1
|
Castorina A, Scheller J, Keay KA, Marzagalli R, Rose-John S, Campbell IL. Increased Expression of the Neuropeptides PACAP/VIP in the Brain of Mice with CNS Targeted Production of IL-6 Is Mediated in Part by Trans-Signalling. Int J Mol Sci 2024; 25:9453. [PMID: 39273398 PMCID: PMC11395455 DOI: 10.3390/ijms25179453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.
Collapse
Affiliation(s)
- Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jurgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Kevin A. Keay
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Stefan Rose-John
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, 24098 Kiel, Germany;
| | - Iain L. Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
2
|
Bernard K, Dickson D, Anglin BL, Leandro Heien M, Polt R, Morrison HW, Falk T. PACAP glycosides promote cell outgrowth in vitro and reduce infarct size after stroke in a preclinical model. Neurosci Lett 2024; 836:137883. [PMID: 38914278 PMCID: PMC11384287 DOI: 10.1016/j.neulet.2024.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) is a pleiotropic peptide known to promote many beneficial processes following neural damage and cell death after stroke. Despite PACAP's known neurotrophic and anti-inflammatory properties, it has not realized its translational potential due to a poor pharmacokinetic profile (non-linear PK/PD), and limited Blood-Brain Barrier Penetration (BBB) permeability. We have previously shown that glycosylation of PACAP increases stability and enhances BBB penetration. In addition, our prior studies showed reduced neuronal cell death and neuroinflammation in models of Parkinson's disease and Traumatic Brain Injury (TBI). In this study we show that a PACAP(1-27) glucoside retains the known neurotrophic activity of native PACAP(1-27)in vitro and a 5-day daily treatment regimen (100 nM) leads to neurite-like extensions in PC12 cells. In addition, we show that intraperitoneal injection of a PACAP(1-27) lactoside (10 mg/kg) with improved BBB-penetration, given 1-hour after reperfusion in a Transient Middle Cerebral Artery Occlusion (tMCAO) mouse model, reduces the infarct size after the ischemic injury in males significantly by ∼ 36 %, and the data suggest a dose-dependency. In conclusion, our data support further development of PACAP glycopeptides as promising novel drug candidates for the treatment of stroke, an area with an urgent clinical need.
Collapse
Affiliation(s)
- Kelsey Bernard
- Physiological Sciences Graduate Program, The University of Arizona, Tucson, AZ 85724, United States
| | - Denali Dickson
- College of Nursing, The University of Arizona, Tucson, AZ 85724, United States
| | - Bobbi L Anglin
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - M Leandro Heien
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - Helena W Morrison
- College of Nursing, The University of Arizona, Tucson, AZ 85724, United States
| | - Torsten Falk
- Physiological Sciences Graduate Program, The University of Arizona, Tucson, AZ 85724, United States; Department of Neurology, The University of Arizona, Tucson, AZ 85724, United States; Department of Pharmacology, the University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
3
|
Wu Y, Angelova A. Recent Uses of Lipid Nanoparticles, Cell-Penetrating and Bioactive Peptides for the Development of Brain-Targeted Nanomedicines against Neurodegenerative Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3004. [PMID: 38063700 PMCID: PMC10708303 DOI: 10.3390/nano13233004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2024]
Abstract
The lack of effective treatments for neurodegenerative diseases (NDs) is an important current concern. Lipid nanoparticles can deliver innovative combinations of active molecules to target the various mechanisms of neurodegeneration. A significant challenge in delivering drugs to the brain for ND treatment is associated with the blood-brain barrier, which limits the effectiveness of conventional drug administration. Current strategies utilizing lipid nanoparticles and cell-penetrating peptides, characterized by various uptake mechanisms, have the potential to extend the residence time and bioavailability of encapsulated drugs. Additionally, bioactive molecules with neurotropic or neuroprotective properties can be delivered to potentially mediate the ND targeting pathways, e.g., neurotrophin deficiency, impaired lipid metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, accumulation of misfolded proteins or peptide fragments, toxic protein aggregates, oxidative stress damage, and neuroinflammation. This review discusses recent advancements in lipid nanoparticles and CPPs in view of the integration of these two approaches into nanomedicine development and dual-targeted nanoparticulate systems for brain delivery in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
4
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
6
|
Apostol CR, Tanguturi P, Szabò LZ, Varela D, Gilmartin T, Streicher JM, Polt R. Synthesis and In Vitro Characterization of Glycopeptide Drug Candidates Related to PACAP 1-23. Molecules 2021; 26:4932. [PMID: 34443519 PMCID: PMC8401035 DOI: 10.3390/molecules26164932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/05/2023] Open
Abstract
The search for efficacious treatment of neurodegenerative and progressive neuroinflammatory diseases continues, as current therapies are unable to halt or reverse disease progression. PACAP represents one potential therapeutic that provides neuroprotection effects on neurons, and also modulates inflammatory responses and circulation within the brain. However, PACAP is a relatively long peptide hormone that is not trivial to synthesize. Based on previous observations that the shortened isoform PACAP1-23 is capable of inducing neuroprotection in vitro, we were inspired to synthesize shortened glycopeptide analogues of PACAP1-23. Herein, we report the synthesis and in vitro characterization of glycosylated PACAP1-23 analogues that interact strongly with the PAC1 and VPAC1 receptors, while showing reduced activity at the VPAC2 receptor.
Collapse
Affiliation(s)
- Christopher R. Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Lajos Z. Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Daniel Varela
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - Thiago Gilmartin
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| |
Collapse
|
7
|
Kvarik T, Reglodi D, Werling D, Vaczy A, Kovari P, Szabo E, Kovacs K, Hashimoto H, Ertl T, Gyarmati J, Atlasz T. The Protective Effects of Endogenous PACAP in Oxygen-Induced Retinopathy. J Mol Neurosci 2021; 71:2546-2557. [PMID: 33895966 PMCID: PMC8602170 DOI: 10.1007/s12031-021-01846-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Pituitary adenylate cyclase–activating polypeptide (PACAP) is a neuropeptide having trophic and protective functions in neural tissues, including the retina. Previously, we have shown that intravitreal PACAP administration can maintain retinal structure in the animal model of retinopathy of prematurity (ROP). The purpose of this study is to examine the development of ROP in PACAP-deficient and wild-type mice to reveal the function of endogenous PACAP. Wild-type and PACAP-knockout (KO) mouse pups at postnatal day (PD) 7 were maintained at 75% oxygen for 5 consecutive days then returned to room air on PD12 to develop oxygen-induced retinopathy (OIR). On PD15, animals underwent electroretinography (ERG) to assess visual function. On PD16, eyes were harvested for either immunohistochemistry to determine the percentage of the central avascular retinal area or molecular analysis to assess angiogenesis proteins by array kit and anti-apoptotic protein kinase B (Akt) change by western blot. Retinas of PACAP-deficient OIR mice showed a greater central avascular area than that of the wild types. ERG revealed significantly decreased b-wave amplitude in PACAP KO compared to their controls. Several angiogenic proteins were upregulated due to OIR, and 11 different proteins markedly increased in PACAP-deficient mice, whereas western blot analysis revealed a reduction in Akt phosphorylation, suggesting an advanced cell death in the lack of PACAP. This is the first study to examine the endogenous effect of PACAP in the OIR model. Previously, we have shown the beneficial effect of exogenous local PACAP treatment in the rat OIR model. Together with the present findings, we suggest that PACAP could be a novel retinoprotective agent in ROP.
Collapse
Affiliation(s)
- Timea Kvarik
- Department of Anatomy, MTA-PTE PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary.,Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | - Dora Werling
- Department of Anatomy, MTA-PTE PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | - Petra Kovari
- Department of Anatomy, MTA-PTE PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tibor Ertl
- Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pecs, Hungary
| | - Judit Gyarmati
- Department of Obstetrics and Gynecology, Medical School, University of Pecs, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Pecs, Hungary.
| |
Collapse
|
8
|
Pituitary Adenylate Cyclase-Activating Polypeptide: A Potent Therapeutic Agent in Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10030354. [PMID: 33653014 PMCID: PMC7996859 DOI: 10.3390/antiox10030354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is a life-threatening condition that is characterized by secondary cell death processes that occur after the initial disruption of blood flow to the brain. The inability of endogenous repair mechanisms to sufficiently support functional recovery in stroke patients and the inadequate treatment options available are cause for concern. The pathology behind oxidative stress in stroke is of particular interest due to its detrimental effects on the brain. The oxidative stress caused by ischemic stroke overwhelms the neutralization capacity of the body's endogenous antioxidant system, which leads to an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and eventually results in cell death. The overproduction of ROS compromises the functional and structural integrity of brain tissue. Therefore, it is essential to investigate the mechanisms involved in oxidative stress to help obtain adequate treatment options for stroke. Here, we focus on the latest preclinical research that details the mechanisms behind secondary cell death processes that cause many central nervous system (CNS) disorders, as well as research that relates to how the neuroprotective molecular mechanisms of pituitary adenylate cyclase-activating polypeptides (PACAPs) could make these molecules an ideal candidate for the treatment of stroke.
