1
|
Gonçalez JL, Shen J, Li W. Molecular Mechanisms of Rett Syndrome: Emphasizing the Roles of Monoamine, Immunity, and Mitochondrial Dysfunction. Cells 2024; 13:2077. [PMID: 39768168 PMCID: PMC11674639 DOI: 10.3390/cells13242077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the Methyl-CpG-binding Protein-2 (MECP2) gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT. Research has shown that monoamines-such as dopamine, norepinephrine, epinephrine, serotonin, and histamine-exhibit alterations in RTT, contributing to a range of neurological symptoms. Furthermore, the immune system in RTT individuals demonstrates dysfunction through the abnormal activity of microglia, macrophages, lymphocytes, and non-immune cells, leading to the atypical release of inflammatory mediators and disruptions in the NF-κB signaling pathway. Moreover, mitochondria, essential for energy production and calcium storage, also show dysfunction in this condition. The delicate balance of producing and scavenging reactive oxygen species-termed redox balance-is disrupted in RTT. Targeting these molecular pathways presents a promising avenue for developing effective therapies.
Collapse
Affiliation(s)
- Julia Lopes Gonçalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
- Graduate Program in Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jenny Shen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| |
Collapse
|
2
|
Xu Y, He L, Liu S, Zhang C, Ai Y. Intraoperative intravenous low-dose esketamine improves quality of early recovery after laparoscopic radical resection of colorectal cancer: A prospective, randomized controlled trial. PLoS One 2023; 18:e0286590. [PMID: 37267303 DOI: 10.1371/journal.pone.0286590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Esketamine has higher potency, stronger receptor affinity, a stronger analgesic effect, a higher in vivo clearance rate, and a lower incidence of adverse reactions when compared to ketamine. However, there have been few ketamine studies to assess patient-centered, overall recovery outcomes from the perspective of patients with colorectal cancer. METHODS This was a prospective, randomized controlled trial. Ninety-two patients undergoing laparoscopic radical resection of colorectal cancer were randomly assigned to either the esketamine (K group) or non-eskatamine (C group) group. After anesthesia induction, a loading dose of 0.25 mg/kg was administered, followed by continuous infusion at a rate of 0.12 mg.kg-1.h-1 until closure of surgical incisions in the K group. In the C group, an equivalent volume of normal saline was infused. The primary outcome was quality of recovery at 24 h after surgery, as measured by the Quality of Recovery-15 (QoR-15) scale. The QoR-15 was evaluated at three timepoints: before (Tbefore), 24 h (T24h) and 72 h (T72h) after surgery. MAIN RESULTS A total of 88 patients completed this study. The total QoR-15 scores in K group (n = 45) were higher than in the C group (n = 43) at 24 h: 112.33 ± 8.79 vs. 103.93 ± 9.03 (P = 0.000) and at 72 h: 118.73 ± 7.82 vs. 114.79 ± 7.98 (P = 0.022). However, the differences between the two groups only had clinical significance at 24 h after surgery. Among the five dimensions of the QoR-15, physical comfort (P = 0.003), emotional state (P = 0.000), and physical independence (P = 0.000) were significantly higher at 24 h in the K group, and physical comfort (P = 0.048) was higher at 72 h in the K group. CONCLUSIONS This study found that intraoperative intravenous low-dose esketamine could improve the early postoperative quality of recovery in patients undergoing laparoscopic radical resection of colorectal cancer from the perspective of patients.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Long He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaoxuan Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaofan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Megagiannis P, Suresh R, Rouleau GA, Zhou Y. Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Adv Drug Deliv Rev 2022; 191:114562. [PMID: 36183904 DOI: 10.1016/j.addr.2022.114562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Neurodevelopmental Disorders (NDDs) encompass a broad spectrum of conditions resulting from atypical brain development. Over the past decades, we have had the fortune to witness enormous progress in diagnosis, etiology discovery, modeling, and mechanistic understanding of NDDs from both fundamental and clinical research. Here, we review recent neurobiological advances from experimental models of NDDs. We introduce several examples and highlight breakthroughs in reversal studies of phenotypes using genetically engineered models of NDDs. The in-depth understanding of brain pathophysiology underlying NDDs and evaluations of reversibility in animal models paves the foundation for discovering novel treatment options. We discuss how the expanding property of cutting-edge technologies, such as gene editing and AAV-mediated gene delivery, are leveraged in animal models for the therapeutic development of NDDs. We envision opportunities and challenges toward faithful modeling and fruitful clinical translation.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
4
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
5
|
Exploration of group II metabotropic glutamate receptor modulation in mouse models of Rett syndrome and MECP2 Duplication syndrome. Neuropharmacology 2022; 209:109022. [PMID: 35248529 PMCID: PMC8973998 DOI: 10.1016/j.neuropharm.2022.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 01/01/2023]
Abstract
Rett syndrome (RTT) and MECP2 Duplication syndrome (MDS) have opposing molecular origins in relation to expression and function of the transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2). Several clinical and preclinical phenotypes, however, are shared between these disorders. Modulation of MeCP2 levels has recently emerged as a potential treatment option for both of these diseases. However, toxicity concerns remain with these approaches. Here, we focus on pharmacologically modulating the group II metabotropic glutamate receptors (mGlu), mGlu2 and mGlu3, which are two downstream targets of MeCP2 that are bidirectionally affected in expression in RTT patients and mice (Mecp2Null/+) versus an MDS mouse model (MECP2Tg1/o). Mecp2Null/+ and MECP2Tg1/o animals also exhibit contrasting phenotypes in trace fear acquisition, a form of temporal associative learning and memory, with trace fear deficiency observed in Mecp2Null/+ mice and abnormally enhanced trace fear acquisition in MECP2Tg1/o animals. In Mecp2Null/+ mice, treatment with the mGlu2/3 agonist LY379268 reverses the deficit in trace fear acquisition, and mGlu2/3 antagonism with LY341495 normalizes the abnormal trace fear learning and memory phenotype in MECP2Tg1/o mice. Altogether, these data highlight the role of group II mGlu receptors in RTT and MDS and demonstrate that both mGlu2 and mGlu3 may be potential therapeutic targets for these disorders.
