1
|
Ji YW, Wen XY, Tang HP, Su WT, Xia ZY, Lei SQ. Necroptosis: a significant and promising target for intervention of cardiovascular disease. Biochem Pharmacol 2025; 237:116951. [PMID: 40268251 DOI: 10.1016/j.bcp.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Due to changes in dietary structures, population aging, and the exacerbation of metabolic risk factors, the incidence of cardiovascular disease continues to rise annually, posing a significant health burden worldwide. Cell death plays a crucial role in the onset and progression of cardiovascular diseases. As a regulated endpoint encountered by cells under adverse stress conditions, the execution of necroptosis is regulated by classicalpathways, the calmodulin-dependent protein kinases (CaMK) pathway, and mitochondria-dependent pathways, and implicated in various cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury (IRI), heart failure, diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, chemotherapy drug-induced cardiomyopathy, and abdominal aortic aneurysm (AAA). To further investigate potential therapeutic targets for cardiovascular diseases, we also analyzed the main molecules and their inhibitors involved in necroptosis in an effort to uncover insights for treatment.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
González-Hernández M, Gallardo-Andalucía L, Hernansanz-Agustín P. Modes of Mitochondrial Reactive Oxygen Species Production in Inflammation. Antioxid Redox Signal 2025; 42:868-884. [PMID: 40285481 DOI: 10.1089/ars.2024.0737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Background: Inflammation is one of the most important pathways in innate immunity and its relationship with redox biology is becoming increasingly clear in the last decades. However, the specific redox modes and pathways by which inflammation is produced are not yet well defined. Significance: In this review, we provide a general explanation of the reactive oxygen species (ROS) production and quenching modes occurring in mammalian mitochondria, as well as a summary of the most recent advances in mitochondrial redox biology and bioenergetics regarding sodium (Na+) homeostasis. In addition, we provide a collection of examples in which several inflammatory pathways have been associated with specific modes of either mitochondrial ROS production or quenching. Innovation: The role of Na+ in mitochondrial biology is being developed. Since its discovery as a second messenger, the research of its role in the immune system has emerged. Now, the role of Na+ in mitochondrial bioenergetics has recently been identified, which owns unprecedented applications. The potential implication of Na+ in inflammatory mechanisms grows as its role does not only cover ROS production and respiration but also the control through the management of mitochondrial membrane potential. Future directions: Na+ is becoming relevant for mitochondrial biology. Thus, processes regarding mitochondrial bioenergetics, redox state, or metabolism may probably need to include the study of Na+ in their road map. Some of these pathways are involved in inflammation and more are possibly to come. This review is expected to serve as a bridge between both fields. Antioxid. Redox Signal. 42, 868-884.
Collapse
Affiliation(s)
- Miguel González-Hernández
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Pablo Hernansanz-Agustín
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Guo J, Hu JP, Liu M, Chen Y, Zhang S, Guan S. Apigenin-Mediated ESCRT-III Activation and Mitophagy Alleviate LPS-Induced Necroptosis in Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9906-9919. [PMID: 40211127 DOI: 10.1021/acs.jafc.5c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Apigenin (API) is a flavonoid widely distributed in vegetables and fruits that exhibits numerous biological functions. Lipopolysaccharide (LPS), a key component of the outer membrane of Gram-negative bacteria, can cause kidney injury when released into the bloodstream. Necroptosis is a form of programmed cell death characterized by the rupture of cell membranes. Excessive occurrence of necroptosis can lead to substantial damage to cells and tissues. In the study, we discovered that API could mitigate LPS-induced kidney injury in mice and alleviate LPS-induced necroptosis in Normal Rat Kidney-52E (NRK-52E) cells by targeting the mitochondrial reactive oxygen species (mtROS)-RIPK3-MLKL pathway. Further mechanistic studies revealed that API could potentially activate the endosomal sorting complexes required for transport-III (ESCRT-III), and activated ESCRT-III could repair cell membrane rupture caused by LPS-induced necroptosis. Simultaneously, we discovered that activated ESCRT-III could promote mitophagy, which facilitates the timely removal of damaged mitochondria and reduces intracellular mtROS levels. In conclusion, our results suggested that API alleviates LPS-induced renal cell necroptosis by activating ESCRT-III-dependent membrane repair and mitophagy. Our study provides new insights into the daily dietary intake of API to alleviate kidney injury caused by LPS.
