines levels in healthy subjects with an elevated cardiorespiratory fitness level. Methods: Healthy male volunteers (n = 12), with a VO2max range of 40.1–56.0 mL/(kg × min), were administered with a single dose of tadalafil (20 mg). Plasma molecules related to muscle damage and redox-homeostasis, such as creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), reduced/oxidized glutathione ratio (GSH/GSSG), free thiols (FTH), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), as well as thiobarbituric acid reactive substances (TBARs), protein carbonyls (PrCAR), and polyamine levels (spermine (Spm) and spermidine (Spd)) were evaluated immediately before and 2, 6 and 24 hours after the acute tadalafil administration. Results: A single tadalafil administration induced an increase in CK and LDH plasma levels 24 after consumption. No effects were observed on redox homeostasis or antioxidant enzyme activities, and neither were they observed on the oxidation target molecules or polyamines levels. Conclusion: Our results show that in subjects with an elevated fitness level, a single administration of tadalafil induced a significant increase in muscle damage target without affecting plasma antioxidant status.
Collapse
|
16
|
Dimauro I, Grazioli E, Antinozzi C, Duranti G, Arminio A, Mancini A, Greco EA, Caporossi D, Parisi A, Di Luigi L. Estrogen-Receptor-Positive Breast Cancer in Postmenopausal Women: The Role of Body Composition and Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9834. [PMID: 34574758 PMCID: PMC8467802 DOI: 10.3390/ijerph18189834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer-related death. To date, it is still a challenge to estimate the magnitude of the clinical impact of physical activity (PA) on those parameters producing significative changes in future BC risk and disease progression. However, studies conducted in recent years highlight the role of PA not only as a protective factor for the development of ER+ breast cancer but, more generally, as a useful tool in the management of BC treatment as an adjuvant to traditional therapies. In this review, we focused our attention on data obtained from human studies analyzing, at each level of disease prevention (i.e., primary, secondary, tertiary and quaternary), the positive impact of PA/exercise in ER+ BC, a subtype representing approximately 70% of all BC diagnoses. Moreover, given the importance of estrogen receptors and body composition (i.e., adipose tissue) in this subtype of BC, an overview of their role will also be made throughout this review.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.G.); (A.P.)
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| | - Guglielmo Duranti
- Unit of Biocheminstry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Alessia Arminio
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| | - Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere (DISMeB), Università Degli Studi di Napoli “Parthenope”, Via F. Acton, 38, 80133 Naples, Italy;
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore 482, 80145 Naples, Italy
| | - Emanuela A. Greco
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.G.); (A.P.)
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| |
Collapse
|
17
|
D’Amico D, Fiore R, Caporossi D, Di Felice V, Cappello F, Dimauro I, Barone R. Function and Fiber-Type Specific Distribution of Hsp60 and αB-Crystallin in Skeletal Muscles: Role of Physical Exercise. BIOLOGY 2021; 10:biology10020077. [PMID: 33494467 PMCID: PMC7911561 DOI: 10.3390/biology10020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Skeletal muscle represents about 40% of the body mass in humans and it is a copious and plastic tissue, rich in proteins that are subject to continuous rearrangements. Physical exercise is considered a physiological stressor for different organs, in particular for skeletal muscle, and it is a factor able to stimulate the cellular remodeling processes related to the phenomenon of adaptation. All cells respond to various stress conditions by up-regulating the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Although their expression is induced by several stimuli, they are commonly recognized as HSPs due to the first experiments showing their increased transcription after application of heat shock. These proteins are molecular chaperones mainly involved in assisting protein transport and folding, assembling multimolecular complexes, and triggering protein degradation by proteasome. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin, proteins constitutively expressed in the skeletal muscle, where they are known to be important in muscle physiopathology. Therefore, here we provide a critical update on their role in skeletal muscle fibers after physical exercise, highlighting the control of their expression, their biological function, and their specific distribution within skeletal muscle fiber-types. Abstract Skeletal muscle is a plastic and complex tissue, rich in proteins that are subject to continuous rearrangements. Skeletal muscle homeostasis can be affected by different types of stresses, including physical activity, a physiological stressor able to stimulate a robust increase in different heat shock proteins (HSPs). The modulation of these proteins appears to be fundamental in facilitating the cellular remodeling processes related to the phenomenon of training adaptations such as hypertrophy, increased oxidative capacity, and mitochondrial activity. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin (CRYAB), proteins constitutively expressed in the skeletal muscle, where their specific features could be highly relevant in understanding the impact of different volumes of training regimes on myofiber types and in explaining the complex picture of exercise-induced mechanical strain and damaging conditions on fiber population. This knowledge could lead to a better personalization of training protocols with an optimal non-harmful workload in populations of individuals with different needs and healthy status. Here, we introduce for the first time to the reader these peculiar HSPs from the perspective of exercise response, highlighting the control of their expression, biological function, and specific distribution within skeletal muscle fiber-types.
