1
|
Sekine H, Akaike T, Motohashi H. Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence. EMBO J 2025:10.1038/s44318-025-00464-7. [PMID: 40394395 DOI: 10.1038/s44318-025-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Oxygen and sulfur, both members of the chalcogen group (group 16 elements), play fundamental roles in life. Ancient organisms primarily utilized sulfur for energy metabolism, while the rise in atmospheric oxygen facilitated the evolution of aerobic organisms, enabling highly efficient energy production. Nevertheless, all modern organisms, both aerobes and anaerobes, must protect themselves from oxygen toxicity. Interestingly, aerobes still rely on sulfur for survival. This dependence has been illuminated by the recent discovery of supersulfides, a novel class of biomolecules, made possible through advancements in technology and analytical methods. These breakthroughs are reshaping our understanding of biological processes and emphasizing the intricate interplay between oxygen and sulfur in regulating essential redox reactions. This review summarizes the latest insights into the biological roles of sulfur and oxygen, their interdependence in key processes, and their contributions to adaptive responses to environmental stressors. By exploring these interactions, we aim to provide a comprehensive perspective on how these elements drive survival strategies across diverse life forms, highlighting their indispensable roles in both human health and the sustenance of life.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Redox Molecular Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
2
|
Hasan SK, Jayakumar S, Espina Barroso E, Jha A, Catalano G, Sandur SK, Noguera NI. Molecular Targets of Oxidative Stress: Focus on Nuclear Factor Erythroid 2-Related Factor 2 Function in Leukemia and Other Cancers. Cells 2025; 14:713. [PMID: 40422216 DOI: 10.3390/cells14100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a central role in regulating cellular responses to oxidative stress. It governs the expression of a broad range of genes involved in antioxidant defense, detoxification, metabolism, and other cytoprotective pathways. In normal cells, the transient activation of Nrf2 serves as a protective mechanism to maintain redox homeostasis. However, the persistent or aberrant activation of Nrf2 in cancer cells has been implicated in tumor progression, metabolic reprogramming, and resistance to chemotherapy and radiotherapy. These dual roles underscore the complexity of Nrf2 signaling and its potential as a therapeutic target. A deeper understanding of Nrf2 regulation in both normal and malignant contexts is essential for the development of effective Nrf2-targeted therapies. This review provides a comprehensive overview of Nrf2 regulation and function, highlighting its unique features in cancer biology, particularly its role in metabolic adaptation and drug resistance. Special attention is given to the current knowledge of Nrf2's involvement in leukemia and emerging strategies for its therapeutic modulation.
Collapse
Affiliation(s)
- Syed K Hasan
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Sundarraj Jayakumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | | | - Anup Jha
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Gianfranco Catalano
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, 00042 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00042 Rome, Italy
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Nelida I Noguera
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, 00042 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00042 Rome, Italy
| |
Collapse
|
3
|
Jiang C, Gong Y, Wu X, Chen J, Chen Y, Chen J, Tang F, Fang Z, Bao Y, Ye J, Wang Z, Hong Z. Therapeutic effect of edaravone on osteoarthritis: targeting NRF2 signaling and mitochondrial function. J Orthop Translat 2025; 52:220-232. [PMID: 40337550 PMCID: PMC12056803 DOI: 10.1016/j.jot.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Background Osteoarthritis (OA), the most prevalent form of arthritis, is swiftly emerging as a chronic health condition, that poses the primary cause of disability and significant socioeconomic burden. Despite its prevalence, effective therapeutic options for OA remain elusive. This study seeks to explore the therapeutic potential of edaravone (EDA), a FDA-approved free radical scavenger, in the context of OA development and to elucidate its underlying mechanisms. Methods In vitro, oxidative stress models were induced by stimulating chondrocytes with t-butylhydroperoxide (TBHP); then, we investigated the influence of EDA on chondrocyte dysfunction, apoptosis, inflammatory responses and mitochondrial function in TBHP-treated chondrocytes, along with the underlying mechanisms. In vivo, destabilization of the medial meniscus (DMM) model was used to investigate the impact of EDA on OA progression. Nrf2 -/- mice were applied to determine the potential role of NRF2 as a target for EDA. Results EDA notably alleviates chondrocyte dysfunction triggered by oxidative stress, safeguards chondrocytes from apoptosis and inflammatory responses, and preserves mitochondrial function and redox balance within chondrocytes. At the molecular level, EDA appears to halt the progression of OA by engaging and activating the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which is crucial for maintaining mitochondrial function and redox equilibrium. Notably, the protective effects of EDA on OA are abolished in Nrf2 -/- mice, underscoring the significance of the NRF2 signaling pathway in mediating EDA's therapeutic effects. Conclusion EDA has the potential to mitigate chondrocyte degeneration, thereby slowing the progression of OA. Thus, EDA may represent a novel therapeutic agent for the treatment of OA, potentially expanding its clinical utility. The translational potential of this article As a clinically licensed drug used for the treatment of neurological disorders, edaravone has shown promising therapeutic effects on OA development. Mechanistically, edaravone stabilized mitochondrial function and maintained redox homeostasis by activating NRF2 signaling pathway. The protective effects of edaravone against OA were verified in vivo and in vitro. These findings presented robust evidence for repurposing edaravone for the treatment of OA in clinic.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yuhang Gong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Xinyu Wu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jiangjie Chen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yiyu Chen
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jingyao Chen
- The Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Tang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Zhiyu Fang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yuxuan Bao
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jiajing Ye
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Zhangfu Wang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
4
|
Zhu L, Huang R, Feng JR, Zhang M, Huang XJ, Chen Z, Wang W, Chen Y. Shexiang Tongxin Dropping Pills attenuate ischemic microvascular dysfunction via suppressing P66Shc-mediated mitochondrial respiration deficits. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119664. [PMID: 40154895 DOI: 10.1016/j.jep.2025.119664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) disrupts mitochondrial energy metabolism, leading to cerebral microvascular dysfunction (CMD). Shexiang Tongxin Dropping Pills (STDP) is a traditional Chinese medicinal formulation that has been clinically used for treating microcirculatory dysfunction. We have previously reported its ability to improve cerebral microcirculatory abnormalities. Nevertheless, the protective effects of STDP on cerebral microvascular mitochondria in the context of energy metabolism repair remain underinvestigated. AIM OF THE STUDY This study aims to investigate the potential mechanisms by which STDP ameliorates IS-induced CMD through the restoration of mitochondrial function. MATERIALS AND METHODS An ischemic stroke/reperfusion model was established by occluding and subsequently reperfusing the middle cerebral artery (MCAO/R) in C57BL/6 J mice. Laser speckle contrast imaging, Y-maze, rotarod tests and TTC staining were employed to evaluate the anti-ischemic stroke effects of STDP. Histological examination of cell adhesion proteins (ICAM 1, VCAM 1) and tight junction proteins (VE-cadherin, occludin) was conducted to assess the effects of STDP on the cerebral microvascular endothelium. In vitro, a bEnd.3 cell model was established through oxygen-glucose deprivation followed by reoxygenation (OGD/R). The cytoprotective capability of STDP was assessed by quantifying endothelial permeability, reactive oxygen species (ROS) levels, and cell viability. Mendelian randomization (MR) analysis and bioinformatic studies were performed to elucidate the causal associations between mitochondrial biological function and IS. Mitochondrial membrane potential (MMP) was assessed using a tetramethylrhodamine ethyl ester perchlorate fluorescent probe, while ATP production was quantified using a commercially available assay kit. Mitochondrial respiration was evaluated by measuring the oxygen consumption rate (OCR). Finally, the verification of important targets in mouse brain slices and bEnd.3 cells was conducted through immunoblotting and immunofluorescence. RESULTS STDP significantly restored cerebral blood flow and neurological function, and reduced infarct volume in MCAO/R mice. Furthermore, STDP markedly alleviated inflammation and hyperpermeability of the cerebral microvascular endothelium in MCAO/R mice, as evidenced by the suppression of ICAM-1 and VCAM-1 expression, along with the upregulation of VE-cadherin and occludin protein levels. Moreover, STDP not only mitigated hyperpermeability and excessive production of ROS induced by OGD/R in bEnd.3 cells but also enhanced the protective effects of the ROS scavenger N-acetylcysteine on bEnd.3 cells. Results of MR analysis and bioinformation studies demonstrated that the disruption of mitochondrial respiration is a critical pathogenic factor in IS-induced CMD. Our data confirmed that STDP effectively restored MMP and ATP production in OGD/R-treated bEnd.3 cells. Furthermore, STDP significantly enhanced basal respiration, maximal OCR, and spare respiratory capacity in bEnd.3 cells compared to the OGD/R group. Mechanistically, STDP markedly increased endothelial cystathionine γ-lyase (CSE)-mediated hydrogen sulfide (H2S) production and S-sulfhydration of P66shc, resulting in reduced protein expression and phosphorylation levels of P66Shc. This inhibition prevented its translocation into mitochondria, thereby restoring mitochondrial respiration. CONCLUSION STDP facilitated CSE expression and promoted H2S production, contributing to the inactivation of P66shc by suppressing its expression and increasing its sulfhydration. This process impeded P66Shc translocation to mitochondria, subsequently restoring mitochondrial respiration and alleviating IS-induced cerebral microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Li Zhu
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Ru Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Jing-Rui Feng
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Miao Zhang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Xiao-Jie Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Zeyu Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Wei Wang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China.
