1
|
Abdeen AH, Trist BG, Nikseresht S, Harwood R, Roudeau S, Rowlands BD, Kreilaus F, Cottam V, Mor D, Richardson M, Siciliano J, Forkgen J, Schaffer G, Genoud S, Li AA, Proschogo N, Antonio B, Falkenberg G, Brueckner D, Kysenius K, Liddell JR, Fat SCM, Wu S, Fifita J, Lockwood TE, Bishop DP, Blair I, Ortega R, Crouch PJ, Double KL. Parkinson-like wild-type superoxide dismutase 1 pathology induces nigral dopamine neuron degeneration in a novel murine model. Acta Neuropathol 2025; 149:22. [PMID: 40042537 PMCID: PMC11882636 DOI: 10.1007/s00401-025-02859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
Atypical wild-type superoxide dismutase 1 (SOD1) protein misfolding and deposition occurs specifically within the degenerating substantia nigra pars compacta (SNc) in Parkinson disease. Mechanisms driving the formation of this pathology and relationship with SNc dopamine neuron health are yet to be fully understood. We applied proteomic mass spectrometry and synchrotron-based biometal quantification to post-mortem brain tissues from the SNc of Parkinson disease patients and age-matched controls to uncover key factors underlying the formation of wild-type SOD1 pathology in this disorder. We also engineered two of these factors - brain copper deficiency and upregulated SOD1 protein levels - into a novel mouse strain, termed the SOCK mouse, to verify their involvement in the development of Parkinson-like wild-type SOD1 pathology and their impact on dopamine neuron health. Soluble SOD1 protein in the degenerating Parkinson disease SNc exhibited altered post-translational modifications, which may underlie changes to the enzymatic activity and aggregation of the protein in this region. These include decreased copper binding, dysregulation of physiological glycosylation, and atypical oxidation and glycation of key SOD1 amino acid residues. We demonstrated that the biochemical profile introduced in SOCK mice promotes the same post-translational modifications and the development of Parkinson-like wild-type SOD1 pathology in the midbrain and cortex. This pathology accumulates progressively with age and is accompanied by nigrostriatal degeneration and dysfunction, which occur in the absence of α-synuclein deposition. These mice do not exhibit weight loss nor spinal cord motor neuron degeneration, distinguishing them from transgenic mutant SOD1 mouse models. This study provides the first in vivo evidence that mismetallation and altered post-translational modifications precipitates wild-type SOD1 misfolding, dysfunction, and deposition in the Parkinson disease brain, which may contribute to SNc dopamine neuron degeneration. Our data position this pathology as a novel drug target for this disorder, with a particular focus on therapies capable of correcting alterations to SOD1 post-translational modifications.
Collapse
Affiliation(s)
- Amr H Abdeen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sara Nikseresht
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard Harwood
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Benjamin D Rowlands
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Fabian Kreilaus
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - David Mor
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Miriam Richardson
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Joel Siciliano
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Julia Forkgen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Greta Schaffer
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sian Genoud
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Anne A Li
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Nicholas Proschogo
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bernadeth Antonio
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kai Kysenius
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jeffrey R Liddell
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sandrine Chan Moi Fat
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Sharlynn Wu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Jennifer Fifita
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ian Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Peter J Crouch
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Yan J, Yin S, Chen Y, Xu R, Li W, Cai Y, Wang P, Ma X, Fan D. Expression, optimization and biological activity analysis of recombinant type III collagen in Komagataella phaffii. Int J Biol Macromol 2025; 288:138243. [PMID: 39653211 DOI: 10.1016/j.ijbiomac.2024.138243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Type III collagen, a fundamental constituent of the extracellular matrix (ECM), is extensively utilized across the biomedicine, tissue engineering, and cosmetic industries because of its exceptional biocompatibility and biodegradability. Despite its widespread application, traditional methods of collagen production are often hindered by the limit yield, potential immunogenicity, and batch-to-batch variability. In the present study, we describe a synthetic biological approach for expressing full-length recombinant type III collagen (RCIII) in the Komagataella phaffii system. Furthermore, the protein expression level was effectively increased by co-expression of the MPR1 gene, which improved the intrinsic antioxidant defenses of yeast cells, thereby reducing oxidative stress damage. The resulting RCIII maintains its native secondary structure and exhibits robust biological activities, including the promotion of platelet coagulation, enhancement of cell migration, and anti-inflammatory efficacy. Our findings suggest a viable pathway for large-scale, industrial production of type III collagen, offering a promising biomaterial for advanced biomedical applications, and contributing to the circular economy of the biomedical sector.
Collapse
Affiliation(s)
- Junmiao Yan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Shiyu Yin
- Xi'an Giant Biogene Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Yanru Chen
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Ru Xu
- Xi'an Giant Biogene Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Weina Li
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Yiwen Cai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Silva Ortíz YL, de Sousa TC, Kruklis NE, Galeano García P, Brango-Vanegas J, Soller Ramada MH, Franco OL. The Role of Amphibian AMPs Against Oxidative Stress and Related Diseases. Antibiotics (Basel) 2025; 14:126. [PMID: 40001370 PMCID: PMC11851847 DOI: 10.3390/antibiotics14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Amphibians use their skin as an effective defense mechanism against predators and microorganisms. Specialized glands produce antimicrobial peptides (AMPs) that possess antioxidant properties, effectively reducing reactive oxygen species (ROS) levels. These peptides are promising candidates for treating diseases associated with oxidative stress (OS) and redox imbalance, including neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), as well as age-related conditions, like cardiovascular diseases and cancer. This review highlights the multifaceted roles of AMPs and antioxidant peptides (AOPs) in amphibians, emphasizing their protective capabilities against oxidative damage. They scavenge ROS, activate antioxidant enzyme systems, and inhibit cellular damage. AOPs often share structural characteristics with AMPs, suggesting a potential evolutionary connection and similar biosynthetic pathways. Peptides such as brevinin-1FL and Cath-KP demonstrate neuroprotective effects, indicating their therapeutic potential in managing oxidative stress-related diseases. The antioxidant properties of amphibian-derived peptides pave the way for novel therapeutic developments. However, a deeper understanding of the molecular mechanisms underlying these peptides and their interactions with oxidative stress is essential to addressing ROS-related diseases and advancing therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Yudy Lorena Silva Ortíz
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Caquetá, Colombia; (Y.L.S.O.); (P.G.G.)
| | - Thaís Campos de Sousa
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
| | - Natália Elisabeth Kruklis
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
| | - Paula Galeano García
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Caquetá, Colombia; (Y.L.S.O.); (P.G.G.)