Collapse
Affiliation(s)
- Jiakang Guo
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jin-Ping Hu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shengzhuo Zhang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Liu Y, Stockwell BR, Jiang X, Gu W. p53-regulated non-apoptotic cell death pathways and their relevance in cancer and other diseases. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00842-3. [PMID: 40204927 DOI: 10.1038/s41580-025-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Programmed cell death is a mechanism that is crucial for numerous physiological and pathological processes. Whereas p53-mediated apoptosis is a major cell death pathway in cancer, accumulating evidence indicates that p53 also has crucial roles in controlling different non-apoptotic cell death (NACD) pathways, including ferroptosis, necroptosis, pyroptosis, autophagy-dependent cell death, entotic cell death, parthanatos and paraptosis, and may regulate PANoptosis, cuproptosis and disulfidptosis. Notably, the function of p53 in these NACDs substantially contributes to its biological effects, particularly in cancer development and other pathological processes. In this Review, we discuss recent advances in understanding the roles and underlying mechanisms of p53-mediated NACDs, focusing on ferroptosis, necroptosis and pyroptosis. We discuss the complex and distinct physiological settings in which NACDs are regulated by p53, and potential targeting of p53-regulated NACDs for the treatment of cancer and other human diseases. Finally, we highlight several important questions concerning p53-regulated NACDs that warrant further investigation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Wu B, Tang Y, Zhao L, Gao Y, Shen X, Xiao S, Yao S, Qi H, Shen F. Integrated network pharmacological analysis and multi-omics techniques to reveal the mechanism of polydatin in the treatment of silicosis via gut-lung axis. Eur J Pharm Sci 2025; 207:107030. [PMID: 39929376 DOI: 10.1016/j.ejps.2025.107030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Silicosis is a pulmonary disease characterized by inflammation and progressive fibrosis. Previous studies have shown that polydatin (PD) has potential biological activity in key signaling pathways regulating inflammation and apoptosis. To investigate the effect of PD on rats with silicosis, this study used network pharmacology and molecular docking methods to determine the target of PD treatment for silicosis. The therapeutic effect of PD on silicosis was confirmed by measuring the lung injury score, hydroxyproline content, and mRNA expression levels of key targets. In addition, metagenomic sequencing and gas chromatography-mass spectrometry were used to determine the gut microbiota composition and targeted metabolomics analysis, respectively. The results showed that PD could inhibit the expression of inflammation-related indexes and apoptosis-related indexes at protein and mRNA levels. PD also regulates the diversity of the intestinal flora and the content of short-chain fatty acids. In conclusion, the current data suggest that PD has a protective effect against silica-induced lung injury and plays a protective role in regulating intestinal flora diversity and short-chain fatty acid levels through the gut-lung axis.
Collapse
Affiliation(s)
- Bingbing Wu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Yiwen Tang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Liyuan Zhao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Yan Gao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Xi Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, 063000, PR China
| | - Sanqiao Yao
- Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Huisheng Qi
- Tangshan City workers' Hospital, Tangshan, Hebei, 063000, PR China.
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China.