Collapse
|
6
|
Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022; 16:825063. [PMID: 35250460 PMCID: PMC8894599 DOI: 10.3389/fnins.2022.825063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
A loss of the excitation/inhibition (E/I) balance in the neural circuit has emerged as a common neuropathological feature in many neurodevelopmental disorders. Rett syndrome (RTT), a prevalent neurodevelopmental disorder that affects 1:10,000-15,000 women globally, is caused by loss-of-function mutations in the Methyl-CpG-binding Protein-2 (Mecp2) gene. E/I imbalance is recognized as the leading cellular and synaptic hallmark that is fundamental to diverse RTT neurological symptoms, including stereotypic hand movements, impaired motor coordination, breathing irregularities, seizures, and learning/memory dysfunctions. E/I balance in RTT is not homogeneously altered but demonstrates brain region and cell type specificity instead. In this review, I elaborate on the current understanding of the loss of E/I balance in a range of brain areas at molecular and cellular levels. I further describe how the underlying cellular mechanisms contribute to the disturbance of the proper E/I ratio. Last, I discuss current pharmacologic innervations for RTT and their role in modifying the E/I balance.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Wu Y, Cui N, Xing H, Zhong W, Arrowood C, Johnson CM, Jiang C. In vivo evidence for the cellular basis of central hypoventilation of Rett syndrome and pharmacological correction in the rat model. J Cell Physiol 2021; 236:8082-8098. [PMID: 34077559 DOI: 10.1002/jcp.30462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/13/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused mostly by mutations in the MECP2 gene. RTT patients show periodical hypoventilation attacks. The breathing disorder contributing to the high incidence of sudden death is thought to be due to depressed central inspiratory (I) activity via unknown cellular processes. Demonstration of such processes may lead to targets for pharmacological control of the RTT-type hypoventilation. We performed in vivo recordings from medullary respiratory neurons on the RTT rat model. To our surprise, both I and expiratory (E) neurons in the ventral respiratory column (VRC) increased their firing activity in Mecp2-null rats with severe hypoventilation. These I neurons including E-I phase-spanning and other I neurons remained active during apneas. Consistent with enhanced central I drive, ectopic phrenic discharges during expiration as well as apnea were observed in the Mecp2-null rats. Considering the increased I neuronal firing and ectopic phrenic activity, the RTT-type hypoventilation does not seem to be caused by depression in central I activity, neither reduced medullary I premotor output. This as well as excessive E neuronal firing as shown in our previous studies suggests inadequate synaptic inhibition for phase transition. We found that the abnormal respiratory neuronal firing, ectopic phrenic discharge as well as RTT-type hypoventilation all can be corrected by enhancing GABAergic inhibition. More strikingly, Mecp2-null rats reaching humane endpoints with severe hypoventilation can be rescued by GABAergic augmentation. Thus, defective GABAergic inhibition among respiratory neurons is likely to play a role in the RTT-type hypoventilation, which can be effectively controlled with pharmacological agents.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Hao Xing
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Colin Arrowood
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Disord 2020; 50:2740-2764. [PMID: 32016693 DOI: 10.1007/s10803-020-04381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug studies on Rett syndrome (RTT) have drastically increased over the past few decades. This review aims to provide master data on bench-to-bedside drug studies involving RTT. A comprehensive literature review was performed by searching in PUBMED, MEDLINE and Google Scholar, international, national and regional clinical trial registries and pharmaceutical companies using the keywords "Rett syndrome treatment and/or drug or compound or molecule". Seventy drugs were investigated in non-clinical (N = 65 animal/cell line-based studies; N = 5 iPSC-based study) and clinical trials (N = 34) for ameliorating the symptoms of RTT. Though there is good progress in both clinical and non-clinical studies, none of these drugs entered phase III/IV for being launched as a therapeutic agent for RTT.
Collapse
Affiliation(s)
- Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
9
|
Ward CS, Huang TW, Herrera JA, Samaco RC, McGraw CM, Parra DE, Arvide EM, Ito-Ishida A, Meng X, Ure K, Zoghbi HY, Neul JL. Loss of MeCP2 Function Across Several Neuronal Populations Impairs Breathing Response to Acute Hypoxia. Front Neurol 2020; 11:593554. [PMID: 33193060 PMCID: PMC7662121 DOI: 10.3389/fneur.2020.593554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by loss of function of the transcriptional regulator Methyl-CpG-Binding Protein 2 (MeCP2). In addition to the characteristic loss of hand function and spoken language after the first year of life, people with RTT also have a variety of physiological and autonomic abnormalities including disrupted breathing rhythms characterized by bouts of hyperventilation and an increased frequency of apnea. These breathing abnormalities, that likely involve alterations in both the circuitry underlying respiratory pace making and those underlying breathing response to environmental stimuli, may underlie the sudden unexpected death seen in a significant fraction of people with RTT. In fact, mice lacking MeCP2 function exhibit abnormal breathing rate response to acute hypoxia and maintain a persistently elevated breathing rate rather than showing typical hypoxic ventilatory decline that can be observed among their wild-type littermates. Using genetic and pharmacological tools to better understand the course of this abnormal hypoxic breathing rate response and the neurons driving it, we learned that the abnormal hypoxic breathing response is acquired as the animals mature, and that MeCP2 function is required within excitatory, inhibitory, and modulatory populations for a normal hypoxic breathing rate response. Furthermore, mice lacking MeCP2 exhibit decreased hypoxia-induced neuronal activity within the nucleus tractus solitarius of the dorsal medulla. Overall, these data provide insight into the neurons driving the circuit dysfunction that leads to breathing abnormalities upon loss of MeCP2. The discovery that combined dysfunction across multiple neuronal populations contributes to breathing dysfunction may provide insight into sudden unexpected death in RTT.
Collapse
Affiliation(s)
- Christopher S. Ward
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Teng-Wei Huang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jose A. Herrera
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Rodney C. Samaco
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Christopher M. McGraw
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Diana E. Parra
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - E. Melissa Arvide
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Aya Ito-Ishida
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Xiangling Meng
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Kerstin Ure
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Huda Y. Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey L. Neul
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Flores Gutiérrez J, De Felice C, Natali G, Leoncini S, Signorini C, Hayek J, Tongiorgi E. Protective role of mirtazapine in adult female Mecp2 +/- mice and patients with Rett syndrome. J Neurodev Disord 2020; 12:26. [PMID: 32988385 PMCID: PMC7523042 DOI: 10.1186/s11689-020-09328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT), an X-linked neurodevelopmental rare disease mainly caused by MECP2-gene mutations, is a prototypic intellectual disability disorder. Reversibility of RTT-like phenotypes in an adult mouse model lacking the Mecp2-gene has given hope of treating the disease at any age. However, adult RTT patients still urge for new treatments. Given the relationship between RTT and monoamine deficiency, we investigated mirtazapine (MTZ), a noradrenergic and specific-serotonergic antidepressant, as a potential treatment. METHODS Adult heterozygous-Mecp2 (HET) female mice (6-months old) were treated for 30 days with 10 mg/kg MTZ and assessed for general health, motor skills, motor learning, and anxiety. Motor cortex, somatosensory cortex, and amygdala were analyzed for parvalbumin expression. Eighty RTT adult female patients harboring a pathogenic MECP2 mutation were randomly assigned to treatment to MTZ for insomnia and mood disorders (mean age = 23.1 ± 7.5 years, range = 16-47 years; mean MTZ-treatment duration = 1.64 ± 1.0 years, range = 0.08-5.0 years). Rett clinical severity scale (RCSS) and motor behavior assessment scale (MBAS) were retrospectively analyzed. RESULTS In HET mice, MTZ preserved motor learning from deterioration and normalized parvalbumin levels in the primary motor cortex. Moreover, MTZ rescued the aberrant open-arm preference behavior observed in HET mice in the elevated plus-maze (EPM) and normalized parvalbumin expression in the barrel cortex. Since whisker clipping also abolished the EPM-related phenotype, we propose it is due to sensory hypersensitivity. In patients, MTZ slowed disease progression or induced significant improvements for 10/16 MBAS-items of the M1 social behavior area: 4/7 items of the M2 oro-facial/respiratory area and 8/14 items of the M3 motor/physical signs area. CONCLUSIONS This study provides the first evidence that long-term treatment of adult female heterozygous Mecp2tm1.1Bird mice and adult Rett patients with the antidepressant mirtazapine is well tolerated and that it protects from disease progression and improves motor, sensory, and behavioral symptoms.
