1
|
Mohammed CM, Al-Habib OAM. Nitric oxide-cyclic GMP role in Ang II induced hyperpolarization in bovine aortic endothelium cell line (BAE-1). Cytotechnology 2024; 76:113-121. [PMID: 38304622 PMCID: PMC10828259 DOI: 10.1007/s10616-023-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024] Open
Abstract
Angiotensin II (Ang II), a mitogen-activated peptide, exerts numerous effects on the cardiovascular system including the regulation of blood pressure. The current study focused on the potential mechanisms that seem to be involved in Ang II vasodilation using bovine aortic endothelial cells (BAE-1) cell lines. Expression of the Ang II receptor (AT2) in BAE-1 was checked by western blots in the presence of valsartan (AT1 inhibitor). To check if Ang II's vasodilator impact was mediated by the nitric oxide (NO) pathway, the Griess reagent was used. Furthermore, cell-attached patch-clamp and fire-polished borosilicate electrodes with a resistance of 3-5 MΩ in the working solutions was used to record membrane currents from treated BAE-1. BEA-1 revealed 50 kDa immunoreactive bands that matched AT2. The concentration of AT2 was elevated in valsartan-treated cells in comparison to control cells. The biochemical experimental data indicated that the NO level increased in a concentration-dependent manner. Meanwhile, Ang II at a concentration of 1 µM, the level of NO increased more than at 100 µM. In patch-clamp experiments, K current and chord conductance were enhanced after incubation of Ang II with valsartan. When 100 µM Ang II was added, the current peaked rapidly and after 15 min of incubation, the maximum value was obtained, as opposed to 10 min and control (110.9 ± 13.3 pA control, 141.4 ± 30.4 pA after 10 min and 174.4 ± 49.3 pA after 15 min). Ang II type two receptor inhibitor (PD1231777) reduced the current and conductance induced by Ang II. The presented data revealed that Ang II released NO via the activation of AT2. K currents were stimulated by Ang II and evoked mainly a current consistent with the activation of K channels.
Collapse
Affiliation(s)
- Chinar M. Mohammed
- Department of Biology, Faculty of Science, University of Zakho, Duhok, Kurdistan Region Iraq
| | | |
Collapse
|
2
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Vassiliou AG, Vrettou CS, Keskinidou C, Dimopoulou I, Kotanidou A, Orfanos SE. Endotheliopathy in Acute COVID-19 and Long COVID. Int J Mol Sci 2023; 24:8237. [PMID: 37175942 PMCID: PMC10179170 DOI: 10.3390/ijms24098237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The pulmonary endothelium is a highly regulated organ that performs a wide range of functions under physiological and pathological conditions. Since endothelial dysfunction has been demonstrated to play a direct role in sepsis and acute respiratory distress syndrome, its role in COVID-19 has also been extensively investigated. Indeed, apart from the COVID-19-associated coagulopathy biomarkers, new biomarkers were recognised early during the pandemic, including markers of endothelial cell activation or injury. We systematically searched the literature up to 10 March 2023 for studies examining the association between acute and long COVID-19 severity and outcomes and endothelial biomarkers.
Collapse
Affiliation(s)
- Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| | | | | | | | | | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| |
Collapse
|
4
|
Vassiliou AG, Zacharis A, Keskinidou C, Jahaj E, Pratikaki M, Gallos P, Dimopoulou I, Kotanidou A, Orfanos SE. Soluble Angiotensin Converting Enzyme 2 (ACE2) Is Upregulated and Soluble Endothelial Nitric Oxide Synthase (eNOS) Is Downregulated in COVID-19-induced Acute Respiratory Distress Syndrome (ARDS). Pharmaceuticals (Basel) 2021; 14:ph14070695. [PMID: 34358119 PMCID: PMC8308597 DOI: 10.3390/ph14070695] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
A damaged endothelium is an underlying condition of the many complications of COVID-19 patients. The increased mortality risk associated with diseases that have underlying endothelial dysfunction, such as acute respiratory distress syndrome (ARDS), suggests that endothelial (e) nitric oxide synthase (NOS)-derived nitric oxide could be an important defense mechanism. Additionally, intravenous recombinant angiotensin converting enzyme 2 (ACE2) was recently reported as an effective therapy in severe COVID-19, by blocking viral entry, and thus reducing lung injury. Very few studies exist on the prognostic value of endothelium-related protective molecules in severe COVID-19 disease. To this end, serum levels of eNOS, inducible (i) NOS, adrenomedullin (ADM), soluble (s) ACE2 levels, and serum (s) ACE activity were measured on hospital admission in 89 COVID-19 patients, hospitalized either in a ward or ICU, of whom 68 had ARDS, while 21 did not. In our cohort, the COVID-19-ARDS patients had considerably lower eNOS levels compared to the COVID-19 non-ARDS patients. On the other hand, sACE2 was significantly higher in the ARDS patients. iNOS, ADM and sACE activity did not differ. Our results might support the notion of two distinct defense mechanisms in COVID-19-derived ARDS; eNOS-derived nitric oxide could be one of them, while the dramatic rise in sACE2 may also represent an endogenous mechanism involved in severe COVID-19 complications, such as ARDS. These results could provide insight to therapeutical applications in COVID-19.