| |
Collapse
|
6
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Zhao X, Shan G, Xing D, Gao H, Xiong Z, Hui W, Gong M. Interfering with UBE2L3 expression targets regulation of MLKL to promote necroptosis inhibition of growth in osteosarcoma. World J Surg Oncol 2025; 23:63. [PMID: 39988669 PMCID: PMC11849225 DOI: 10.1186/s12957-025-03715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND In previous studies, elevated expression of UBE2L3 has been observed in osteosarcoma cells, and silencing UBE2L3 has been shown to promote oxidative stress and induce necroptosis. However, the exact molecular mechanisms underlying these findings remain unclear. OBJECTIVE The purpose of this study is to investigate the molecular mechanisms by which interfering with UBE2L3 expression promotes necroptosis and impacts the progression of osteosarcoma, building upon previous in vitro cell experiments. METHODS Osteosarcoma cells were transfected with shNC and shUBE2L3 plasmids, and the cells were injected into the right tibia of nude mice to establish a tumor xenograft model. The growth rate, changes in body weight, and tumor volume of the mice in each group were observed. After 15 days, the mice were sacrificed, and the tumors were dissected and analyzed for tumor volume. Immunohistochemical staining was performed to detect changes in the expression of necroptosis-related proteins, such as PCNA, p-MLKL, and p-RIP1. Additionally, U2OS and HOS cells were transfected with UBE2L3-silencing plasmids, and immunoprecipitation was performed to investigate the interaction between UBE2L3 and the necroptosis protein MLKL. By combining these experiments, we aim to evaluate the impact of UBE2L3 on necroptosis both in vitro and in vivo and elucidate its specific role in targeting MLKL to regulate necroptosis as a therapeutic approach for osteosarcoma. RESULTS After interfering with UBE2L3, the growth rate of tumors in nude mice significantly slowed down, accompanied by a notable reduction in tumor volume and weight. These findings suggest that inhibiting the expression of UBE2L3 can suppress the growth of osteosarcoma. Furthermore, immunohistochemical analysis revealed that following UBE2L3 interference, the intensity of staining for the necrotic proteins p-MLKL and p-RIP1 was increased and PCNA staining was decreased, indicating that interfering with UBE2L3 expression can promote necroptosis. Moreover, through transfection of UBE2L3 silencing plasmids into osteosarcoma cells in vitro, immunoprecipitation and ubiquitination results demonstrated that UBE2L3 can specifically bind to MLKL. Overexpression of UBE2L3 promoted the ubiquitination of MLKL and reduced its expression. Thus, down-regulation of UBE2L3 could modulate downstream MLKL expression and promote necrosis of osteosarcoma cells. CONCLUSION UBE2L3 selectively binds to MLKL, exerting ubiquitination-mediated regulation on downstream MLKL. Decreased expression of UBE2L3 modulates MLKL expression and promotes necrosis, thereby inhibiting osteosarcoma growth.
Collapse
Affiliation(s)
- Xiwu Zhao
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China
- Department of Traumatic Orthopedics, Shandong Second Provincial General Hospital, Jinan, 250022, China
| | - Guoqiang Shan
- Department of Traumatic Orthopedics, Shandong Second Provincial General Hospital, Jinan, 250022, China
| | - Deguo Xing
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hongwei Gao
- Department of Traumatic Orthopedics, Shandong Public Health Clinical Center, Shandong University, Jinan, 250013, China
| | - Zhenggang Xiong
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Wenpeng Hui
- Department of Spinal Surgery, Shandong Second Provincial General Hospital, Jinan, 250022, China
| | - Mingzhi Gong
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China.
- , No. 247, Beiyuan Street, Tianqiao District, Jinan City, Shandong Province, China.