Collapse
Affiliation(s)
- Javier Flores Gutiérrez
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Giulia Natali
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy
| | - Silvia Leoncini
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.,Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.,Pediatric Speciality Center "L'Isola di Bau", 50052 Certaldo, Florence, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5 - 34127, Trieste, Italy.
| |
Collapse
|
11
|
Johnson CM, Cui N, Xing H, Wu Y, Jiang C. The antitussive cloperastine improves breathing abnormalities in a Rett Syndrome mouse model by blocking presynaptic GIRK channels and enhancing GABA release. Neuropharmacology 2020; 176:108214. [PMID: 32622786 DOI: 10.1016/j.neuropharm.2020.108214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. One of the major RTT features is breathing dysfunction characterized by periodic hypo- and hyperventilation. The breathing disorders are associated with increased brainstem neuronal excitability, which can be alleviated with GABA agonists. Since neuronal hypoexcitability occurs in the forebrain of RTT models, it is necessary to find pharmacological agents with a relative preference to brainstem neurons. Here we show evidence for the improvement of breathing disorders of Mecp2-disrupted mice with the brainstem-acting drug cloperastine (CPS) and its likely neuronal targets. CPS is an over-the-counter cough medicine that has an inhibitory effect on brainstem neuronal networks. In Mecp2-disrupted mice, CPS (30 mg/kg, i.p.) decreased the occurrence of apneas/h and breath frequency variation. GIRK currents expressed in HEK cells were inhibited by CPS with IC50 1 μM. Whole-cell patch clamp recordings in locus coeruleus (LC) and dorsal tegmental nucleus (DTN) neurons revealed an overall inhibitory effect of CPS (10 μM) on neuronal firing activity. Such an effect was reversed by the GABAA receptor antagonist bicuculline (20 μM). Voltage clamp studies showed that CPS increased GABAergic sIPSCs in LC cells, which was blocked by the GABAB receptor antagonist phaclofen. Functional GABAergic connections of DTN neurons with LC cells were shown. These results suggest that CPS improves breathing dysfunction in Mecp2-null mice by blocking GIRK channels in synaptic terminals and enhancing GABA release.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Hao Xing
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Yang Wu
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA.
| |
Collapse
|
12
|
Ribeiro MC, MacDonald JL. Sex differences in Mecp2-mutant Rett syndrome model mice and the impact of cellular mosaicism in phenotype development. Brain Res 2020; 1729:146644. [PMID: 31904347 DOI: 10.1016/j.brainres.2019.146644] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
There is currently no effective treatment for Rett syndrome (RTT), a severe X-linked progressive neurodevelopmental disorder caused by mutations in the transcriptional regulator MECP2. Because MECP2 is subjected to X-inactivation, most affected individuals are female heterozygotes who display cellular mosaicism for normal and mutant MECP2. Males who are hemizygous for mutant MECP2 are more severely affected than heterozygous females and rarely survive. Mecp2 loss-of-function is less severe in mice, however, and male hemizygous null mice not only survive until adulthood, they have been the most commonly studied model system. Although heterozygous female mice better recapitulate human RTT, they have not been as thoroughly characterized. This is likely because of the added experimental challenges that they present, including delayed and more variable phenotypic progression and cellular mosaicism due to X-inactivation. In this review, we compare phenotypes of Mecp2 heterozygous female mice and male hemizygous null mouse models. Further, we discuss the complexities that arise from the many cell-type and tissue-type specific roles of MeCP2, as well as the combination of cell-autonomous and non-cell-autonomous disruptions that result from Mecp2 loss-of-function. This is of particular importance in the context of the female heterozygous brain, composed of a mixture of MeCP2+ and MeCP2- cells, the ratio of which can alter RTT phenotypes in the case of skewed X-inactivation. The goal of this review is to provide a clearer understanding of the pathophysiological differences between the mouse models, which is an essential consideration in the design of future pre-clinical studies.
Collapse
Affiliation(s)
- Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States.
| |
Collapse
|
13
|
Patrone LGA, Capalbo AC, Marques DA, Bícego KC, Gargaglioni LH. An age- and sex-dependent role of catecholaminergic neurons in the control of breathing and hypoxic chemoreflex during postnatal development. Brain Res 2019; 1726:146508. [PMID: 31606412 DOI: 10.1016/j.brainres.2019.146508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
The respiratory system undergoes significant development during the postnatal phase. Maturation of brainstem catecholaminergic (CA) neurons is important for the control and modulation of respiratory rhythmogenesis, as well as for chemoreception in early life. We demonstrated an inhibitory role for CA neurons in CO2 chemosensitivity in neonatal and juvenile male and female rats, but information regarding their role in the hypoxic ventilatory response (HVR) is lacking. We evaluated the contribution of brainstem CA neurons in the HVR during postnatal (P) development (P7-8, P14-15 and P20-21) in male and female rats through chemical injury with conjugated saporin anti-dopamine beta-hydroxylase (DβH-SAP, 420 ng·μL-1) injected in the fourth ventricle. Ventilation (V̇E) and oxygen consumption were recorded one week after the lesion in unanesthetized rats during exposure to normoxia and hypoxia. Hypoxia reduced breathing variability in P7-8 control rats of both sexes. At P7-8, the HVR for lesioned males and females increased 27% and 24%, respectively. Additionally, the lesion reduced the normoxic breathing variability in both sexes at P7-8, but hypoxia partially reverted this effect. For P14-15, the increase in V̇E during hypoxia was 30% higher for male and 24% higher for female lesioned animals. A sex-specific difference was detected at P20-21, as lesioned males exhibited a 24% decrease in the HVR, while lesioned females experienced a 22% increase. Furthermore, the hypoxia-induced body temperature reduction was attenuated in P20-21 lesioned females. We conclude that brainstem CA neurons modulate the HRV during the postnatal phase, and possibly thermoregulation during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Aretuza C Capalbo
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil.
| |
Collapse
|
14
|
Treating Rett syndrome: from mouse models to human therapies. Mamm Genome 2019; 30:90-110. [PMID: 30820643 PMCID: PMC6606665 DOI: 10.1007/s00335-019-09793-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Rare diseases are very difficult to study mechanistically and to develop therapies for because of the scarcity of patients. Here, the rare neuro-metabolic disorder Rett syndrome (RTT) is discussed as a prototype for precision medicine, demonstrating how mouse models have led to an understanding of the development of symptoms. RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Mecp2-mutant mice are being used in preclinical studies that target the MECP2 gene directly, or its downstream pathways. Importantly, this work may improve the health of RTT patients. Clinical presentation may vary widely among individuals based on their mutation, but also because of the degree of X chromosome inactivation and the presence of modifier genes. Because it is a complex disorder involving many organ systems, it is likely that recovery of RTT patients will involve a combination of treatments. Precision medicine is warranted to provide the best efficacy to individually treat RTT patients.