Collapse
|
9
|
Cunha-Reis D, Caulino-Rocha A, Correia-de-Sá P. VIPergic neuroprotection in epileptogenesis: challenges and opportunities. Pharmacol Res 2021; 164:105356. [DOI: 10.1016/j.phrs.2020.105356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
|
10
|
Fang Y, Ren R, Shi H, Huang L, Lenahan C, Lu Q, Tang L, Huang Y, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke. Aging Dis 2020; 11:1496-1512. [PMID: 33269103 PMCID: PMC7673855 DOI: 10.14336/ad.2020.0626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
The search for viable, effective treatments for acute stroke continues to be a global priority due to the high mortality and morbidity. Current therapeutic treatments have limited effects, making the search for new treatments imperative. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-established cytoprotective neuropeptide that participates in diverse neural physiological and pathological activities, such as neuronal proliferation, differentiation, and migration, as well as neuroprotection. It is considered a promising treatment in numerous neurological diseases. Thus, PACAP bears potential as a new therapeutic strategy for stroke treatment. Herein, we provide an overview pertaining to the current knowledge of PACAP, its receptors, and its potential neuroprotective role in the setting of stroke, as well as various mechanisms of neuroprotection involving ionic homeostasis, excitotoxicity, cell edema, oxidative stress, inflammation, and cell death, as well as the route of PACAP administration.
Collapse
Affiliation(s)
- Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reng Ren
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- 2Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,5Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Qin Lu
- 6Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Lihui Tang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Huang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
11
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Effects of Pacap on Schwann Cells: Focus on Nerve Injury. Int J Mol Sci 2020; 21:ijms21218233. [PMID: 33153152 PMCID: PMC7663204 DOI: 10.3390/ijms21218233] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Collapse
|
13
|
Fang Y, Shi H, Ren R, Huang L, Okada T, Lenahan C, Gamdzyk M, Travis ZD, Lu Q, Tang L, Huang Y, Zhou K, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide Attenuates Brain Edema by Protecting Blood-Brain Barrier and Glymphatic System After Subarachnoid Hemorrhage in Rats. Neurotherapeutics 2020; 17:1954-1972. [PMID: 32918234 PMCID: PMC7851266 DOI: 10.1007/s13311-020-00925-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brain edema is a vital contributor to early brain injury after subarachnoid hemorrhage (SAH), which is responsible for prolonged hospitalization and poor outcomes. Pharmacological therapeutic targets on edema formation have been the focus of research for decades. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to participate in neural development and brain injury. Here, we used PACAP knockout CRISPR to demonstrate that endogenous PACAP plays an endogenous neuroprotective role against brain edema formation after SAH in rats. The exogenous PACAP treatment provided both short- and long-term neurological benefits by preserving the function of the blood-brain barrier and glymphatic system after SAH. Pretreatment of inhibitors of PACAP receptors showed that the PACAP-involved anti-edema effect and neuroprotection after SAH was facilitated by the selective PACAP receptor (PAC1). Further administration of adenylyl cyclase (AC) inhibitor and sulfonylurea receptor 1 (SUR1) CRISPR activator suggested that the AC-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) axis participated in PACAP signaling after SAH, which inhibited the expression of edema-related proteins, SUR1 and aquaporin-4 (AQP4), through SUR1 phosphorylation. Thus, PACAP may serve as a potential clinical treatment to alleviate brain edema in patients with SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Takeshi Okada
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Marcin Gamdzyk
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Zachary D Travis
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lihui Tang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Yi Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Keren Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA.
| |
Collapse
|
14
|
Cantu D, Croker D, Shacham S, Tamir S, Dulla C. In vivo KPT-350 treatment decreases cortical hyperexcitability following traumatic brain injury. Brain Inj 2020; 34:1489-1496. [PMID: 32853051 DOI: 10.1080/02699052.2020.1807056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PRIMARY OBJECTIVE We tested whether KPT-350, a novel selective inhibitor of nuclear export, could attenuate cortical network hyperexcitability, a major risk factor for developing post-traumatic epilepsy (PTE) following traumatic brain injury (TBI). RESEARCH DESIGN All mice in this study underwent TBI and were subsequently treated with either KPT-350 or vehicle during the post-injury latent period. Half of the animal cohort was used for electrophysiology while the other half was used for immunohistochemical analysis. METHODS AND PROCEDURES TBI was induced using the controlled cortical impact (CCI) model. Cortical network activity was recorded by evoking field potentials from deep layers of the cortex and analyzed using Matlab software. Immunohistochemistry coupled with fluorescence microscopy and Image J analysis detected changes in neuronal and glial markers. MAIN OUTCOMES AND RESULTS KPT-350 attenuated TBI-associated epileptiform activity and restored disrupted input-output responses in cortical brain slices. In vivo KPT-350 treatment reduced the loss of parvalbumin-(+) GABAergic interneurons after CCI but did not significantly change CCI-induced loss of somatostatin-(+) GABAergic interneurons, nor did it reduce reactivity of GFAP and Iba1 glial markers. CONCLUSION KPT-350 can prevent cortical hyperexcitability and reduce the loss of parvalbumin-(+) GABAergic inhibitory neurons, making it a potential therapeutic option for preventing PTE.
Collapse
Affiliation(s)
- David Cantu
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| | | | | | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| |
Collapse
|
15
|
Edvinsson JCA, Grell AS, Warfvinge K, Sheykhzade M, Edvinsson L, Haanes KA. Differences in pituitary adenylate cyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 2020; 40:1296-1309. [DOI: 10.1177/0333102420929026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Several neurotransmitters are expressed in the neurons of the trigeminal ganglion. One such signalling molecule is the pituitary adenylate cyclase-activating peptide (PACAP). PACAP signalling has been suggested to have a possible role in the pathophysiology of primary headaches. Objective The present study was designed to investigate the relationship between PACAP and calcitonin gene-related peptide, currently the two most relevant migraine peptides. Methods In the current study, we used ELISA to investigate PACAP and calcitonin gene-related peptide release in response to 60 mM K+ or capsaicin using a rat hemi-skull model. We combined this analysis with qPCR and immunohistochemistry to study the expression of PACAP and calcitonin gene-related peptide receptors and ligands. Results Calcitonin gene-related peptide (CGRP) is released from the trigeminal ganglion and dura mater. In contrast, PACAP is only released from the trigeminal ganglion. We observed a weak correlation between the stimulated release of the two neuropeptides. PACAP-38 immunoreactivity was expressed alone and in a subpopulation of neurons in the trigeminal ganglion that also store calcitonin gene-related peptide. The receptor subtype PAC1 was mainly expressed in the satellite glial cells (SGCs), which envelop the neurons in the trigeminal ganglion, in some neuronal processes, inside the Aδ-fibres and in the outermost layer of the myelin sheath that envelopes the Aδ-fibres. Conclusion Unlike CGRP, PACAP is only released within the trigeminal ganglion. This raises the question of whether a migraine therapy aimed at preventing peripheral PACAP signalling would be as successful as the CGRP signalling targeted treatments.
Collapse
Affiliation(s)
- Jacob Carl Alexander Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Medicine, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Medicine, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
16
|
Bioinformatic Analysis Reveals Phosphodiesterase 4D-Interacting Protein as a Key Frontal Cortex Dementia Switch Gene. Int J Mol Sci 2020; 21:ijms21113787. [PMID: 32471155 PMCID: PMC7313474 DOI: 10.3390/ijms21113787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that initiate dementia are poorly understood and there are currently no treatments that can slow their progression. The identification of key genes and molecular pathways that may trigger dementia should help reveal potential therapeutic reagents. In this study, SWItch Miner software was used to identify phosphodiesterase 4D-interacting protein as a key factor that may lead to the development of Alzheimer’s disease, vascular dementia, and frontotemporal dementia. Inflammation, PI3K-AKT, and ubiquitin-mediated proteolysis were identified as the main pathways that are dysregulated in these dementias. All of these dementias are regulated by 12 shared transcription factors. Protein–chemical interaction network analysis of dementia switch genes revealed that valproic acid may be neuroprotective for these dementias. Collectively, we identified shared and unique dysregulated gene expression, pathways and regulatory factors among dementias. New key mechanisms that lead to the development of dementia were revealed and it is expected that these data will advance personalized medicine for patients.