| |
Collapse
|
8
|
Zhang X, Li H, Zhao Y, Zhao T, Wang Z, Tang Q. Neuronal Injury after Ischemic Stroke: Mechanisms of Crosstalk Involving Necroptosis. J Mol Neurosci 2025; 75:15. [PMID: 39903429 DOI: 10.1007/s12031-025-02313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide, largely due to its increasing incidence associated with an aging population. This condition results from arterial obstruction, significantly affecting patients' quality of life and imposing a substantial economic burden on healthcare systems. While current treatments primarily focus on the rapid restoration of blood flow through thrombolytic therapy or surgical interventions, a limited understanding of neuronal injury mechanisms hampers the development of more effective treatments.This article explores the interplay among various cell death pathways-necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis-in the context of ischemic stroke to identify novel therapeutic targets. Each mode of cell death displays unique characteristics and roles post-stroke, and the activation of these pathways may vary across different animal models, complicating the translation of therapeutic strategies to clinical settings. Notably, the interaction between apoptosis and necroptosis is highlighted; inhibiting apoptosis might heighten the risk of necroptosis. Therefore, a balanced regulation of these pathways could promote enhanced neuronal survival.Additionally, we introduce PANoptosis, a form of cell death that encompasses pyroptosis, apoptosis, and necroptosis, emphasizing the complexity and potential therapeutic implications of these interactions. In summary, understanding the relationships among these cell death mechanisms in ischemic stroke is vital for developing new neuroprotective agents. Future research should aim for combinatorial interventions targeting multiple pathways to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Xuanning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yaowei Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Tingting Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Zhihao Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
9
|
Abadin X, de Dios C, Zubillaga M, Ivars E, Puigròs M, Marí M, Morales A, Vizuete M, Vitorica J, Trullas R, Colell A, Roca-Agujetas V. Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress. Antioxidants (Basel) 2024; 13:1440. [PMID: 39765769 PMCID: PMC11672511 DOI: 10.3390/antiox13121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons. Understanding the causes that support this aberrant inflammatory response has become a topic of growing interest and research in neurodegeneration, with high translational potential. It has been postulated that the phenotypic shift of immune cells towards a proinflammatory state combined with the presence of immunogenic cell death fuels a vicious cycle in which mitochondrial dysfunction plays a central role. Mitochondria and mitochondria-generated reactive oxygen species are downstream effectors of different inflammatory signaling pathways, including inflammasomes. Dysfunctional mitochondria are also recognized as important producers of damage-associated molecular patterns, which can amplify the immune response. Here, we review the major findings highlighting the role of mitochondria as a checkpoint of neuroinflammation and immunogenic cell deaths in neurodegenerative diseases. The knowledge of these processes may help to find new druggable targets to modulate the inflammatory response.
Collapse
Affiliation(s)
- Xenia Abadin
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Cristina de Dios
- High Technology Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Marlene Zubillaga
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Elia Ivars
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Margalida Puigròs
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Ramon Trullas
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Vicente Roca-Agujetas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| |
Collapse
|
10
|
Zhou P, Tao K, Zeng L, Zeng X, Wan Y, Xie G, Liu X, Zhang P. IRG1/Itaconate inhibits proliferation and promotes apoptosis of CD69 +CD103 +CD8 + tissue-resident memory T cells in autoimmune hepatitis by regulating the JAK3/STAT3/P53 signalling pathway. Apoptosis 2024; 29:1738-1756. [PMID: 38641760 DOI: 10.1007/s10495-024-01970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
To investigate the protective role of immune response gene 1 (IRG1) and exogenous itaconate in autoimmune hepatitis (AIH) and elucidate the underlying mechanisms. Wild-type and IRG1-/- AIH mouse models were established, and samples of liver tissue and ocular blood were collected from each group of mice to assess the effects of IRG1/itaconate on the expression of pro- and anti-inflammatory cytokines. The levels of liver enzymes and related inflammatory factors were determined using enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR). Liver histomorphology was detected through hematoxylin and eosin staining and then scored for liver injury, and the infiltration levels of tissue-resident memory T (TRM) cells and related molecules in the liver tissue were detected through immunofluorescence staining in vitro. RNA sequencing and gene enrichment analysis were conducted to identify the corresponding molecules and pathways, and lentiviral transfection was used to generate TRM cell lines with IRG1, Jak3, Stat3, and p53 knockdown. Real-time quantitative PCR and western blot were performed to detect the expression levels of relevant mRNAs and proteins in the liver tissue and cells. The percentage of apoptotic cells was determined using flow cytometry. IRG1/itaconate effectively reduced the release of pro-inflammatory cytokines and the pathological damage to liver tissue, thereby maintaining normal liver function. At the same time, IRG1/itaconate inhibited the JAK3/STAT3 signaling pathway, regulated the expression of related downstream proteins, and inhibited the proliferation and promoted the apoptosis of CD69+CD103+CD8+ TRM cells. For the first time, P53 was found to act as a downstream molecule of the JAK3/STAT3 pathway and was regulated by IRG1/itaconate to promote the apoptosis of CD8+ TRM cells. IRG1/itaconate can alleviate concanavalin A-induced autoimmune hepatitis in mice by inhibiting the proliferation and promoting the apoptosis of CD69+CD103+CD8+ TRM cells via the JAK3/STAT3/P53 pathway.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/pathology
- Hepatitis, Autoimmune/genetics
- Hepatitis, Autoimmune/drug therapy
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Janus Kinase 3/genetics
- Janus Kinase 3/metabolism
- Janus Kinase 3/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Liver/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/immunology
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
11
|
Xian S, Yang Y, Nan N, Fu X, Shi J, Wu Q, Zhou S. Inhibition of mitochondrial ROS-mediated necroptosis by Dendrobium nobile Lindl. alkaloids in carbon tetrachloride induced acute liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118253. [PMID: 38679400 DOI: 10.1016/j.jep.2024.118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 μL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.