Collapse
|
15
|
Tarquinio DC, Hou W, Neul JL, Berkmen GK, Drummond J, Aronoff E, Harris J, Lane JB, Kaufmann WE, Motil KJ, Glaze DG, Skinner SA, Percy AK. The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain Dev 2018; 40:515-529. [PMID: 29657083 PMCID: PMC6026556 DOI: 10.1016/j.braindev.2018.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder caused by mutations in MECP2, is associated with a peculiar breathing disturbance exclusively during wakefulness that is distressing, and can even prompt emergency resuscitation. Through the RTT Natural History Study, we characterized cross sectional and longitudinal characteristics of awake breathing abnormalities in RTT and identified associated clinical features. Participants were recruited from 2006 to 2015, and cumulative lifetime prevalence of breathing dysfunction was determined using the Kaplan-Meier estimator. Risk factors were assessed using logistic regression. Of 1205 participants, 1185 had sufficient data for analysis, including 922 females with classic RTT, 778 of whom were followed longitudinally for up to 9.0 years, for a total of 3944 person-years. Participants with classic or atypical severe RTT were more likely to have breathing dysfunction (nearly 100% over the lifespan) compared to those with atypical mild RTT (60-70%). Remission was common, lasting 1 year on average, with 15% ending the study in terminal remission. Factors associated with higher odds of severe breathing dysfunction included poor gross and fine motor function, frequency of stereotypical hand movements, seizure frequency, prolonged corrected QT interval on EKG, and two quality of life metrics: caregiver concern about physical health and contracting illness. Factors associated with lower prevalence of severe breathing dysfunction included higher body mass index and head circumference Z-scores, advanced age, and severe scoliosis or contractures. Awake breathing dysfunction is common in RTT, more so than seizures, and is associated with function, quality of life and risk for cardiac dysrhythmia.
Collapse
Affiliation(s)
- Daniel C. Tarquinio
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Wei Hou
- Statistical analysis, Stony Brook University Medical Center, Stony Brook, NY
| | | | - Gamze Kilic Berkmen
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Jana Drummond
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Elizabeth Aronoff
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jonkman K, van Rijnsoever E, Olofsen E, Aarts L, Sarton E, van Velzen M, Niesters M, Dahan A. Esketamine counters opioid-induced respiratory depression. Br J Anaesth 2018; 120:1117-1127. [DOI: 10.1016/j.bja.2018.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 01/09/2023] Open
|
17
|
Mancini J, Dubus JC, Jouve E, Roux JC, Franco P, Lagrue E, Castelnau P, Cances C, Chaix Y, Rougeot-Jung C, Cornu C, Desportes V, Vallée L, Bahi-Buisson N, Truillet R, Attolini L, Villard L, Blin O, Micallef J. Effect of desipramine on patients with breathing disorders in RETT syndrome. Ann Clin Transl Neurol 2017; 5:118-127. [PMID: 29468173 PMCID: PMC5817841 DOI: 10.1002/acn3.468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Rett Syndrome (RTT) is a severe neurodevelopmental condition with breathing disorders, affecting around one in 10,000 female births. Desipramine, a noradrenaline reuptake inhibitor, reduced the number of apneas in Mecp2-deficient mice, a model of RTT. We planned a phase 2 trial to test its efficacy and its safety on breathing patterns in 36 girls with RTT. Methods The trial was a 6-month, multicenter, randomized, double-blind, placebo-controlled study registered with ClinicalTrials.gov, number NCT00990691. Girls diagnosed according to clinical examination and confirmed by genotyping were randomly assigned in a 1:1:1 ratio to receive 2-3 mg/kg Desipramine per day (high Desipramine), 1-2 mg/kg Desipramine per day (low Desipramine), or a placebo. The primary outcome was the change of apnea hypopnea index (AHI), defined by the number of apnea and hypopnea events per hour, assessed at 6 months from baseline. Intention-to-treat analysis was applied. Results The median change in AHI from baseline to 6 months was -31 (IQR: -37 to -11) for the high Desipramine, -17.5 (IQR: -31 to 13) for the low Desipramine, and -13 (IQR:-31 to 0) for the placebo group. We did not find any significant difference in these changes between the groups (P = 0.781). A significant inverse correlation between Desipramine plasma concentration and AHI (r = -0.44; P = 0.0002) was underlined. Interpretation This first clinical trial of desipramine did not show clinical efficacy. Although required further studies, the significant correlation between Desipramine concentrations and improvement of AHI provided additional and relevant reasons to test the noradrenergic pathway in RTT.
Collapse
Affiliation(s)
- Josette Mancini
- Neuropediatric Unit Aix Marseille University Children Hospital APHM, Timone, Neurosciences Institute Marseille France
| | - Jean-Christophe Dubus
- Pneumology Pediatric Unit Aix Marseille University Children Hospital CNRS URMITE 6236A PHM Marseille France
| | - Elisabeth Jouve
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | | | - Patricia Franco
- Neuropediatric Ward Hypnology Unit Lyon University Civil Hospices of Lyon INSERM U628 Lyon France
| | - Emmanuelle Lagrue
- Neuropediatrics and Handicap Department Tours University INSERM, UMR U930 Imaging and Brain, CHRU Tours Tours France
| | - Pierre Castelnau
- Neuropediatrics and Handicap Department Tours University INSERM, UMR U930 Imaging and Brain, CHRU Tours Tours France
| | - Claude Cances
- Neuropediatric Unit Neuro Imaging Center Toulouse University Children Hospital CHU PURPANUMR 1214 Toulouse France
| | - Yves Chaix
- Neuropediatric Unit Neuro Imaging Center Toulouse University Children Hospital CHU PURPANUMR 1214 Toulouse France
| | - Christelle Rougeot-Jung
- Lyon University National Reference Center for Rare Diseases with Intellectual Disability HFME Hospices Civils de Lyon Lyon France.,CNRS UMR 5304 ISC Lyon France
| | - Catherine Cornu
- Department of Pharmacotoxicology Clinical Investigation Center Hospices Civils de Lyon INSERM 1407 Lyon France.,Lyon University CNRS UMR 5558 Lyon France
| | - Vincent Desportes
- Lyon University National Reference Center for Rare Diseases with Intellectual Disability HFME Hospices Civils de Lyon Lyon France.,CNRS UMR 5304 ISC Lyon France
| | - Louis Vallée
- Department of Neuropediatrics Lille North 2 University CHRU Hôpital Roger Salengro Lille France
| | - Nadia Bahi-Buisson
- Imagine Institute and INSERM UMR-1163 Embryology and Genetics of Congenital Malformations Pediatric Neurology Paris Descartes - Sorbonne Paris Cité University Necker Enfants Malades University Hospital AP-HP Paris France
| | - Romain Truillet
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Laurence Attolini
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Laurent Villard
- Aix Marseille University INSERM, GMGF UMR_S 910 Marseille France
| | - Olivier Blin
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Joëlle Micallef
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| |
Collapse
|
18
|
van der Schrier R, Jonkman K, van Velzen M, Olofsen E, Drewes AM, Dahan A, Niesters M. An experimental study comparing the respiratory effects of tapentadol and oxycodone in healthy volunteers. Br J Anaesth 2017; 119:1169-1177. [DOI: 10.1093/bja/aex295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
19
|
Jiang C, Cui N, Zhong W, Johnson CM, Wu Y. Breathing abnormalities in animal models of Rett syndrome a female neurogenetic disorder. Respir Physiol Neurobiol 2017; 245:45-52. [PMID: 27884797 PMCID: PMC5438903 DOI: 10.1016/j.resp.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 02/08/2023]
Abstract
A characteristic feature of Rett syndrome (RTT) is abnormal breathing accompanied by several other neurological and cognitive disorders. Since RTT rodent models became available, studies have begun shedding insight into the breathing abnormalities at behavioral, cellular and molecular levels. Defects are found in several groups of brainstem neurons involved in respiratory control, and potential neural mechanisms have been suggested. The findings in animal models are helpful in therapeutic strategies for people with RTT with respect to lowering sudden and unexpected death, preventing secondary developmental consequences, and improving the quality of lives.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Biology, Georgia State University, Atlanta, USA.