Collapse
|
17
|
Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020; 32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been a resurgence in regulatory peptide science as a result of three converging trends. The first is the increasing population of the drug pipeline with peptide-based therapeutics, mainly in, but not restricted to, incretin-like molecules for treatment of metabolic disorders such as diabetes. The second is the development of genetic and optogenetic tools enabling new insights into how peptides actually function within brain and peripheral circuits to accomplish homeostatic and allostatic regulation. The third is the explosion in defined structures of the G-protein coupled receptors to which most regulatory peptides bind and exert their actions. These trends have closely wedded basic systems biology to drug discovery and development, creating a "two-way street" on which translational advances travel from basic research to the clinic, and, equally importantly, "reverse-translational" information is gathered, about the molecular, cellular and circuit-level mechanisms of action of regulatory peptides, comprising information required for the fine-tuning of drug development through testing in animal models. This review focuses on a small group of 'influential' peptides, including oxytocin, vasopressin, pituitary adenylate cyclase-activating polypeptide, ghrelin, relaxin-3 and glucagon-like peptide-1, and how basic discoveries and their application to therapeutics have intertwined over the past decade.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath-Intramural Research Program, NIH, Bethesda, MD, USA
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University Heidelberg, Mannheim, Germany
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, NIAAA and NIDA, NIH, Bethesda, MD, USA
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ruud M Buijs
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Vito S Hernandez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Germán Fajardo-Dolci
- School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
18
|
Eiden LE, Goosens KA, Jacobson KA, Leggio L, Zhang L. Peptide-Liganded G Protein-Coupled Receptors as Neurotherapeutics. ACS Pharmacol Transl Sci 2020; 3:190-202. [PMID: 32296762 DOI: 10.1021/acsptsci.0c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Peptide-liganded G protein-coupled receptors (GPCRs) are a growing fraction of GPCR drug targets, concentrated in two of the five major GPCR structural classes. The basic physiology and pharmacology of some within the rhodopsin class, for example, the enkephalin (μ opioid receptor, MOR) and angiotensin (ATR) receptors, and most in class B, all the members of which are peptide receptors, are well-known, whereas others are less so. Furthermore, with the notable exception of opioid peptide receptors, the ability to translate from peptide to "drug-like" (i.e., low-molecular-weight nonpeptide) molecules, with desirable oral absorption, brain penetrance, and serum stability, has met with limited success. Yet, peripheral peptide administration in patients with metabolic disorders is clinically effective, suggesting that "drug-like" molecules for peptide receptor targets may not always be required for disease intervention. Here, we consider recent developments in GPCR structure analysis, intracellular signaling, and genetic analysis of peptide and peptide receptor knockout phenotypes in animal models. These lines of research converge on a better understanding of how peptides facilitate adaptive behaviors in mammals. They suggest pathways to translate this burgeoning information into identified drug targets for neurological and psychiatric illnesses such as obesity, addiction, anxiety disorders, and neurodegenerative diseases. Advances centered on the peptide ligands oxytocin, vasopressin, GLP-1, ghrelin, PACAP, NPY, and their GPCRs are considered here. These represent the spectrum of progress across the "virtual pipeline", of peptide receptors associated with many established drugs, those of long-standing interest for which clinical application is still under development, and those just coming into focus through basic research.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Ki Ann Goosens
- Icahn School of Medicine, Mt. Sinai Hospital, New York, New York 10029, United States
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism/National Institute on Drug Abuse, Bethesda, Maryland 20892, United States
| | - Limei Zhang
- Department of Physiology, Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
19
|
Cherait A, Maucotel J, Lefranc B, Leprince J, Vaudry D. Intranasal Administration of PACAP Is an Efficient Delivery Route to Reduce Infarct Volume and Promote Functional Recovery After Transient and Permanent Middle Cerebral Artery Occlusion. Front Endocrinol (Lausanne) 2020; 11:585082. [PMID: 33551991 PMCID: PMC7855853 DOI: 10.3389/fendo.2020.585082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Intranasal (IN) administration appears to be a suitable route for clinical use as it allows direct delivery of bioactive molecules to the central nervous system, reducing systemic exposure and sides effects. Nevertheless, only some molecules can be transported to the brain from the nasal cavity. This led us to compare the efficiency of an IN, intravenous (IV), and intraperitoneal (IP) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) after transient or permanent middle cerebral artery occlusion (MCAO) in C57BL/6 mice. The results show that the neuroprotective effect of PACAP is much more efficient after IN administration than IV injection while IP injection had no effect. IN administration of PACAP reduced the infarct volume when injected within 6 h after the reperfusion and improved functional recovery up to at least 1 week after the ischemia.
Collapse
Affiliation(s)
- Asma Cherait
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Department of Natural and Life Sciences, Faculty of Sciences, University of Algiers, Algiers, Algeria
- Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
- *Correspondence: David Vaudry, ; Asma Cherait,
| | - Julie Maucotel
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Benjamin Lefranc
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
- *Correspondence: David Vaudry, ; Asma Cherait,
| |
Collapse
|
20
|
The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is Protective in Inflammation and Oxidative Stress-Induced Damage in the Kidney. Int J Mol Sci 2019; 20:ijms20194944. [PMID: 31591326 PMCID: PMC6801442 DOI: 10.3390/ijms20194944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide with a widespread distribution throughout the entire body including the urinary system. PACAP exerts protective actions in different injury models related to several organ systems. Its protective effect is mainly based on its antiapoptotic, anti-inflammatory and antioxidant effects. The present review aims to summarize the effects of PACAP in pathologies associated with inflammation and oxidative stress-induced damage in the kidney. Both in vitro and in vivo data are available proving its protective actions against oxidative stress, hypoxia, renal ischemia/reperfusion, diabetic nephropathy, myeloma kidney injury, amyloidosis and different types of drug-induced nephropathies. Data showing the nephroprotection by PACAP emphasize the potential of PACAP’s therapeutic use in various renal pathologies.
Collapse
|
21
|
Castorina A, Vogiatzis M, Kang JWM, Keay KA. PACAP and VIP expression in the periaqueductal grey of the rat following sciatic nerve constriction injury. Neuropeptides 2019; 74:60-69. [PMID: 30579677 DOI: 10.1016/j.npep.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022]
Abstract
Nerve injuries often result in neuropathic pain with co-morbid changes in social behaviours, motivation, sleep-wake cycles and neuroendocrine function. In an animal model of neuropathic injury (CCI) similar co-morbid changes are evoked in a subpopulation (~30%) of injured rats. In addition to anatomical evidence of altered neuronal and glial function, the periaqueductal grey (PAG) of these rats shows evidence of cell death. These changes in the PAG may play a role in the disruption of the normal emotional coping responses triggered by nerve injury. Cell death can occur via a number of mechanisms, including the disruption of neuroprotective mechanisms. Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two endogenous neuropeptides whose activities are tightly regulated by two receptors subtypes, namely the PAC1 and VPAC receptors. These peptides and their receptors exert robust neuroprotective roles. In these studies, we hypothesized that rats expressing disabilities following CCI showed altered expression of PACAP and VIP in the PAG. Rats were categorized as having either Pain alone, Transient or Persistent disability, based on changes in social behaviours pre- and post-CCI. Social interaction behavioural tested (BT), sham-injured and naïve untested rats were also included. For measurements of mRNA and protein expression we utilised micro-dissected PAGs blocks taken from each group. At the mRNA level, VIP was downregulated and PAC1 was upregulated in BT animals, whilst VPAC1 mRNA was specifically increased in the Pain alone group. Interestingly, protein levels of both PACAP and VIP were remarkably increased in the Persistent Disability group. Taken together, sciatic nerve CCI that triggers neuropathic pain and persistent disability results in abnormally increased VIP and PACAP expression in the PAG. Our data also suggest that these effects are likely to be governed by post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Alessandro Castorina
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Sydney, NSW 2006, Australia.
| | - Monica Vogiatzis
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Sydney, NSW 2006, Australia
| | - James W M Kang
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Sydney, NSW 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Kumar V, Weng YC, Wu YC, Huang YT, Chou WH. PKCε phosphorylation regulates the mitochondrial translocation of ATF2 in ischemia-induced neurodegeneration. BMC Neurosci 2018; 19:76. [PMID: 30497386 PMCID: PMC6267029 DOI: 10.1186/s12868-018-0479-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Global cerebral ischemia triggers neurodegeneration in the hippocampal CA1 region, but the mechanism of neuronal death remains elusive. The epsilon isoform of protein kinase C (PKCε) has recently been identified as a master switch that controls the nucleocytoplasmic trafficking of ATF2 and the survival of melanoma cells. It is of interest to assess the role of PKCε–ATF2 signaling in neurodegeneration. Results Phosphorylation of ATF2 at Thr-52 was reduced in the hippocampus of PKCε null mice, suggesting that ATF2 is a phosphorylation substrate of PKCε. PKCε protein concentrations were significantly reduced 4, 24, 48 and 72 h after transient global cerebral ischemia, resulting in translocation of nuclear ATF2 to the mitochondria. Degenerating neurons staining positively with Fluoro-Jade C exhibited cytoplasmic ATF2. Conclusions Our results support the hypothesis that PKCε regulates phosphorylation and nuclear sequestration of ATF2 in hippocampal neurons during ischemia-induced neurodegeneration.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Chieh Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Wen-Hai Chou
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA. .,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC.