Collapse
Affiliation(s)
- Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Nan Nan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
12
|
Wen C, Huang C, Liao X, Luo Z, Huang C. Mitochondria-targeted catalase induced cell malignant transformation by the downregulation of p53 protein stability via USP28/miR-200b/PP2A-Cα axis. Arch Biochem Biophys 2024; 758:110047. [PMID: 38844154 DOI: 10.1016/j.abb.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Antioxidants exert a paradoxical influence on cancer prevention. The latest explanation for this paradox is the different target sites of antioxidants. However, it remains unclear how mitochondria-targeted antioxidants trigger specific p53-dependent pathways in malignant transformation models. Our study revealed that overexpression of mitochondria-targeted catalase (mCAT) instigated such malignant transformation via mouse double minute 2 homolog (MDM2) -mediated p53 degradation. In mouse epithelial JB6 Cl41 cells, the stable expression of mCAT resulted in MDM2-mediated p53 degradation, unlike in catalase-overexpressed Cl41 cells. Further, we demonstrated that mCAT overexpression upregulated ubiquitin-specific protease 28 (USP28) expression, which in turn stabilized c-Jun protein levels. This alteration initiated the activation of the miR-200b promoter transcription activity and a subsequent increase in miR-200b expression. Furthermore, elevated miR-200b levels then promoted its binding to the 3'-untranslated region of protein phosphatase 2A catalytic subunit (PP2A-C) α-isoform mRNA, consequently resulting in PP2A-C protein downregulation. This cascade of events ultimately contributed to increased MDM2 phosphorylation and p53 protein degradation. Thus, the mCAT overexpression triggers MDM2/p53-dependent malignant transformation through USP28/miR-200b/PP2A-Cα pathway, which may provide a new information for understanding mitochondria-targeted antioxidants facilitate the progression to the tumorigenic state.
Collapse
Affiliation(s)
- Chaowei Wen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Liao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhefeng Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chuanshu Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
13
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Zhang J, Yang A, Cui W, Zhang J, Niu A, Hu X, Li Q. Tracing toxic path of antimony: From bioaccumulation to DNA hypomethylation in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116351. [PMID: 38653027 DOI: 10.1016/j.ecoenv.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The increasing concentration of Antimony (Sb) in ecological environments has raised serious concerns about its potential biotoxicological impact. This study investigated the toxicokinetics, Global DNA Methylation (GDM), biomarker expression, and Integrated Biological Response (IBR) of Sb at different concentrations in zebrafish. The toxic mechanism of Sb exposure was simulated using molecular dynamics (MD). The results showed that significant differences effect existed (BCFk: liver > ovary > gut > brain) and uptake saturation phenomenon of Sb among zebrafish tissues. Over a 54-day exposure period, the liver emerged as the main target site for Sb-induced GDM, and the restoration was slower than in other tissues during the 54-day recovery period. Moreover, the concentration of Sb had a significant impact on the normally expression of biomarkers, with GSTM1 inhibited and MTF2, MT1, TET3, and p53 showing varying degrees of activation at different Sb concentrations. This could be attributed to Sb3+ potentially occupying the active site or tightly binding to the deep cavity of these genes. The IBR and MD results highlighted DNMT1 as the most sensitive biomarker among those assessed. This heightened sensitivity can be attributed to the stable binding of Sb3+ to DNMT1, resulting in alterations in the conformation of DNMT1's catalytic domain and inhibition of its activity. Consequently, this disruption leads to damage to the integrity of GDM. The study suggests that DNA methylation could serve as a valuable biomarker for assessing the ecotoxicological impact of Sb exposure. It contributes to a better understanding of the toxicity mechanisms in aquatic environments caused potential pollutants.