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, USA
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, USA
| | | | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, USA
| |
Collapse
|
20
|
Horiuchi M, Smith L, Maezawa I, Jin LW. CX 3CR1 ablation ameliorates motor and respiratory dysfunctions and improves survival of a Rett syndrome mouse model. Brain Behav Immun 2017; 60:106-116. [PMID: 26883520 PMCID: PMC5531048 DOI: 10.1016/j.bbi.2016.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 01/22/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding MeCP2, an epigenetic modulator that binds the methyl CpG dinucleotide in target genes to regulate transcription. Previously we and others reported a role of microglia in the pathophysiology of RTT. Because microglia in the Mecp2 knockout (Mecp2KO) mouse model of RTT over-produce neurotoxic mediators glutamate and reactive oxygen species, we hypothesize that blocking neuron-microglia interaction by ablation of CX3CR1, a chemokine receptor expressed in microglia/myeloid cells mediating such interaction by pairing with its neuronal ligand CX3CL1, would ameliorate the RTT-like phenotype in Mecp2KO mice. Here we report that CX3CR1 ablation prolonged the lifespan of Mecp2KO mice from a median survival of 54.5-74days, and significantly improved the body weight gain, symptomatic scores, major respiratory parameters, and motor coordination and performance. CX3CR1 ablation rectified previously identified histological abnormalities in the Mecp2KO brain such as neuronal soma size in hippocampal CA2, and the number, soma size, and process complexity of microglia. Moreover, CX3CR1 ablation enhanced the neurotrophic action of microglia in Mecp2KO mice by producing higher amount of insulin-like growth factor 1. Our data support a role of myeloid cells/microglia in RTT and suggest a novel therapeutic approach for RTT by targeting CX3CR1 with specific antagonists or genetic downregulation.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Department of Pathology and Laboratory Medicine, 2805 50th Street, UC Davis Medical Center, Sacramento, CA 95817, United States
| | - Lucas Smith
- Department of Pathology and Laboratory Medicine, 2805 50th Street, UC Davis Medical Center, Sacramento, CA 95817, United States
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, 2805 50th Street, UC Davis Medical Center, Sacramento, CA 95817, United States,M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute, 2805 50th Street, UC Davis Medical Center, Sacramento, CA 95817, United States
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, 2805 50th Street, UC Davis Medical Center, Sacramento, CA 95817, United States; M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute, 2805 50th Street, UC Davis Medical Center, Sacramento, CA 95817, United States.
| |
Collapse
|
21
|
Matagne V, Ehinger Y, Saidi L, Borges-Correia A, Barkats M, Bartoli M, Villard L, Roux JC. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol Dis 2016; 99:1-11. [PMID: 27974239 DOI: 10.1016/j.nbd.2016.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/07/2016] [Accepted: 12/09/2016] [Indexed: 11/15/2022] Open
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent cause of intellectual disability in girls and there is currently no cure for the disease. The finding that the deficits caused by the loss of Mecp2 are reversible in the mouse has bolstered interest in gene therapy as a cure for RTT. In order to assess the feasibility of gene therapy in a RTT mouse model, and in keeping with translational goals, we investigated the efficacy of a self-complementary AAV9 vector expressing a codon-optimized version of Mecp2 (AAV9-MCO) delivered via a systemic approach in early symptomatic Mecp2-deficient (KO) mice. Our results show that AAV9-MCO administered at a dose of 2×1011 viral genome (vg)/mouse was able to significantly increase survival and weight gain, and delay the occurrence of behavioral deficits. Apneas, which are one of the core RTT breathing deficits, were significantly decreased to WT levels in Mecp2 KO mice after AAV9-MCO administration. Semi-quantitative analysis showed that AAV9-MCO administration in Mecp2 KO mice resulted in 10 to 20% Mecp2 immunopositive cells compared to WT animals, with the highest Mecp2 expression found in midbrain regions known to regulate cardio-respiratory functions. In addition, we also found a cell autonomous increase in tyrosine hydroxylase levels in the A1C1 and A2C2 catecholaminergic Mecp2+ neurons in treated Mecp2 KO mice, which may partly explain the beneficial effect of AAV9-MCO administration on apneas occurrence.
Collapse
Affiliation(s)
- Valerie Matagne
- Aix Marseille Univ, INSERM, GMGF, UMR_S 910, 13385 Marseille, France
| | - Yann Ehinger
- Aix Marseille Univ, INSERM, GMGF, UMR_S 910, 13385 Marseille, France
| | - Lydia Saidi
- Aix Marseille Univ, INSERM, GMGF, UMR_S 910, 13385 Marseille, France
| | | | - Martine Barkats
- Center of Research on Myology, FRE 3617 Centre National de la Recherche Scientifique, UMRS 974 INSERM, French Institute of Myology, Pierre and Marie Curie University Paris, France
| | - Marc Bartoli
- Aix Marseille Univ, INSERM, GMGF, UMR_S 910, 13385 Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, GMGF, UMR_S 910, 13385 Marseille, France
| | | |
Collapse
|
22
|
Janc OA, Hüser MA, Dietrich K, Kempkes B, Menzfeld C, Hülsmann S, Müller M. Systemic Radical Scavenger Treatment of a Mouse Model of Rett Syndrome: Merits and Limitations of the Vitamin E Derivative Trolox. Front Cell Neurosci 2016; 10:266. [PMID: 27895554 PMCID: PMC5109403 DOI: 10.3389/fncel.2016.00266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder typically arising from spontaneous mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. The almost exclusively female Rett patients show an apparently normal development during their first 6-18 months of life. Subsequently, cognitive- and motor-impairment, hand stereotypies, loss of learned skills, epilepsy and irregular breathing manifest. Early mitochondrial impairment and oxidative challenge are considered to facilitate disease progression. Along this line, we recently confirmed in vitro that acute treatment with the vitamin E-derivative Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, ameliorates cellular redox balance and improves hypoxia tolerance in male MeCP2-deficient (Mecp2-/y ) mouse hippocampus. Pursuing these promising findings, we performed a preclinical study to define the merit of systemic Trolox administration. Blinded, placebo-controlled in vivo treatment of male mice started at postnatal day (PD) 10-11 and continued for ~40 days. Compounds (vehicle only, 10 mg/kg or 40 mg/kg Trolox) were injected intraperitoneally every 48 h. Detailed phenotyping revealed that in Mecp2-/y mice, blood glucose levels, lipid peroxidation, synaptic short-term plasticity, hypoxia tolerance and certain forms of environmental exploration were improved by Trolox. Yet, body weight and size, motor function and the rate and regularity of breathing did not improve. In conclusion, in vivo Trolox treatment partially ameliorated a subset of symptoms of the complex Rett phenotype, thereby confirming a partial merit of the vitamin E-derivative based pharmacotherapy. Yet, it also became evident that frequent animal handling and the route of drug administration are critical issues to be optimized in future trials.