| | - José Brango-Vanegas
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, MS, Brazil
| | - Marcelo Henrique Soller Ramada
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
- Graduate Program in Gerontology, Catholic University of Brasília, Brasília 71966-700, DF, Brazil
| | - Octávio Luiz Franco
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, MS, Brazil
| |
Collapse
|
4
|
McCaig CD. Neurological Diseases can be Regulated by Phase Separation. Rev Physiol Biochem Pharmacol 2025; 187:273-338. [PMID: 39838017 DOI: 10.1007/978-3-031-68827-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Several neurological diseases arise from abnormal protein aggregation within neurones and this is closely regulated by phase separation. One such is motor neurone disease and aberrant aggregation of superoxide dismutase. Again these events are regulated by electrical forces that are examined.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
5
|
Bayandina SV, Mukha DV. Saccharomyces cerevisiae as a Model for Studying Human Neurodegenerative Disorders: Viral Capsid Protein Expression. Int J Mol Sci 2023; 24:17213. [PMID: 38139041 PMCID: PMC10743263 DOI: 10.3390/ijms242417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this article, we briefly describe human neurodegenerative diseases (NDs) and the experimental models used to study them. The main focus is the yeast Saccharomyces cerevisiae as an experimental model used to study neurodegenerative processes. We review recent experimental data on the aggregation of human neurodegenerative disease-related proteins in yeast cells. In addition, we describe the results of studies that were designed to investigate the molecular mechanisms that underlie the aggregation of reporter proteins. The advantages and disadvantages of the experimental approaches that are currently used to study the formation of protein aggregates are described. Special attention is given to the similarity between aggregates that form as a result of protein misfolding and viral factories-special structural formations in which viral particles are formed inside virus-infected cells. A separate part of the review is devoted to our previously published study on the formation of aggregates upon expression of the insect densovirus capsid protein in yeast cells. Based on the reviewed results of studies on NDs and related protein aggregation, as well as viral protein aggregation, a new experimental model system for the study of human NDs is proposed. The core of the proposed system is a comparative transcriptomic analysis of changes in signaling pathways during the expression of viral capsid proteins in yeast cells.
Collapse
Affiliation(s)
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
7
|
Vander Wende HM, Gopi M, Onyundo M, Medrano C, Adanlawo T, Brar GA. Meiotic resetting of the cellular Sod1 pool is driven by protein aggregation, degradation, and transient LUTI-mediated repression. J Biophys Biochem Cytol 2023; 222:213795. [PMID: 36622328 PMCID: PMC9836244 DOI: 10.1083/jcb.202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Gametogenesis requires packaging of the cellular components needed for the next generation. In budding yeast, this process includes degradation of many mitotically stable proteins, followed by their resynthesis. Here, we show that one such case-Superoxide dismutase 1 (Sod1), a protein that commonly aggregates in human ALS patients-is regulated by an integrated set of events, beginning with the formation of pre-meiotic Sod1 aggregates. This is followed by degradation of a subset of the prior Sod1 pool and clearance of Sod1 aggregates. As degradation progresses, Sod1 protein production is transiently blocked during mid-meiotic stages by transcription of an extended and poorly translated SOD1 mRNA isoform, SOD1LUTI. Expression of SOD1LUTI is induced by the Unfolded Protein Response, and it acts to repress canonical SOD1 mRNA expression. SOD1LUTI is no longer expressed following the meiotic divisions, enabling a resurgence of canonical mRNA and synthesis of new Sod1 protein such that gametes inherit a full complement of Sod1 protein. Failure to aggregate and degrade Sod1 results in reduced gamete fitness in the presence of oxidants, highlighting the importance of this regulation. Investigation of Sod1 during yeast gametogenesis, an unusual cellular context in which Sod1 levels are tightly regulated, could shed light on conserved aspects of its aggregation and degradation, with relevance to understanding Sod1's role in human disease.
Collapse
Affiliation(s)
- Helen M. Vander Wende
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mounika Gopi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Megan Onyundo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,Correspondence to Gloria A. Brar:
| |
Collapse
|
8
|
Kumar R, Malik Z, Singh M, Rachana R, Mani S, Ponnusamy K, Haider S. Amyotrophic Lateral Sclerosis Risk Genes and Suppressor. Curr Gene Ther 2023; 23:148-162. [PMID: 36366843 DOI: 10.2174/1566523223666221108113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to death by progressive paralysis and respiratory failure within 2-4 years of onset. About 90-95% of ALS cases are sporadic (sALS), and 5-10% are inherited through family (fALS). Though the mechanisms of the disease are still poorly understood, so far, approximately 40 genes have been reported as ALS causative genes. The mutations in some crucial genes, like SOD1, C9ORF72, FUS, and TDP-43, are majorly associated with ALS, resulting in ROS-associated oxidative stress, excitotoxicity, protein aggregation, altered RNA processing, axonal and vesicular trafficking dysregulation, and mitochondrial dysfunction. Recent studies show that dysfunctional cellular pathways get restored as a result of the repair of a single pathway in ALS. In this review article, our aim is to identify putative targets for therapeutic development and the importance of a single suppressor to reduce multiple symptoms by focusing on important mutations and the phenotypic suppressors of dysfunctional cellular pathways in crucial genes as reported by other studies.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Zubbair Malik
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - R Rachana
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | | | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Baek Y, Woo TG, Ahn J, Lee D, Kwon Y, Park BJ, Ha NC. Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Commun Biol 2022; 5:1085. [PMID: 36224351 PMCID: PMC9556535 DOI: 10.1038/s42003-022-04017-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic Cu, Zn-superoxide dismutase (SOD1) is primarily responsible for cytotoxic filament formation in amyotrophic lateral sclerosis (ALS) neurons. Two cysteine residues in SOD1 form an intramolecular disulfide bond. This study aims to explore the molecular mechanism of SOD1 filament formation by cysteine overoxidation in sporadic ALS (sALS). In this study, we determined the crystal structure of the double mutant (C57D/C146D) SOD1 that mimics the overoxidation of the disulfide-forming cysteine residues. The structure revealed the open and relaxed conformation of loop IV containing the mutated Asp57. The double mutant SOD1 produced more contagious filaments than wild-type protein, promoting filament formation of the wild-type SOD1 proteins. Importantly, we further found that HOCl treatment to the wild-type SOD1 proteins facilitated their filament formation. We propose a feasible mechanism for SOD1 filament formation in ALS from the wild-type SOD1, suggesting that overoxidized SOD1 is a triggering factor of sALS. Our findings extend our understanding of other neurodegenerative disorders associated with ROS stresses at the molecular level. Characterization of the structure of an overoxidation-mimicking double mutant of superoxide dismutase SOD1 shows the production of more cytotoxic filaments seen in amyotrophic lateral sclerosis (ALS) neurons.