| |
Collapse
|
23
|
Rubio-Beltrán E, Correnti E, Deen M, Kamm K, Kelderman T, Papetti L, Vigneri S, MaassenVanDenBrink A, Edvinsson L. PACAP38 and PAC 1 receptor blockade: a new target for headache? J Headache Pain 2018; 19:64. [PMID: 30088106 PMCID: PMC6081277 DOI: 10.1186/s10194-018-0893-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) is a widely distributed neuropeptide involved in neuroprotection, neurodevelopment, nociception and inflammation. Moreover, PACAP38 is a potent inducer of migraine-like attacks, but the mechanism behind this has not been fully elucidated. Migraine is a neurovascular disorder, recognized as the second most disabling disease. Nevertheless, the antibodies targeting calcitonin gene-related peptide (CGRP) or its receptor are the only prophylactic treatment developed specifically for migraine. These antibodies have displayed positive results in clinical trials, but are not effective for all patients; therefore, new pharmacological targets need to be identified. Due to the ability of PACAP38 to induce migraine-like attacks, its location in structures previously associated with migraine pathophysiology and the 100-fold selectivity for the PAC1 receptor when compared to VIP, new attention has been drawn to this pathway and its potential role as a novel target for migraine treatment. In accordance with this, antibodies against PACAP38 (ALD 1910) and PAC1 receptor (AMG 301) are being developed, with AMG 301 already in Phase II clinical trials. No results have been published so far, but in preclinical studies, AMG 301 has shown responses comparable to those observed with triptans. If these antibodies prove to be effective for the treatment of migraine, several considerations should be addressed, for instance, the potential side effects of long-term blockade of the PACAP (receptor) pathway. Moreover, it is important to investigate whether these antibodies will indeed represent a therapeutic advantage for the patients that do not respond the CGRP (receptor)-antibodies. In conclusion, the data presented in this review indicate that PACAP38 and PAC1 receptor blockade are promising antimigraine therapies, but results from clinical trials are needed in order to confirm their efficacy and side effect profile.
Collapse
Affiliation(s)
- Eloisa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Edvige Correnti
- Department of Child Neuropsychiatry, University of Palermo, Palermo, Italy
| | - Marie Deen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Katharina Kamm
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Tim Kelderman
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Laura Papetti
- Headache Center, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simone Vigneri
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo; Pain Medicine Unit, Santa Maria Maddalena Hospital, Occhiobello, Italy
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lars Edvinsson
- Department of Internal Medicine, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
24
|
Rivnyak A, Kiss P, Tamas A, Balogh D, Reglodi D. Review on PACAP-Induced Transcriptomic and Proteomic Changes in Neuronal Development and Repair. Int J Mol Sci 2018; 19:ijms19041020. [PMID: 29596316 PMCID: PMC5979407 DOI: 10.3390/ijms19041020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse biological effects. Among its several different effects, of special importance is the action of PACAP on neuronal proliferation, differentiation and migration, and neuroprotection. The neuroprotective mechanism of PACAP is both direct and indirect, via neuronal and non-neuronal cells. Several research groups have performed transcriptomic and proteomic analysis on PACAP-mediated genes and proteins. Hundreds of proteins have been described as being involved in the PACAP-mediated neuroprotection. In the present review we summarize the few currently available transcriptomic data potentially leading to the proteomic changes in neuronal development and protection. Proteomic studies focusing on the neuroprotective role of PACAP are also reviewed and discussed in light of the most intriguing and promising effect of this neuropeptide, which may possibly have future therapeutic potential.
Collapse
Affiliation(s)
- Adam Rivnyak
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Peter Kiss
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dorottya Balogh
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Neuroscience Centre, University of Pecs Medical School, 7624 Pécs, Hungary.
| |
Collapse
|
25
|
Jansen-Olesen I, Hougaard Pedersen S. PACAP and its receptors in cranial arteries and mast cells. J Headache Pain 2018; 19:16. [PMID: 29460121 PMCID: PMC5818390 DOI: 10.1186/s10194-017-0822-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023] Open
Abstract
Background In migraineurs pituitary adenylate cyclase activating peptide1–38 (PACAP1–38) is a potent migraine provoking substance and the accompanying long lasting flushing suggests degranulation of mast cells. Infusion of the closely related vasoactive intestinal peptide (VIP) either induces headache or flushing. This implicates the pituitary adenylate cyclase activating peptide type I receptor (PAC1) to be involved in the pathophysiology of PACAP1–38 provoked headaches. Here we review studies characterizing the effects of mainly PACAP but also of VIP on cerebral and meningeal arteries and mast cells. Discussion PACAP1–38, PACAP1–27 and VIP dilate cerebral and meningeal arteries from several species including man. In rat cerebral and meningeal arteries the dilation seems to be mediated preferably via vasoactive intestinal peptide receptor type 1 (VPAC1) receptors while, in human, middle meningeal artery dilation induced via vasoactive intestinal peptide receptor type 2 (VPAC2) receptors cannot be ruled out. PACAP1–38 is a strong degranulator of peritoneal and dural mast cells while PACAP1–27 and VIP only have weak effects. More detailed characterization studies suggest that mast cell degranulation is not mediated via the known receptors for PACAP1–38 but rather via a still unknown receptor coupled to phospholipase C. Conclusion It is suggested that PACAP1–38 might induce migraine via degranulation of dural mast cells via a yet unknown receptor.
Collapse
Affiliation(s)
- Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Neurology, Danish Headache Center, Glostrup Research Institute, Nordre Ringvej 69, 2600, Glostrup, Denmark.
| | - Sara Hougaard Pedersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Jóźwiak-Bębenista M, Jasińska-Stroschein M, Kowalczyk E. The differential effects of neuroleptic drugs and PACAP on the expression of BDNF mRNA and protein in a human glioblastoma cell line. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol 2016; 54:7534-7548. [PMID: 27826748 DOI: 10.1007/s12035-016-0204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid neuropeptide which has been shown to exert various neuroprotective actions in vitro and in vivo; however, the ability of endogenous PACAP to prevent cell death in vivo remains to be elucidated. To explore the capacity of endogenous PACAP to prevent ethanol toxicity, adolescent and adult PACAP knockout (KO) mice were injected with ethanol in a binge drinking-like manner. Biochemical analyses revealed that ethanol administration induced an increase in the production of reactive oxygen species and the activity of caspase-3 in PACAP KO mice in an age-independent manner. In order to characterize the mechanisms underlying the sensitivity of PACAP KO mice, a whole-genome microarray analysis was performed to compare gene regulations induced by ethanol in adolescent and adult wild-type and PACAP KO mice. Gene expression substantially differed between adolescent and adult wild-type mice, suggesting distinct effects of ethanol according to the state of brain maturation. Interestingly, in adolescent and adult PACAP KO mice, the set of genes regulated were also markedly different but seemed to inhibit some similar regulatory network processes associated in particular with DNA repair and cell cycle. These data imply that ethanol induces serious DNA damages and cell cycle alteration in PACAP KO mice. This hypothesis, based on the transcriptomic data, could be confirmed by functional studies which showed that cell proliferation decreased in adolescent and adult PACAP KO mice treated with ethanol but recovered after a 30-day withdrawal period. These data, obtained with PACAP KO animals, demonstrate that endogenous PACAP protects the brain of adolescent and adult mice from alcohol toxicity and modulates distinct sets of genes according to the maturation status of the brain.
Collapse
|
28
|
Bhandare AM, Kapoor K, Farnham MM, Pilowsky PM. Microglia PACAP and glutamate: Friends or foes in seizure-induced autonomic dysfunction and SUDEP? Respir Physiol Neurobiol 2016; 226:39-50. [DOI: 10.1016/j.resp.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
|
29
|
Hayashi H, Takagi N. Endogenous Neuroprotective Molecules and Their Mechanisms in the Central Nervous System. Biol Pharm Bull 2016; 38:1104-8. [PMID: 26235573 DOI: 10.1248/bpb.b15-00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functions of the central nervous system (CNS) are based on a complex neural network. It is believed that the CNS has several neuroprotective mechanisms operated by neurons, glia and other types of cells against various types of neuronal damage. Since mature, differentiated neurons are not able to divide, it is important to protect neurons from damage prior to death. The neuroprotective effects of a number of pharmaceutical agents and natural products against necrosis and apoptosis of the CNS neurons have been reported, thus this review will mainly discuss several endogenous neuroprotectants and their mechanisms.