Collapse
Affiliation(s)
- Oliwia A Janc
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Marc A Hüser
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Germany
| | - Katharina Dietrich
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Belinda Kempkes
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Germany
| | - Christiane Menzfeld
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Swen Hülsmann
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Klinik für Anästhesiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany; Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-UniversitätGöttingen, Germany
| |
Collapse
|
23
|
Johnson CM, Zhong W, Cui N, Wu Y, Xing H, Zhang S, Jiang C. Defects in brainstem neurons associated with breathing and motor function in the Mecp2R168X/Y mouse model of Rett syndrome. Am J Physiol Cell Physiol 2016; 311:C895-C909. [PMID: 27653984 DOI: 10.1152/ajpcell.00132.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022]
Abstract
Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mostly by disruption of the MECP2 gene. Among several RTT-like mouse models, one of them is a strain of mice that carries an R168X point mutation in Mecp2 and resembles one of the most common RTT-causing mutations in humans. Although several behavioral defects have previously been found in the Mecp2R168X/Y mice, alterations in nerve cells remain unknown. Here we compare several behavioral and cellular outcomes between this Mecp2R168X/Y model and a widely used Mecp2Bird/Y mouse model. With lower body weight and shorter lifespan than their wild-type littermates, the Mecp2R168X/Y mice showed impairments of breathing and motor function. Thus we studied brainstem CO2-chemosensitive neurons and propriosensory cells that are associated with these two functions, respectively. Neurons in the locus coeruleus (LC) of both mutant strains showed defects in their intrinsic membrane properties, including changes in action potential morphology and excessive firing activity. Neurons in the mesencephalic trigeminal nucleus (Me5) of both strains displayed a higher firing response to depolarization than their wild-type littermates, likely attributable to a lower firing threshold. Because the increased excitability in LC and Me5 neurons tends to impact the excitation-inhibition balances in brainstem neuronal networks as well as their associated functions, it is likely that the defects in the intrinsic membrane properties of these brainstem neurons contribute to the breathing abnormalities and motor dysfunction. Furthermore, our results showing comparable phenotypical outcomes of Mecp2R168X/Y mice with Mecp2Bird/Y mice suggest that both strains are valid animal models for RTT research.
Collapse
Affiliation(s)
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Hao Xing
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shuang Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
24
|
Patrizi A, Picard N, Simon AJ, Gunner G, Centofante E, Andrews NA, Fagiolini M. Chronic Administration of the N-Methyl-D-Aspartate Receptor Antagonist Ketamine Improves Rett Syndrome Phenotype. Biol Psychiatry 2016; 79:755-764. [PMID: 26410354 PMCID: PMC7410367 DOI: 10.1016/j.biopsych.2015.08.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Rett syndrome (RTT) is a neurological disorder caused by mutation of the X-linked MECP2 gene, which results in the progressive disruption of excitatory and inhibitory neuronal circuits. To date, there is no effective treatment available for the disorder. Studies conducted in RTT patients and murine models have shown altered expression of N-methyl-D-aspartate receptors (NMDARs). Genetic deletion of the NMDAR subunit, GluN2A, in mice lacking Mecp2 is sufficient to prevent RTT phenotypes, including regression of vision. METHODS We performed a systematic, randomized preclinical trial of chronic administration of low-dose (8 mg/kg, intraperitoneal) ketamine, an NMDAR antagonist, starting either early in development or at the onset of RTT phenotype in Mecp2-null mice. RESULTS Daily exposure to ketamine ameliorated RTT symptoms and extended the life span of treated Mecp2-null mice without adverse side effects. Furthermore, significant improvement was observed in cortical processing and connectivity, which were fully restored to a wild-type level, particularly when treatment was started at the onset of regression. CONCLUSIONS Our findings provide strong evidence that targeting NMDA receptors can be a safe and effective treatment for RTT.
Collapse
Affiliation(s)
- Annarita Patrizi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nathalie Picard
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alex Joseph Simon
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georgia Gunner
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eleonora Centofante
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nick Arthur Andrews
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michela Fagiolini
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
25
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
26
|
Homberg JR, Kyzar EJ, Scattoni ML, Norton WH, Pittman J, Gaikwad S, Nguyen M, Poudel MK, Ullmann JFP, Diamond DM, Kaluyeva AA, Parker MO, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Res Bull 2016; 125:79-91. [PMID: 27113433 DOI: 10.1016/j.brainresbull.2016.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 01/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of prevalent neuropsychiatric illnesses with various degrees of social, cognitive, motor, language and affective deficits. NDDs are caused by aberrant brain development due to genetic and environmental perturbations. Common NDDs include autism spectrum disorder (ASD), intellectual disability, communication/speech disorders, motor/tic disorders and attention deficit hyperactivity disorder. Genetic and epigenetic/environmental factors play a key role in these NDDs with significant societal impact. Given the lack of their efficient therapies, it is important to gain further translational insights into the pathobiology of NDDs. To address these challenges, the International Stress and Behavior Society (ISBS) has established the Strategic Task Force on NDDs. Summarizing the Panel's findings, here we discuss the neurobiological mechanisms of selected common NDDs and a wider NDD+ spectrum of associated neuropsychiatric disorders with developmental trajectories. We also outline the utility of existing preclinical (animal) models for building translational and cross-diagnostic bridges to improve our understanding of various NDDs.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | | | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Michael Nguyen
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA; New York University School of Medicine, NY, NY, USA
| | - Manoj K Poudel
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Jeremy F P Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA; J.A. Haley Veterans Hospital, Research and Development Service, Tampa, FL, USA
| | - Aleksandra A Kaluyeva
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung, Taiwan
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
27
|
Cuddapah VA, Sinifunanya EN, Percy AK, Olsen ML. MeCP2 in the regulation of neural activity: Rett syndrome pathophysiological perspectives. Degener Neurol Neuromuscul Dis 2015; 5:103-116. [PMID: 32669918 PMCID: PMC7337177 DOI: 10.2147/dnnd.s61269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
Rett syndrome (RTT), an X-linked neurodevelopment disorder, occurs in approximately one out of 10,000 females. Individuals afflicted by RTT display a constellation of signs and symptoms, affecting nearly every organ system. Most striking are the neurological manifestations, including regression of language and motor skills, increased seizure activity, autonomic dysfunction, and aberrant regulation of breathing patterns. The majority of girls with RTT have mutations in the gene encoding for methyl-CpG binding protein 2 (MeCP2). Since the discovery of this genetic cause of RTT in 1999, there has been an accelerated pace of research seeking to understand the role of MeCP2 in the brain in the hope of developing a disease-modifying therapy for RTT. In this study, we review the clinical features of RTT and then explore the latest mechanistic studies in order to explain how a mutation in MeCP2 leads to these unique features. We cover in detail studies examining the role of MeCP2 in neuronal physiology, as well as recent evidence that implicates a key role for glia in the pathogenesis of RTT. In the past 20 years, these basic and clinical studies have yielded an extraordinary understanding of RTT; as such, we end this narrative review considering the translation of these studies into clinical trials for the treatment of RTT.