Collapse
Affiliation(s)
- Yeongjin Baek
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Dukwon Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Bian X, Zhuang X, Zheng Z, Liu S, Liu Z, Song F. Unfolding and aggregation of oxidized metal-deficient superoxide dismutase and isoflavone inhibition based on ion mobility mass spectrometry and ThT fluorescence assay. Arch Biochem Biophys 2022; 727:109306. [DOI: 10.1016/j.abb.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
11
|
Zhao B, Bian X, Zhuang X, Liu S, Liu Z, Song F. Screening apo-SOD1 conformation stabilizers from natural flavanones using native ion mobility mass spectrometry and fluorescence spectroscopy methods. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9251. [PMID: 34978114 DOI: 10.1002/rcm.9251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE A large number of studies have shown that the production of aberrant and deleterious copper zinc superoxide dismutase (SOD1) species is closely related to amyotrophic lateral sclerosis (ALS). Therefore, it is of great significance to screen effective inhibitors of misfolding and aggregation of SOD1 for treating ALS disease. METHODS The interaction between flavanone compounds with apo-SOD1was investigated using native electrospray ion mobility mass spectrometry (native ESI-IM-MS). Binding affinities of ligands were compared using native MS, ESI-MS/MS, collision-induced unfolding, and competitive experiments. The effect of ligands on apo-SOD1 aggregation was investigated using the fluorescence spectroscopy method. RESULTS The results of MS showed that the binding affinity of liquiritin apioside was the strongest, better than the corresponding monosaccharide and aglycone, indicating that the presence and the number of glycosyl group are beneficial to enhance ligand affinity to protein. The results of fluorescence spectroscopy for inhibiting protein aggregation in vitro were consistent with the binding affinity. In addition, the results of the collision-induced unfolding indicated that liquiritin apioside can slow down the unfolding of the protein. Meanwhile, the results of competition experiment suggested that liquiritin apiosides share different binding sites with naringin and 5-fluorouridine, which are significant for the structural stability of SOD1. CONCLUSIONS This study revealed that the binding of liquiritin apioside can stabilize apo-SOD1 dimer and inhibit the aggregation of apo-SOD1, and illustrated that native ESI-IM-MS is a powerful tool for providing insight into investigating the structure-activity relationship between small molecules and protein, and screening protein conformation stabilizers.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Muti-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyu Bian
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
12
|
Cu/Zn Superoxide Dismutase and Catalase of Yangtze Sturgeon, Acipenser dabryanus: Molecular Cloning, Tissue Distribution and Response to Fasting and Refeeding. FISHES 2022. [DOI: 10.3390/fishes7010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Superoxide dismutase and catalase are two major antioxidant enzymes in the fish antioxidant defense system, which can remove excess reactive oxygen species and protect fish from stress-induced oxidative damage. The present study aimed to clone the sequences of Yangtze sturgeon, Acipenser dabryanus, Cu/Zn superoxide dismutase (AdCu/Zn-SOD) and catalase (AdCAT), and to explore changes of gene expression in the liver and intestine during fasting and refeeding. A total of 120 fish were exposed to four fasting and refeeding protocols (fasting for 0, 3, 7, or 14 d and then refeeding for 14 d). The coding sequences of AdCu/Zn-SOD and AdCAT encoded 155 and 526 amino acid proteins, respectively, both of which were expressed mainly in the liver. During fasting, when compared to the control group, liver AdCu/Zn-SOD expression was significantly higher in the 3- and 14-d groups, whereas its intestinal expression increased significantly only in the 7-d group. Liver AdCAT expression increased significantly in the 3-, 7-, and 14-d groups. During refeeding, liver AdCu/Zn-SOD expression increased significantly in the 3-, 7-, and 14-d groups compared with those in the control group. Similarly, intestinal AdCu/Zn-SOD expression increased significantly in the 3- and 7-d groups. Moreover, intestinal AdCAT expression was significantly higher in the 3-d group than in the control group, but decreased significantly in the 14-d group. Our findings indicated that AdCu/Zn-SOD and AdCAT play important roles in protecting fish against starvation-induced oxidative stress. Yangtze sturgeon exhibited the potential to adapt to a starvation and refeeding regime.
Collapse
|
13
|
Funada C, Tanino N, Fukaya M, Mikajiri Y, Nishiguchi M, Otake M, Nakasuji H, Kawahito R, Abe F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130049. [PMID: 34728328 DOI: 10.1016/j.bbagen.2021.130049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022]
Abstract
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2•- levels increased while sod1∆ mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. The sod1∆ mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. BACKGROUND Empirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure. METHODS Wild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2•- generation in cells was estimated by fluorescence staining. RESULTS Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants. CONCLUSIONS High pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. GENERAL SIGNIFICANCE Unlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2•- levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.
Collapse
Affiliation(s)
- Chisako Funada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Nanami Tanino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miina Fukaya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Mikajiri
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masayoshi Nishiguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masato Otake
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hiroko Nakasuji
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Reika Kawahito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
14
|
Hydrogen Peroxide and Amyotrophic Lateral Sclerosis: From Biochemistry to Pathophysiology. Antioxidants (Basel) 2021; 11:antiox11010052. [PMID: 35052556 PMCID: PMC8773294 DOI: 10.3390/antiox11010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
Free radicals are unstable chemical reactive species produced during Redox dyshomeostasis (RDH) inside living cells and are implicated in the pathogenesis of various neurodegenerative diseases. One of the most complicated and life-threatening motor neurodegenerative diseases (MND) is amyotrophic lateral sclerosis (ALS) because of the poor understanding of its pathophysiology and absence of an effective treatment for its cure. During the last 25 years, researchers around the globe have focused their interest on copper/zinc superoxide dismutase (Cu/Zn SOD, SOD1) protein after the landmark discovery of mutant SOD1 (mSOD1) gene as a risk factor for ALS. Substantial evidence suggests that toxic gain of function due to redox disturbance caused by reactive oxygen species (ROS) changes the biophysical properties of native SOD1 protein thus, instigating its fibrillization and misfolding. These abnormal misfolding aggregates or inclusions of SOD1 play a role in the pathogenesis of both forms of ALS, i.e., Sporadic ALS (sALS) and familial ALS (fALS). However, what leads to a decrease in the stability and misfolding of SOD1 is still in question and our scientific knowledge is scarce. A large number of studies have been conducted in this area to explore the biochemical mechanistic pathway of SOD1 aggregation. Several studies, over the past two decades, have shown that the SOD1-catalyzed biochemical reaction product hydrogen peroxide (H2O2) at a pathological concentration act as a substrate to trigger the misfolding trajectories and toxicity of SOD1 in the pathogenesis of ALS. These toxic aggregates of SOD1 also cause aberrant localization of TAR-DNA binding protein 43 (TDP-43), which is characteristic of neuronal cytoplasmic inclusions (NCI) found in ALS. Here in this review, we present the evidence implicating the pivotal role of H2O2 in modulating the toxicity of SOD1 in the pathophysiology of the incurable and highly complex disease ALS. Also, highlighting the role of H2O2 in ALS, we believe will encourage scientists to target pathological concentrations of H2O2 thereby halting the misfolding of SOD1.