Collapse
Affiliation(s)
- Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Alexandros Zacharis
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Edison Jahaj
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Maria Pratikaki
- Biochemical Department, Evangelismos Hospital, 106 76 Athens, Greece;
| | - Parisis Gallos
- Computational Biomedicine Laboratory, Department of Digital Systems, University of Piraeus, 185 34 Piraeus, Greece;
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.Z.); (C.K.); (E.J.); (I.D.); (A.K.)
- Correspondence: or ; Tel.: +30-2107235521
| |
Collapse
|
5
|
Rodriguez-Perez AI, Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, Franco R, Labandeira-Garcia JL. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav Immun 2020; 87:256-271. [PMID: 31863823 DOI: 10.1016/j.bbi.2019.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Overactivity of the angiotensin-type-1 receptor (AT1)/NADPH-oxidase axis enhances aging processes, neuroinflammation and neurodegeneration. The role of AT2 receptors in the above-mentioned AT1-related effects in the aged brain, particularly substantia nigra, was investigated in this study. In the nigra, we observed a progressive decrease in AT2 mRNA expression with aging, and AT2 deletion led to changes in spontaneous motor behavior, dopamine receptors, renin-angiotensin system, and pro-oxidative and pro-inflammatory markers similar to those observed in aged wild type (WT) mice. Both aged WT mice and young AT2 KO mice showed an increased AT1, decreased MAS receptor and increased angiotensinogen mRNA and/or protein expression, as well as upregulation of pro-oxidative and pro-inflammatory markers. In cultures of microglial cells, activation of AT2 receptors inhibited the LPS-induced increase in AT1 mRNA and protein expression and neuroinflammatory markers. Both in AT2 KO microglial cultures and microglia obtained from adult AT2 KO mice, an increase in AT1 mRNA expression was observed. In cultured dopaminergic neurons, AT2 activation down-regulated AT1 mRNA and protein, and dopaminergic neurons from adult AT2 KO mice showed upregulation of AT1 mRNA expression. Both in microglia and dopaminergic neurons the pathway AT2/nitric oxide/cyclic guanosine monophosphate mediates the regulation of the AT1 mRNA and protein expression through downregulation of the Sp1 transcription factor. MAS receptors are also involved in the regulation of AT1 mRNA and protein expression by AT2. The results suggest that an aging-related decrease in AT2 expression plays a major role in the aging-related AT1 overexpression and AT1-related pro-inflammatory pro-oxidative effects.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Pedrosa
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria Garcia-Garrote
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Gemma Navarro
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rafael Franco
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
6
|
Spaans F, Quon A, Kirschenman R, Morton JS, Sawamura T, Tannetta DS, Sargent IL, Davidge ST. Role of Lectin-like Oxidized LDL Receptor-1 and Syncytiotrophoblast Extracellular Vesicles in the Vascular Reactivity of Mouse Uterine Arteries During Pregnancy. Sci Rep 2020; 10:6046. [PMID: 32269313 PMCID: PMC7142154 DOI: 10.1038/s41598-020-63205-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/14/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular complications in pregnancy (e.g. preeclampsia) are a major source of maternal and foetal morbidity and mortality, and may be due to excessive release of placental syncytiotrophoblast-derived extracellular vesicles (STBEVs) into the maternal circulation. Increased activity of the multi-ligand scavenger receptor Lectin-like Oxidized LDL Receptor-1 (LOX-1) is associated with vascular dysfunction, and LOX-1 has been shown to interact with angiotensin II receptor type 1 (AT1). We hypothesized that STBEVs contribute to vascular dysfunction via LOX-1 and AT1 receptors during pregnancy. Uterine arteries from late pregnant wildtype and LOX-1 overexpressing mice were incubated overnight with or without STBEVs and vascular function was assessed using wire myography. STBEV-incubation decreased angiotensin II responsiveness only in wildtype mice, which coincided with decreased AT1 contribution and expression. Thus, STBEVs reduced angiotensin II responsiveness in normal pregnancy, but not in conditions of increased LOX-1 expression, suggesting that STBEVs (via LOX-1) play a role in normal adaptations to pregnancy. Oxidized LDL (a LOX-1 ligand) increased angiotensin II-induced vasoconstriction in STBEV-incubated arteries from both mouse strains, suggesting that the LOX-1 pathway may be involved in complicated pregnancies with elevated STBEVs and oxidized LDL levels (such as preeclampsia). These data increase our understanding of vascular complications during pregnancy.