Collapse
Affiliation(s)
- Daniela D’Amico
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77554, USA
| | - Roberto Fiore
- Postgraduate School of Sports Medicine, University Hospital of Palermo, 90127 Palermo, Italy;
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Valentina Di Felice
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
| | - Francesco Cappello
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Rosario Barone
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| |
Collapse
|
18
|
Paronetto MP, Dimauro I, Grazioli E, Palombo R, Guidotti F, Fantini C, Sgrò P, De Francesco D, Di Luigi L, Capranica L, Caporossi D. Exercise-mediated downregulation of MALAT1 expression and implications in primary and secondary cancer prevention. Free Radic Biol Med 2020; 160:28-39. [PMID: 32768573 DOI: 10.1016/j.freeradbiomed.2020.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in various biological functions and disease processes including cancer. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was initially identified as a lncRNA with elevated expression in primary human non-small cell lung tumors with high propensity to metastasize, and subsequently shown to be highly expressed in numerous other human cancers including breast, ovarian, prostate, cervical, endometrial, gastric, pancreatic, sarcoma, colorectal, bladder, brain, multiple myeloma, and lymphoma. MALAT1 is deeply involved in several physiological processes, including alternative splicing, epigenetic modification of gene expression, cellular senescence, healthy aging, and redox homeostasis. The aim of this work was to investigate the modulation exerted by a single bout of endurance exercise on the level of MALAT1 expression in peripheral blood mononuclear cells (PBMCs) from healthy male donors displaying different training status and redox homeostasis features. Our findings show that MALAT1 is downregulated after acute endurance exercise in subjects whose fitness level guarantee a high expression of SOD1 and SOD2 antioxidant genes and low levels of endogenous oxidative damage. In vitro protocols in Jurkat lymphoblastoid cells exposed to pro-oxidant environment confirmed the link between MALAT1 expression and antioxidant gene modulation, documenting p53 phosphorylation and its recruitment to MALAT1 promoter. Remarkably, analyses of Microarray-Based Gene Expression Profiling revealed high MALAT1 expression in leukemia patients in comparison to healthy control and a significant negative correlation between MALAT1 and SOD1 expression. Collectively our results highlight the beneficial effect of a physically active lifestyle in counteracting aberrant cancer-related gene expression programs by improving the redox buffering capacity.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Elisa Grazioli
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Ramona Palombo
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Flavia Guidotti
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Dario De Francesco
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Laura Capranica
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
19
|
Li W, Dong S, Chen Q, Chen C, Dong Z. Selenium may suppress peripheral blood mononuclear cell apoptosis by modulating HSP70 and regulate levels of SIRT1 through reproductive hormone secretion and oxidant stress in women suffering fluorosis. Eur J Pharmacol 2020; 878:173098. [PMID: 32275908 DOI: 10.1016/j.ejphar.2020.173098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Excessive taking fluoride (F) causes severe damage to reproductive system through stimulation of apoptosis and oxidant stress. Selenium (Se) may promote anti-oxidant enzymes and invert cell apoptosis. The aim of this study was to investigate the effect of Se on peripheral blood mononuclear cell (PBMC) apoptosis and oxidant stress in women with fluorosis. Sixty women were divided into three groups according to serum and urine fluoride and hair Se as High F + high Se group, High F group and Control group. The activities of anti-oxidant enzymes, malondialdehyde (MDA) and Se were measured. The levels of sirtuin type 1 (SIRT1), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were measured by enzyme-linked immune sorbent assay (ELISA) kits. The expression of protein and apoptosis rate were detected by Western blot and Flow cytometry. The levels of E2, anti-oxidant enzymes in High F group were significantly lower than that in Control group, while the levels of SIRT1 and MDA were significantly higher. The levels of anti-oxidant enzymes and heat shock protein 70 (HSP70) were significantly increased in High Se + high F group while the expression of caspase-3 was significantly increased in high F group. The levels of LH and FSH in serum were significantly increased in High F group and High Se + high F group. Therefore, Se alleviates apoptosis induced by F through improving the expression of HSP70 and reduces oxidative stress by regulating levels of SIRT1 and anti-oxidant enzymes, and the secretion of certain reproductive hormones.
Collapse
Affiliation(s)
- Wenrong Li
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Siyuan Dong
- Guipei Class 55, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Chen Chen
- Endocrinology, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhaoheng Dong
- Shandong Shenghua Electronic New Materials Co., Ltd., Yantai, Shandong, China.
| |
Collapse
|
20
|
Effects of resistance exercise training on redox homeostasis in older adults. A systematic review and meta-analysis. Exp Gerontol 2020; 138:111012. [PMID: 32615210 DOI: 10.1016/j.exger.2020.111012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Resistance exercise training (RET) has proven effective at reducing the risk of chronic disease in older populations, and it appears to regulate redox homeostasis. AIMS To determine the effects of RET on redox homeostasis in older people. STUDY DESIGN A systematic review and meta-analysis of randomized clinical trials identified by searching MEDLINE, Web of Science, EMBASE, Sportdiscus, LILACS, CENTRAL and CINAHL. We included studies of subjects aged 65 years or older, with or without pathologies, and including RET metrics with quantified molecular oxidation and antioxidant capacity outcomes. RESULTS Fifteen studies were included in this review. Agreement between reviewers reached a kappa value of 0.725. There were a total of 614 participants, with an average age of 68.1 years. Five (for molecular oxidation markers) and three (for antioxidant capacity markers) studies included data that quantified the effects of RET on homeostasis redox. The results of the meta-analysis showed that there were no differences in the molecular oxidation markers (SMD = -0.26; 95% CI = -0.57 to 0.05; P = 0.10; I2 = 0%) and antioxidant capacity markers (SMD = 0.53; 95% CI = -0.20 to 1.26; P = 0.16; I2 = 71.5%) in healthy older people after a RET of 8-24 weeks compared to non-intervention. CONCLUSIONS Based on a small number of studies of low methodological quality, this systematic review with meta-analysis suggests that RET is not effective at reducing molecular oxidation markers in healthy older people. More research is needed on the effects of RET on redox homeostasis in older people. PROSPERO REGISTRATION NUMBER CRD42019121529.
Collapse
|
21
|
Signorelli SS, Marino E, Scuto S, Di Raimondo D. Pathophysiology of Peripheral Arterial Disease (PAD): A Review on Oxidative Disorders. Int J Mol Sci 2020; 21:ijms21124393. [PMID: 32575692 PMCID: PMC7352779 DOI: 10.3390/ijms21124393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic disease that affects a wide range of the world’s population, reaching up to 200 million individuals worldwide. PAD particularly affects elderly individuals (>65 years old). PAD is often underdiagnosed or underestimated, although specificity in diagnosis is shown by an ankle/brachial approach, and the high cardiovascular event risk that affected the PAD patients. A number of pathophysiologic pathways operate in chronic arterial ischemia of lower limbs, giving the possibility to improve therapeutic strategies and the outcome of patients. This review aims to provide a well detailed description of such fundamental issues as physical exercise, biochemistry of physical exercise, skeletal muscle in PAD, heme oxygenase 1 (HO-1) in PAD, and antioxidants in PAD. These issues are closely related to the oxidative stress in PAD. We want to draw attention to the pathophysiologic pathways that are considered to be beneficial in order to achieve more effective options to treat PAD patients.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
- Correspondence: ; Tel.: +39-09-5378-2545
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
| | - Domenico Di Raimondo
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant. Excellence and Internal and Specialized Medicine (Promise) G. D’Alessandro, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
22
|
Rana MN, Tangpong J, Rahman MA. Xanthones protects lead-induced chronic kidney disease (CKD) via activating Nrf-2 and modulating NF-kB, MAPK pathway. Biochem Biophys Rep 2020; 21:100718. [PMID: 31886417 PMCID: PMC6920509 DOI: 10.1016/j.bbrep.2019.100718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 11/18/2022] Open
Abstract
Xanthones from a tropical fruit of Garcinia mangostana L. is known to possess a wide spectrum of pharmacologic properties, including antioxidant, anti-bacterial, anti-inflammatory, and antidiabetic activities. The current study aimed to assess the possible protective effects of xanthones against lead acetate (PbAc)-induced chronic kidney disease (CKD). To accomplish, in vitro antioxidant assays of xanthones, in vivo oxidative stress parameters, histopathology, inflammatory parameters were evaluated using PbAc-induced IRC male mice. The study was supported by in silico molecular docking of respective organ receptor protein-ligand interaction. Results revealed that xanthones potentially scavenged the DPPH, superoxide, hydroxyl, and nitric oxide radicals. Oxidative stress, kidney dysfunction, inflammatory markers, and kidney apoptosis increased by PbAc were attenuated with the co-treatment of xanthones. The treatment remarkably improved the tissue architecture. Of note, in silico prediction of activity study showed that protective role of xanthones could be due to its efficacy to activate the Nrf-2, regulate the intracellular [Ca2+], as well as downregulate the NF-kB, MAPK pathway. In a nutshell, xanthones could be a potential candidate for the management of PbAc-induced kidney damage.