Collapse
|
15
|
Barbosa EA, Plácido A, Moreira DC, Albuquerque L, Dematei A, Silva-Carvalho AÉ, Cabral WF, Báo SN, Saldanha-Araújo F, Kuckelhaus SAS, Borges TK, Portugal CC, Socodato R, Teixeira C, Lima FCDA, Batagin-Neto A, Sebben A, Eaton P, Gomes P, Brand GD, Relvas JB, Kato MJ, Leite JRSA. The peptide secreted at the water to land transition in a model amphibian has antioxidant effects. Proc Biol Sci 2021; 288:20211531. [PMID: 34753356 DOI: 10.1098/rspb.2021.1531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, Brazil.,Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Alexandra Plácido
- Bioprospectum, Lda, UPTEC, Porto, Portugal.,LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Lucas Albuquerque
- Laboratório de Imunologia Celular, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Anderson Dematei
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Medicina Tropical, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Amandda É Silva-Carvalho
- Laboratório de Hematologia e Celulas-tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Wanessa F Cabral
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Sonia N Báo
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Felipe Saldanha-Araújo
- Laboratório de Hematologia e Celulas-tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Selma A S Kuckelhaus
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Tatiana K Borges
- Laboratório de Imunologia Celular, NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Camila C Portugal
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Cátia Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | | - Antônio Sebben
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,The Bridge, School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, Brazil
| | - Joao B Relvas
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Massuo J Kato
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jose Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Bioprospectum, Lda, UPTEC, Porto, Portugal
| |
Collapse
|
16
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
17
|
Shafiq K, Sanghai N, Guo Y, Kong J. Implication of post-translationally modified SOD1 in pathological aging. GeroScience 2021; 43:507-515. [PMID: 33608813 PMCID: PMC8110659 DOI: 10.1007/s11357-021-00332-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/31/2021] [Indexed: 12/18/2022] Open
Abstract
Why certain people relish healthy aging throughout their life span while others suffer pathological consequences? In this review, we focus on some of the dominant paradigms of pathological aging, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), and predict that the antioxidant superoxide dismutase 1 (SOD1), when post-translationally modified by aging-associated oxidative stress, acts as a mechanism to accelerated aging in these age-related neurodegenerative diseases. Oxidative modifications of natively reduced SOD1 induce pathological confirmations such as misfolding, leading to a subsequent formation of monomeric, oligomeric, and multimeric aggregates. Misfolded SOD1 propagates like prions from cell to cell. These modified conformations are detected in brain tissues in ALS, AD, and PD, and are considered a contributing factor to their initial pathogenesis. We have also elaborated on oxidative stress-induced non-native modifications of SOD1 and offered a logistic argument on their global implication in accelerated or pathological aging in the context of ALS, AD, and PD.
Collapse
Affiliation(s)
- Kashfia Shafiq
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 27, King's College Cir, Toronto, ON, M5S, Canada
| | - Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.,Pathological Department, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
18
|
Pittalà MGG, Reina S, Cubisino SAM, Cucina A, Formicola B, Cunsolo V, Foti S, Saletti R, Messina A. Post-Translational Modification Analysis of VDAC1 in ALS-SOD1 Model Cells Reveals Specific Asparagine and Glutamine Deamidation. Antioxidants (Basel) 2020; 9:E1218. [PMID: 33276691 PMCID: PMC7761621 DOI: 10.3390/antiox9121218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria from affected tissues of amyotrophic lateral sclerosis (ALS) patients show morphological and biochemical abnormalities. Mitochondrial dysfunction causes oxidative damage and the accumulation of ROS, and represents one of the major triggers of selective death of motor neurons in ALS. We aimed to assess whether oxidative stress in ALS induces post-translational modifications (PTMs) in VDAC1, the main protein of the outer mitochondrial membrane and known to interact with SOD1 mutants related to ALS. In this work, specific PTMs of the VDAC1 protein purified by hydroxyapatite from mitochondria of a NSC34 cell line expressing human SOD1G93A, a suitable ALS motor neuron model, were analyzed by tryptic and chymotryptic proteolysis and UHPLC/High-Resolution ESI-MS/MS. We found selective deamidations of asparagine and glutamine of VDAC1 in ALS-related NSC34-SOD1G93A cells but not in NSC34-SOD1WT or NSC34 cells. In addition, we identified differences in the over-oxidation of methionine and cysteines between VDAC1 purified from ALS model or non-ALS NSC34 cells. The specific range of PTMs identified exclusively in VDAC1 from NSC34-SOD1G93A cells but not from NSC34 control lines, suggests the appearance of important changes to the structure of the VDAC1 channel and therefore to the bioenergetics metabolism of ALS motor neurons. Data are available via ProteomeXchange with identifier .
Collapse
Affiliation(s)
- Maria Gaetana Giovanna Pittalà
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
| | - Simona Reina
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
- we.MitoBiotech.srl, c.so Italia 172, 95129 Catania, Italy
| | - Salvatore Antonio Maria Cubisino
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
| | - Annamaria Cucina
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Beatrice Formicola
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Salvatore Foti
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Rosaria Saletti
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.C.); (V.C.); (S.F.)
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Molecular Biology Laboratory, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.G.G.P.); (S.R.); (S.A.M.C.)
- we.MitoBiotech.srl, c.so Italia 172, 95129 Catania, Italy
| |
Collapse
|
19
|
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, Monteiro Neto JR, de Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys 2020; 697:108701. [PMID: 33259795 DOI: 10.1016/j.abb.2020.108701] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
During cellular respiration, radicals, such as superoxide, are produced, and in a large concentration, they may cause cell damage. To combat this threat, the cell employs the enzyme Cu/Zn Superoxide Dismutase (SOD1), which converts the radical superoxide into molecular oxygen and hydrogen peroxide, through redox reactions. Although this is its main function, recent studies have shown that the SOD1 has other functions that deviates from its original one including activation of nuclear gene transcription or as an RNA binding protein. This comprehensive review looks at the most important aspects of human SOD1 (hSOD1), including the structure, properties, and characteristics as well as transcriptional and post-translational modifications (PTM) that the enzyme can receive and their effects, and its many functions. We also discuss the strategies currently used to analyze it to better understand its participation in diseases linked to hSOD1 including Amyotrophic Lateral Sclerosis (ALS), cancer, and Parkinson.
Collapse
|
20
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
21
|
Limanaqi F, Biagioni F, Mastroiacovo F, Polzella M, Lazzeri G, Fornai F. Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation. Antioxidants (Basel) 2020; 9:antiox9101022. [PMID: 33092300 PMCID: PMC7589770 DOI: 10.3390/antiox9101022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wide experimental evidence has been provided in the last decade concerning the neuroprotective effects of phytochemicals in a variety of neurodegenerative disorders. Generally, the neuroprotective effects of bioactive compounds belonging to different phytochemical classes are attributed to antioxidant, anti-aggregation, and anti-inflammatory activity along with the restoration of mitochondrial homeostasis and targeting alterations of cell-clearing systems. Far from being independent, these multi-target effects represent interconnected events that are commonly implicated in the pathogenesis of most neurodegenerative diseases, independently of etiology, nosography, and the specific misfolded proteins being involved. Nonetheless, the increasing amount of data applying to a variety of neurodegenerative disorders joined with the multiple effects exerted by the wide variety of plant-derived neuroprotective agents may rather confound the reader. The present review is an attempt to provide a general guideline about the most relevant mechanisms through which naturally occurring agents may counteract neurodegeneration. With such an aim, we focus on some popular phytochemical classes and bioactive compounds as representative examples to design a sort of main highway aimed at deciphering the most relevant protective mechanisms which make phytochemicals potentially useful in counteracting neurodegeneration. In this frame, we emphasize the potential role of the cell-clearing machinery as a kernel in the antioxidant, anti-aggregation, anti-inflammatory, and mitochondrial protecting effects of phytochemicals.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Federica Mastroiacovo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Italy;
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (G.L.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
- Correspondence: (G.L.); (F.F.)