Collapse
Affiliation(s)
- Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | | | - Ian L Sargent
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Department of Physiology, University of Alberta, Edmonton, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
7
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
8
|
Endothelium-derived vasoactive agents, AT1 receptors and inflammation. Pharmacol Ther 2011; 131:187-203. [DOI: 10.1016/j.pharmthera.2010.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 12/25/2022]
|
9
|
di Giacomo V, Rapino M, Sancilio S, Patruno A, Zara S, Di Pietro R, Cataldi A. PKC-δ signalling pathway is involved in H9c2 cells differentiation. Differentiation 2010; 80:204-212. [PMID: 20817341 DOI: 10.1016/j.diff.2010.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 02/05/2023]
Abstract
H9c2 are rat heart embryonic myoblasts, with skeletal muscle properties, which terminally differentiate by fusing and forming multinucleated myotubes. Here we investigated the possible involvement of Protein Kinases C (PKCs) in H9c2 cell differentiation and explored the interplay of these enzymes both with reactive oxygen species (ROS), upstream physiological mediators of cell differentiation, and with nitric oxide (NO), downstream target of PKC activation, known for being involved in apoptosis induction in differentiated myoblasts. Cells were induced to differentiate (6 days) under low serum culture conditions and assayed for the expression of cell cycle (cyclin A) and differentiation markers (morphology and myogenin). Both ROS and in vivo production of NO were found increased after 6 days of differentiation, when the activation of PKC-δ isoform was 14-fold increased compared with the undifferentiated control cells. The parallel analysis of apoptotic features demonstrated a small increase in Annexin-V+ cells and a concomitant increase in PARP cleavage and Bax expression. Interestingly, a reduced percentage of differentiated cells was obtained both in the presence of Rottlerin, a highly selective PKC-δ pharmacologic inhibitor, and, moreover, with the use of PKC-δ siRNA technology, further supporting the involvement of PKC-δ in switching on the events related to skeletal muscle myoblast differentiation.
Collapse
|
10
|
Wong WT, Tian XY, Xu A, Ng CF, Lee HK, Chen ZY, Au CL, Yao X, Huang Y. Angiotensin II type 1 receptor-dependent oxidative stress mediates endothelial dysfunction in type 2 diabetic mice. Antioxid Redox Signal 2010; 13:757-68. [PMID: 20136508 DOI: 10.1089/ars.2009.2831] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the effect of the renin-angiotensin-aldosterone system (RAAS) inhibition on endothelial dysfunction in type 2 diabetes are incompletely understood. This study explored a causal relationship between RAAS activation and oxidative stress involved in diabetes-associated endothelial dysfunction. Daily oral administration of valsartan or enalapril at 10 mg/kg/day to db/db mice for 6 weeks reversed the blunted acetylcholine-induced endothelium-dependent dilatations, suppressed the upregulated expression of angiotensin II type 1 receptor (AT(1)R) and NAD(P)H oxidase subunits (p22(phox) and p47(phox)), and reduced reactive oxygen species (ROS) production. Acute exposure to AT(1)R blocker losartan restored the impaired endothelium-dependent dilatations in aortas of db/db mice and also in renal arteries of diabetic patients (fasting plasma glucose level > or =7.0 mmol/l). Similar observations were also made with apocynin, diphenyliodonium, or tempol treatment in db/db mouse aortas. DHE fluorescence revealed an overproduction of ROS in db/db aortas which was sensitive to inhibition by losartan or ROS scavengers. Losartan also prevented the impairment of endothelium-dependent dilatations under hyperglycemic conditions that were accompanied by high ROS production. The present study has identified an initiative role of AT(1)R activation in mediating endothelial dysfunction of arteries from db/db mice and diabetic patients.