| | - Yang Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; Chinese Medicine Guangdong Laboratory, Zhuhai, 519031, China.
| |
Collapse
|
5
|
Zhang T, Toyomoto T, Sawa T, Akaike T, Matsunaga T. Supersulfides: A Promising Therapeutic Approach for Autoinflammatory Diseases. Microbiol Immunol 2025; 69:191-202. [PMID: 39956868 PMCID: PMC11973847 DOI: 10.1111/1348-0421.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Supersulfides are molecular species characterized by catenated sulfur moieties, including low-molecular-weight and protein-bound supersulfides. Emerging evidence suggests that these molecules, abundantly present in diverse organisms, play essential roles far beyond their chemical properties, such as functions in energy metabolism, protein stabilization, and antiviral defense. Recent studies highlight their regulatory effects on pattern-recognition receptors (PRRs) and associated signaling pathways-such as nucleotide oligomerization domain-like receptor signaling, toll-like receptor signaling, and type I interferon receptor signaling-critical for innate immunity and inflammatory responses. Dysregulation of these pathways is implicated in a heterogeneous group of autoinflammatory diseases, including inflammasomopathies, relopathies, and type I interferonopathies, respectively. Notably, both endogenous and synthetic supersulfide donors have recently shown promising inhibitory effects on PRR signaling, offering their potential as targeted therapies for managing autoinflammatory conditions. This review summarizes the fundamental biology of supersulfides and typical autoinflammatory diseases, focusing on their roles in innate immune and inflammatory responses, while exploring their therapeutic potential in these diseases.
Collapse
Grants
- This work was supported by JST CREST Grant Number JPMJCR2024 (20348438 to T.A.), Grant-in-Aid for Scientific Research on Innovative Areas(A) "Sulfur biology" (21H05263 to T.A., 21H05267 to T.S., and 21H05258 to T.A. and T.S), International Leading Research (23K20040 to T.A.), Scientific Research (S) (24H00063 to T.A.), Challenge Research (Exploratory) (23K17979 to T.S.), Scientific Research (B) (22K06893 to T.M.), from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Japan Agency for Medical Research and Development (AMED) to T. Akaike (JP21zf0127001), and AMED CREST Grant Number 23gm161001h001 to T.S.
Collapse
Affiliation(s)
- Tianli Zhang
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious DiseasesAkita UniversityAkitaJapan
| | - Touya Toyomoto
- Department of Microbiology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuro Matsunaga
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious DiseasesAkita UniversityAkitaJapan
| |
Collapse
|
6
|
Maemura M, Morita M, Ogata S, Miyamoto Y, Ida T, Shibusaka K, Negishi S, Hosonuma M, Saito T, Yoshitake J, Takata T, Matsunaga T, Mishima E, Barayeu U, Akaike T, Yano F. Supersulfides contribute to joint homeostasis and bone regeneration. Redox Biol 2025; 81:103545. [PMID: 39983344 PMCID: PMC11893308 DOI: 10.1016/j.redox.2025.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
The physiological functions of supersulfides, inorganic and organic sulfides with sulfur catenation, have been extensively studied. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulfide synthase. This study aimed to investigate the role of supersulfides in joint homeostasis and bone regeneration. Using Cars2AINK/+ mutant mice, in which the KIIK motif of CARS2 essential for supersulfide production was replaced with AINK, we evaluated the role of supersulfides in fracture healing and cartilage homeostasis during osteoarthritis (OA). Tibial fracture surgery was performed on the wild-type (Cars2+/+) and Cars2AINK/+ mice littermates. Bulk RNA-seq analysis for the osteochondral regeneration in the fracture model showed increased inflammatory markers and reduced osteogenic factors, indicative of impaired bone regeneration, in Cars2AINK/+ mice. Destabilization of the medial meniscus (DMM) surgery was performed to produce the mouse OA model. Histological analyses with Osteoarthritis Research Society International and synovitis scores revealed accelerated OA progression in Cars2AINK/+ mice compared with that in Cars2+/+ mice. To assess the effects of supersulfides on OA progression, glutathione trisulfide (GSSSG) or saline was periodically injected into the mouse knee joints after the DMM surgery. Thus, supersulfides derived from CARS2 and GSSSG exogenously administered significantly inhibited inflammation and lipid peroxidation of the joint cartilage, possibly through suppression of ferroptosis, during OA development. This study represents a significant advancement in understanding anti-inflammatory and anti-oxidant functions of supersulfides in skeletal tissues and may have a clinical relevance for the bone healing and OA therapeutics.
Collapse
Affiliation(s)
- Miki Maemura
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Yoichi Miyamoto
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, Fujiyoshida, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Kazuhiro Shibusaka
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan; Department of Orthodontics, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Soichiro Negishi
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Masahiro Hosonuma
- Department of Pharmacology, Graduate School of Pharmacy, Showa University, Tokyo, Japan
| | - Taku Saito
- Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Tsuyoshi Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan; Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita, Japan
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | | | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan.
| | - Fumiko Yano
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
7
|
Asamitsu S, Ozawa Y, Okamoto H, Ogata S, Matsunaga T, Yoshitake J, Fusegawa K, Taniyama Y, Sato C, Ishida H, Abe T, Motohashi H, Akaike T, Kamei T. Supersulfide metabolome of exhaled breath condensate applied as diagnostic biomarkers for esophageal cancer. Cancer Sci 2025; 116:1023-1033. [PMID: 39895210 PMCID: PMC11967250 DOI: 10.1111/cas.16430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 02/04/2025] Open
Abstract
Early detection of esophageal cancer is essential for esophagogastroduodenoscopy and histopathological diagnosis. However, endoscopic examinations are sometimes invasive, which limits their clinical application and compliance, and traditional blood tumor markers are unsuitable for cancer screening. The current study aimed to evaluate the usefulness of sulfur metabolites as new biomarkers for esophageal cancer using blood samples and exhaled breath condensate (EBC), which can be readily obtained and is non-invasive. We collected EBC and plasma samples from 50 patients with esophageal cancer and 30 healthy controls. Sulfur metabolome analysis using tandem mass spectrometry was performed to compare the metabolic profile between the two groups. Supersulfide metabolic profiles were different between the two cohorts. Supersulfide metabolome analysis showed that cysteine hydropersulfide (CysSSH) and homocysteine hydropersulfide (HomoCysSSH) were increased in the plasma of patients with esophageal cancer. Elevated levels of HomoCysSSH could distinguish patients with esophageal cancer from healthy subjects (area under the curve [AUC]: 0.93, sensitivity: 89%, specificity: 96%). Interestingly, we also detected an elevation of supersulfides in the EBC analysis. CysSSH levels significantly increased in the EBC recovered from patients with esophageal cancer (AUC: 0.71, sensitivity: 60%, specificity: 96%). In addition, the observed level was correlated with that of HomoCysSSH in the plasma (r = 0.27). Supersulfides, such as CysSSH and HomoCysSSH, are potential biomarkers for detecting esophageal cancer. CysSSH from EBC may serve as a valuable non-invasive biomarker with similar detection ability but with superior precision and convenience compared with the currently available blood biomarkers.