Collapse
Affiliation(s)
- Mohammad Nasiruddin Rana
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| |
Collapse
|
23
|
Dimauro I, Paronetto MP, Caporossi D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 2020; 35:101477. [PMID: 32127290 PMCID: PMC7284912 DOI: 10.1016/j.redox.2020.101477] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-translational histone modification and non-coding RNA transcripts. Initially considered as merely damaging molecules, it is now well recognized that both reactive oxygen (ROS) and nitrogen species (RNS) produced under voluntary exercise play an important role as regulatory mediators in signaling processes. While robust scientific evidences highlight the role of exercise-associated redox modifications in modulating gene expression through the genetic machinery, the understanding of their specific impact on epigenomic profile is still at an early stage. This review will provide an overview of the role of ROS and RNS in modulating the epigenetic landscape in the context of exercise-related adaptations. Physical exercise can modulate gene expression through epigenetic modifications. Epigenetic regulation of ROS/RNS generating, sensing and neutralizing enzymes can impact the cellular levels of ROS and RNS. ROS might act as modulators of epigenetic machinery, interfering with DNA methylation, hPTMs and ncRNAs expression. Redox homeostasis might hold a relevant role in the epigenetic landscape modulating exercise-related adaptations.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
24
|
Relationship between Oxidative Stress and Physical Activity in Women with Squamous Intraepithelial Lesions in a Cervical Cancer Control Program in the Brazilian Amazon. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8909852. [PMID: 31737177 PMCID: PMC6815630 DOI: 10.1155/2019/8909852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) infection is recognized as the most common sexually transmitted disease in the world, and there is a consensus on its role in the etiology of preneoplastic epithelial changes in the cervix. Through the process of lipid peroxidation, oxidative stress is found in the course of premalignant and malignant changes. Moreover, the level of physical activity can exert an influence on markers of oxidative stress, lowering the serum levels of these markers. Objective. To determine the relationship between levels of malondialdehyde (MDA) and the level of physical activity in women with squamous intraepithelial lesion (SIL) of the cervix. Methods. A cross-sectional study was conducted with 46 women participating in a cervical cancer control program. The women had been submitted to the cytopathological exam and were divided into two groups: 18 with SIL and 28 controls. MDA concentrations were determined, and the International Physical Activity Questionnaire (IPAQ) was administered on the same day as the gynecological appointment (prior to the Papanicolaou test). Results. The SIL group had higher MDA levels than the control group (mean: 47.63 ± 9.57 vs. 9.32 ± 4.79, respectively) and a lower IPAQ score (median: 713.5 vs. 1875, respectively). A weak correlation was found between the MDA level and IPAQ score (r2 = −0.34, p = 0.018). Conclusion. The women with SIL had higher levels of oxidative stress and were less physically active than the women in the control group. These findings suggest that physical exercise exerts an influence on markers of oxidative stress in the development of intraepithelial squamous lesions.
Collapse
|
25
|
Karim N, Rahman A, Chanudom L, Thongsom M, Tangpong J. Mangosteen Vinegar Rind from Garcinia mangostana Prevents High-Fat Diet and Streptozotocin-Induced Type II Diabetes Nephropathy and Apoptosis. J Food Sci 2019; 84:1208-1215. [PMID: 31012974 DOI: 10.1111/1750-3841.14511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Type II diabetes (T2D) nephropathy, a major cause of end-stage kidney disease, progresses and develops from oxidative stress. Natural polyphenols can protect the kidney from diabetic nephropathy exerting antioxidant activities. The present approach enumerates the reno-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR, a phenolic aqueous extract) against high-fat diet (5 g/day up to five weeks)-/streptozotocin (single ip, dose 30 mg/kgBW)-induced T2D nephropathy of albino mice. In vitro total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity, and α-amylase inhibition activity as antidiabetic assay of MVR were performed. In vivo mice body weight, oral glucose, and maltose tolerance test, metabolic parameters (plasma glucose, insulin level, omeostasis model assessment-estimated insulin resistance), biochemical parameters (kidney hypertrophy, blood urea nitrogen, creatinine), oxidative stress parameters (malondialdehyde, superoxide dismutase, catalase) were estimated in an intervention study. Additionally, renal morphology and early apoptosis were observed following the H & E staining and TUNEL assay of the tissue frozen section. We found that the aqueous extract of MVR possesses potent in vitro antioxidative and antidiabetic activities. Animal intervention results showed that MVR 100, 200 mg/kgBW, and Glibenclamide 60 mg/kgBW treatments significantly improved (P < 0.05) the abovementioned parameters compared to the diabetic control group. Furthermore, treatments also significantly restored (P < 0.05) kidney histological alterations and reduced cellular apoptosis compared to the diabetic control group. These findings concluded that MVR treatments significantly modulated the glucose intolerance, metabolic alterations, and oxidative stress-induced pathological alterations and cellular apoptosis of diabetic kidney. PRACTICAL APPLICATION: Garcinia mangostana, a polyphenol rich natural product, is obtained from the tropical rain forest area of Southeast Asian countries and processes diverse biological activities including antioxidant, anti-proliferative, anti-inflammatory, anti-carcinogenic, and so on. This research first time focuses on the nephro-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR) from the mangosteen fruit pericarp. Our study provides the efficient data to prove the beneficial effect of MVR as a dietary supplement for the prevention and management of diabetic nephropathy.