Collapse
Affiliation(s)
- Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
30
|
Tajiri N, De La Peña I, Acosta SA, Kaneko Y, Tamir S, Landesman Y, Carlson R, Shacham S, Borlongan CV. A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus. CNS Neurosci Ther 2016; 22:306-15. [PMID: 26842647 PMCID: PMC5067638 DOI: 10.1111/cns.12501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022] Open
Abstract
Background Exportin 1 (XPO1/CRM1) plays prominent roles in the regulation of nuclear protein export. Selective inhibitors of nuclear export (SINE) are small orally bioavailable molecules that serve as drug‐like inhibitors of XPO1, with potent anti‐cancer properties. Traumatic brain injury (TBI) presents with a secondary cell death characterized by neuroinflammation that is putatively regulated by nuclear receptors. Aims and Results Here, we report that the SINE compounds (KPT‐350 or KPT‐335) sequestered TBI‐induced neuroinflammation‐related proteins (NF‐kB, AKT, FOXP1) within the nucleus of cultured primary rat cortical neurons, which coincided with protection against TNF‐α (20 ng/mL)‐induced neurotoxicity as shown by at least 50% and 100% increments in preservation of cell viability and cellular enzymatic activity, respectively, compared to non‐treated neuronal cells (P's < 0.05). In parallel, using an in vivo controlled cortical impact (CCI) model of TBI, we demonstrate that adult Sprague‐Dawley rats treated post‐injury with SINE compounds exhibited significant reductions in TBI‐induced behavioral and histological deficits. Animals that received KPT‐350 orally starting at 2 h post‐TBI and once a day thereafter over the next 4 days exhibited significantly better motor coordination, and balance in the rotorod test and motor asymmetry test by 100–200% improvements, as early as 4 h after initial SINE compound injection that was sustained during subsequent KPT‐350 dosing, and throughout the 18‐day post‐TBI study period compared to vehicle treatment (P's < 0.05). Moreover, KPT‐350 reduced cortical core impact area and peri‐impact cell death compared to vehicle treatment (P's < 0.05). Conclusions Both in vitro and in vivo experiments revealed that KPT‐350 increased XPO1, AKT, and FOXP1 nuclear expression and relegated NF‐kB expression within the neuronal nuclei. Altogether, these findings advance the utility of SINE compounds to stop trafficking of cell death proteins within the nucleus as an efficacious treatment for TBI.
Collapse
Affiliation(s)
- Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ike De La Peña
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
31
|
Shudo Y, Shimojo M, Fukunaga M, Ito S. Pituitary adenylate cyclase-activating polypeptide is regulated by alternative splicing of transcriptional repressor REST/NRSF in nerve injury. Life Sci 2015; 143:174-81. [PMID: 26518165 DOI: 10.1016/j.lfs.2015.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
Abstract
AIMS The pathophysiological mechanism for neuropathic pain (NP), one of the most common types of intractable pain, remains largely unknown. We previously reported that pituitary adenylate-cyclase activating polypeptide (PACAP) is required for the development of spinal sensitization and induction of NP. Previous in vitro studies suggest that PACAP transcription unit has two RE1-like elements and that the transcriptional repressor REST controls expression of PACAP gene. However the regulation of PACAP gene through its RE1 sites in vivo has not been studied. We have analyzed the functional role of PACAP gene RE1 element following nerve injury. MAIN METHODS An L5-spinal nerve transection (L5-SNT) in mice was used as a model of spinal injury. DRGs after the L5-SNT were studied. KEY FINDINGS PACAP mRNA increased in the DRG following spinal nerve injury. REST4, an alternatively spliced isoform of REST was shown to be regulated by the splicing activator (nSR100) and nSR100 itself also increased. Overexpression of either REST4 or nSR100 in vitro increased PACAP expression, while overexpression of REST repressed PACAP mRNA production. Reporter gene analysis showed that a novel RE1 previously predicted by in silico analysis was indeed functional. ChIP analysis showed that REST bound significantly to this RE1 in the DRG of naïve mice, while REST binding to this RE1 was decreased following spinal nerve injury. The expression of REST was decreased by nSR100-dependent alternative splicing of the REST gene, leading to derepression of PACAP. SIGNIFICANCE PACAP expression in the DRG following spinal nerve injury is controlled through a novel RE1 by REST.
Collapse
Affiliation(s)
- Yoshie Shudo
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan; Department of Psychosomatic Medicine, Kansai Medical University, Osaka, Japan
| | - Masahito Shimojo
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan.
| | - Mikihiko Fukunaga
- Department of Psychosomatic Medicine, Kansai Medical University, Osaka, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan
| |
Collapse
|
32
|
Gupte RP, Kadunganattil S, Shepherd AJ, Merrill R, Planer W, Bruchas MR, Strack S, Mohapatra DP. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide. Neuropharmacology 2015; 101:291-308. [PMID: 26456351 DOI: 10.1016/j.neuropharm.2015.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 12/30/2022]
Abstract
The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is secreted by both neuronal and non-neuronal cells in the brain and spinal cord, in response to pathological conditions such as stroke, seizures, chronic inflammatory and neuropathic pain. PACAP has been shown to exert various neuromodulatory and neuroprotective effects. However, direct influence of PACAP on the function of intrinsically excitable ion channels that are critical to both hyperexcitation as well as cell death, remain largely unexplored. The major dendritic K(+) channel Kv4.2 is a critical regulator of neuronal excitability, back-propagating action potentials in the dendrites, and modulation of synaptic inputs. We identified, cloned and characterized the downstream signaling originating from the activation of three PACAP receptor (PAC1) isoforms that are expressed in rodent hippocampal neurons that also exhibit abundant expression of Kv4.2 protein. Activation of PAC1 by PACAP leads to phosphorylation of Kv4.2 and downregulation of channel currents, which can be attenuated by inhibition of either PKA or ERK1/2 activity. Mechanistically, this dynamic downregulation of Kv4.2 function is a consequence of reduction in the density of surface channels, without any influence on the voltage-dependence of channel activation. Interestingly, PKA-induced effects on Kv4.2 were mediated by ERK1/2 phosphorylation of the channel at two critical residues, but not by direct channel phosphorylation by PKA, suggesting a convergent phosphomodulatory signaling cascade. Altogether, our findings suggest a novel GPCR-channel signaling crosstalk between PACAP/PAC1 and Kv4.2 channel in a manner that could lead to neuronal hyperexcitability.
Collapse
Affiliation(s)
- Raeesa P Gupte
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suraj Kadunganattil
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew J Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ronald Merrill
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Planer
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefan Strack
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Durga P Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Acute Response of the Hippocampal Transcriptome Following Mild Traumatic Brain Injury After Controlled Cortical Impact in the Rat. J Mol Neurosci 2015; 57:282-303. [PMID: 26319264 DOI: 10.1007/s12031-015-0626-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
We have previously demonstrated that mild controlled cortical impact (mCCI) injury to rat cortex causes indirect, concussive injury to underlying hippocampus and other brain regions, providing a reproducible model for mild traumatic brain injury (mTBI) and its neurochemical, synaptic, and behavioral sequelae. Here, we extend a preliminary gene expression study of the hippocampus-specific events occurring after mCCI and identify 193 transcripts significantly upregulated, and 21 transcripts significantly downregulated, 24 h after mCCI. Fifty-three percent of genes altered by mCCI within 24 h of injury are predicted to be expressed only in the non-neuronal/glial cellular compartment, with only 13% predicted to be expressed only in neurons. The set of upregulated genes following mCCI was interrogated using Ingenuity Pathway Analysis (IPA) augmented with manual curation of the literature (190 transcripts accepted for analysis), revealing a core group of 15 first messengers, mostly inflammatory cytokines, predicted to account for >99% of the transcript upregulation occurring 24 h after mCCI. Convergent analysis of predicted transcription factors (TFs) regulating the mCCI target genes, carried out in IPA relative to the entire Affymetrix-curated transcriptome, revealed a high concordance with TFs regulated by the cohort of 15 cytokines/cytokine-like messengers independently accounting for upregulation of the mCCI transcript cohort. TFs predicted to regulate transcription of the 193-gene mCCI cohort also displayed a high degree of overlap with TFs predicted to regulate glia-, rather than neuron-specific genes in cortical tissue. We conclude that mCCI predominantly affects transcription of non-neuronal genes within the first 24 h after insult. This finding suggests that early non-neuronal events trigger later permanent neuronal changes after mTBI, and that early intervention after mTBI could potentially affect the neurochemical cascade leading to later reported synaptic and behavioral dysfunction.