Collapse
Affiliation(s)
- Wing Tak Wong
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Effects of low protein intake on the development of the remaining kidney in subtotally nephrectomized immature rats: expression of inducible and endothelial NO synthase. Med Mol Morphol 2010; 43:116-22. [PMID: 20683700 DOI: 10.1007/s00795-009-0485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/16/2009] [Indexed: 10/19/2022]
Abstract
We examined the effects of low protein intake on the development of the remaining kidney in subtotally (5/6) nephrectomized immature rats. Three-week-old rats were kept on a diet containing either 12% protein (Lp rats) or 18% protein (Np rats) for 4 or 8 weeks after subtotal nephrectomy (SUNx). In Western blot analysis, the endothelial NO synthase (eNOS) protein expression of the Lp rats was significantly higher than that of the Np rats at 4 weeks after SUNx. Immunohistochemically, more inducible NO synthase (iNOS)-positive cells were observed in the Np rats than in the Lp rats 4 weeks after SUNx in the distal tubules. In semiquantitative RT-PCR, the expression of renin mRNA was significantly lower in the Lp rats than in the Np rats at 4 and 8 weeks after SUNx. These findings reveal that protein restriction is effective in preventing renal failure of immature rats and that the changes in the expression levels of renin, eNOS, and iNOS is involved in the process of this prevention.
Collapse
|
12
|
Kataoka H, Murakami R, Numaguchi Y, Okumura K, Murohara T. Angiotensin II type 1 receptor blockers prevent tumor necrosis factor-alpha-mediated endothelial nitric oxide synthase reduction and superoxide production in human umbilical vein endothelial cells. Eur J Pharmacol 2010; 636:36-41. [PMID: 20353766 DOI: 10.1016/j.ejphar.2010.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/13/2010] [Accepted: 03/17/2010] [Indexed: 11/18/2022]
Abstract
Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation.
Collapse
Affiliation(s)
- Hiroki Kataoka
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
13
|
Ruiz-Holst C, Bölck B, Ghanem A, Tiemann K, Brokat S, Regitz-Zagrosek V, Bloch W, Schwinger RH, Brixius K. eNOS phosphorylation and translocation are altered in male but not female mice by increased activation of the Gαq protein. Can J Physiol Pharmacol 2010; 88:121-9. [DOI: 10.1139/y09-115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about sex-dependent physiological and pathophysiological differences in cardiac endothelial nitric oxide synthase (eNOS) expression and activation. Therefore, we investigated cardiac morphology and eNOS protein expression, including its translocation-dependent activation and phosphorylation, in cardiac tissue of male and female wild-type mice and transgenic heart-failure mice having a cardiac-specific, 5-fold overexpression of the Gαq protein. In addition, we measured calcineurin protein expression. Heart-to-body weight ratio was increased in Gαq mice. Female wild-type mice showed higher eNOS protein expression and activation (translocation and phosphorylation) than did wild-type males. In cardiac tissue of Gαq mice, these sex-dependent differences remained or were enhanced. Protein expression of the catalytic subunit calcineurin A, which has been shown to dephosphorylate eNOS, was higher in wild-type males than in wild-type females. These differences were increased in the Gαq mice model. We conclude that sex differences exist in cardiac eNOS protein expression and phosphorylation. Increased activation of the Gαq protein appears to alter eNOS protein expression and phosphorylation only in males.