Collapse
Affiliation(s)
- Jingyun Zhang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Wen Cui
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Jian Zhang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Apin Niu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
15
|
Zhang Y, Sun D, Gao W, Zhang X, Ye W, Zhang Z. The metabolic mechanisms of Cd-induced hormesis in photosynthetic microalgae, Chromochloris zofingiensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168966. [PMID: 38043816 DOI: 10.1016/j.scitotenv.2023.168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Cadmium, an environmental pollutant, is highly toxic and resistant to degradation. It exhibits toxicity at elevated doses but triggers excitatory effects at low doses, a phenomenon referred to as hormesis. Microalgae, as primary producers in aquatic ecosystems, demonstrate hormesis induced by cadmium, though the specific mechanisms are not yet fully understood. Consequently, we examined the hormesis of cadmium in Chromochloris zofingiensis. A minimal Cd2+ concentration (0.05 mg L-1) prompted cell proliferation, whereas higher concentrations (2.50 mg L-1) inhibited growth. The group exposed to higher doses exhibited increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Contrastingly, the group exposed to low doses exhibited a moderate antioxidant response without significantly increasing ROS. This implies that increased levels of antioxidative components counteract excessive ROS, maintaining cellular redox balance and promoting growth under conditions of low Cd2+. Validation experiments have established that NADPH oxidase-derived ROS primarily coordinates the hormesis effect in microalgae. Comparative transcriptome analysis has proved the involvement of antioxidant systems and photosynthesis in regulating hormesis. Notably, Aurora A kinases consistently displayed varying expression levels across all Cd2+ treatments, and their role in microalgal hormesis was confirmed through validation with SNS-314 mesylate. This study unveils the intricate regulatory mechanisms of Cd-induced hormesis in C. zofingiensis, with implications for environmental remediation and industrial microalgae applications.
Collapse
Affiliation(s)
- Yushu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weizheng Gao
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Xinwei Zhang
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Wenqi Ye
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China; Hebei Innovation Center for Bioengineering and Biotechnology, Baoding 071000, China.
| |
Collapse
|
16
|
Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J, Tan R. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med 2023; 208:846-858. [PMID: 37776918 DOI: 10.1016/j.freeradbiomed.2023.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Cardiovascular diseases (CVDs) are leading causes of global mortality; however, their underlying mechanisms remain unclear. The tumor suppressor factor p53 has been extensively studied for its role in cancer and is also known to play an important role in regulating CVDs. Abnormal p53 expression levels and modifications contribute to the occurrence and development of CVDs. Additionally, mounting evidence underscores the critical involvement of mitochondrial dysfunction in CVDs. Notably, studies indicate that p53 abnormalities directly correlate with mitochondrial dysfunction and may even interact with each other. Encouragingly, small molecule inhibitors targeting p53 have exhibited remarkable effects in animal models of CVDs. Moreover, therapeutic strategies aimed at mitochondrial-related molecules and mitochondrial replacement therapy have demonstrated their advantageous potential. Therefore, targeting p53 or mitochondria holds immense promise as a pioneering therapeutic approach for combating CVDs. In this comprehensive review, we delve into the mechanisms how p53 influences mitochondrial dysfunction, including energy metabolism, mitochondrial oxidative stress, mitochondria-induced apoptosis, mitochondrial autophagy, and mitochondrial dynamics, in various CVDs. Furthermore, we summarize and discuss the potential significance of targeting p53 or mitochondria in the treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Yu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yibo Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ruihao Wu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yifei Dai
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ye Deng
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272000, China.