Collapse
|
34
|
Lee EH, Seo SR. Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases. BMB Rep 2015; 47:369-75. [PMID: 24856828 PMCID: PMC4163857 DOI: 10.5483/bmbrep.2014.47.7.086] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 12/04/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via three major receptors (PAC1, VPAC1, and VPAC2). Recent studies have shown a neuroprotective role of PACAP using in vitro and in vivo models. In this review, we briefly summarize the current findings on the neurotrophic and neuroprotective effects of PACAP in different brain injury models, such as cerebral ischemia, Parkinson’s disease (PD), and Alzheimer’s disease (AD). This review will provide information for the future development of therapeutic strategies in treatment of these neurodegenerative diseases. [BMB Reports 2014; 47(7): 369-375]
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
35
|
Brifault C, Gras M, Liot D, May V, Vaudry D, Wurtz O. Delayed Pituitary Adenylate Cyclase–Activating Polypeptide Delivery After Brain Stroke Improves Functional Recovery by Inducing M2 Microglia/Macrophage Polarization. Stroke 2015; 46:520-8. [DOI: 10.1161/strokeaha.114.006864] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Coralie Brifault
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U982, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Mont-Saint-Aignan Cedex, France (C.B., M.G., D.L., D.V., O.W.); and Departments of Neurological Sciences and Pharmacology, University of Vermont College of
| | - Marjorie Gras
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U982, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Mont-Saint-Aignan Cedex, France (C.B., M.G., D.L., D.V., O.W.); and Departments of Neurological Sciences and Pharmacology, University of Vermont College of
| | - Donovan Liot
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U982, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Mont-Saint-Aignan Cedex, France (C.B., M.G., D.L., D.V., O.W.); and Departments of Neurological Sciences and Pharmacology, University of Vermont College of
| | - Victor May
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U982, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Mont-Saint-Aignan Cedex, France (C.B., M.G., D.L., D.V., O.W.); and Departments of Neurological Sciences and Pharmacology, University of Vermont College of
| | - David Vaudry
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U982, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Mont-Saint-Aignan Cedex, France (C.B., M.G., D.L., D.V., O.W.); and Departments of Neurological Sciences and Pharmacology, University of Vermont College of
| | - Olivier Wurtz
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U982, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France (C.B., M.G., D.L., D.V., O.W.); Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Mont-Saint-Aignan Cedex, France (C.B., M.G., D.L., D.V., O.W.); and Departments of Neurological Sciences and Pharmacology, University of Vermont College of
| |
Collapse
|
36
|
Hori M, Nakamachi T, Shibato J, Rakwal R, Shioda S, Numazawa S. Unraveling the Specific Ischemic Core and Penumbra Transcriptome in the Permanent Middle Cerebral Artery Occlusion Mouse Model Brain Treated with the Neuropeptide PACAP38. MICROARRAYS 2015; 4:2-24. [PMID: 27600210 PMCID: PMC4996388 DOI: 10.3390/microarrays4010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
Our group has been systematically investigating the effects of the neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain. To do so, we have established and utilized the permanent middle cerebral artery occlusion (PMCAO) mouse model, in which PACAP38 (1 pmol) injection is given intracerebroventrically and compared to a control saline (0.9% sodium chloride, NaCl) injection, to unravel genome‑wide gene expression changes using a high-throughput DNA microarray analysis approach. In our previous studies, we have accumulated a large volume of data (gene inventory) from the whole brain (ipsilateral and contralateral hemispheres) after both PMCAO and post-PACAP38 injection. In our latest research, we have targeted specifically infarct or ischemic core (hereafter abbreviated IC) and penumbra (hereafter abbreviated P) post-PACAP38 injections in order to re-examine the transcriptome at 6 and 24 h post injection. The current study aims to delineate the specificity of expression and localization of differentially expressed molecular factors influenced by PACAP38 in the IC and P regions. Utilizing the mouse 4 × 44 K whole genome DNA chip we show numerous changes (≧/≦ 1.5/0.75-fold) at both 6 h (654 and 456, and 522 and 449 up- and down-regulated genes for IC and P, respectively) and 24 h (2568 and 2684, and 1947 and 1592 up- and down-regulated genes for IC and P, respectively) after PACAP38 treatment. Among the gene inventories obtained here, two genes, brain-derived neurotrophic factor (Bdnf) and transthyretin (Ttr) were found to be induced by PACAP38 treatment, which we had not been able to identify previously using the whole hemisphere transcriptome analysis. Using bioinformatics analysis by pathway- or specific-disease-state focused gene classifications and Ingenuity Pathway Analysis (IPA) the differentially expressed genes are functionally classified and discussed. Among these, we specifically discuss some novel and previously identified genes, such as alpha hemoglobin stabilizing protein (Ahsp), cathelicidin antimicrobial peptide (Camp), chemokines, interferon beta 1 (Ifnb1), and interleukin 6 (Il6) in context of PACAP38-mediated neuroprotection in the ischemic brain. Taken together, the DNA microarray analysis provides not only a great resource for further study, but also reinforces the importance of region-specific analyses in genome-wide identification of target molecular factors that might play a role in the neuroprotective function of PACAP38.
Collapse
Affiliation(s)
- Motohide Hori
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Tomoya Nakamachi
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan.
| | - Junko Shibato
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan.
| | - Randeep Rakwal
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
- Organization for Educational Initiatives, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Seiji Shioda
- Department of Anatomy, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| |
Collapse
|
37
|
Irwin M, Greig A, Tvrdik P, Lucero MT. PACAP modulation of calcium ion activity in developing granule cells of the neonatal mouse olfactory bulb. J Neurophysiol 2014; 113:1234-48. [PMID: 25475351 DOI: 10.1152/jn.00594.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(2+) activity in the CNS is critical for the establishment of developing neuronal circuitry prior to and during early sensory input. In developing olfactory bulb (OB), the neuromodulators that enhance network activity are largely unknown. Here we provide evidence that pituitary adenylate cyclase-activating peptide (PACAP)-specific PAC1 receptors (PAC1Rs) expressed in postnatal day (P)2-P5 mouse OB are functional and enhance network activity as measured by increases in calcium in genetically identified granule cells (GCs). We used confocal Ca(2+) imaging of OB slices from Dlx2-tdTomato mice to visualize GABAergic GCs. To address whether the PACAP-induced Ca(2+) oscillations were direct or indirect effects of PAC1R activation, we used antagonists for the GABA receptors (GABARs) and/or glutamate receptors (GluRs) in the presence and absence of PACAP. Combined block of GABARs and GluRs yielded a 66% decrease in the numbers of PACAP-responsive cells, suggesting that 34% of OB neurons are directly activated by PACAP. Similarly, immunocytochemistry using anti-PAC1 antibody showed that 34% of OB neurons express PAC1R. Blocking either GluRs or GABARs alone indirectly showed that PACAP stimulates release of both glutamate and GABA, which activate GCs. The appearance of PACAP-induced Ca(2+) activity in immature GCs suggests a role for PACAP in GC maturation. To conclude, we find that PACAP has both direct and indirect effects on neonatal OB GABAergic cells and may enhance network activity by promoting glutamate and GABA release. Furthermore, the numbers of PACAP-responsive GCs significantly increased between P2 and P5, suggesting that PACAP-induced Ca(2+) activity contributes to neonatal OB development.
Collapse
Affiliation(s)
- Mavis Irwin
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ann Greig
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Petr Tvrdik
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Mary T Lucero
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and Department of Neuroscience and Physiology, American University of the Caribbean, Cupecoy, Sint Maarten, Netherlands Antilles
| |
Collapse
|
38
|
Jóźwiak-Bębenista M, Kowalczyk E, Nowak JZ. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol Rep 2014; 67:332-8. [PMID: 25712659 DOI: 10.1016/j.pharep.2014.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are endogenous peptides, widely expressed in the central and peripheral nervous system. The adenylyl cyclase (AC)/cyclic AMP (cAMP) is their main intracellular signal transduction pathway. Numerous data suggest that PACAP and VIP have considerable neuroprotective potential, indicating the possibility for their use as new therapeutic strategies in stroke treatment. The aim of this study was to evaluate the effect of oxygen-glucose deprivation (OGD) - an established in vitro model for ischemic cell stress - on PACAP and VIP-evoked receptor-mediated cAMP generation in glial and neuronal cells, and to determine whether PACAP and VIP have neuroprotective activity under these conditions. METHODS The formation of [(3)H]cAMP by PACAP, VIP and forskolin (a direct activator of AC) was measured in [(3)H]adenine prelabeled primary rat glial and neuronal cells under normoxia and OGD conditions. The effects of PACAP and VIP on cell viability were measured using the MTT conversion method, and were compared to tacrolimus (FK506), a well known neuroprotective agent. RESULTS The OGD model inhibited the PACAP and VIP-induced cAMP formation in rat astrocytes and neurons. Incubation of neuronal cells with PACAP prevented OGD-induced cell death, more efficiently than VIP and FK506. CONCLUSION The obtained results showed that hypoxia/ischemia may trigger down-regulation of the brain AC-coupled PACAP/VIP receptors, with a consequent decrease of PACAP- and/or VIP-ergic-dependent cAMP-driven signaling. Moreover, our findings indicate that PACAP and VIP can prevent the deleterious effect of OGD on rat neuronal cells.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland.
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Jerzy Z Nowak
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
39
|
Waschek JA. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2014; 169:512-23. [PMID: 23517078 DOI: 10.1111/bph.12181] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/26/2013] [Accepted: 03/08/2013] [Indexed: 01/14/2023] Open
Abstract
Inflammatory processes play both regenerative and destructive roles in multiple sclerosis, stroke, CNS trauma, amyotrophic lateral sclerosis and aging-related neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's. Endogenous defence mechanisms against these pathologies include those that are directly neuroprotective, and those that modulate the expression of inflammatory mediators in microglia, astrocytes, and invading inflammatory cells. While a number of mechanisms and molecules have been identified that can directly promote neuronal survival, less is known about how the brain protects itself from harmful inflammation, and further, how it co-opts the healing function of the immune system to promote CNS repair. The two closely related neuroprotective peptides, vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP), which are up-regulated in neurons and immune cells after injury and/or inflammation, are known to protect neurons, but also exert powerful in vivo immunomodulatory actions, which are primarily anti-inflammatory. These peptide actions are mediated by high-affinity receptors expressed not only on neurons, but also astrocytes, microglia and peripheral inflammatory cells. Well-established immunomodulatory actions of these peptides are to inhibit macrophage and microglia production and release of inflammatory mediators such as TNF-α and IFN-γ, and polarization of T-cell responses away from Th1 and Th17, and towards a Th2 phenotype. More recent studies have revealed that these peptides can also promote the production of both natural and inducible subsets of regulatory T-cells. The neuroprotective and immunomodulatory actions of VIP and PACAP suggest that receptors for these peptides may be therapeutic targets for neurodegenerative and neuroinflammatory diseases and other forms of CNS injury.