Collapse
Affiliation(s)
- Naymul Karim
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| | - Atiar Rahman
- Dept. of Biochemistry and Molecular Biology, Univ. of Chittagong, Chittagong, 80280, Bangladesh
| | - Lanchakon Chanudom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Montakarn Thongsom
- Biology Program, Faculty of Science and Technology, Nakhonsithammarat Rajabhat University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak Univ., Nakhon Si Thammarat, 80161, Thailand
| |
Collapse
|
26
|
Ye F, Wu Y, Chen Y, Xiao D, Shi L. Impact of moderate- and high-intensity exercise on the endothelial ultrastructure and function in mesenteric arteries from hypertensive rats. Life Sci 2019; 222:36-45. [PMID: 30825543 DOI: 10.1016/j.lfs.2019.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress (OS) influences vascular function and structure in spontaneously hypertensive rats (SHRs). It is also responsible for the decreased nitric oxide (NO) bioavailability that influences endothelial vasodilation. The effects of high-intensity exercise on endothelial function and ultrastructure in hypertension remain unknown. Thus, this study investigated the effects of moderate- and high-intensity exercise on hypertension-associated endothelial dysfunction and ultrastructural remodeling. Moderate-intensity (SHR-M) and high-intensity (SHRH) aerobic exercise training groups were compared in age-matched sedentary SHRs (SHRC) and normotensive Wistar-Kyoto rats (WKY-C). The results showed that the endothelial ultrastructure was impaired in the SHR-H and SHR-C groups. Glutathione peroxidase levels were significantly increased in the SHR-M group compared to the SHR-C group. MDA content was higher in the SHR-H group than in the SHR-C group, but the levels of antioxidant enzymes did not increase accordingly. Apocynin scavenging reactive oxygen species (ROS) ameliorated endothelium-dependent vasodilator function in the SHR-H group. However, the SHR-M and WKY-C groups abolished the increased vasodilation induced by apocynin. L-NAME, a NO synthase inhibitor, was applied to isolated mesenteric arteries (MAs) to evaluate NO contribution. Moderate-intensity exercise reversed the decreased NO contribution to MAs in hypertension, and high-intensity exercise aggravated this change. These data suggest that moderate-intensity exercise ameliorated adverse remodeling of the endothelial ultrastructure and function in hypertension by decreasing oxidative stress and increasing NO contribution. However, high-intensity exercise exacerbated all of these changes by increasing OS and ROS contribution, and decreasing NO contribution.
Collapse
Affiliation(s)
- Fang Ye
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
27
|
Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox homeostasis in sport: do athletes really need antioxidant support? Res Sports Med 2018; 27:147-165. [PMID: 30596287 DOI: 10.1080/15438627.2018.1563899] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.
Collapse
Affiliation(s)
- Ambra Antonioni
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Cristina Fantini
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Ivan Dimauro
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Daniela Caporossi
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| |
Collapse
|
28
|
Orsano VSM, de Moraes WMAM, de Sousa NMF, de Moura FC, Tibana RA, Silva ADO, Schwerz Funghetto S, Schoenfeld BJ, Prestes J. Comparison of the acute effects of traditional versus high velocity resistance training on metabolic, cardiovascular, and psychophysiological responses in elderly hypertensive women. Clin Interv Aging 2018; 13:1331-1340. [PMID: 30104867 PMCID: PMC6074841 DOI: 10.2147/cia.s164108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives The aim of the present study was to compare the acute effects of traditional resistance training (RT) versus high velocity RT (HVRT) on metabolic, cardiovascular, and psychophysiological responses in elderly hypertensive women. Methods Fifteen elderly women (mean age ± standard deviation, 67.1±6.9 years) classified as having hypertension stage 1 or 2 were randomly allocated to complete traditional RT or HVRT; 1 week later, subjects allocated to RT completed the HVRT session and vice-versa. Heart rate, blood pressure, affective response, perceived effort, and blood samples analyzing lactate, nitrate, nitrite, oxidative damage (thiobarbituric acid reactive substances [TBARS]), and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalent antioxidant capacity (TEAC) collected before and after training sessions were assessed. Nutritional counseling was provided regarding nutrients that could affect cardiovascular and nitrate/nitrite analysis. Results Systolic blood pressure was not statistically different (p>0.05) between conditions at the beginning and during 30 minutes after sessions. Diastolic blood pressure, rate pressure product, and heart rate were not statistically different (p>0.05) between conditions at the beginning and during 45 minutes after sessions. Nitric oxide was significantly higher (p<0.0005) for HVRT compared to RT after 30 minutes of exercise. TBARS and TEAC were significantly higher (p<0.05) for HVRT compared with RT only immediately after exercise. There were no differences for psychophysiological variables between protocols. Conclusion The acute cardiovascular and metabolic responses, including oxidative stress, are transient and within normal values. Taken together with the positive affective responses, both HVRT and RT with this intensity and volume seem to be safe for elderly hypertensive women under medication.
Collapse
Affiliation(s)
- Vânia Silva Macedo Orsano
- Department of Physical Education, Federal University of Piaui (UFPI), Piauí, Brazil.,Post Graduation Program on Physical Education, Catholic University of Brasilia (UCB), Brasília, Brazil,
| | | | | | - Felipe Carmo de Moura
- Post Graduation Program on Physical Education, Catholic University of Brasilia (UCB), Brasília, Brazil,
| | - Ramires Alsamir Tibana
- Department of Physical Education, Federal University of Mato Grosso (UFMT), Mato Grosso, Brazil
| | | | | | | | - Jonato Prestes
- Post Graduation Program on Physical Education, Catholic University of Brasilia (UCB), Brasília, Brazil,
| |
Collapse
|
29
|
Dimauro I, Antonioni A, Mercatelli N, Caporossi D. The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 2018; 23:491-505. [PMID: 29190034 PMCID: PMC6045558 DOI: 10.1007/s12192-017-0866-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/25/2022] Open
Abstract
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Among the HSPs, special attention has been devoted to the mutations affecting the function of the αB-crystallin (HSPB5), a small heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally, pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ambra Antonioni
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
30
|
Magi F, Dimauro I, Margheritini F, Duranti G, Mercatelli N, Fantini C, Ripani FR, Sabatini S, Caporossi D. Telomere length is independently associated with age, oxidative biomarkers, and sport training in skeletal muscle of healthy adult males. Free Radic Res 2018; 52:639-647. [DOI: 10.1080/10715762.2018.1459043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Fabrizio Margheritini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Guglielmo Duranti
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Francesca Romana Ripani
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University “La Sapienza”, Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
31
|
Viana Gomes D, Santos Vigário P, Lima Piazera BK, Pereira Costa F, Vaisman M, Salerno Pinto V. Oxidative stress biomarkers after a single maximal test in blind and non-blind soccer players. J Sports Med Phys Fitness 2018; 59:267-273. [PMID: 29498248 DOI: 10.23736/s0022-4707.18.08030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to compare oxidative stress biomarkers, antioxidant capacity, muscle damage and hormone response between vision impaired and non-vision impaired athletes after a single maximal exercise test. METHODS Eight vision impaired and fifteen non-vision impaired athletes performed a maximal aerobic test with blood collected before and after. RESULTS Non-vision impaired athletes displayed greater aerobic capacity than blind individuals (P<0.05). Lactate increased by four-fold, while creatine kinase and gamma-glutamyltransferase as well as the oxidative stress biomarkers and antioxidants were unchanged. Cortisol increased, but testosterone and their ratio were not altered. Differences were observed for alanine transaminase and aspartate transaminase, which were increased only in non-blind athletes. CONCLUSIONS Our data suggest that blind soccer players, in comparison to those with vision, experienced less cellular damage.