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
17
|
Rius-Pérez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Radic Biol Med 2023; 207:183-193. [PMID: 37481144 DOI: 10.1016/j.freeradbiomed.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
p53 is a redox-sensitive transcription factor that can regulate multiple cell death programs through different signaling pathways. In this review, we assess the role of p53 in the regulation of necroptosis, a programmed form of lytic cell death highly involved in the pathophysiology of multiple diseases. In particular, we focus on the role of mitochondrial reactive oxygen species (mtROS) as essential contributors to modulate necroptosis execution through p53. The enhanced generation of mtROS during necroptosis is critical for the correct interaction between receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3), two key components of the functional necrosome. p53 controls the occurrence of necroptosis by modulating the levels of mitochondrial H2O2 via peroxiredoxin 3 and sulfiredoxin. Furthermore, in response to increased levels of H2O2, p53 upregulates the long non-coding RNA necrosis-related factor, favoring the translation of RIPK1 and RIPK3. In parallel, a fraction of cytosolic p53 migrates into mitochondria, a process notably involved in necroptosis execution via its interaction with the mitochondrial permeability transition pore. In conclusion, p53 is located at the intersection between mtROS and the necroptosis machinery, making it a key protein to orchestrate redox signaling during necroptosis.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100, Valencia, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| |
Collapse
|
18
|
Lee C, Xin G, Li F, Wan C, Yu X, Feng L, Wen A, Cao Y, Huang W. Calcium/P53/Ninjurin 1 Signaling Mediates Plasma Membrane Rupture of Acinar Cells in Severe Acute Pancreatitis. Int J Mol Sci 2023; 24:11554. [PMID: 37511311 PMCID: PMC10380776 DOI: 10.3390/ijms241411554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Ninjurin 1 (NINJ1) is a double-transmembrane cell-surface protein that might mediate plasma membrane rupture (PMR) and the diffusion of inflammatory factors. PMR is a characteristic of acinar cell injury in severe acute pancreatitis (SAP). However, the involvement of NINJ1 in mediating the PMR of acinar cells in SAP is currently unclear. Our study has shown that NINJ1 is expressed in acinar cells, and the expression is significantly upregulated in sodium-taurocholate-induced SAP. The knockout of NINJ1 delays PMR in acinar cells and alleviates SAP. Moreover, we observed that NINJ1 expression is mediated by Ca2+ concentration in acinar cells. Importantly, we found that Ca2+ overload drives mitochondrial stress to upregulate the P53/NINJ1 pathway, inducing PMR in acinar cells, and amlodipine, a Ca2+ channel inhibitor, can reduce the occurrence of PMR by decreasing the concentration of Ca2+. Our results demonstrate the mechanism by which NINJ1 induces PMR in SAP acinar cells and provide a potential new target for treatment of SAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wen Huang
- Department of Emergency Medicine and Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Shi Z, Liu G, Jiang H, Shi S, Zhang X, Deng Y, Chen Y. Activation of P53 pathway contributes to Xenopus hybrid inviability. Proc Natl Acad Sci U S A 2023; 120:e2303698120. [PMID: 37186864 PMCID: PMC10214167 DOI: 10.1073/pnas.2303698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Hybrid incompatibility as a kind of reproductive isolation contributes to speciation. The nucleocytoplasmic incompatibility between Xenopus tropicalis eggs and Xenopus laevis sperm (te×ls) leads to specific loss of paternal chromosomes 3L and 4L. The hybrids die before gastrulation, of which the lethal causes remain largely unclear. Here, we show that the activation of the tumor suppressor protein P53 at late blastula stage contributes to this early lethality. We find that in stage 9 embryos, P53-binding motif is the most enriched one in the up-regulated Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) peaks between te×ls and wild-type X. tropicalis controls, which correlates with an abrupt stabilization of P53 protein in te×ls hybrids at stage 9. Inhibition of P53 activity via either tp53 knockout or overexpression of a dominant-negative P53 mutant or Murine double minute 2 proto-oncogene (Mdm2), a negative regulator of P53, by mRNA injection can rescue the te×ls early lethality. Our results suggest a causal function of P53 on hybrid lethality prior to gastrulation.