Collapse
Affiliation(s)
- J A Waschek
- Department of Psychiatry and Semel Institute, University of California at Los Angeles, Los Angeles, CA 90095-7332, USA.
| |
Collapse
|
40
|
Danyadi B, Szabadfi K, Reglodi D, Mihalik A, Danyadi T, Kovacs Z, Batai I, Tamas A, Kiss P, Toth G, Gabriel R. PACAP application improves functional outcome of chronic retinal ischemic injury in rats-evidence from electroretinographic measurements. J Mol Neurosci 2014; 54:293-9. [PMID: 24723665 DOI: 10.1007/s12031-014-0296-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 12/19/2022]
Abstract
Retinoprotective effects of pituitary adenylate cyclase activating polypeptide (PACAP) are well-known and have been demonstrated in various pathological conditions, such as diabetic retinopathy, excitotoxic retinal injury, UV light-induced degeneration, and ischemic retinal lesion. The neuronal degeneration observed in the different retinal layers under the above pathological conditions can be successfully decreased by PACAP; however, whether this morphological improvement is also reflected in functional amelioration remains unknown. Therefore, our purpose was to investigate the protective effect of PACAP on the rat retina after bilateral common carotid artery occlusion (BCCAO) with electroretinography (ERG) to parallel the functional data with the previous morphological and neurochemical observations. Control eyes received saline treatment while PACAP was injected into the vitreous space of the other eye immediately after the induction of ischemia. Retinal damage and protective effects of PACAP were quantified by the changes in the wave forms and amplitudes. On postoperative days 2 and 14, several parameters were assessed with special attention to the changes of b wave. The results confirm that the previously described morphological protection induced by PACAP treatment is reflected in functional improvement in ischemic retinal lesions.
Collapse
Affiliation(s)
- Bese Danyadi
- Department of Anatomy, MTA-PTE "Lendulet" PACAP Research Team, University of Pecs, Szigeti u 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nemeth A, Szabadfi K, Fulop B, Reglodi D, Kiss P, Farkas J, Szalontai B, Gabriel R, Hashimoto H, Tamas A. Examination of calcium-binding protein expression in the inner ear of wild-type, heterozygous and homozygous pituitary adenylate cyclase-activating polypeptide (PACAP)-knockout mice in kanamycin-induced ototoxicity. Neurotox Res 2013; 25:57-67. [PMID: 24155155 DOI: 10.1007/s12640-013-9428-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with diverse biological effects. It also occurs and exerts protective effects in sensory organs; however, little is known about its effects in the auditory system. Recently, we have shown that PACAP protects cochlear cells against oxidative-stress-induced apoptosis and homozygous PACAP-deficient animals show stronger expression of Ca(2+)-binding proteins in the hair cells of the inner ear, but there are no data about the consequences of the lack of endogenous PACAP in different ototoxic insults such as aminoglycoside-induced toxicity. In this study, we examined the effect of kanamycin treatment on Ca(2+)-binding protein expression in hair cells of wild-type, heterozygous and homozygous PACAP-deficient mice. We treated 5-day-old mice with kanamycin, and 2 days later, we examined the Ca(2+)-binding protein expression of the hair cells with immunohistochemistry. We found stronger expression of Ca(2+)-binding proteins in the hair cells of control heterozygous and homozygous PACAP-deficient mice compared with wild-type animals. Kanamycin induced a significant increase in Ca(2+)-binding protein expression in wild-type and heterozygous PACAP-deficient mice, but the baseline higher expression in homozygous PACAP-deficient mice did not show further changes after the treatment. Elevated endolymphatic Ca(2+) is deleterious for the cochlear function, against which the high concentration of Ca(2+)-buffers in hair cells may protect. Meanwhile, the increased immunoreactivity of Ca(2+)-binding proteins in the absence of PACAP provide further evidence for the important protective role of PACAP in ototoxicity, but further investigations are necessary to examine the exact role of endogenous PACAP in ototoxic insults.
Collapse
Affiliation(s)
- A Nemeth
- Department of Oto-rhino-laryngology, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kádár E, Huguet G, Aldavert-Vera L, Morgado-Bernal I, Segura-Torres P. Intracranial self stimulation upregulates the expression of synaptic plasticity related genes and Arc protein expression in rat hippocampus. GENES BRAIN AND BEHAVIOR 2013; 12:771-9. [PMID: 23898803 DOI: 10.1111/gbb.12065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/31/2013] [Accepted: 07/25/2013] [Indexed: 11/30/2022]
Abstract
Post-training lateral hypothalamus (LH) intracranial self stimulation (ICSS) has a reliable enhancing effect on explicit memory formation evaluated in hippocampus-dependent tasks such as the Morris water maze. In this study, the effects of ICSS on gene expression in the hippocampus are examined 4.5 h post treatment by using oligonucleotide microarray and real-time PCR, and by measuring Arc protein levels in the different layers of hippocampal subfields through immunofluorescence. The microarray data analysis resulted in 65 significantly regulated genes in rat ICSS hippocampi compared to sham, including cAMP-mediated signaling as one of the most significantly enriched Database for Annotation, Visualization and Integrated Discovery (DAVID) functional categories. In particular, expression of CREB-dependent synaptic plasticity related genes (c-Fos, Arc, Bdnf, Ptgs-2 and Crem and Icer) was regulated in a time-dependent manner following treatment administration. Immunofluorescence results showed that ICSS treatment induced a significant increase in Arc protein expression in CA1 and DG hippocampal subfields. This empirical evidence supports our hypothesis that the effect of ICSS on improved or restored memory functions might be mediated by increased hippocampal expression of activity-dependent synaptic plasticity related genes, including Arc protein expression, as neural mechanisms related to memory consolidation.
Collapse
Affiliation(s)
- E Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | | | | | | | | |
Collapse
|
43
|
PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2013; 54:32-42. [PMID: 23466699 DOI: 10.1016/j.nbd.2013.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide with autocrine neuroprotective and paracrine anti-inflammatory properties in various models of acute neuronal damage and neurodegenerative diseases. Therefore, we examined a possible beneficial role of endogenous PACAP in the superoxide dismutase 1, SOD1(G93A), mouse model of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease particularly affecting somatomotor neurons. In wild-type mice, somatomotor and visceromotor neurons in brain stem and spinal cord were found to express the PACAP specific receptor PAC1, but only visceromotor neurons expressed PACAP as a potential autocrine source of regulation of these receptors. In SOD1(G93A) mice, only a small subset of the surviving somatomotor neurons showed induction of PACAP mRNA, and somatomotor neuron degeneration was unchanged in PACAP-deficient SOD1(G93A) mice. Pre-ganglionic sympathetic visceromotor neurons were found to be resistant in SOD1(G93A) mice, while pre-ganglionic parasympathetic neurons degenerated during ALS disease progression in this mouse model. PACAP-deficient SOD1(G93A) mice showed even greater pre-ganglionic parasympathetic neuron loss compared to SOD1(G93A) mice, and additional degeneration of pre-ganglionic sympathetic neurons. Thus, constitutive expression of PACAP and PAC1 may confer neuroprotection to central visceromotor neurons in SOD1(G93A) mice via autocrine pathways. Regarding the progression of neuroinflammation, the switch from amoeboid to hypertrophic microglial phenotype observed in SOD1(G93A) mice was absent in PACAP-deficient SOD1(G93A) mice. Thus, endogenous PACAP may promote microglial cytodestructive functions thought to drive ALS disease progression. This hypothesis was consistent with prolongation of life expectancy and preserved tongue motor function in PACAP-deficient SOD1(G93A) mice, compared to SOD1(G93A) mice. Given the protective role of PACAP expression in visceromotor neurons and the opposing effect on microglial function in SOD1(G93A) mice, both PACAP agonism and antagonism may be promising therapeutic tools for ALS treatment, if stage of disease progression and targeting the specific auto- and paracrine signaling pathways are carefully considered.