Collapse
Affiliation(s)
- Diego Viana Gomes
- Department of Biosciences of Physical Activity, Federal University of Rio de Janeiro (EEFD), Rio de Janeiro, Brazil.,Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Santos Vigário
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna K Lima Piazera
- Department of Biosciences of Physical Activity, Federal University of Rio de Janeiro (EEFD), Rio de Janeiro, Brazil.,Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Pereira Costa
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Vaisman
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Veronica Salerno Pinto
- Department of Biosciences of Physical Activity, Federal University of Rio de Janeiro (EEFD), Rio de Janeiro, Brazil -
| |
Collapse
|
32
|
Khouloud A, Abedelmalek S, Chtourou H, Souissi N. The effect of Opuntia ficus-indica juice supplementation on oxidative stress, cardiovascular parameters, and biochemical markers following yo-yo Intermittent recovery test. Food Sci Nutr 2018; 6:259-268. [PMID: 29564091 PMCID: PMC5849923 DOI: 10.1002/fsn3.529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/02/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to investigate the effect of a flavonoid-rich fresh fruit juice on cardiovascular, oxidative stress, and biochemical parameters during the yo-yo intermittent recovery test (YYIRT). Twenty-two healthy males subjects participated in this study divided into two groups: An experimental group (EG: n = 11) who consumed the antioxidant supplement and a control group (CG: n = 11). All participants performed two test sessions at 07:00 hr before and after 2 weeks of supplementation with Opuntia ficus-indica juice. Blood samples were taken before (P1) and immediately (P2) after the YYIRT. Our results showed that following the 2,2-diphenyl-1- picrylhydrazyl (DPPH ●) test, the Opuntia ficus-indica juice has an antioxidant capacity for capturing free radicals (p < .05) and reducing oxidative stress related to exercise. Concerning biochemical and cardiovascular parameters, our results showed a significant increase on total cholesterol (TC) (p < .01), triglycerides (TG) (p < .05), high-density lipoprotein (HDL) (p < .01), low-density lipoprotein (LDL) (p < .01), creatine kinase (CK) (p < .01), lactate deshydrogenase (LDH) (p < .01), glucose (GLC) (p < .01), systolic (SBP), and diastolic blood pressure (DBP) (p < .01) immediately after exercise. However, TC (p < .05), TG (p < .05) and LDL (p < .05), the maximal heart rate (HRmax), the CK (p < .05), and LDH (p < .01) as well as the malondialdehyde (MDA) (p < .01) demonstrated a significant decrease after supplementation of Opuntia ficus-indica juice before and immediately after YYIRT. However, no significant effect on HDL (p > .05), GLC (p > .05) levels nor the SBP and DBP (p > .05) was observed after supplementation with Opuntia ficus-indica juice. The supplementation leads to an improvement on YYIRT performance (The total distance covered during the YYIRT,VO 2max, VMA) and the rating of perceived exertion (RPE). Opuntia ficus-indica juice has a potent antioxidant activity that reduces total and LDL-cholesterol with only a moderate lowering of HDL-cholesterol and oxidative stress. Moreover, supplementation decreases muscle damage caused by the endurance exercise.
Collapse
Affiliation(s)
- Aloui Khouloud
- Research Laboratory ‘‘Sports performance optimization’’National Center of Medicine and Science in Sports (CNMSS)TunisTunisia
- Faculty of Sciences of BizerteUniversity of CarthageBizerteTunisia
| | - Salma Abedelmalek
- Department of Physiology and functional explorationsSousse Faculty of MedicineSousseTunisia
| | - Hamdi Chtourou
- Research Laboratory ‘‘Sports performance optimization’’National Center of Medicine and Science in Sports (CNMSS)TunisTunisia
| | - Nizar Souissi
- Research Laboratory ‘‘Sports performance optimization’’National Center of Medicine and Science in Sports (CNMSS)TunisTunisia
| |
Collapse
|
33
|
Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, Caporossi D. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 2017; 18:802. [PMID: 29143608 PMCID: PMC5688489 DOI: 10.1186/s12864-017-4193-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Guan Wang
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Yannis Pitsiladis
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.,FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
34
|
Polotow TG, Souza-Junior TP, Sampaio RC, Okuyama AR, Ganini D, Vardaris CV, Alves RC, McAnulty SR, Barros MP. Effect of 1 Repetition Maximum, 80% Repetition Maximum, and 50% Repetition Maximum Strength Exercise in Trained Individuals on Variations in Plasma Redox Biomarkers. J Strength Cond Res 2017; 31:2489-2497. [DOI: 10.1519/jsc.0000000000001703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Dimauro I, Sgura A, Pittaluga M, Magi F, Fantini C, Mancinelli R, Sgadari A, Fulle S, Caporossi D. Regular exercise participation improves genomic stability in diabetic patients: an exploratory study to analyse telomere length and DNA damage. Sci Rep 2017. [PMID: 28646223 PMCID: PMC5482873 DOI: 10.1038/s41598-017-04448-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Physical activity has been demonstrated to be effective in the prevention and treatment of different chronic conditions, including type 2 diabetes (T2D). In particular, several studies highlighted how the beneficial effects of physical activity may be related to the stability of the DNA molecule, such as longer telomeric ends. Here we analyze the effect of exercise training on telomere length, spontaneous and H2O2-induced DNA damage, as well as the apoptosis level in leukocytes from untrained or trained T2D patients vs. age-matched control subjects (CS) (57–66 years). Moreover, expression analysis of selected genes belonging to DNA repair systems, cell cycle control, antioxidant and defence systems was performed. Subjects that participated in a regular exercise program showed a longer telomere sequence than untrained counterparts. Moreover, ex vivo treatment of leukocytes with H2O2 highlighted that: (1) oxidative DNA damage induced similar telomere attrition in all groups; (2) in T2D subjects, physical activity seemed to prevent a significant increase of genomic oxidative DNA damage induced by chronic exposure to pro-oxidant stimulus, and (3) decreased the sensitivity of leukocytes to apoptosis. Finally, the gene expression analysis in T2D subjects suggested an adaptive response to prolonged exercise training that improved the response of specific genes.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Monica Pittaluga
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Antonio Sgadari
- Department of Geriatrics, Gerontology and Physiatry, University Hospital Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
36
|
Atashak S, Azizbeigi K, Azarbayjani MA, Stannard S, Dehghan F, Soori R. Changes of stress proteins and oxidative stress indices with progressive exercise training in elderly men. Sci Sports 2017. [DOI: 10.1016/j.scispo.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Fantini C, Sgrò P, Pittaluga M, de Perini A, Dimauro I, Sartorio A, Caporossi D, Di Luigi L. Short-term, supra-physiological rhGH administration induces transient DNA damage in peripheral lymphocytes of healthy women. J Endocrinol Invest 2017; 40:645-652. [PMID: 28211028 DOI: 10.1007/s40618-016-0603-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE While a good safety for recombinant human growth hormone (rhGH) therapy at replacement doses is recognized, a possible link between high concentration of the GH-IGF-I axis hormones and side negative effect has been reported. The aim of this pilot study was to assess whether a short-term exposure to supra-physiological doses of rhGH may affect DNA integrity in human lymphocytes (PBL). METHODS Eighteen healthy Caucasian female (24.2 ± 3.5 years) were randomly included in a Control (n = 9) and rhGH administration group (n = 9, 3-week treatment). DNA damage (comet assay), chromosomal breaks, and mitotic index in phytohemagglutinin-stimulated PBL were evaluated before (PRE), immediately (POST), and 30 days (POST30) after the last rhGH administration (0.029 mg kg- 1 BW; 6 days/week), together with serum IGF-1 and IGFBP-3 concentrations. RESULTS rhGH administration increased IGF-I, without evidence of persisting IGF-I and IGFBP-3 changes 30 days after withdrawal. Total DNA breakage (% DNA in tails) was not significantly different in subjects treated with rhGH in comparison with controls, although the rhGH-treated subjects showed an higher percentage of heavily damaged nuclei immediately after the treatment (POST30 vs. PRE: p = 0.003), with a lower mitogenic potential of lymphocytes, detectable up to the POST30 (PRE vs. POST: p = 0.02; PRE vs. POST30: p = 0.007). CONCLUSIONS This pilot study showed that 3 weeks of short-term supra-physiological rhGH administration in healthy women induce a transient DNA damage and mitogenic impairment in PBL. The analysis of DNA damage should be explored as useful tool in monitoring the mid to long-term effects of high rhGH treatment or abuse.