Collapse
Affiliation(s)
- Seji Asamitsu
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yohei Ozawa
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Okamoto
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazuki Fusegawa
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yusuke Taniyama
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Chiaki Sato
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hirotaka Ishida
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | - Hozumi Motohashi
- Department of Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Kamei
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
8
|
Zhang DD. Thirty years of NRF2: advances and therapeutic challenges. Nat Rev Drug Discov 2025:10.1038/s41573-025-01145-0. [PMID: 40038406 DOI: 10.1038/s41573-025-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Molecular Medicine, Center for Inflammation Science and Systems Medicine, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Zhu Z, Wu X, Zhang J, Zhu M, Tian M, Zhao P. Advances in understanding ferroptosis mechanisms and their impact on immune cell regulation and tumour immunotherapy. Discov Oncol 2025; 16:153. [PMID: 39930297 PMCID: PMC11811334 DOI: 10.1007/s12672-025-01911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Ferroptosis is a novel mode of iron-dependent non-apoptotic cell death that occurs mainly due to excessive accumulation of lipid peroxides. Numerous studies in recent years have shown that ferroptosis plays a vital role in the organism and has important interactions with immune cells. Ferroptosis has been shown to have great potential in tumour therapy through studying its mechanism of action. In addition, ferroptosis plays a major role in many types of tumour cells that can potently suppress the tumourigenesis and metastasis, provide a basis for the treatment of many malignant tumour diseases and become a novel therapeutic modality of antitumour immunity in the clinic. Current tumour immunotherapy for ferroptosis in combination with other conventional oncological modalities is not well elaborated. In this paper, we mainly discuss the connection of ferroptosis with immune cells and their mediated tumour immunotherapy in order to provide a better theoretical basis and new thinking about ferroptosis mediated antitumour immunity.
Collapse
Affiliation(s)
- Zengjun Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Xuanxuan Wu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, China
| | - Jian Zhang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, China
| | - Minghui Zhu
- Department of Clinical Laboratory, Huantai County People's Hospital, Zibo, 256400, China
| | - Maojin Tian
- Department of Critical Care Medicine, Zibo Central Hospital, Zibo, 255036, China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
10
|
Pan Y, Matsunaga T, Zhang T, Akaike T. The Therapeutic Potential of Supersulfides in Oxidative Stress-Related Diseases. Biomolecules 2025; 15:172. [PMID: 40001475 PMCID: PMC11852411 DOI: 10.3390/biom15020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidation-reduction (redox) reactions are fundamental to sustaining life, with reactive oxygen and nitrogen species playing pivotal roles in cellular signaling and homeostasis. However, excessive oxidative stress disrupts redox balance, contributing to a wide range of diseases, including inflammatory and pulmonary disorders, neurodegeneration, and cancer. Although numerous antioxidant therapies have been developed and tested for oxidative stress-related diseases, their clinical efficacy remains limited. Here, we introduce the emerging concept of 'supersulfides', a class of redox molecule species with unique antioxidant and nucleophilic properties, which have recently been recognized as crucial regulators of cellular redox homeostasis. Unlike traditional antioxidants, supersulfides offer novel mechanisms of action that directly target the underlying processes of oxidative stress. This review summarizes current knowledge on supersulfides, highlighting their roles in oxidative stress and associated diseases, as well as the mechanisms underlying oxidative stress-related pathology. The therapeutic potential of synthetic supersulfides for treating oxidative stress-related diseases is also discussed. A comprehensive understanding of the molecular and cellular basis of redox biology can help to guide the development of innovative redox-based therapeutic strategies aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Grants
- 20348438 Japan Science and Technology Agency
- 21H05263 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 21H05258 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 23K20040 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 24H00063 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP21zf0127001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Yuexuan Pan
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Tetsuro Matsunaga
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Tianli Zhang
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
11
|
Yelisyeyeva O, Kaminskyy D, Semen M, Chelpanova I, Semen KO. Redox Metabolism and Autonomic Regulation During Aging: Can Heart Rate Variability Be Used to Monitor Healthy Longevity? Biomedicines 2025; 13:161. [PMID: 39857745 PMCID: PMC11761282 DOI: 10.3390/biomedicines13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The functionality of redox metabolism is frequently named as an important contributor to the processes of aging and anti-aging. Excessive activation of free radical reactions accompanied by the inability of the antioxidant defense (AOD) mechanisms to control the flow of the reactive oxygen species (ROS) leads to the persistence of oxidative stress, hypoxia, impaired mitochondrial energy function and reduced ATP potential. From a long-term perspective, such changes contribute to the development of chronic diseases and facilitate aging. In turn, preconditioning of a biosystem with small doses of stressful stimuli might cause mobilization of the mechanisms of AOD and control an excessive flow of ROS, which supports optimal functioning of the redox reactions. Those mechanisms are of crucial importance for anti-aging and are also known as a eustress or hormetic response. To ensure continuous support of mild pro-oxidant activity in a metabolic system, close monitoring and timely corrections preventing the development of excessive ROS production are required. The paper introduces the potential of heart rate variability (HRV) as a biomarker of functional and metabolic reserves and a tool to measure stress resilience during aging. The practical approaches to interpretation of HRV are provided based on total power, changes in total power in response to an orthostatic test and activities of all spectral components. It is suggested that the complex of those parameters can reflect the depth of oxidative stress and may be used to guide lifestyle interventions and promote active longevity.