Collapse
Affiliation(s)
- Zhaoying Shi
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Guanghui Liu
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Hao Jiang
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Songyuan Shi
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Xuan Zhang
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yi Deng
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yonglong Chen
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
20
|
Abramyan SM, Volkova EN, Morozov SG. Effects of Age and Suntan on the Expression of Second Messenger Signaling Pathways of Necroptosis in Skin Cells during Facelifting Surgery. Bull Exp Biol Med 2023; 174:707-710. [PMID: 37157044 DOI: 10.1007/s10517-023-05775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 05/10/2023]
Abstract
We studied the effects of age and suntan on the expression of necroptosis signaling molecules (RIPK1, RIPK3, and MLKL kinases) and first TNF receptor (TNFR1) in isolated skin cells from women undergoing facelift surgery. In women above 50 years, the expression of the TNFR1, kinases RIPK1, RIPK3, and MLKL, the phosphorylated forms of these kinases was significantly (p<0.05) increased in comparison with the corresponding parameters in women under 30 years. The expression of all necroptosis proteins and TNFR1 in women with suntan was significantly (p<0.05) higher than in those without tan. Cells from the surgical material were incubated with TNFα to determine the level of induced necroptosis. In women aged >50 years and women with suntan, the expression of phosphorylated forms of kinases was significantly increased, which attested to necroptosis activation. This study allowed identifying the targets on skin cells for prevention of necrosis and inflammation after facelift surgery.
Collapse
Affiliation(s)
- Sh M Abramyan
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - E N Volkova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - S G Morozov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
| |
Collapse
|
21
|
Che L, Huang J, Lin JX, Xu CY, Wu XM, Du ZB, Wu JS, Lin ZN, Lin YC. Aflatoxin B1 exposure triggers hepatic lipotoxicity via p53 and perilipin 2 interaction-mediated mitochondria-lipid droplet contacts: An in vitro and in vivo assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130584. [PMID: 37055989 DOI: 10.1016/j.jhazmat.2022.130584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins widely found in food contaminants, and its target organ is the liver. It poses a major food security and public health threat worldwide. However, the lipotoxicity mechanism of AFB1 exposure-induced liver injury remains unclear and requires further elucidation. Herein, we investigated the potential hepatic lipotoxicity of AFB1 exposure using in vitro and in vivo models to assess the public health hazards of high dietary AFB1 exposure. We demonstrated that low-dose of AFB1 (1.25 μM for 48 h, about one-fifth of the IC50 in HepG2 and HepaRG cells, IC50 are 5.995 μM and 5.266 μM, respectively) exposure significantly induced hepatic lipotoxicity, including abnormal lipid droplets (LDs) growth, mitochondria-LDs contacts increase, lipophagy disruption, and lipid accumulation. Mechanistically, we showed that AFB1 exposure promoted the mitochondrial p53 (mito-p53) and LDs-associated protein perilipin 2 (PLIN2) interaction-mediated mitochondria-LDs contacts, resulting in lipid accumulation in hepatocytes. Mito-p53-targeted inhibition, knockdown of PLIN2, and rapamycin application efficiently promoted the lysosome-dependent lipophagy and alleviated the hepatic lipotoxicity and liver injury induced by AFB1 exposure. Overall, our study found that mito-p53 and PLIN2 interaction mediates three organelles-mitochondria, LDs, and lysosomal networks to regulate lipid homeostasis in AFB1 exposure-induced hepatotoxicity, revealing how this unique trio of organelles works together and provides a novel insight into the targeted intervention in inter-organelle lipid sensing and trafficking for alleviating hazardous materials-induced hepatic lipotoxicity.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chi-Yu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin-Mou Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|