| |
Collapse
|
22
|
Srinivasan E, Rajasekaran R. A Systematic and Comprehensive Review on Disease-Causing Genes in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2020; 70:1742-1770. [PMID: 32415434 DOI: 10.1007/s12031-020-01569-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and is characterized by degeneration and axon loss from the upper motor neuron, that descends from the lower motor neuron in the brain. Over the period, assorted outcomes from medical findings, molecular pathogenesis, and structural and biophysical studies have abetted in providing thoughtful insights underlying the importance of disease-causing genes in ALS. Consequently, numerous mechanisms were proposed for the pathogenesis of ALS, considering protein mutations, aggregation, and misfolding. Besides, the answers to the majority of ALS cases that happen to be sporadic still remain obscure. The application in discovering susceptibility factors in ALS contemplating the genetic factors is to be further dissevered in the future years with innovation in research studies. Hence, this review targets in revisiting the breakthroughs on the disease-causing genes related with ALS.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (deemed to be university), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (deemed to be university), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
23
|
Limanaqi F, Biagioni F, Gambardella S, Familiari P, Frati A, Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int J Mol Sci 2020; 21:E3028. [PMID: 32344772 PMCID: PMC7215558 DOI: 10.3390/ijms21083028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in autophagy and the ubiquitin proteasome system (UPS) are commonly implicated in protein aggregation and toxicity which manifest in a number of neurological disorders. In fact, both UPS and autophagy alterations are bound to the aggregation, spreading and toxicity of the so-called prionoid proteins, including alpha synuclein (α-syn), amyloid-beta (Aβ), tau, huntingtin, superoxide dismutase-1 (SOD-1), TAR-DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS). Recent biochemical and morphological studies add to this scenario, focusing on the coordinated, either synergistic or compensatory, interplay that occurs between autophagy and the UPS. In fact, a number of biochemical pathways such as mammalian target of rapamycin (mTOR), transcription factor EB (TFEB), Bcl2-associated athanogene 1/3 (BAG3/1) and glycogen synthase kinase beta (GSk3β), which are widely explored as potential targets in neurodegenerative proteinopathies, operate at the crossroad between autophagy and UPS. These biochemical steps are key in orchestrating the specificity and magnitude of the two degradation systems for effective protein homeostasis, while intermingling with intracellular secretory/trafficking and inflammatory pathways. The findings discussed in the present manuscript are supposed to add novel viewpoints which may further enrich our insight on the complex interactions occurring between cell-clearing systems, protein misfolding and propagation. Discovering novel mechanisms enabling a cross-talk between the UPS and autophagy is expected to provide novel potential molecular targets in proteinopathies.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| |
Collapse
|
24
|
Gois AM, Mendonça DMF, Freire MAM, Santos JR. IN VITRO AND IN VIVO MODELS OF AMYOTROPHIC LATERAL SCLEROSIS: AN UPDATED OVERVIEW. Brain Res Bull 2020; 159:32-43. [PMID: 32247802 DOI: 10.1016/j.brainresbull.2020.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper motor neurons (UMN) and lower motor neurons (LMN). Disease affects people all over the world and is more prevalent in men. Patients with ALS develop extensive muscle wasting, paralysis and ultimately death, with a median survival of usually fewer than five years after disease onset. ALS may be sporadic (sALS, 90%) or familial (fALS, 10%). The large majority of fALS cases are associated with genetic alterations, which are mainly related to the genes SOD1, TDP-43, FUS, and C9ORF72. In vitro and in vivo models have helped elucidate ALS etiology and pathogenesis, as well as its molecular, cellular, and physiological mechanisms. Many studies in cell cultures and animal models, such as Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and non-human primates have been performed to clarify the relationship of these genes to ALS disease. However, there are inherent limitations to consider when using experimental models. In this review, we provide an updated overview of the most used in vitro and in vivo studies that have contributed to a better understanding of the different ALS pathogenic mechanisms.
Collapse
Affiliation(s)
- Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Deise M F Mendonça
- Laboratory of Neurobiology of Degenerative Diseases of the Nervous System, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Postgraduation Program in Health and Society, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Jose R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
25
|
Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. Int J Biol Macromol 2020; 145:904-913. [PMID: 31669277 DOI: 10.1016/j.ijbiomac.2019.09.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Protein misfolding and aggregation due to mutations, are associated with fatal neurodegenerative disorders. The mutations in Cu/Zn superoxide dismutase (SOD1) causing its misfolding and aggregation are found linked to the motor neuron disorder, amyotrophic lateral sclerosis. Since the mutations are scattered throughout SOD1 structure, determining the exact molecular mechanism underlying the ALS pathology remains unresolved. In this study, we have investigated the major molecular factors that mainly contribute to SOD1 destabilization, intrinsic disorder, and misfolding using sequence and structural information. We have analysed 153 ALS causing SOD1 point mutants for aggregation tendency using four different aggregation prediction tools, viz., Aggrescan3D (A3D), CamSol, GAP and Zyggregator. Our results suggest that 74-79 mutants are susceptible to aggregation, due to distorted native interactions originated at the mutation site. Majority of the aggregation prone mutants are located in the buried regions of SOD1 molecule. Further, the mutations at the hydrophobic amino acids primarily promote the aggregation tendency of SOD1 protein through different destabilizing mechanisms including changes in hydrophobic free energy, loss of electrostatic interactions in the protein's surface and loss of hydrogen bonds that bridges the protein core and surface.
Collapse
|
26
|
Characterization of the activity, aggregation, and toxicity of heterodimers of WT and ALS-associated mutant Sod1. Proc Natl Acad Sci U S A 2019; 116:25991-26000. [PMID: 31796595 PMCID: PMC6926019 DOI: 10.1073/pnas.1902483116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aggregation of the antioxidant enzyme Sod1 represents common factors of both familial (fALS) and sporadic cases of ALS, a fatal neurodegenerative disease. Although many ALS studies have focused on Sod1 homodimers/homomers, the investigation of Sod1 heterodimers/heteromers remains controversial and has mostly been performed with recombinant proteins in vitro, in the absence of a cellular environment. By using living cells, this study sheds light into a critical issue in the context of fALS, the high toxicity of the WT–mutant heteromeric inclusions, especially WT–A4V heteromers which accumulate both in human cells as well as in chronologically aged yeast cells. Besides the aggregation, we proposed that an inefficient heteromer response against oxidative conditions might contribute to fALS-linked mutant hSod1 toxicity. Mutations in Cu/Zn superoxide dismutase (Sod1) have been reported in both familial and sporadic amyotrophic lateral sclerosis (ALS). In this study, we investigated the behavior of heteromeric combinations of wild-type (WT) and mutant Sod1 proteins A4V, L38V, G93A, and G93C in human cells. We showed that both WT and mutant Sod1 formed dimers and oligomers, but only mutant Sod1 accumulated in intracellular inclusions. Coexpression of WT and hSod1 mutants resulted in the formation of a larger number of intracellular inclusions per cell than that observed in cells coexpressing WT or mutant hSod1. The number of inclusions was greater in cells expressing A4V hSod1. To eliminate the contribution of endogenous Sod1, and better evaluate the effect of ALS-associated mutant Sod1 expression, we expressed human Sod1 WT and mutants in human cells knocked down for endogenous Sod1 (Sod1-KD), and in sod1Δ yeast cells. Using Sod1-KD cells we found that the WT–A4V heteromers formed higher molecular weight species compared with A4V and WT homomers. Using the yeast model, in conditions of chronological aging, we concluded that cells expressing Sod1 heterodimers showed decreased antioxidant activity, increased oxidative damage, reduced longevity, and oxidative stress-induced mutant Sod1 aggregation. In addition, we also found that ALS-associated Sod1 mutations reduced nuclear localization and, consequently, impaired the antioxidant response, suggesting this change in localization may contribute to disease in familial ALS. Overall, our study provides insight into the molecular underpinnings of ALS and may open avenues for the design of future therapeutic strategies.