Collapse
Affiliation(s)
- Olha Yelisyeyeva
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Marta Semen
- Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Ilona Chelpanova
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | | |
Collapse
|
12
|
Zhang G, Ma Z, Ma Z, Liu P, Zhang L, Lian Z, Guo C. SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis. Cardiovasc Toxicol 2025; 25:97-109. [PMID: 39729180 DOI: 10.1007/s12012-024-09950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury. qRT-PCR and western blot assays were used to detect the levels of mRNAs and proteins. Cardiomyocyte injury was determined by detecting the levels of lactate dehydrogenase and creatine Kinase MB (CK-MB). Cell apoptosis was investigated by flow cytometry and related markers. Levels of IL-6, IL-10, and TNF-α were measured by ELISA. Cell ferroptosis was assessed by detecting the production of reactive oxygen species (ROS), malonaldehyde (MDA), reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio, Fe + content, and related regulators. The interaction between NRF2 and the suppressor of zest 12 (SUZ12) was analyzed by using dual-luciferase reporter and RNA immunoprecipitation assays. AMI rat models were established for in vivo analysis. NRF2 was lowly expressed in AMI patients and H/R-induced cardiomyocytes. Forced expression of NRF2 reduced H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis. Moreover, NRF2 overexpression improved cardiac function and injury in vivo. Mechanistically, SUZ12 bound to the promoter of NRF2 and promoted its expression. Further functional analyses showed that SUZ12 overexpression reduced H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis, which were reversed by NRF2 silencing. SUZ12-increased NRF2 suppressed H/R-induced cardiomyocyte injury, apoptosis, inflammation, and ferroptosis in vitro and improved cardiac functions in rats with I/R injury, suggesting the potential cardioprotective effect of NRF2 in cardiac injury during AMI.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zhimin Ma
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zheng Ma
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Peilin Liu
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Lin Zhang
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Zheng Lian
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China
| | - Caixia Guo
- Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
13
|
Yang H, Chen YX, Linghu KG, Ren PY, Yao YT, Jiang F, Wu GP, Chen TT, Ji YP, Tao L, Sun QY, Li Y, Shen XC. 1,8-Cineole alleviates Nrf2-mediated redox imbalance and mitochondrial dysfunction in diabetes mellitus by targeting Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156099. [PMID: 39437685 DOI: 10.1016/j.phymed.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is primarily attributed to impaired insulin secretion caused by β cell dysfunction. 1,8-Cineole is a key bioactive compound in the essential oil extracted from Fructus Alpiniae Zerumbet, which possesses anti-inflammatory and antioxidant properties. Nevertheless, it remains elusive about the protective effect and precise mechanisms of 1,8-Cineole against the β cell deterioration in T2DM. PURPOSE To investigate the effect of 1,8-Cineole on β cell dysfunction in T2DM and the potential mechanism of its action. METHODS A mouse model of T2DM and a β cell model of high glucose induction were generated to analyze the pharmacological properties of 1,8-Cineole. Proteomic and network pharmacological analyses were conducted to identify the crucial pathways involved in T2DM. Resveratrol [a Sirtuin1 (Sirt1) agonist] and Sirt1 knockdown were used to ascertain the mechanism of 1,8-Cineole in T2DM. The binding affinity of 1,8-Cineole to Sirt1 was assessed with molecular docking, surface plasmon resonance, immunoprecipitation assay, and cellular thermal shift assay. RESULTS Firstly, dysregulated crucial pathways in T2DM were screened out, including redox imbalance and mitochondrial dysfunction. Subsequently, 1,8-Cineole was found to activate Sirt1 and nuclear factor E2-related factor 2 (Nrf2) to repress oxidative stress in both T2DM mice and high glucose-induced β cells, thereby relieving mitochondrial dysfunction and apoptosis. Furthermore, 1,8-Cineole specifically targeted Sirt1 and favored the direct interaction between Sirt1 and Nrf2, ultimately restoring β cell function. CONCLUSIONS Our findings provide the first evidence that 1,8-Cineole directly binds to Sirt1 and enhances its stability, therefore rectifying impaired oxidative homeostasis, and then suppressing mitochondrial dysfunction and apoptosis in T2DM, indicating that 1,8-Cineole may be a potential candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ke-Gang Linghu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Peng-Yan Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Feng Jiang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Guo-Ping Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ting-Ting Chen
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yun-Peng Ji
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qian-Yun Sun
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yue Li
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China.
| |
Collapse
|
14
|
Feng Y, Shi M, Zhang Y, Li X, Yan L, Xu J, Liu C, Li M, Bai F, Yuan F, Sun Y, Liu R, Zhao Y, Yang L, Zhang Y, Guo Y, Zhang J, Zhou R, Liu P. Protocatechuic acid relieves ferroptosis in hepatic lipotoxicity and steatosis via regulating NRF2 signaling pathway. Cell Biol Toxicol 2024; 40:104. [PMID: 39589556 PMCID: PMC11599353 DOI: 10.1007/s10565-024-09953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Ferroptosis represents a newly programmed cell death, and the process is usually accompanied with iron-dependent lipid peroxidation. Importantly, ferroptosis is implicated in a myriad of diseases. Recent literature suggests a potential position of ferroptosis in the pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD), the most widespread liver ailment worldwide. Intriguingly, several functional genes and metabolic pathways central to ferroptosis are regulated by nuclear factor erythroid-derived 2-like 2 (NRF2). In current work, we aim to identify protocatechuic acid (PCA), a primary metabolite of antioxidant polyphenols, as a potent NRF2 activator and ferroptosis inhibitor in the hepatic lipotoxicity and steatosis models. Herein, both NRF2+/+ and NRF2-/- cell lines and mice were used to analyze the importance of NRF2 in PCA function, and hepatic lipotoxicity and steatosis models were induced by palmitic acid and high-fat diet respectively. Our results indicated that ferroptosis was mitigated by PCA intervention in hepatic cells. Furthermore, PCA exhibited therapeutic efficacy against ferroptosis, as well as hepatic lipotoxicity and steatosis. The protective role of PCA was predominantly mediated through NRF2 activation, potentially elucidating a pivotal mechanism underlying PCA's therapeutic impact on MAFLD. Additionally, the augmented mitochondrial TCA cycle activity observed in hepatic lipotoxicity and steatosis models was ameliorated by PCA, in part via NRF2-dependent pathways, further bolstering PCA's anti-ferroptosis properties. Collectively, our findings underscore PCA's potential in alleviating hepatic ferroptosis, lipotoxicity and steatosis via inducing activation of NRF2 signaling pathway, offering a promising strategy for the therapy of MAFLD as well as related lipid metabolic disorders.
Collapse
Affiliation(s)
- Yetong Feng
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Yi Zhang
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Xinyan Li
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Liangwen Yan
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Chenyue Liu
- Department of Medical Image, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Li
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Fengyun Bai
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Fenyue Yuan
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Ying Sun
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Rongrong Liu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Yaping Zhao
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Lan Yang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinggang Zhang
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Ying Guo
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Jian Zhang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Rui Zhou
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China.
- Key Laboratory of Environment and Genes Related To Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
15
|
Bi Z, Wang W, Zhao L, Wang X, Xing D, Zhou Y, Lee DJ, Ren N, Chen C. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: A review. ENVIRONMENTAL RESEARCH 2024; 260:119592. [PMID: 39002629 DOI: 10.1016/j.envres.2024.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yanfeng Zhou
- Heilongjiang Agricultural Engineering Vocational College, Harbin, Heilongjiang Province, 150070, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
16
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
17
|
Han Z, Wang B, Wen YQ, Li YN, Feng CX, Ding XS, Shen Y, Yang Q, Gao L. Acteoside alleviates lipid peroxidation by enhancing Nrf2-mediated mitophagy to inhibit ferroptosis for neuroprotection in Parkinson's disease. Free Radic Biol Med 2024; 223:493-505. [PMID: 39048340 DOI: 10.1016/j.freeradbiomed.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Increasing evidence underscores the pivotal role of ferroptosis in Parkinson's Disease (PD) pathogenesis. Acteoside (ACT) has been reported to possess neuroprotective properties. However, the effects of ACT on ferroptosis and its molecular mechanisms remain unknown. This study aimed to explore whether ACT can regulate ferroptosis in dopaminergic (DA) neurons within both in vitro and in vivo PD models and to elucidate the underlying regulatory mechanisms. PD models were established and treated with various concentrations of ACT. Cell viability assays, Western blot, lipid peroxidation assessments, immunohistochemistry, and transmission electron microscopy were employed to confirm ACT's inhibition of ferroptosis and its protective effect on DA neurons across PD models. Immunofluorescence staining, MitoSOX staining, and confocal laser scanning microscopy further validated ACT's regulation regulatory effects on ferroptosis via the Nrf2-mitophagy pathway. Four animal behavioral tests were used to assess behavioral improvements in PD animals. ACT inhibited ferroptosis in PD models in vitro, as evidenced by increased cell viability, the upregulation of GPX4 and SLC7A11, reduced lipid peroxides, and attenuation of mitochondrial morphological alterations typical of ferroptosis. By activating the Nrf2-mitophagy axis, ACT enhanced mitochondrial integrity and reduced lipid peroxidation, mitigating ferroptosis. These in vitro results were consistent with in vivo findings, where ACT treatment significantly preserved DA neurons, curbed ferroptosis in these cells, and alleviated cognitive and behavioral deficits. This study is the first demonstration of ACT's capability to inhibit neuronal ferroptosis and protect DA neurons, thus alleviating behavioral and cognitive impairments in both in vitro and in vivo PD models. Furthermore, The suppression of ferroptosis by ACT is achieved through the activation of the Nrf2-mitophagy signaling pathway. Our results show that ACT is beneficial for both treating and preventing PD. They also offer novel therapeutic options for treating PD and molecular targets for regulating ferroptosis.