Collapse
Affiliation(s)
- C Fantini
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - P Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", 00135, Rome, Italy
| | - M Pittaluga
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - A de Perini
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - I Dimauro
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy
| | - A Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, 20145, Milan, Italy
| | - D Caporossi
- Unit of Biology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", Piazza Lauro de Bosis, 15, 00135, Rome, Italy.
| | - L Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Università di Roma "Foro Italico", 00135, Rome, Italy
| |
Collapse
|
38
|
Duranti G, Ceci R, Sgrò P, Sabatini S, Di Luigi L. Influence of the PDE5 inhibitor tadalafil on redox status and antioxidant defense system in C2C12 skeletal muscle cells. Cell Stress Chaperones 2017; 22:389-396. [PMID: 28283895 PMCID: PMC5425369 DOI: 10.1007/s12192-017-0778-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023] Open
Abstract
Phosphodiesterase type 5 inhibitors (PDE5Is), widely known for their beneficial effects onto male erectile dysfunction, seem to exert favorable effects onto metabolism as well. Tadalafil exposure increases oxidative metabolism of C2C12 skeletal muscle cells. A rise in fatty acid (FA) metabolism, requiring more oxygen, could induce a larger reactive oxygen species (ROS) release as a byproduct thus leading to a redox imbalance. The aim of this study was to determine how PDE5I tadalafil influences redox status in skeletal muscle cells to match the increasing oxidative metabolism. To this purpose, differentiated C2C12 skeletal muscle cells were treated with tadalafil and analyzed for total antioxidant capacity (TAC) and glutathione levels as marker of redox status; enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) engaged in antioxidant defense; and lipid peroxidation (TBARS) and protein carbonyls (PrCar) as markers of oxidative damage. Tadalafil increased total intracellular glutathione (tGSH), CAT, SOD, and GPx enzymatic activities while no changes were found in TAC. A perturbation of redox status, as showed by the decrease in the ratio between reduced/oxidized glutathione (GSH/GSSG), was observed. Nevertheless, it did not cause any change in TBARS and PrCar levels probably due to the enhancement in the antioxidant enzymatic network. Taken together, these data indicate that tadalafil, besides improving oxidative metabolism, may be beneficial to skeletal muscle cells by enhancing the enzymatic antioxidant system capacity.
Collapse
Affiliation(s)
- Guglielmo Duranti
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Rome, Italy
| | - Roberta Ceci
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Rome, Italy.
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro de Bosis, 6, I-00135, Rome, Italy.
| | - Paolo Sgrò
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Università degli Studi di Roma "Foro Italico", Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, Università degli Studi di Roma "Foro Italico", Rome, Italy
| |
Collapse
|
39
|
Aloui K, Abedelmalek S, Chtourou H, Wong DP, Boussetta N, Souissi N. Effects of time-of-day on oxidative stress, cardiovascular parameters, biochemical markers, and hormonal response following level-1 Yo-Yo intermittent recovery test. Physiol Int 2017; 104:77-90. [DOI: 10.1556/2060.104.2017.1.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effect of time-of-day on oxidative stress, cardiovascular parameters, muscle damage parameters, and hormonal responses following the level-1 Yo-Yo intermittent recovery test (YYIRT). A total of 11 healthy subjects performed an intermittent test (YYIRT) at two times-of-day (i.e., 07:00 h and 17:00 h), with a recovery period of ≥36 h in-between, in a randomized order. Blood samples were taken at the rest (baseline) and immediately (post-YYIRT) after the YYIRT for measuring oxidative stress, biochemical markers, and hormonal response. Data were statistically analyzed using one-way and two-way repeated measures ANOVA and Bonferroni test at p < 0.05. Observed power (α = 0.05) and partial eta-squared were used. Our results showed that oxygen uptake (VO2max), maximal aerobic speed, and the total distance covered tended to be higher in the evening (17:00 h). There was also a main effect of time-of-day for cortisol and testosterone concentration, which were higher after the YYIRT in the morning (p < 0.05). The heart rate peak and the rating of perceived exertion scales were lower in the morning (p < 0.05). However, the plasma glucose (p < 0.01), malondialdehyde, creatine kinase (p < 0.01), lactate dehydrogenase (p < 0.05), high-density lipoprotein (p < 0.01), total cholesterol (p < 0.01), and triglycerides (p < 0.05) were higher after the YYIRT in the evening. Low-density lipoprotein, systolic blood pressure, diastolic blood pressure, and lactate levels (p > 0.05) were similar for the morning and evening test. In conclusion, our findings suggest that aerobic performance presents diurnal variation with great result observed in the evening accompanied by an improvement of hormonal, metabolic, and oxidative responses. These data may help to guide athletes and coaches and contribute to public health recommendations on exercise and muscle damage particularly in the competitive periods.