Collapse
Affiliation(s)
- C. Ruiz-Holst
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - B. Bölck
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - A. Ghanem
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - K. Tiemann
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - S. Brokat
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - V. Regitz-Zagrosek
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - W. Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - Robert H.G. Schwinger
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| | - K. Brixius
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne 50924, Germany
- Department of Medicine-Cardiology, University of Bonn, Germany
- Department of Cardiology and Angiology, University of Münster, Germany
- Center for Gender in Medicine, GiM, and CCR, Charité, Berlin, Germany
| |
Collapse
|
14
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
15
|
|
16
|
Guan H, Wang P, Hui R, Edin ML, Zeldin DC, Wang DW. Adeno-associated virus-mediated human C-reactive protein gene delivery causes endothelial dysfunction and hypertension in rats. Clin Chem 2009; 55:274-84. [PMID: 19056836 PMCID: PMC2749215 DOI: 10.1373/clinchem.2008.115857] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prospective studies have shown that C-reactive protein (CRP) is a predictor of hypertension. Because of confounding variables, a causal linkage between CRP and hypertension has not been clearly shown. We investigated whether high circulating concentrations of human CRP can induce hypertension in rats. METHODS We administered a single intravenous injection of adeno-associated virus-green fluorescent protein (AAV-GFP) or AAV-hCRP and measured blood pressure. Using ELISA, we measured serum hCRP, serum endothelin 1 (ET-1), and urine cGMP, and we measured serum nitric oxide (NO) using the Griess method. We recorded heart rate, maximum pressure, arterial elastance, mean aortic pressure, cardiac output, and maximum rate of rise in left ventricular pressure (dP/dt max). RESULTS A single injection of AAV-hCRP resulted in efficient and sustained hCRP expression and led to increased blood pressure 2 months after gene transfer that persisted for another 2 months. This effect was associated with decreased NO production, as demonstrated by decreased serum NO concentration and urinary cGMP excretion, and impairment of endothelial-dependent vascular relaxation. CRP transduction also increased expression of angiotensin type 1 receptor, ET-1, and endothelin type A receptor, decreased expression of angiotensin type 2 receptor and endothelial NO synthase in thoracic aortas, and increased arterial stiffness. Ex vivo studies indicated a similar detrimental effect of CRP that was reversed by the NO donor. CONCLUSION AAV vector-mediated CRP expression resulted in hypertension mediated through reduced NO production and subsequent alteration in ET-1 and renin-angiotensin system activation. Impaired arterial elasticity may also contribute to CRP-induced hypertension. These results support a causal role for CRP in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Hongjing Guan
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030
- Renmin Hospital of Wuhan University
| | - Peihua Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030
| | - Rutai Hui
- Fuwai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Dao Wen Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030
| |
Collapse
|
17
|
Zhang R, Bai YG, Lin LJ, Bao JX, Zhang YY, Tang H, Cheng JH, Jia GL, Ren XL, Ma J. Blockade of AT1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats. J Appl Physiol (1985) 2009; 106:251-8. [DOI: 10.1152/japplphysiol.01278.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have demonstrated activation of the local renin-angiotensin system in hindlimb unweighting (HU) rat vasculature. The present study intended to identify the effects of blockade of angiotensin II (ANG II) type 1 (AT1) receptors with losartan on vascular reactivity, nitric oxide synthase (NOS) expression, and superoxide anion (O2•−) levels in 3-wk HU rat cerebral and carotid arteries. Three weeks later, vasoconstriction, vasodilatation, endothelial NOS (eNOS) and inducible NOS (iNOS) protein, as well as O2•− levels in rat cerebral and carotid arteries were examined. We found that HU enhanced maximal response to KCl/5-hydroxytryptamine ( P < 0.01) in basilar arteries and KCl/phenylephrine ( P < 0.05) in common carotid arteries from HU rats. Acetylcholine induced concentration-dependent vasodilatation in all the artery rings, but with significantly smaller amplitude in basilar ( P < 0.01) and common carotid ( P < 0.05) arteries from HU rats than those from control rats. Chronic treatment with losartan partially restored response to vasoconstrictors and acetylcholine-induced vasodilatation in basilar ( P < 0.01) and common carotid ( P < 0.05) arteries from losartan-treated HU rats. Furthermore, iNOS content in cerebral arteries and eNOS/iNOS content in carotid arteries were significantly ( P < 0.01) increased in HU rats. Meanwhile, HU increased O2•− levels in all the layers of these arteries. However, losartan restored NOS content and O2•− levels toward normal. These results suggested that the HU-induced enhancement of vasoconstriction and reduction in endothelium-dependent relaxation involved alterations in O2•− and NOS content through an ANG II/AT1 receptor signaling pathway.