Collapse
Affiliation(s)
- Zheng Han
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Department of Neurosurgery, 967th Hospital of the PLA Joint Logistic Support Force, Dalian, Liaoning Province, 116021, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Center for Frontier Medicine Innovation, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yu-Qi Wen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yang-Ni Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Chen-Xi Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
18
|
Akaike T, Morita M, Ogata S, Yoshitake J, Jung M, Sekine H, Motohashi H, Barayeu U, Matsunaga T. New aspects of redox signaling mediated by supersulfides in health and disease. Free Radic Biol Med 2024; 222:539-551. [PMID: 38992395 DOI: 10.1016/j.freeradbiomed.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Oxygen molecules accept electrons from the respiratory chain in the mitochondria and are responsible for energy production in aerobic organisms. The reactive oxygen species formed via these oxygen reduction processes undergo complicated electron transfer reactions with other biological substances, which leads to alterations in their physiological functions and cause diverse biological and pathophysiological consequences (e.g., oxidative stress). Oxygen accounts for only a small proportion of the redox reactions in organisms, especially under aerobic or hypoxic conditions but not under anaerobic and hypoxic conditions. This article discusses a completely new concept of redox biology, which is governed by redox-active supersulfides, i.e., sulfur-catenated molecular species. These species are present in abundance in all organisms but remain largely unexplored in terms of redox biology and life science research. In fact, accumulating evidence shows that supersulfides have extensive redox chemical properties and that they can be readily ionized or radicalized to participate in energy metabolism, redox signaling, and oxidative stress responses in cells and in vivo. Thus, pharmacological intervention and medicinal modulation of supersulfide activities have been shown to benefit the regulation of disease pathogenesis as well as disease control.
Collapse
Affiliation(s)
- Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Max-Planck-Institute for Polymer Research, Mainz, 55128, Germany.
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita, 010-8543, Japan.
| |
Collapse
|
19
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
20
|
Jiang L, Bai K, Wang T. Bacillus subtilis fmbj ameliorates lipopolysaccharide-induced intestinal dysfunction in broilers by enhancing the SIRT1/PGC1α pathway. Poult Sci 2024; 103:103964. [PMID: 38936217 PMCID: PMC11259727 DOI: 10.1016/j.psj.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
This study aimed to explore the impact of dietary Bacillus subtilis fmbj (BS) supplementation on acute intestinal dysfunction induced by lipopolysaccharide (LPS) in broilers. One hundred and eighty 1-day-old male Arbor Acres broilers were randomly divided into three treatment groups, each comprising ten replicates of 6 birds. On d 20, LPS-challenged (LPS group and LPS-BS group) and LPS-unchallenged (CON group) broilers received intraperitoneal injections of 1 mg/kg body weight LPS solution and an equivalent volume of sterile saline, respectively. Compared to the CON group, LPS disrupted (P < 0.05) the morphology of the small intestine (jejunum or ileum), exacerbated (P < 0.05) serum, small intestinal, and small intestinal mitochondrial antioxidant capacity, induced (P < 0.05) small intestinal oxidative damage, and altered (P < 0.05) the expression of genes and proteins related to antioxidants, cell adhesion, and mitochondrial function in the jejunum. The LPS-BS group exhibited a tendency towards improvement in small intestinal morphology, serum, small intestinal, and small intestinal mitochondrial antioxidant capacity, small intestinal oxidative damage, and the expression of genes and proteins related to antioxidants, cell adhesion, and mitochondrial function in the jejunum when compared to the LPS group. In conclusion, BS supplementation may confer protection against LPS-induced acute intestinal dysfunction in broilers by enhancing the activation of SIRT1/PGC1α, suggesting its potential as a valuable additive for the poultry industry.
Collapse
Affiliation(s)
- Luyi Jiang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310023, China; Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310023, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Fogarty EF, Harch PG. Case report: Dementia sensitivity to altitude changes and effective treatment with hyperbaric air and glutathione precursors. Front Neurol 2024; 15:1356662. [PMID: 38978816 PMCID: PMC11229546 DOI: 10.3389/fneur.2024.1356662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 07/10/2024] Open
Abstract
A 78-year-old man with dementia experienced waxing and waning of symptoms with changes in altitude as he traveled from his home in the Rocky Mountains to lower elevations and back. To replicate the improvement in his symptoms with travel to lower elevations (higher pressure), the patient was treated with a near-identical repressurization in a hyperbaric chamber using compressed air. With four 1-h treatments at 1.3 Atmospheres Absolute (ATA) and concurrent administration of low-dose oral glutathione amino acid precursors, he recovered speech and showed improvement in activities of daily living. Regional broadcast media had documented his novel recovery. Nosocomial COVID-19 and withdrawal of hyperbaric air therapy led to patient demise 7 months after initiation of treatment. It is theorized that hyperbaric air therapy stimulated mitochondrial biochemical and physical changes, which led to clinical improvement.
Collapse
Affiliation(s)
| | - Paul G. Harch
- LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
22
|
Sekine H, Takeda H, Takeda N, Kishino A, Anzawa H, Isagawa T, Ohta N, Murakami S, Iwaki H, Kato N, Kimura S, Liu Z, Kato K, Katsuoka F, Yamamoto M, Miura F, Ito T, Takahashi M, Izumi Y, Fujita H, Yamagata H, Bamba T, Akaike T, Suzuki N, Kinoshita K, Motohashi H. PNPO-PLP axis senses prolonged hypoxia in macrophages by regulating lysosomal activity. Nat Metab 2024; 6:1108-1127. [PMID: 38822028 PMCID: PMC11599045 DOI: 10.1038/s42255-024-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Haruna Takeda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiro Kishino
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Hayato Anzawa
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Nao Ohta
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Murakami
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideya Iwaki
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Nobufumi Kato
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Shu Kimura
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Zun Liu
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Koichiro Kato
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Fujita
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hitoshi Yamagata
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Kinoshita
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan.