Collapse
|
27
|
Banks CJ, Andersen JL. Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol 2019; 26:101270. [PMID: 31344643 PMCID: PMC6658992 DOI: 10.1016/j.redox.2019.101270] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
SOD1 is commonly known for its ROS scavenging activity, but recent work has uncovered additional roles in modulating metabolism, maintaining redox balance, and regulating transcription. This new paradigm of expanded SOD1 function raises questions regarding the regulation of SOD1 and the cellular partitioning of its biological roles. Despite decades of research on SOD1, much of which focuses on its pathogenic role in amyotrophic lateral sclerosis, relatively little is known about its regulation by post-translational modifications (PTMs). However, over the last decade, advancements in mass spectrometry have led to a boom in PTM discovery across the proteome, which has also revealed new mechanisms of SOD1 regulation by PTMs and an array of SOD1 PTMs with high likelihood of biological function. In this review, we address emerging mechanisms of SOD1 regulation by post-translational modifications, many of which begin to shed light on how the various functions of SOD1 are regulated within the cell.
Collapse
Affiliation(s)
- C J Banks
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
28
|
Tiwari MK, Hägglund PM, Møller IM, Davies MJ, Bjerrum MJ. Copper ion / H 2O 2 oxidation of Cu/Zn-Superoxide dismutase: Implications for enzymatic activity and antioxidant action. Redox Biol 2019; 26:101262. [PMID: 31284117 PMCID: PMC6614508 DOI: 10.1016/j.redox.2019.101262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/25/2023] Open
Abstract
Copper ion-catalyzed oxidation of yeast SOD1 (ySOD1) was examined to determine early oxidative modifications, including oxidation of a crucial disulfide bond, and the structural and functional repercussions of these events. The study used distinct oxidative conditions: Cu2+/H2O2, Cu2+/H2O2/AscH− and Cu2+/H2O2/glucose. Capillary electrophoresis experiments and quantification of protein carbonyls indicate that ySOD1 is highly susceptible to oxidative modification and that changes can be detected within 0.1 min of the initiation of the reaction. Oxidation-induced structural perturbations, characterized by circular dichroism, revealed the formation of partially-unfolded ySOD1 species in a dose-dependent manner. Consistent with these structural changes, pyrogallol assay indicates a partial loss of enzymatic activity. ESI-MS analyses showed seven distinct oxidized ySOD1 species under mild oxidation within 0.1 min. LC/MS analysis after proteolytic digestion demonstrated that the copper-coordinating active site histidine residues, His47 and His49, were converted into 2-oxo-histidine. Furthermore, the Cu and Zn bridging residue, His64 is converted into aspartate/asparagine. Importantly, the disulfide-bond Cys58-Cys147 which is critical for the structural and functional integrity of ySOD1 was detected as being oxidized at Cys147. We propose, based on LC/MS analyses, that disulfide-bond oxidation occurs without disulfide bond cleavage. Modifications were also detected at Met85 and five surface-exposed Lys residues. Based on these data we propose that the Cys58-Cys147 bond may act as a sacrificial target for oxidants and protect ySOD1 from oxidative inactivation arising from exposure to Cu2+/H2O2 and auto-inactivation during extended enzymatic turnover. Oxidation of yeast superoxide dismutase (ySOD1) by Cu2+/H2O2 is examined. Rapid modification of His, Met, Cys and Lys residues detected by LC-MS methods. Oxidation of active site His residues and partial protein unfolding are early events. The Cys58-Cys147 disulfide bond is oxidized and may act as a sacrificial target. Excess exogenous Cu2+ decreases protein damage and can reverse loss of activity.
Collapse
Affiliation(s)
- Manish K Tiwari
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Per M Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
30
|
Rencus-Lazar S, DeRowe Y, Adsi H, Gazit E, Laor D. Yeast Models for the Study of Amyloid-Associated Disorders and Development of Future Therapy. Front Mol Biosci 2019; 6:15. [PMID: 30968029 PMCID: PMC6439353 DOI: 10.3389/fmolb.2019.00015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
First described almost two decades ago, the pioneering yeast models of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, have become well-established research tools, providing both basic mechanistic insights as well as a platform for the development of therapeutic agents. These maladies are associated with the formation of aggregative amyloid protein structures showing common characteristics, such as the assembly of soluble oligomeric species, binding of indicative dyes, and apoptotic cytotoxicity. The canonical yeast models have recently been expanded by the establishment of a model for type II diabetes, a non-neurological amyloid-associated disease. While these model systems require the exogenous expression of mammalian proteins in yeast, an additional amyloid-associated disease model, comprising solely mutations of endogenous yeast genes, has been recently described. Mutated in the adenine salvage pathway, this yeast model exhibits adenine accumulation, thereby recapitulating adenine inborn error of metabolism disorders. Moreover, in line with the recent extension of the amyloid hypothesis to include metabolite amyloids, in addition to protein-associated ones, the intracellular assembly of adenine amyloid-like structures has been demonstrated using this yeast model. In this review, we describe currently available yeast models of diverse amyloid-associated disorders, as well as their impact on our understanding of disease mechanisms and contribution to future potential drug development.
Collapse
Affiliation(s)
- Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin DeRowe
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanaa Adsi
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Di Gregorio SE, Duennwald ML. ALS Yeast Models-Past Success Stories and New Opportunities. Front Mol Neurosci 2018; 11:394. [PMID: 30425620 PMCID: PMC6218427 DOI: 10.3389/fnmol.2018.00394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
In the past two decades, yeast models have delivered profound insights into basic mechanisms of protein misfolding and the dysfunction of key cellular pathways associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins, such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-43) and Fused in sarcoma (FUS), in yeast recapitulates major hallmarks of ALS pathology, including protein aggregation, mislocalization and cellular toxicity. Results from yeast have consistently been recapitulated in other model systems and even specimens from human patients, thus providing evidence for the power and validity of ALS yeast models. Focusing on impaired ribonucleic acid (RNA) metabolism and protein misfolding and their cytotoxic consequences in ALS, we summarize exemplary discoveries that originated from work in yeast. We also propose previously unexplored experimental strategies to modernize ALS yeast models, which will help to decipher the basic pathomechanisms underlying ALS and thus, possibly contribute to finding a cure.