Collapse
|
18
|
Courtois A, Andujar P, Ladeiro Y, Baudrimont I, Delannoy E, Leblais V, Begueret H, Galland MAB, Brochard P, Marano F, Marthan R, Muller B. Impairment of NO-dependent relaxation in intralobar pulmonary arteries: comparison of urban particulate matter and manufactured nanoparticles. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1294-9. [PMID: 18941568 PMCID: PMC2569085 DOI: 10.1289/ehp.11021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/15/2008] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Because pulmonary circulation is the primary vascular target of inhaled particulate matter (PM), and nitric oxide is a major vasculoprotective agent, in this study we investigated the effect of various particles on the NO-cyclic guanosine monophosphate (cGMP) pathway in pulmonary arteries. METHODS We used intrapulmonary arteries and/or endothelial cells, either exposed in vitro to particles or removed from PM-instilled animals for assessment of vasomotricity, cGMP and reactive oxygen species (ROS) levels, and cytokine/chemokine release. RESULTS Endothelial NO-dependent relaxation and cGMP accumulation induced by acetylcholine (ACh) were both decreased after 24 hr exposure of rat intrapulmonary arteries to standard reference material 1648 (SRM1648; urban PM). Relaxation due to NO donors was also decreased by SRM1648, whereas responsiveness to cGMP analogue remained unaffected. Unlike SRM1648, ultrafine carbon black and ultrafine and fine titanium dioxide (TiO2) manufactured particles did not impair NO-mediated relaxation. SRM1648-induced decrease in relaxation response to ACh was prevented by dexamethasone (an anti-inflammatory agent) but not by antioxidants. Accordingly, SRM1648 increased the release of proinflammatory mediators (tumor necrosis factor-alpha, interleukin-8) from intrapulmonary arteries or pulmonary artery endothelial cells, but did not elevate ROS levels within intrapulmonary arteries. Decreased relaxation in response to ACh was also evidenced in intrapulmonary arteries removed from rats intratracheally instilled with SRM1648, but not with fine TiO2. CONCLUSION In contrast to manufactured particles (including nanoparticles), urban PM impairs NO but not cGMP responsiveness in intrapulmonary arteries. We attribute this effect to oxidative-stress-independent inflammatory response, resulting in decreased guanylyl cyclase activation by NO. Such impairment of the NO pathway may contribute to urban-PM-induced cardiovascular dysfunction.
Collapse
|
19
|
Leung BM, Sefton MV. A modular tissue engineering construct containing smooth muscle cells and endothelial cells. Ann Biomed Eng 2007; 35:2039-49. [PMID: 17882548 DOI: 10.1007/s10439-007-9380-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Accepted: 09/05/2007] [Indexed: 11/28/2022]
Abstract
Human umbilical vein endothelial cells (HUVEC) were seeded on sub-mm sized collagen cylinders containing embedded umbilical vein smooth muscle cells (UVSMC). These cylindrical "modules" are intended to be used as a vascularized construct, in which HUVEC lined channels are created by the random packing of the modules in situ or within a larger container. Embedding UVSMC cultured in medium containing 10% FBS had an adverse effect on subsequently seeded HUVEC junction morphology; HUVEC/UVSMC co-culturing was done in HUVEC medium (2% FBS with the addition of 0.03 mg/mL endothelial cell growth supplement) as compared to HUVEC seeded on collagen-only modules. In contrast, embedding UVSMC cultured in serum-free medium prior to embedding improved EC junction morphology. Such serum-free culturing, also prevented the UVSMC induced contraction of the collagen modules. On the other hand, embedding serum-free cultured UVSMC promoted HUVEC proliferation and NO secretion compared to those modules embedded with 10% serum cultured UVSMC. These results suggest, not surprisingly, that embedded UVSMC phenotype plays an important role in the seeded HUVEC phenotype, and that the response can be modulated by the UVSMC culture medium serum concentration. These studies were undertaken with a view to using the UVSMC to modulate the thrombogenicity of the HUVEC. Exploration of this outcome awaits further studies directed to understanding the mechanism of the cellular interactions.