| |
Collapse
|
23
|
Kamihara T, Tanaka K, Omura T, Kaneko S, Hirashiki A, Kokubo M, Shimizu A. Exploratory bibliometric analysis and text mining to reveal research trends in cardiac aging. Aging Med (Milton) 2024; 7:301-311. [PMID: 38975309 PMCID: PMC11222727 DOI: 10.1002/agm2.12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives We conducted a text mining analysis of 40 years of literature on cardiac aging from PubMed to investigate the current understanding on cardiac aging and its mechanisms. This study aimed to embody what most researchers consider cardiac aging to be. Methods We used multiple text mining and machine learning tools to extract important information from a large amount of text. Results Analysis revealed that the terms most frequently associated with cardiac aging include "diastolic," "hypertrophy," "fibrosis," "apoptosis," "mitochondrial," "oxidative," and "autophagy." These terms suggest that cardiac aging is characterized by mitochondrial dysfunction, oxidative stress, and impairment of autophagy, especially mitophagy. We also revealed an increase in the frequency of occurrence of "autophagy" in recent years, suggesting that research on autophagy has made a breakthrough in the field of cardiac aging. Additionally, the frequency of occurrence of "mitophagy" has increased significantly since 2019, suggesting that mitophagy is an important factor in cardiac aging. Conclusions Cardiac aging is a complex process that involves mitochondrial dysfunction, oxidative stress, and impairment of autophagy, especially mitophagy. Further research is warranted to elucidate the mechanisms of cardiac aging and develop strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Takahiro Kamihara
- Department of CardiologyNational Center for Geriatrics and GerontologyObuJapan
| | - Ken Tanaka
- Department of Public HealthUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Takuya Omura
- Department of Metabolic ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Shinji Kaneko
- Department of CardiologyToyota Kosei HospitalToyotaJapan
| | - Akihiro Hirashiki
- Department of CardiologyNational Center for Geriatrics and GerontologyObuJapan
| | - Manabu Kokubo
- Department of CardiologyNational Center for Geriatrics and GerontologyObuJapan
| | - Atsuya Shimizu
- Department of CardiologyNational Center for Geriatrics and GerontologyObuJapan
| |
Collapse
|
24
|
Koike S, Ogasawara Y. Analysis and characterization of sulfane sulfur. Anal Biochem 2024; 687:115458. [PMID: 38182032 DOI: 10.1016/j.ab.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
In the late 1970s, sulfane sulfur was defined as sulfur atoms covalently bound only to sulfur atoms. However, this definition was not generally accepted, as it was slightly vague and difficult to comprehend. Thus, in the early 1990s, it was defined as "bound sulfur," which easily converts to hydrogen sulfide upon reduction with a thiol-reducing agent. H2S-related bound sulfur species include persulfides (R-SSH), polysulfides (H2Sn, n ≥ 2 or R-S(S)nS-R, n ≥ 1), and protein-bound elemental sulfur (S0). Many of the biological effects currently associated with H2S may be attributed to persulfides and polysulfides. In the 20th century, quantitative determination of "sulfane sulfur" was conventionally performed using a reaction called cyanolysis. Several methods have been developed over the past 30 years. Current methods used for the detection of H2S and polysulfides include colorimetric assays for methylene blue formation, sulfide ion-selective or polarographic electrodes, gas chromatography with flame photometric or sulfur chemiluminescence detection, high-performance liquid chromatography analysis with fluorescent derivatization of sulfides, liquid chromatography with tandem mass spectrometry, the biotin switch technique, and the use of sulfide or polysulfide-sensitive fluorescent probes. In this review, we discuss the methods reported to date for measuring sulfane sulfur and the results obtained using these methods.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
25
|
Borbényi-Galambos K, Czikora Á, Erdélyi K, Nagy P. Versatile roles of cysteine persulfides in tumor biology. Curr Opin Chem Biol 2024; 79:102440. [PMID: 38422870 DOI: 10.1016/j.cbpa.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H2S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Klaudia Borbényi-Galambos
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hajdú-Bihar County, 4032, Hungary
| | - Ágnes Czikora
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Katalin Erdélyi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, Budapest, 1078, Hungary; Chemistry Institute, University of Debrecen, Debrecen, Hajdú-Bihar County, 4012, Hungary.
| |
Collapse
|
26
|
Cui Q, Shieh M, Pan TW, Nishimura A, Matsunaga T, Kelly SS, Xu S, Jung M, Ogata S, Morita M, Yoshitake J, Chen X, Robinson JR, Qian WJ, Nishida M, Akaike T, Xian M. 2H-Thiopyran-2-thione sulfine, a compound for converting H 2S to HSOH/H 2S 2 and increasing intracellular sulfane sulfur levels. Nat Commun 2024; 15:2453. [PMID: 38503758 PMCID: PMC10951338 DOI: 10.1038/s41467-024-46652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Reactive sulfane sulfur species such as persulfides (RSSH) and H2S2 are important redox regulators and closely linked to H2S signaling. However, the study of these species is still challenging due to their instability, high reactivity, and the lack of suitable donors to produce them. Herein we report a unique compound, 2H-thiopyran-2-thione sulfine (TTS), which can specifically convert H2S to HSOH, and then to H2S2 in the presence of excess H2S. Meanwhile, the reaction product 2H-thiopyran-2-thione (TT) can be oxidized to reform TTS by biological oxidants. The reaction mechanism of TTS is studied experimentally and computationally. TTS can be conjugated to proteins to achieve specific delivery, and the combination of TTS and H2S leads to highly efficient protein persulfidation. When TTS is applied in conjunction with established H2S donors, the corresponding donors of H2S2 (or its equivalents) are obtained. Cell-based studies reveal that TTS can effectively increase intracellular sulfane sulfur levels and compensate for certain aspects of sulfide:quinone oxidoreductase (SQR) deficiency. These properties make TTS a conceptually new strategy for the design of donors of reactive sulfane sulfur species.
Collapse
Affiliation(s)
- Qi Cui
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Tony W Pan
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS) and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shane S Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Xiaoyan Chen
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS) and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
27
|
Sasama Y, Yoshimura K, Hoshino M, Sasa K, Akaike T, Morita M, Baba K, Shirota T, Miyamoto Y. Supersulfides support bone growth by promoting chondrocyte proliferation in the growth plates. J Oral Biosci 2024; 66:76-81. [PMID: 37979656 DOI: 10.1016/j.job.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES While chondrocytes have mitochondria, they receive little O2 from the bloodstream. Sulfur respiration, an essential energy production system in mitochondria, uses supersulfides instead of O2. Supersulfides are inorganic and organic sulfides with catenated sulfur atoms and are primarily produced by cysteinyl tRNA synthetase-2 (CARS2). Here, we investigated the role of supersulfides in chondrocyte proliferation and bone growth driven by growth plate chondrocyte proliferation. METHODS We examined the effects of NaHS, an HS-/H2S donor, and cystine, the cellular source of cysteine, on the proliferation of mouse primary chondrocytes and growth of embryonic mouse tibia in vitro. We also examined the effect of RNA interference acting on the Cars2 gene on chondrocyte proliferation in the presence of cystine. RESULTS NaHS (30 μmol/L) enhanced tibia longitudinal growth in vitro with expansion of the proliferating zone of their growth plates. While NaHS (30 μmol/L) also promoted chondrocyte proliferation only under normoxic conditions (20 % O2), cystine (0.5 mmol/L) promoted it under both normoxic and hypoxic (2 % O2) conditions. Cars2 gene knockdown abrogated the ability of cystine (0.5 mmol/L) to promote chondrocyte proliferation under normoxic conditions, indicating that supersulfides produced by CARS2 were responsible for the cystine-dependent promotion of bone growth. CONCLUSIONS The presented results indicate that supersulfides play a vital role in bone growth achieved by chondrocyte proliferation in the growth plates driven by sulfur respiration.