Collapse
Affiliation(s)
| | | | - Alan K Percy
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
28
|
Abstract
Rett syndrome (RTT) is a syndromic autism spectrum disorder caused by loss-of-function mutations in MECP2. The methyl CpG binding protein 2 binds methylcytosine and 5-hydroxymethycytosine at CpG sites in promoter regions of target genes, controlling their transcription by recruiting co-repressors and co-activators. Several preclinical studies in mouse models have identified rational molecular targets for drug therapies aimed at correcting the underlying neural dysfunction. These targeted therapies are increasingly translating into human clinical trials. In this review, we present an overview of RTT and describe the current state of preclinical studies in methyl CpG binding protein 2-based mouse models, as well as current clinical trials in individuals with RTT.
Collapse
Affiliation(s)
- Lucas Pozzo-Miller
- />Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Sandipan Pati
- />Department of Neurology, Epilepsy Division, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Alan K. Percy
- />Department of Pediatrics, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
29
|
Kron M, Lang M, Adams IT, Sceniak M, Longo F, Katz DM. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome. Dis Model Mech 2015; 7:1047-55. [PMID: 25147297 PMCID: PMC4142725 DOI: 10.1242/dmm.016030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal in symptomatic RTT mice.
Collapse
Affiliation(s)
- Miriam Kron
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Min Lang
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ian T Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Michael Sceniak
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Frank Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Tsai SJ. Is riluzole a potential therapy for Rett syndrome? Med Hypotheses 2015; 85:76-8. [PMID: 25858436 DOI: 10.1016/j.mehy.2015.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/14/2015] [Accepted: 03/28/2015] [Indexed: 11/17/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder with autistic features and is caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) in the majority of cases. Besides symptomatic treatment, no therapeutic trials have shown effectiveness for RTT. Some perspectives in the treatment of RTT have been provided by recent works showing a phenotypic reversal by increasing brain-derived neurotrophic factor (BDNF) expression in a RTT mouse model. Glutamate may also play an important role in the primary pathogenesis in Rett syndrome through the excitotoxic neuronal injury in experimental models. Riluzole, an agent currently approved for the treatment of amyotrophic lateral sclerosis, is a glutamatergic modulator and BDNF enhancer with neuroprotective properties. For these reasons, riluzole could potentially play an important role in the treatment of RTT symptoms. Several points regarding the use of riluzole in RTT are discussed. Further evaluation of the therapeutic effects of this agent in RTT animal models is needed before clinical trials can begin.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taiwan.
| |
Collapse
|
31
|
Wang H, Pati S, Pozzo-Miller L, Doering LC. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front Cell Neurosci 2015; 9:55. [PMID: 25767435 PMCID: PMC4341567 DOI: 10.3389/fncel.2015.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, 1 King's College Circle Toronto, ON, Canada
| | - Sandipan Pati
- Department of Neurology, Epilepsy Division, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Laurie C Doering
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
32
|
Chapleau CA, Lane J, Pozzo-Miller L, Percy AK. Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. ACTA ACUST UNITED AC 2014; 8:358-69. [PMID: 24050745 DOI: 10.2174/15748847113086660069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders are a large family of conditions of genetic or environmental origin that are characterized by deficiencies in cognitive and behavioral functions. The therapeutic management of individuals with these disorders is typically complex and is limited to the treatment of specific symptoms that characterize each disorder. The neurodevelopmental disorder Rett syndrome (RTT) is the leading cause of severe intellectual disability in females. Mutations in the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MECP2), located on the X chromosome, have been confirmed in more than 95% of individuals meeting diagnostic criteria for classical RTT. RTT is characterized by an uneventful early infancy followed by stagnation and regression of growth, motor, language, and social skills later in development. This review will discuss the genetics, pathology, and symptoms that distinguish RTT from other neurodevelopmental disorders associated with intellectual disability. Because great progress has been made in the basic and clinical science of RTT, the goal of this review is to provide a thorough assessment of current pharmacotherapeutic options to treat the symptoms associated with this disorder. Furthermore, we will highlight recent discoveries made with novel pharmacological interventions in experimental preclinical phases, and which have reversed pathological phenotypes in mouse and cell culture models of RTT and may result in clinical trials.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Pediatrics, CIRC-320, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0021, USA.
| | | | | | | |
Collapse
|
33
|
Oginsky MF, Cui N, Zhong W, Johnson CM, Jiang C. Alterations in the cholinergic system of brain stem neurons in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 2014; 307:C508-20. [PMID: 25009110 DOI: 10.1152/ajpcell.00035.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rett syndrome is an autism-spectrum disorder resulting from mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2), which causes abnormalities in many systems. It is possible that the body may develop certain compensatory mechanisms to alleviate the abnormalities. The norepinephrine system originating mainly in the locus coeruleus (LC) is defective in Rett syndrome and Mecp2-null mice. LC neurons are subject to modulation by GABA, glutamate, and acetylcholine (ACh), providing an ideal system to test the compensatory hypothesis. Here we show evidence for potential compensatory modulation of LC neurons by post- and presynaptic ACh inputs. We found that the postsynaptic currents of nicotinic ACh receptors (nAChR) were smaller in amplitude and longer in decay time in the Mecp2-null mice than in the wild type. Single-cell PCR analysis showed a decrease in the expression of α3-, α4-, α7-, and β3-subunits and an increase in the α5- and α6-subunits in the mutant mice. The α5-subunit was present in many of the LC neurons with slow-decay nAChR currents. The nicotinic modulation of spontaneous GABAA-ergic inhibitory postsynaptic currents in LC neurons was enhanced in Mecp2-null mice. In contrast, the nAChR manipulation of glutamatergic input to LC neurons was unaffected in both groups of mice. Our current-clamp studies showed that the modulation of LC neurons by ACh input was reduced moderately in Mecp2-null mice, despite the major decrease in nAChR currents, suggesting possible compensatory processes may take place, thus reducing the defects to a lesser extent in LC neurons.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
34
|
Abdala AP, Lioy DT, Garg SK, Knopp SJ, Paton JFR, Bissonnette JM. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome. Am J Respir Cell Mol Biol 2014; 50:1031-9. [PMID: 24351104 PMCID: PMC4068914 DOI: 10.1165/rcmb.2013-0372oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/10/2013] [Indexed: 01/06/2023] Open
Abstract
Disturbances in respiration are common and debilitating features of Rett syndrome (RTT). A previous study showed that the 5-HT1a receptor agonist (R)-(+)-8-hydroxy-dipropyl-2-aminotetralin hydrobromide (8-OH-DPAT) significantly reduced the incidence of apnea and the irregular breathing pattern in a mouse model of the disorder. 8-OH-DPAT, however, is not available for clinical practice. Sarizotan, a full 5-HT1a agonist and a dopamine D2-like agonist/partial agonist, has been used in clinical trials for the treatment of l-dopa-induced dyskinesia. The purpose of this study was to evaluate the effects of sarizotan on respiration and locomotion in mouse models of RTT. Studies were performed in Bird and Jaenisch strains of methyl-CpG-binding protein 2--deficient heterozygous female and Jaenisch strain Mecp2 null male mice and in knock-in heterozygous female mice of a common nonsense mutation (R168X). Respiratory pattern was determined with body plethysmography, and locomotion was determined with open-field recording. Sarizotan or vehicle was administered 20 minutes before a 30-minute recording of respiratory pattern or motor behavior. In separate studies, a crossover design was used to administer the drug for 7 and for 14 days. Sarizotan reduced the incidence of apnea in all three RTT mouse models to approximately 15% of their pretreatment levels. The irregular breathing pattern was corrected to that of wild-type littermates. When administered for 7 or 14 days, apnea decreased to 25 to 33% of the incidence seen with vehicle. This study indicates that the clinically approved drug sarizotan is an effective treatment for respiratory disorders in mouse models of RTT.