Collapse
Affiliation(s)
- Sonja E Di Gregorio
- Schulich School of Medicine and Dentistry, Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Martin L Duennwald
- Schulich School of Medicine and Dentistry, Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
32
|
Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol 2018; 122:514-525. [DOI: 10.1016/j.funbio.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
33
|
Trist BG, Hare DJ, Double KL. A Proposed Mechanism for Neurodegeneration in Movement Disorders Characterized by Metal Dyshomeostasis and Oxidative Stress. Cell Chem Biol 2018; 25:807-816. [PMID: 29861271 DOI: 10.1016/j.chembiol.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Shared molecular pathologies between distinct neurodegenerative disorders offer unique opportunities to identify common mechanisms of neuron death, and apply lessons learned from one disease to another. Neurotoxic superoxide dismutase 1 (SOD1) proteinopathy in SOD1-associated familial amyotrophic lateral sclerosis (fALS) is recapitulated in idiopathic Parkinson disease (PD), suggesting that these two phenotypically distinct disorders share an etiological pathway, and tractable therapeutic target(s). Despite 25 years of research, the molecular determinants underlying SOD1 misfolding and toxicity in fALS remain poorly understood. The absence of SOD1 mutations in PD highlights mounting evidence that SOD1 mutations are not the sole cause of SOD1 protein misfolding occasioning oligomerization and toxicity, reinforcing the importance of non-genetic factors, including protein metallation and post-translational modification in determining SOD1 stability and function. We propose that these non-genetic factors underlie the misfolding and dysfunction of SOD1 and other proteins in both PD and fALS, constituting a shared and tractable pathway to neurodegeneration.
Collapse
Affiliation(s)
- Benjamin Guy Trist
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Dominic James Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kay Lorraine Double
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
34
|
Dubinski AF, Camasta R, Soule TGB, Reed BH, Glerum DM. Consequences of cytochrome c oxidase assembly defects for the yeast stationary phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:445-458. [PMID: 29567354 DOI: 10.1016/j.bbabio.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
Abstract
The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy. In addition to an altered mitochondrial proteome, COX assembly mutants display unexpected changes in markers of cellular oxidative stress at stationary phase. Our results suggest that mitochondria may not be a major source of reactive oxygen species at stationary phase in cells lacking an intact respiratory chain.
Collapse
Affiliation(s)
- Alicia F Dubinski
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Raffaele Camasta
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tyler G B Soule
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bruce H Reed
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
35
|
Barbosa EA, Oliveira A, Plácido A, Socodato R, Portugal CC, Mafud AC, Ombredane AS, Moreira DC, Vale N, Bessa LJ, Joanitti GA, Alves C, Gomes P, Delerue-Matos C, Mascarenhas YP, Marani MM, Relvas JB, Pintado M, Leite JRSA. Structure and function of a novel antioxidant peptide from the skin of tropical frogs. Free Radic Biol Med 2018; 115:68-79. [PMID: 29162516 DOI: 10.1016/j.freeradbiomed.2017.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022]
Abstract
The amphibian skin plays an important role protecting the organism from external harmful factors such as microorganisms or UV radiation. Based on biorational strategies, many studies have investigated the cutaneous secretion of anurans as a source of bioactive molecules. By a peptidomic approach, a novel antioxidant peptide (AOP) with in vitro free radical scavenging ability was isolated from Physalaemus nattereri. The AOP, named antioxidin-I, has a molecular weight [M+H]+ = 1543.69Da and a TWYFITPYIPDK primary amino acid sequence. The gene encoding the antioxidin-I precursor was expressed in the skin tissue of three other Tropical frog species: Phyllomedusa tarsius, P. distincta and Pithecopus rohdei. cDNA sequencing revealed highly homologous regions (signal peptide and acidic region). Mature antioxidin-I has a novel primary sequence with low similarity compared with previously described amphibian's AOPs. Antioxidin-I adopts a random structure even at high concentrations of hydrophobic solvent, it has poor antimicrobial activity and poor performance in free radical scavenging assays in vitro, with the exception of the ORAC assay. However, antioxidin-I presented a low cytotoxicity and suppressed menadione-induced redox imbalance when tested with fibroblast in culture. In addition, it had the capacity to substantially attenuate the hypoxia-induced production of reactive oxygen species when tested in hypoxia exposed living microglial cells, suggesting a potential neuroprotective role for this peptide.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil; Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, Brasília, Brazil
| | - Ana Oliveira
- Centro de Biotecnologia e Química Fina, CBQF, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital Apartado, 2511, Asprela, Porto, Portugal
| | - Alexandra Plácido
- LAQV/REQUIMTE, GRAQ, Instituto Superior de Engenha do Porto, ISEP, Porto, Portugal
| | - Renato Socodato
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana Carolina Mafud
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil; Dept Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
| | - Alicia S Ombredane
- Laboratório de Nanobiotecnologia, Instituto de Biologia, Campus Darcy Ribeiro, UnB, Brasília, DF, Brazil
| | - Daniel C Moreira
- Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Nuno Vale
- UCIBIO/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Lucinda J Bessa
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Graziella A Joanitti
- Laboratório de Nanobiotecnologia, Instituto de Biologia, Campus Darcy Ribeiro, UnB, Brasília, DF, Brazil; Campus Ceilândia, Centro Metropolitano, UnB, Ceilândia, Brasília, DF, Brazil
| | - Cláudia Alves
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | | | | - Mariela M Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Argentina
| | - João B Relvas
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina, CBQF, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital Apartado, 2511, Asprela, Porto, Portugal
| | - José Roberto S A Leite
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil.
| |
Collapse
|
36
|
Kathiresan M, English AM. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H 2O 2. Chem Sci 2017; 8:1152-1162. [PMID: 28451256 PMCID: PMC5369544 DOI: 10.1039/c6sc03125k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity.