Collapse
|
44
|
STC1 induction by PACAP is mediated through cAMP and ERK1/2 but not PKA in cultured cortical neurons. J Mol Neurosci 2013; 46:75-87. [PMID: 21975601 DOI: 10.1007/s12031-011-9653-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
The neuroprotective actions of PACAP (pituitary adenylate cyclase-activating polypeptide) in vitro and in vivo suggest that activation of its cognate G protein coupled receptor PAC1 or downstream signaling molecules,and thus activation of PACAP target genes, could be of therapeutic benefit. Here, we show that cultured rat cortical neurons predominantly expressed the PAC1hop and null variants. PACAP receptor activation resulted in the elevation of the two second messengers cAMP and Ca(2+) and expression of the putative neuroprotectant stanniocalcin 1(STC1). PACAP signaling to the STC1 gene proceeded through the extracellular signal-regulated kinases 1 and 2(ERK1/2), but not through the cAMP-dependent protein kinase (PKA), and was mimicked by the adenylate cyclase activator forskolin. PACAP- and forskolin-mediated activation of ERK1/2 occurred through cAMP, but not PKA.These results suggest that STC1 gene induction proceeds through cAMP and ERK1/2, independently of PKA, the canonical cAMP effector. In contrast, PACAP signaling to the BDNF gene proceeded through PKA, suggesting that two different neuroprotective cAMP pathways co-exist in differentiated cortical neurons. The selective activation of a potentially neuroprotective cAMP-dependent pathway different from the canonical cAMP pathway used in many physiological processes, such as memory storage, has implications for pharmacological activation of neuroprotection in vivo.
Collapse
|
45
|
Hori M, Nakamachi T, Rakwal R, Shibato J, Ogawa T, Aiuchi T, Tsuruyama T, Tamaki K, Shioda S. Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. J Neuroinflammation 2012; 9:256. [PMID: 23176072 PMCID: PMC3526409 DOI: 10.1186/1742-2094-9-256] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/19/2012] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is considered to be a potential therapeutic agent for prevention of cerebral ischemia. Ischemia is a most common cause of death after heart attack and cancer causing major negative social and economic consequences. This study was designed to investigate the effect of PACAP38 injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with corresponding SHAM control that used 0.9% saline injection. METHODS Ischemic and non-ischemic brain tissues were sampled at 6 and 24 hours post-treatment. Following behavioral analyses to confirm whether the ischemia has occurred, we investigated the genome-wide changes in gene and protein expression using DNA microarray chip (4x44K, Agilent) and two-dimensional gel electrophoresis (2-DGE) coupled with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), respectively. Western blotting and immunofluorescent staining were also used to further examine the identified protein factor. RESULTS Our results revealed numerous changes in the transcriptome of ischemic hemisphere (ipsilateral) treated with PACAP38 compared to the saline-injected SHAM control hemisphere (contralateral). Previously known (such as the interleukin family) and novel (Gabra6, Crtam) genes were identified under PACAP influence. In parallel, 2-DGE analysis revealed a highly expressed protein spot in the ischemic hemisphere that was identified as dihydropyrimidinase-related protein 2 (DPYL2). The DPYL2, also known as Crmp2, is a marker for the axonal growth and nerve development. Interestingly, PACAP treatment slightly increased its abundance (by 2-DGE and immunostaining) at 6 h but not at 24 h in the ischemic hemisphere, suggesting PACAP activates neuronal defense mechanism early on. CONCLUSIONS This study provides a detailed inventory of PACAP influenced gene expressions and protein targets in mice ischemic brain, and suggests new targets for thereaupetic interventions.
Collapse
Affiliation(s)
- Motohide Hori
- Department of Forensic Medicine and Molecular Pathology, School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ma Y, Luo T, Xu W, Ye Z, Hong A. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion. Acta Biochim Biophys Sin (Shanghai) 2012; 44:948-56. [PMID: 23052710 DOI: 10.1093/abbs/gms078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The recombinant peptide, DBAYL, a promising therapeutic peptide for type 2 diabetes, is a new, potent, and highly selective agonist for VPAC2 generated through site-directed mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), and related analogs. The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization. As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 l of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q, V18L, N29Q, and M added to the N-terminal) were much more stable than BAY55-9837. The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro. The bioactivity assay of DBAYL showed that it displaced [(125)I]PACAP38 and [(125)I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM, respectively, which were significantly lower than that of BAY55-9837, one established VPAC2 agonists. DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC(50)) of 0.68 nM, whereas the receptor potency of DBAYL at human VPAC1 (EC(50) of 737 nM) was only 1/1083 of that at human VPAC2, and DBAYL had no activity toward human PAC1 receptor. Western blot analysis of the key proteins of insulin receptor signaling pathway: insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes. Compared with BAY55-9837 and PACAP38, the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice. These results suggested that DBAYL could efficiently improve glucose uptake and glucose-dependent insulin secretion by VPAC2-mediated effect.
Collapse
Affiliation(s)
- Yi Ma
- Department of Cell Biology, Institute of Biological Medicine, Jinan University, Guangzhou 510632, China
| | | | | | | | | |
Collapse
|
47
|
Mice lacking the β2 adrenergic receptor have a unique genetic profile before and after focal brain ischaemia. ASN Neuro 2012; 4:AN20110020. [PMID: 22867428 PMCID: PMC3436074 DOI: 10.1042/an20110020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The role of the β2AR (β2 adrenergic receptor) after stroke is unclear as pharmacological manipulations of the β2AR have produced contradictory results. We previously showed that mice deficient in the β2AR (β2KO) had smaller infarcts compared with WT (wild-type) mice (FVB) after MCAO (middle cerebral artery occlusion), a model of stroke. To elucidate mechanisms of this neuroprotection, we evaluated changes in gene expression using microarrays comparing differences before and after MCAO, and differences between genotypes. Genes associated with inflammation and cell deaths were enriched after MCAO in both genotypes, and we identified several genes not previously shown to increase following ischaemia (Ccl9, Gem and Prg4). In addition to networks that were similar between genotypes, one network with a central core of GPCR (G-protein-coupled receptor) and including biological functions such as carbohydrate metabolism, small molecule biochemistry and inflammation was identified in FVB mice but not in β2KO mice. Analysis of differences between genotypes revealed 11 genes differentially expressed by genotype both before and after ischaemia. We demonstrate greater Glo1 protein levels and lower Pmaip/Noxa mRNA levels in β2KO mice in both sham and MCAO conditions. As both genes are implicated in NF-κB (nuclear factor κB) signalling, we measured p65 activity and TNFα (tumour necrosis factor α) levels 24 h after MCAO. MCAO-induced p65 activation and post-ischaemic TNFα production were both greater in FVB compared with β2KO mice. These results suggest that loss of β2AR signalling results in a neuroprotective phenotype in part due to decreased NF-κB signalling, decreased inflammation and decreased apoptotic signalling in the brain.
Collapse
|
48
|
Emery AC, Eiden LE. Signaling through the neuropeptide GPCR PAC₁ induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. FASEB J 2012; 26:3199-211. [PMID: 22532442 DOI: 10.1096/fj.11-203042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both cAMP and ERK are necessary for neuroendocrine cell neuritogenesis, and pituitary adenylate cyclase-activating polypeptide (PACAP) activates each. It is important to know whether cAMP and ERK are arranged in a novel, linear pathway or in two parallel pathways using known signaling mechanisms. Native cellular responses [cAMP elevation, ERK phosphorylation, cAMP responsive element binding (CREB) phosphorylation, and neuritogenesis] and promoter-reporter gene activation after treatment with forskolin, cAMP analogs, and PACAP were measured in Neuroscreen-1 (NS-1) cells, a PC12 variant enabling simultaneous morphological, molecular biological, and biochemical analysis. Forskolin (25 μM) and cAMP analogs (8-bromo-cAMP, dibutyryl-cAMP, and 8-chlorophenylthio-cAMP) stimulated ERK phosphorylation and neuritogenesis in NS-1 cells. Both ERK phosphorylation and neuritogenesis were MEK dependent (blocked by 10 μM U0126) and PKA independent (insensitive to 30 μM H-89 or 100 nM myristoylated protein kinase A inhibitor). CREB phosphorylation induced by PACAP was blocked by H-89. The exchange protein activated by cAMP (Epac)-selective 8-(4-chlorophenylthio)-2'-O-Me-cAMP (100-500 μM) activated Rap1 without affecting the other cAMP-dependent processes. Thus, PACAP-38 potently stimulated two distinct and independent cAMP pathways leading to CREB or ERK activation in NS-1 cells. Drug concentrations for appropriate effect were derived from control data for all compounds. In summary, a novel PKA- and Epac-independent signaling pathway: PACAP → adenylate cyclase → cAMP → ERK → neuritogenesis has been identified.
Collapse
Affiliation(s)
- Andrew C Emery
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892-4090, USA
| | | |
Collapse
|
49
|
PACAP is an Endogenous Protective Factor—Insights from PACAP-Deficient Mice. J Mol Neurosci 2012; 48:482-92. [DOI: 10.1007/s12031-012-9762-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/22/2012] [Indexed: 01/07/2023]
|
50
|
Tamas A, Szabadfi K, Nemeth A, Fulop B, Kiss P, Atlasz T, Gabriel R, Hashimoto H, Baba A, Shintani N, Helyes Z, Reglodi D. Comparative Examination of Inner Ear in Wild Type and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)-Deficient Mice. Neurotox Res 2011; 21:435-44. [DOI: 10.1007/s12640-011-9298-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/17/2011] [Accepted: 12/06/2011] [Indexed: 12/30/2022]
|