Collapse
Affiliation(s)
- K Aloui
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
- 2 Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - S Abedelmalek
- 3 Department of Physiology and Functional Explorations, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - H Chtourou
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - DP Wong
- 4 Human Performance Laboratory, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - N Boussetta
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - N Souissi
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| |
Collapse
|
40
|
Dimauro I, Scalabrin M, Fantini C, Grazioli E, Beltran Valls MR, Mercatelli N, Parisi A, Sabatini S, Di Luigi L, Caporossi D. Resistance training and redox homeostasis: Correlation with age-associated genomic changes. Redox Biol 2016; 10:34-44. [PMID: 27687219 PMCID: PMC5040637 DOI: 10.1016/j.redox.2016.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023] Open
Abstract
Regular physical activity is effective as prevention and treatment for different chronic conditions related to the ageing processes. In fact, a sedentary lifestyle has been linked to a worsening of cellular ageing biomarkers such as telomere length (TL) and/or specific epigenetic changes (e.g. DNA methylation), with increase of the propensity to aging-related diseases and premature death. Extending our previous findings, we aimed to test the hypothesis that 12 weeks of low frequency, moderate intensity, explosive-type resistance training (EMRT) may attenuate age-associated genomic changes. To this aim, TL, global DNA methylation, TRF2, Ku80, SIRT1, SIRT2 and global protein acetylation, as well as other proteins involved in apoptotic pathway (Bcl-2, Bax and Caspase-3), antioxidant response (TrxR1 and MnSOD) and oxidative damage (myeloperoxidase) were evaluated before and after EMRT in whole blood or peripheral mononuclear cells (PBMCs) of elderly subjects. Our findings confirm the potential of EMRT to induce an adaptive change in the antioxidant protein systems at systemic level and suggest a putative role of resistance training in the reduction of global DNA methylation. Moreover, we observed that EMRT counteracts the telomeres' shortening in a manner that proved to be directly correlated with the amelioration of redox homeostasis and efficacy of training regime, evaluated as improvement of both muscle's power/strength and functional parameters.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Mattia Scalabrin
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Cristina Fantini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Elisa Grazioli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Maria Reyes Beltran Valls
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Attilio Parisi
- Unit of Sport Medicine, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Stefania Sabatini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| |
Collapse
|
41
|
Shimi I, Abedelmalek S, Aloui K, Chtourou H, Souissi N. The effect of time of day and recovery type after a football game on muscle damage and performance in anaerobic tests on young soccer players. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1197505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Zembron-Lacny A, Dziubek W, Rynkiewicz M, Morawin B, Woźniewski M. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men. Braz J Med Biol Res 2016; 49:S0100-879X2016000700603. [PMID: 27332774 PMCID: PMC4918790 DOI: 10.1590/1414-431x20165253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022] Open
Abstract
Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF) and its relationship to oxidative damage and conventional cardiovascular disease (CVD) biomarkers, such as atherogenic index, C-reactive protein (hsCRP) and oxidized LDL (oxLDL), in active and inactive men. Seventeen elderly males (61-80 years) and 17 young males (20-24 years) participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001). In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL), hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men.
Collapse
Affiliation(s)
- A. Zembron-Lacny
- Department of Applied and Clinical Physiology, Faculty of Medicine
and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - W. Dziubek
- Department of Physiotherapy in Internal Diseases, Faculty of
Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw,
Poland
| | - M. Rynkiewicz
- Department of Biological Basis of Sport, Faculty of Medicine and
Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - B. Morawin
- Department of Biological Basis of Sport, Faculty of Medicine and
Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - M. Woźniewski
- Department of Physiotherapy in Internal Diseases, Faculty of
Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw,
Poland
| |
Collapse
|
43
|
Wichitsranoi J, Ladawan S, Sirijaichingkul S, Settasatian N, Leelayuwat N. Relationship between aerobic capacity and cardiovascular disease risk factors in Thai men and women with normolipidemia and dyslipidemia. J Phys Ther Sci 2015; 27:3503-9. [PMID: 26696726 PMCID: PMC4681933 DOI: 10.1589/jpts.27.3503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/19/2015] [Indexed: 12/01/2022] Open
Abstract
[Purpose] This research aimed to investigate the relationship between aerobic capacity
(VO2,peak) and cardiovascular risk factors in normolipidemic and dyslipidemic
Thai men and women. [Subjects and Methods] We recruited 104 dyslipidemic and 100 healthy
participants. Fasting blood samples were analyzed for lipid and blood glucose levels.
Anthropometry, blood pressure, and body composition were measured before exercise. Each
subject underwent exercise testing to determine VO2, peak. Heart rate (HR) was
recorded throughout the exercise test. [Results] Dyslipidemic participants had a lower
VO2, peak than normolipidemic participants (p<0.01). In normolipidemic
male participants, VO2, peak was positively correlated with high density
lipoprotein cholesterol (HDL-C) levels and negatively correlated with low density
lipoprotein cholesterol (LDL-C) levels and triglycerides to HDL-cholesterol (TG/HDL-C)
ratios; in females, VO2, peak was negatively correlated with age, total
cholesterol, and LDL-C. In dyslipidemic males, VO2, peak was positively
correlated with HDL-C levels and negatively correlated with age, LDL-C and TG levels, and
percent body fat; in females, VO2, peak was positively correlated with resting
HR and heart rate recovery and negatively correlated with age, TG/HDL-C, and waist
circumference. [Conclusion] There was a relationship between aerobic capacity and
cardiovascular disease risk factors in both normolipidemic and dyslipidemic participants.
This relationship was affected by gender.