Collapse
Affiliation(s)
- Brendan M Leung
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, M5S 3G9, Toronto, ON, Canada
| | | |
Collapse
|
20
|
Li J, Zhao X, Li X, Lerea KM, Olson SC. Angiotensin II type 2 receptor-dependent increases in nitric oxide synthase expression in the pulmonary endothelium is mediated via a Gαi3/Ras/Raf/MAPK pathway. Am J Physiol Cell Physiol 2007; 292:C2185-96. [PMID: 17329403 DOI: 10.1152/ajpcell.00204.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that angiotensin II (ANG II) stimulated Src tyrosine kinase via a pertussis toxin-sensitive type 2 receptor, which, in turn, activates MAPK, resulting in an increase in nitric oxide synthase (NOS) expression in pulmonary artery endothelial cells (PAECs). The present study was designed to investigate the pathway by which ANG II activates Src leading to an increase in ERK1/ERK2 phosphorylation and an increase in NOS protein in PAECs. Transfection of PAECs with Gαi3dominant negative (DN) cDNA blocked the ANG II-dependent activation of Src, ERK1/ERK2 phosphorylation, and increase in NOS expression. ANG II stimulated an increase in tyrosine phosphorylation of sequence homology of collagen (Shc; 15 min) that was prevented when PAECs were pretreated with 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolo-[3,4-d]pyrimidine (PP2), a Src inhibitor. ANG II induced a Src-dependent association between Shc and growth factor receptor-bound protein 2 (Grb2) and between Grb2 and son of sevenless (Sos), both of which were maximal at 15 min. The ANG II-dependent increase in Ras GTP binding was prevented when PAECs were pretreated with the AT2antagonist PD-123319 or with PP2 or were transfected with Src DN cDNA. ANG II-dependent activation of MAPK and the increase in endothelial NOS (eNOS) were prevented when PAECs were transfected with Ras DN cDNA or treated with FTI-277, a farnesyl transferase inhibitor. ANG II induction of Raf-1 phosphorylation was prevented when PAECs were pretreated with PD-123319 and PP2. Raf kinase inhibitor 1 prevented the ANG II-dependent increase in eNOS expression. Collectively, these data suggest that Gαi3, Shc, Grb2, Ras, and Raf-1 link Src to activation of MAPK and to the AT2-dependent increase in eNOS expression in PAECs.
Collapse
Affiliation(s)
- Jianyu Li
- Dept. of Biochemistry, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
21
|
Toda N, Ayajiki K, Okamura T. Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev 2007; 59:54-87. [PMID: 17329548 DOI: 10.1124/pr.59.1.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discovery of the unexpected intercellular messenger and transmitter nitric oxide (NO) was the highlight of highly competitive investigations to identify the nature of endothelium-derived relaxing factor. This labile, gaseous molecule plays obligatory roles as one of the most promising physiological regulators in cardiovascular function. Its biological effects include vasodilatation, increased regional blood perfusion, lowering of systemic blood pressure, and antithrombosis and anti-atherosclerosis effects, which counteract the vascular actions of endogenous angiotensin (ANG) II. Interactions of these vasodilator and vasoconstrictor substances in the circulation have been a topic that has drawn the special interest of both cardiovascular researchers and clinicians. Therapeutic agents that inhibit the synthesis and action of ANG II are widely accepted to be essential in treating circulatory and metabolic dysfunctions, including hypertension and diabetes mellitus, and increased availability of NO is one of the most important pharmacological mechanisms underlying their beneficial actions. ANG II provokes vascular actions through various receptor subtypes (AT1, AT2, and AT4), which are differently involved in NO synthesis and actions. ANG II and its derivatives, ANG III, ANG IV, and ANG-(1-7), alter vascular contractility with different mechanisms of action in relation to NO. This review article summarizes information concerning advances in research on interactions between NO and ANG in reference to ANG receptor subtypes, radical oxygen species, particularly superoxide anions, ANG-converting enzyme inhibitors, and ANG receptor blockers in patients with cardiovascular disease, healthy individuals, and experimental animals. Interactions of ANG and endothelium-derived relaxing factor other than NO, such as prostaglandin I2 and endothelium-derived hyperpolarizing factor, are also described.
Collapse
Affiliation(s)
- Noboru Toda
- Department of Pharmacology, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | |
Collapse
|
22
|
|