Collapse
Affiliation(s)
- Yuji Sasama
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Marie Hoshino
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuyoshi Baba
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
28
|
Ma Z, Sun J, Jiang Q, Zhao Y, Jiang H, Sun P, Feng W. Identification and analysis of mitochondria-related central genes in steroid-induced osteonecrosis of the femoral head, along with drug prediction. Front Endocrinol (Lausanne) 2024; 15:1341366. [PMID: 38384969 PMCID: PMC10879930 DOI: 10.3389/fendo.2024.1341366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory orthopedic hip joint disease that primarily affects middle-aged and young individuals. SONFH may be caused by ischemia and hypoxia of the femoral head, where mitochondria play a crucial role in oxidative reactions. Currently, there is limited literature on whether mitochondria are involved in the progression of SONFH. Here, we aim to identify and validate key potential mitochondrial-related genes in SONFH through bioinformatics analysis. This study aims to provide initial evidence that mitochondria play a role in the progression of SONFH and further elucidate the mechanisms of mitochondria in SONFH. Methods The GSE123568 mRNA expression profile dataset includes 10 non-SONFH (non-steroid-induced osteonecrosis of the femoral head) samples and 30 SONFH samples. The GSE74089 mRNA expression profile dataset includes 4 healthy samples and 4 samples with ischemic necrosis of the femoral head. Both datasets were downloaded from the Gene Expression Omnibus (GEO) database. The mitochondrial-related genes are derived from MitoCarta3.0, which includes data for all 1136 human genes with high confidence in mitochondrial localization based on integrated proteomics, computational, and microscopy approaches. By intersecting the GSE123568 and GSE74089 datasets with a set of mitochondrial-related genes, we screened for mitochondrial-related genes involved in SONFH. Subsequently, we used the good Samples Genes method in R language to remove outlier genes and samples in the GSE123568 dataset. We further used WGCNA to construct a scale-free co-expression network and selected the hub gene set with the highest connectivity. We then intersected this gene set with the previously identified mitochondrial-related genes to select the genes with the highest correlation. A total of 7 mitochondrial-related genes were selected. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the selected mitochondrial-related genes using R software. Furthermore, we performed protein network analysis on the differentially expressed proteins encoded by the mitochondrial genes using STRING. We used the GSEA software to group the genes within the gene set in the GSE123568 dataset based on their coordinated changes and evaluate their impact on phenotype changes. Subsequently, we grouped the samples based on the 7 selected mitochondrial-related genes using R software and observed the differences in immune cell infiltration between the groups. Finally, we evaluated the prognostic significance of these features in the two datasets, consisting of a total of 48 samples, by integrating disease status and the 7 gene features using the cox method in the survival R package. We performed ROC analysis using the roc function in the pROC package and evaluated the AUC and confidence intervals using the ci function to obtain the final AUC results. Results Identification and analysis of 7 intersecting DEGs (differentially expressed genes) were obtained among peripheral blood, cartilage samples, hub genes, and mitochondrial-related genes. These 7 DEGs include FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR, all of which are upregulated genes with no intersection in the downregulated gene set. Subsequently, GO and KEGG pathway enrichment analysis revealed that the upregulated DEGs are primarily involved in processes such as oxidative stress, release of cytochrome C from mitochondria, negative regulation of intrinsic apoptotic signaling pathway, cell apoptosis, mitochondrial metabolism, p53 signaling pathway, and NK cell-mediated cytotoxicity. GSEA also revealed enriched pathways associated with hub genes. Finally, the diagnostic value of these key genes for hormone-related ischemic necrosis of the femoral head (SONFH) was confirmed using ROC curves. Conclusion BID, FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR may serve as potential diagnostic mitochondrial-related biomarkers for SONFH. Additionally, they hold research value in investigating the involvement of mitochondria in the pathogenesis of ischemic necrosis of the femoral head.
Collapse
Affiliation(s)
- Zheru Ma
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Jing Sun
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Jiang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Haozhuo Jiang
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Peng Sun
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Wei Feng
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| |
Collapse
|
29
|
Xu Y, Wu C, Jin J, Tang W, Chen Y, Chang AK, Ying X. Transcriptome Analysis and Identification of Cadmium-Induced Oxidative Stress Response Genes in Different Meretrix meretrix Developmental Stages. Animals (Basel) 2024; 14:352. [PMID: 38275810 PMCID: PMC10812554 DOI: 10.3390/ani14020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cadmium (Cd) is one of the major pollutants in the aquatic environment, and it can easily accumulate in aquatic animals and result in toxic effects by changing the metabolism of the body, causing a serious impact on the immune system, reproductive system, and the development of offspring. The clam Meretrix meretrix is one of the commercially important species that is cultivated in large-scale aquaculture in China. To elucidate the underlying molecular mechanisms of Cd2+ in the developmental processes, fertilized eggs and larvae of M. meretrix at different developmental stages were exposed to Cd2+ (27.2 mg L-1 in natural seawater) or just natural seawater without Cd2+ (control), and high-throughput transcriptome sequencing and immunohistochemistry techniques were used to analyze the toxic effects of Cd on larvae at different early developmental stages. The results revealed 31,914 genes were differentially expressed in the different stages of M. meretrix development upon treatment with Cd2+. Ten of these genes were differentially expressed in all stages of development examined, but they comprised only six unigenes (CCO, Ndh, HPX, A2M, STF, and pro-C3), all of which were related to the oxidative stress response. Under Cd exposure, the expression levels of CCO and Ndh were significantly upregulated in D-shaped and pediveliger larvae, while pro-C3 expression was significantly upregulated in the fertilized egg, D-shaped larva, and pediveliger. Moreover, HPX, A2M, and STF expression levels in the fertilized egg and pediveliger larvae were also significantly upregulated. In contrast, CCO, Ndh, HPX, A2M, STF, and pro-C3 expression levels in the postlarva were all downregulated under Cd exposure. Besides the genes with changes in expression identified by the transcriptome, the expression of two other oxidative stress-related genes (MT and Nfr2) was also found to change significantly in the different developmental stages of M. meretrix upon Cd exposure, confirming their roles in combating oxidative stress. Overall, the findings of this study indicated that Cd would interfere with cellular respiration, ion transport, and immune response through inducing oxidative stress, and changes in the expression of oxidative stress-related genes might be an important step for M. meretrix to deal with the adverse effects of Cd at different stages of its development.
Collapse
Affiliation(s)
- Yiyuan Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.X.)
| | - Chenghui Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.X.)
| | - Jianyu Jin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.X.)
| | - Wenhan Tang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.X.)
| | - Yuting Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.X.)
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.X.)
| | - Xueping Ying
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; (Y.X.)
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
30
|
Ogata S, Matsunaga T, Jung M, Barayeu U, Morita M, Akaike T. Persulfide Biosynthesis Conserved Evolutionarily in All Organisms. Antioxid Redox Signal 2023; 39:983-999. [PMID: 37565274 PMCID: PMC10655014 DOI: 10.1089/ars.2023.0405] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Significance: Persulfides/polysulfides are sulfur-catenated molecular species (i.e., R-Sn-R', n > 2; R-Sn-H, n > 1, with R = cysteine, glutathione, and proteins), such as cysteine persulfide (CysSSH). These species are abundantly formed as endogenous metabolites in mammalian and human cells and tissues. However, the persulfide synthesis mechanism has yet to be thoroughly discussed. Recent Advances: We used β-(4-hydroxyphenyl)ethyl iodoacetamide and mass spectrometry to develop sulfur metabolomics, a highly precise, quantitative analytical method for sulfur metabolites. Critical Issues: With this method, we detected appreciable amounts of different persulfide species in biological specimens from various organisms, from the domains Bacteria, Archaea, and Eukarya. By using our rigorously quantitative approach, we identified cysteinyl-tRNA synthetase (CARS) as a novel persulfide synthase, and we found that the CysSSH synthase activity of CARS is highly conserved from the domains Bacteria to Eukarya. Because persulfide synthesis is found not only with CARS but also with other sulfotransferase enzymes in many organisms, persulfides/polysulfides are expected to contribute as fundamental elements to substantially diverse biological phenomena. In fact, persulfide generation in higher organisms-that is, plants and animals-demonstrated various physiological functions that are mediated by redox signaling, such as regulation of energy metabolism, infection, inflammation, and cell death, including ferroptosis. Future Directions: Investigating CARS-dependent persulfide production may clarify various pathways of redox signaling in physiological and pathophysiological conditions and may thereby promote the development of preventive and therapeutic measures for oxidative stress as well as different inflammatory, metabolic, and neurodegenerative diseases. Antioxid. Redox Signal. 39, 983-999.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
31
|
Barayeu U, Sawa T, Nishida M, Wei FY, Motohashi H, Akaike T. Supersulfide biology and translational medicine for disease control. Br J Pharmacol 2023. [PMID: 37872133 DOI: 10.1111/bph.16271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
For decades, the major focus of redox biology has been oxygen, the most abundant element on Earth. Molecular oxygen functions as the final electron acceptor in the mitochondrial respiratory chain, contributing to energy production in aerobic organisms. In addition, oxygen-derived reactive oxygen species including hydrogen peroxide and nitrogen free radicals, such as superoxide, hydroxyl radical and nitric oxide radical, undergo a complicated sequence of electron transfer reactions with other biomolecules, which lead to their modified physiological functions and diverse biological and pathophysiological consequences (e.g. oxidative stress). What is now evident is that oxygen accounts for only a small number of redox reactions in organisms and knowledge of biological redox reactions is still quite limited. This article reviews a new aspects of redox biology which is governed by redox-active sulfur-containing molecules-supersulfides. We define the term 'supersulfides' as sulfur species with catenated sulfur atoms. Supersulfides were determined to be abundant in all organisms, but their redox biological properties have remained largely unexplored. In fact, the unique chemical properties of supersulfides permit them to be readily ionized or radicalized, thereby allowing supersulfides to actively participate in redox reactions and antioxidant responses in cells. Accumulating evidence has demonstrated that supersulfides are indispensable for fundamental biological processes such as energy production, nucleic acid metabolism, protein translation and others. Moreover, manipulation of supersulfide levels was beneficial for pathogenesis of various diseases. Thus, supersulfide biology has opened a new era of disease control that includes potential applications to clinical diagnosis, prevention and therapeutics of diseases.