Collapse
Affiliation(s)
| | | | - Suchart Sirijaichingkul
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Khon Kaen University, Thailand
| | - Nongnuch Settasatian
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Thailand
| | - Naruemon Leelayuwat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Thailand ; Exercise and Sport Sciences Research and Development Group, Khon Kaen University, Thailand
| |
Collapse
|
44
|
Dos Santos JL, Dantas REA, Lima CA, de Araújo SS, de Almeida ECV, Marçal AC, Estevam CDS. Protective effect of a hydroethanolic extract from Bowdichia virgilioides on muscular damage and oxidative stress caused by strenuous resistance training in rats. J Int Soc Sports Nutr 2014; 11:58. [PMID: 25649187 PMCID: PMC4308926 DOI: 10.1186/s12970-014-0058-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/17/2014] [Indexed: 12/14/2022] Open
Abstract
Background Natural antioxidants can reduce oxidative damage caused by high-intensity resistance training (RT). We investigated the in vitro antioxidant potential of hydroethanolic extract (HEE) from Bowdichia virgilioides on muscular damage and oxidative stress in rats subjected to high-intensity RT. Methods Thirty-two male Wistar rats were divided into four experimental groups: 1) control group (CG), oral administration (P.O.) of vehicle; 2) trained group (TG), vehicle-treated with RT; 3) B. virgilioides untrained group (BVG), treated with B. virgilioides HEE (200 mg/kg P.O.); and 4) trained B. virgilioides group (TBVG), treated with B. virgiliodes HEE (200 mg/kg P.O.). All animals were habituated to the training apparatus for 1 week. CT and TBVG animals were subjected to the training protocol, which consisted of three sets of 10 repetitions with 75% of the load established using the one-repetition maximum, for four weeks. CG and BVG animals were manipulated and fixed to the apparatus three times a week with no load. Treatment with B. virgilioides HEE or vehicle treatment was initiated after 25 days of RT (5 days; one dose per day). At the end of the experiments, plasmatic and gastrocnemius samples from all groups were obtained for the assessment of lipid peroxidation and creatine kinase activity. Results Compared to TG rats, TBVG rats showed decreases in plasma and gastrocnemius tissue lipid peroxidation by 55.68% (p <0.0001) and 66.61% (p <0.0012), respectively. Further, compared to TG rats TBVG rats showed decreases in plasma and gastrocnemius tissue oxidative stress by 62.83% (p <0.0005) and 54.97% (p <0.0197), respectively. Conclusions B. virgilioides HEE treatment reduced markers of oxidative stress caused by high-intensity RT. Further, HEE treatment during training significantly reduced the markers of tissue damage.
Collapse
Affiliation(s)
- Jymmys Lopes Dos Santos
- Postgraduate program in Physical Education, Department of Physical Education, Federal University of Sergipe, São Cristóvão, SE 49100-000 Brazil ; Federal University of Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Department of Morphology, Av. Marechal Rondon s/n, Jardim Rosa Elze, São Cristóvão, Sergipe 49100-000 Brazil
| | - Rafaela Eugênia Arce Dantas
- Federal University of Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Department of Morphology, Av. Marechal Rondon s/n, Jardim Rosa Elze, São Cristóvão, Sergipe 49100-000 Brazil
| | - Clésio Andrade Lima
- Laboratory of Natural Product Chemistry and Biochemistry, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE 49100-000 Brazil
| | - Silvan Silva de Araújo
- Laboratory of Natural Product Chemistry and Biochemistry, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE 49100-000 Brazil
| | - Elis Cristiane Valença de Almeida
- Laboratory of Natural Product Chemistry and Biochemistry, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE 49100-000 Brazil
| | - Anderson Carlos Marçal
- Federal University of Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Department of Morphology, Av. Marechal Rondon s/n, Jardim Rosa Elze, São Cristóvão, Sergipe 49100-000 Brazil
| | - Charles Dos Santos Estevam
- Laboratory of Natural Product Chemistry and Biochemistry, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE 49100-000 Brazil
| |
Collapse
|
45
|
Effects of tadalafil administration on plasma markers of exercise-induced muscle damage, IL6 and antioxidant status capacity. Eur J Appl Physiol 2014; 115:531-9. [PMID: 25381629 DOI: 10.1007/s00421-014-3040-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Physical exercise is associated with enhanced production of reactive oxygen species, which if uncontrolled can result in tissue injury. Phosphodiesterase type 5 inhibitors (PDE5i) exhibit protective effect against oxidative stress, both in animals and healthy/unhealthy humans. However, the effect of a chronic administration of PDE5i, particularly combined with physical exercise, has never been investigated. PURPOSE The present study was designed to evaluate the effect of the long-acting PDE5i tadalafil on oxidative status and muscle damage after exhaustive exercise in healthy males included in a double-blind crossover trial. HYPOTHESIS Tadalafil, having a putative antioxidant activity, may reduce oxidative damage after strenuous exercise. METHODS Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day) with 36 h of interval before performing exhaustive exercise. After 2 weeks of washout, the volunteers were crossed over. Blood samples were collected immediately before exercise, immediately after, and during recovery (15, 30, 60 min). Plasma total antioxidant status, glutathione homeostasis (GSH/GSSG), malondialdehyde (MDA), protein carbonyls, creatine kinase (CK), lactate dehydrogenase (LDH) and the inflammatory cytokine interleukin 6 were assessed. RESULTS Tadalafil administration per se affected redox homeostasis (GSH/GSSG -36%; p < 0.05), cellular (CK +75% and LDH +36%; p < 0.05) and oxidative damage (MDA +41% and protein carbonyls +50%; p < 0.05) markers. The exhaustive exercise increased all the above-reported biochemical parameters, with subjects from the tadalafil group showing significantly higher values with respect to the placebo group. CONCLUSIONS A prolonged exposure to tadalafil decreases antioxidant capacity at resting condition, therefore making subjects more susceptible to the oxidative stress induced by an exhaustive bout of exercise.
Collapse
|
46
|
Colamartino M, Santoro M, Duranti G, Sabatini S, Ceci R, Testa A, Padua L, Cozzi R. Evaluation of levodopa and carbidopa antioxidant activity in normal human lymphocytes in vitro: implication for oxidative stress in Parkinson's disease. Neurotox Res 2014; 27:106-17. [PMID: 25355370 DOI: 10.1007/s12640-014-9495-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023]
Abstract
The main pathochemical hallmark of Parkinson's disease (PD) is the loss of dopamine in the striatum of the brain, and the oral administration of levodopa (L-dopa) is a treatment that partially restores the dopaminergic transmission. In vitro assays have demonstrated both toxic and protective effects of L-dopa on dopaminergic cells, while in vivo studies have not provided any convincing data. The peripheral metabolic pathways significantly decrease the amount of L-dopa reaching the brain; therefore, all of the current commercial formulations require an association with an inhibitor of dopa-decarboxylase, such as carbidopa. However, the dosage and the actual effectiveness of carbidopa have not yet been well defined. PD patients exhibit a reduced efficiency of the endogenous antioxidant system, and peripheral blood lymphocytes (PBLs) represent a dopaminergic system for use as a cellular model to study the pharmacological treatments of neurodegenerative disorders in addition to analysing the systemic oxidative stress. According to our previous studies demonstrating a protective effect of both L-dopa and carbidopa on neuroblastoma cells in vitro, we used the PBLs of healthy donors to evaluate the modulation of DNA damage by different concentrations of L-dopa and carbidopa in the presence of oxidative stress that was exogenously induced by H2O2. We utilised a TAS assay to evaluate the in vitro direct scavenging activity of L-dopa and carbidopa and analysed the expression of genes that were involved in cellular oxidative metabolism. Our data demonstrate the antioxidant capacity of L-dopa and carbidopa and their ability to protect DNA against oxidative-induced damage that derives from different mechanisms of action.
Collapse
Affiliation(s)
- Monica Colamartino
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|