Collapse
Affiliation(s)
- Meena Kathiresan
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| | - Ann M English
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| |
Collapse
|
37
|
Preservation of neuromuscular function in symptomatic SOD1-G93A mice by peripheral infusion of methylene blue. Exp Neurol 2016; 285:96-107. [PMID: 27567739 DOI: 10.1016/j.expneurol.2016.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022]
Abstract
In mutant superoxide dismutase 1 (SOD1) mouse models of familial amyotrophic lateral sclerosis (fALS) some of the earliest signs of morphological and functional damage occur in the motor nerve terminals that innervate fast limb muscles. This study tested whether localized peripheral application of a protective drug could effectively preserve neuromuscular junctions in late-stage disease. Methylene blue (MB), which has mitochondria-protective properties, was infused via an osmotic pump into the anterior muscle compartment of one hind limb of late pre- symptomatic SOD1-G93A mice for ≥3weeks. When mice reached end-stage disease, peak twitch and tetanic contractions evoked by stimulation of the muscle nerve were measured in two anterior compartment muscles (tibialis anterior [TA] and extensor digitorum longus [EDL], both predominantly fast muscles). With 400μM MB in the infusion reservoir, muscles on the MB-infused side exhibited on average a ~100% increase in nerve-evoked contractile force compared to muscles on the contralateral non-infused side (p<0.01 for both twitch and tetanus in EDL and TA). Pairwise comparisons of endplate innervation also revealed a beneficial effect of MB infusion, with an average of 65% of endplates innervated in infused EDL, compared to only 35% on the non-infused side (p<0.01). Results suggested that MB's protective effects required an extracellular [MB] of ~1μM, were initiated peripherally (no evidence of retrograde transport into the spinal cord), and involved MB's reduced form. Thus peripherally-initiated actions of MB can help preserve neuromuscular structure and function in SOD1-G93A mice, even at late stages of disease.
Collapse
|
38
|
Petrov D, Daura X, Zagrovic B. Effect of Oxidative Damage on the Stability and Dimerization of Superoxide Dismutase 1. Biophys J 2016; 110:1499-1509. [PMID: 27074676 PMCID: PMC4833831 DOI: 10.1016/j.bpj.2016.02.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
During their life cycle, proteins are subject to different modifications involving reactive oxygen species. Such oxidative damage to proteins may lead to the formation of insoluble aggregates and cytotoxicity and is associated with age-related disorders including neurodegenerative diseases, cancer, and diabetes. Superoxide dismutase 1 (SOD1), a key antioxidant enzyme in human cells, is particularly susceptible to such modifications. Moreover, this homodimeric metalloenzyme has been directly linked to both familial and sporadic amyotrophic lateral sclerosis (ALS), a devastating, late-onset motor neuronal disease, with more than 150 ALS-related mutations in the SOD1 gene. Importantly, oxidatively damaged SOD1 aggregates have been observed in both familial and sporadic forms of the disease. However, the molecular mechanisms as well as potential implications of oxidative stress in SOD1-induced cytotoxicity remain elusive. In this study, we examine the effects of oxidative modification on SOD1 monomer and homodimer stability, the key molecular properties related to SOD1 aggregation. We use molecular dynamics simulations in combination with thermodynamic integration to study microscopic-level site-specific effects of oxidative "mutations" at the dimer interface, including lysine, arginine, proline and threonine carbonylation, and cysteine oxidation. Our results show that oxidative damage of even single residues at the interface may drastically destabilize the SOD1 homodimer, with several modifications exhibiting a comparable effect to that of the most drastic ALS-causing mutations known. Additionally, we show that the SOD1 monomer stability decreases upon oxidative stress, which may lead to partial local unfolding and consequently to increased aggregation propensity. Importantly, these results suggest that oxidative stress may play a key role in development of ALS, with the mutations in the SOD1 gene being an additional factor.
Collapse
Affiliation(s)
- Drazen Petrov
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Kathiresan M, English AM. Targeted proteomics identify metabolism-dependent interactors of yeast cytochrome c peroxidase: implications in stress response and heme trafficking. Metallomics 2016; 8:434-43. [PMID: 26980054 DOI: 10.1039/c5mt00330j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently we discovered that cytochrome c peroxidase (Ccp1) functions primarily as a mitochondrial H2O2 sensor and heme donor in yeast cells. When cells switch their metabolism from fermentation to respiration mitochondrial H2O2 levels spike, and overoxidation of its polypeptide labilizes Ccp1's heme. A large pool of heme-free Ccp1 exits the mitochondria and enters the nucleus and vacuole. To gain greater insight into the mechanisms of Ccp1's H2O2-sensing and heme-donor functions during the cell's different metabolic states, here we use glutathione-S-transferase (GST) pulldown assays, combined with 1D gel electrophoresis and mass spectrometry to probe for interactors of apo- and holoCcp1 in extracts from 1 d fermenting and 7 d stationary-phase respiring yeast. We identified Ccp1's peroxidase cosubstrate Cyc1 and 28 novel interactors of GST-apoCcp1 and GST-holoCcp1 including mitochondrial superoxide dismutase 2 (Sod2) and cytosolic Sod1, the mitochondrial transporter Pet9, the three yeast isoforms of glyceraldehyde-3-phosphate dehydrogenase (Tdh3/2/1), heat shock proteins including Hsp90 and Hsp70, and the main peroxiredoxin in yeast (Tsa1) as well as its cosubstrate, thioreoxin (Trx1). These new interactors expand the scope of Ccp1's possible roles in stress response and in heme trafficking and suggest several new lines of investigation. Furthermore, our targeted proteomics analysis underscores the limitations of large-scale interactome studies that found only 4 of the 30 Ccp1 interactors isolated here.
Collapse
Affiliation(s)
- M Kathiresan
- PROTEO and the Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St West, Montreal, Quebec, Canada H4B 1R6.
| | | |
Collapse
|
40
|
Valetdinova KR, Medvedev SP, Zakian SM. Model systems of motor neuron diseases as a platform for studying pathogenic mechanisms and searching for therapeutic agents. Acta Naturae 2015; 7:19-36. [PMID: 25926999 PMCID: PMC4410393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Over the past 30 years, many molecular genetic mechanisms underlying motor neuron diseases (MNDs) have been discovered and studied. Among these diseases, amyotrophic lateral sclerosis (ALS), which causes the progressive degeneration and death of central and peripheral motor neurons, and spinal muscular atrophy (SMA), which is one of the inherited diseases that prevail among hereditary diseases in the pattern of child mortality, hold a special place. These diseases, like most nerve, neurodegenerative, and psychiatric diseases, cannot be treated appropriately at present. Artificial model systems, especially those that are based on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are of paramount importance in searching for adequate therapeutic agents, as well as for a deep understanding of the MND pathogenesis. This review is mainly focused on the recent advance in the development of and research into cell and animal models of ALS and SMA. The main issues concerning the use of cellular technologies in biomedical applications are also described.
Collapse
Affiliation(s)
- K. R. Valetdinova
- Institute of Cytology and Genetics, Prospekt Lavrentyeva, 10, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Prospekt Lavrentyeva, 8, Novosibirsk, 630090, Russia
- Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Rechkunovskaya Str., 15, Novosibirsk, 630055, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| | - S. P. Medvedev
- Institute of Cytology and Genetics, Prospekt Lavrentyeva, 10, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Prospekt Lavrentyeva, 8, Novosibirsk, 630090, Russia
- Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Rechkunovskaya Str., 15, Novosibirsk, 630055, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| | - S. M. Zakian
- Institute of Cytology and Genetics, Prospekt Lavrentyeva, 10, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Prospekt Lavrentyeva, 8, Novosibirsk, 630090, Russia
- Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Rechkunovskaya Str., 15, Novosibirsk, 630055, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| |
Collapse
|
41
|
Uncovering Neurodegenerative Protein Modifications via Proteomic Profiling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:87-116. [DOI: 10.1016/bs.irn.2015.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|