Collapse
Grants
- 22K19397 Ministry of Education, Culture, Sports, Science and Technology
- 21H05263 Ministry of Education, Culture, Sports, Science and Technology
- 18H05277 Ministry of Education, Culture, Sports, Science and Technology
- 21H04799 Ministry of Education, Culture, Sports, Science and Technology
- 21H05264 Ministry of Education, Culture, Sports, Science and Technology
- 21H05265 Ministry of Education, Culture, Sports, Science and Technology
- 21H02659 Ministry of Education, Culture, Sports, Science and Technology
- JPMJER2002 Ministry of Education, Culture, Sports, Science and Technology
- JPMJFR205Y Ministry of Education, Culture, Sports, Science and Technology
- 22K19395 Ministry of Education, Culture, Sports, Science and Technology
- 22H02772 Ministry of Education, Culture, Sports, Science and Technology
- 21H05269 Ministry of Education, Culture, Sports, Science and Technology
- 21H05267 Ministry of Education, Culture, Sports, Science and Technology
- 21H02071 Ministry of Education, Culture, Sports, Science and Technology
- 21H05258 Ministry of Education, Culture, Sports, Science and Technology
- JPMJCR2024 Japan Science and Technology Agency
- PE23749 Japan Society for the Promotion of Science
- JP21zf0127001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
32
|
Takeda H, Murakami S, Liu Z, Sawa T, Takahashi M, Izumi Y, Bamba T, Sato H, Akaike T, Sekine H, Motohashi H. Sulfur metabolic response in macrophage limits excessive inflammatory response by creating a negative feedback loop. Redox Biol 2023; 65:102834. [PMID: 37536084 PMCID: PMC10412850 DOI: 10.1016/j.redox.2023.102834] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The excessive inflammatory response of macrophages plays a vital role in the pathogenesis of various diseases. The dynamic metabolic alterations in macrophages, including amino acid metabolism, are known to orchestrate their inflammatory phenotype. To explore a new metabolic pathway that regulates the inflammatory response, we examined metabolome changes in mouse peritoneal macrophages (PMs) in response to lipopolysaccharide (LPS) and found a coordinated increase of cysteine and its related metabolites, suggesting an enhanced demand for cysteine during the inflammatory response. Because Slc7a11, which encodes a cystine transporter xCT, was remarkably upregulated upon the pro-inflammatory challenge and found to serve as a major channel of cysteine supply, we examined the inflammatory behavior of Slc7a11 knockout PMs (xCT-KO PMs) to clarify an impact of the increased cysteine demand on inflammation. The xCT-KO PMs exhibited a prolonged upregulation of pro-inflammatory genes, which was recapitulated by cystine depletion in the culture media of wild-type PMs, suggesting that cysteine facilitates the resolution of inflammation. Detailed analysis of the sulfur metabolome revealed that supersulfides, such as cysteine persulfide, were increased in PMs in response to LPS, which was abolished in xCT-KO PMs. Supplementation of N-acetylcysteine tetrasulfide (NAC-S2), a supersulfide donor, attenuated the pro-inflammatory gene expression in xCT-KO PMs. Thus, activated macrophages increase cystine uptake via xCT and produce supersulfides, creating a negative feedback loop to limit excessive inflammation. Our study highlights the finely tuned regulation of macrophage inflammatory response by sulfur metabolism.
Collapse
Affiliation(s)
- Haruna Takeda
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Shohei Murakami
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Zun Liu
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjou, Kumamoto, 860-8556, Japan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, 951-8518, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroki Sekine
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
33
|
Matsunaga T, Sano H, Takita K, Morita M, Yamanaka S, Ichikawa T, Numakura T, Ida T, Jung M, Ogata S, Yoon S, Fujino N, Kyogoku Y, Sasaki Y, Koarai A, Tamada T, Toyama A, Nakabayashi T, Kageyama L, Kyuwa S, Inaba K, Watanabe S, Nagy P, Sawa T, Oshiumi H, Ichinose M, Yamada M, Sugiura H, Wei FY, Motohashi H, Akaike T. Supersulphides provide airway protection in viral and chronic lung diseases. Nat Commun 2023; 14:4476. [PMID: 37491435 PMCID: PMC10368687 DOI: 10.1038/s41467-023-40182-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Supersulphides are inorganic and organic sulphides with sulphur catenation with diverse physiological functions. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulphide synthase (CPERS). Here, we identify protective functions of supersulphides in viral airway infections (influenza and COVID-19), in aged lungs and in chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF). We develop a method for breath supersulphur-omics and demonstrate that levels of exhaled supersulphides increase in people with COVID-19 infection and in a hamster model of SARS-CoV-2 infection. Lung damage and subsequent lethality that result from oxidative stress and inflammation in mouse models of COPD, IPF, and ageing were mitigated by endogenous supersulphides production by CARS2/CPERS or exogenous administration of the supersulphide donor glutathione trisulphide. We revealed a protective role of supersulphides in airways with various viral or chronic insults and demonstrated the potential of targeting supersulphides in lung disease.
Collapse
Affiliation(s)
- Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shun Yamanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Sunghyeon Yoon
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Atsuhiko Toyama
- Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, 604-8511, Japan
| | - Takakazu Nakabayashi
- Bio-Structural Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Lisa Kageyama
- Bio-Structural Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Shigeru Kyuwa
- Laboratory of Biomedical Science, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, 1122, Hungary
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
34
|
Fukuto JM. The chemistry of hydropersulfides (RSSH) as related to possible physiological functions. Arch Biochem Biophys 2023:109659. [PMID: 37263465 DOI: 10.1016/j.abb.2023.109659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Hydropersulfides (RSSH) are oxidized thiol (RSH) derivatives that have been shown to be biologically prevalent with likely important functions (along with other polysulfur compounds). The functional utility of RSSH can be gleaned from their unique chemical properties. That is, RSSH possess chemical reactivity not present in other biologically relevant sulfur species that should allow them to be used in specific ways in biology as effector/signaling molecules. For example, compared to RSH, RSSH are considered to be superior nucleophiles, reductants and metal ligands. Moreover, unlike RSH, RSSH can be either reductants/nucleophiles or oxidants/electrophiles depending on the protonated state. It has also become clear that studies related to the chemical biology and physiology of hydrogen suflide (H2S) must also consider the effects of RSSH (and related polysulfur species) as they are biochemically linked. Herein is a discussion of the relevant chemistry of RSSH that can serve as a basis for understanding how RSSH can be used by cells to, for example, combat stresses and used in signaling. Also, discussed are some current experimental studies regarding the biological activity of RSSH that can be explained by their chemical properties.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
35
|
Nagy P. Recent advances in sulfur biology and chemistry. Redox Biol 2023:102716. [PMID: 37127439 DOI: 10.1016/j.redox.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; Department of Anatomy and Histology, Laboratory of Redox Biology, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary.
| |
Collapse
|