Collapse
Affiliation(s)
- Ana P. Abdala
- Department of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom; and
| | | | | | | | - Julian F. R. Paton
- Department of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom; and
| | - John M. Bissonnette
- Departments of Obstetrics & Gynecology, and
- Cell & Developmental Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
35
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
36
|
When norepinephrine becomes a driver of breathing irregularities: how intermittent hypoxia fundamentally alters the modulatory response of the respiratory network. J Neurosci 2014; 34:36-50. [PMID: 24381266 DOI: 10.1523/jneurosci.3644-12.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neuronal networks are endogenously modulated by aminergic and peptidergic substances. These modulatory processes are critical for maintaining normal activity and adapting networks to changes in metabolic, behavioral, and environmental conditions. However, disturbances in neuromodulation have also been associated with pathologies. Using whole animals (in vivo) and functional brainstem slices (in vitro) from mice, we demonstrate that exposure to acute intermittent hypoxia (AIH) leads to fundamental changes in the neuromodulatory response of the respiratory network located within the preBötzinger complex (preBötC), an area critical for breathing. Norepinephrine, which normally regularizes respiratory activity, renders respiratory activity irregular after AIH. Respiratory irregularities are caused both in vitro and in vivo by AIH, which increases synaptic inhibition within the preBötC when norepinephrine is endogenously or exogenously increased. These irregularities are prevented by blocking synaptic inhibition before AIH. However, regular breathing cannot be reestablished if synaptic inhibition is blocked after AIH. We conclude that subtle changes in synaptic transmission can have dramatic consequences at the network level as endogenously released neuromodulators that are normally adaptive become the drivers of irregularity. Moreover, irregularities in the preBötC result in irregularities in the motor output in vivo and in incomplete transmission of inspiratory activity to the hypoglossus motor nucleus. Our finding has basic science implications for understanding network functions in general, and it may be clinically relevant for understanding pathological disturbances associated with hypoxic episodes such as those associated with myocardial infarcts, obstructive sleep apneas, apneas of prematurity, Rett syndrome, and sudden infant death syndrome.
Collapse
|
37
|
Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader-Willi syndromes. Compr Physiol 2013; 2:2255-79. [PMID: 23723037 DOI: 10.1002/cphy.c100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present review summarizes current knowledge on three rare genetic disorders of respiratory control, congenital central hypoventilation syndrome (CCHS), Rett syndrome (RTT), and Prader-Willi syndrome (PWS). CCHS is characterized by lack of ventilatory chemosensitivity caused by PHOX2B gene abnormalities consisting mainly of alanine expansions. RTT is associated with episodes of tachypneic and irregular breathing intermixed with breathholds and apneas and is caused by mutations in the X-linked MECP2 gene encoding methyl-CpG-binding protein. PWS manifests as sleep-disordered breathing with apneas and episodes of hypoventilation and is caused by the loss of a group of paternally inherited genes on chromosome 15. CCHS is the most specific disorder of respiratory control, whereas the breathing disorders in RTT and PWS are components of a more general developmental disorder. The main clinical features of these three disorders are reviewed with special emphasis on the associated brain abnormalities. In all three syndromes, disease-causing genetic defects have been identified, allowing the development of genetically engineered mouse models. New directions for future therapies based on these models or, in some cases, on clinical experience are delineated. Studies of CCHS, RTT, and PWS extend our knowledge of the molecular and cellular aspects of respiratory rhythm generation and suggest possible pharmacological approaches to respiratory control disorders. This knowledge is relevant for the clinical management of many respiratory disorders that are far more prevalent than the rare diseases discussed here.
Collapse
Affiliation(s)
- Jorge Gallego
- Inserm U676 and University of Paris Diderot, Paris, France.
| |
Collapse
|
38
|
Ramirez JM, Ward CS, Neul JL. Breathing challenges in Rett syndrome: lessons learned from humans and animal models. Respir Physiol Neurobiol 2013; 189:280-7. [PMID: 23816600 DOI: 10.1016/j.resp.2013.06.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/17/2023]
Abstract
Breathing disturbances are a major challenge in Rett Syndrome (RTT). These disturbances are more pronounced during wakefulness; but irregular breathing occurs also during sleep. During the day patients can exhibit alternating bouts of hypoventilation and irregular hyperventilation. But there is significant individual variability in severity, onset, duration and type of breathing disturbances. Research in mouse models of RTT suggests that different areas in the ventrolateral medulla and pons give rise to different aspects of this breathing disorder. Pre-clinical experiments in mouse models that target different neuromodulatory and neurotransmitter receptors and MeCP2 function within glia cells can partly reverse breathing abnormalities. The success in animal models raises optimism that one day it will be possible to control or potentially cure the devastating symptoms also in human patients with RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
39
|
Progress toward treatments for synaptic defects in autism. Nat Med 2013; 19:685-94. [PMID: 23744158 DOI: 10.1038/nm.3193] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/11/2013] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) encompasses a range of disorders that are characterized by social and communication deficits and repetitive behaviors. For the majority of affected individuals, the cause of ASD remains unknown, but in at least 20% of the cases, a genetic cause can be identified. There is currently no cure for ASD; however, results from mouse models indicate that some forms of the disorder could be alleviated even at the adult stage. Genes involved in ASD seem to converge on common pathways altering synaptic homeostasis. We propose, given the clinical heterogeneity of ASD, that specific 'synaptic clinical trials' should be designed and launched with the aim of establishing whether phenotype 'reversals' could also occur in humans.
Collapse
|
40
|
Katz DM, Berger-Sweeney JE, Eubanks JH, Justice MJ, Neul JL, Pozzo-Miller L, Blue ME, Christian D, Crawley JN, Giustetto M, Guy J, Howell CJ, Kron M, Nelson SB, Samaco RC, Schaevitz LR, St Hillaire-Clarke C, Young JL, Zoghbi HY, Mamounas LA. Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech 2013; 5:733-45. [PMID: 23115203 PMCID: PMC3484856 DOI: 10.1242/dmm.011007] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.
Collapse
Affiliation(s)
- David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder that is associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. RTT patients suffer from mental retardation and behavioral disorders, including heightened anxiety and state-dependent breathing irregularities, such as hyperventilation and apnea. Many symptoms are recapitulated by the Mecp2-null male mice (Mecp2(-/y)). To characterize developmental progression of the respiratory phenotype and explore underlying mechanisms, we examined Mecp2(-/y) and wild-type (WT) mice from presymptomatic periods to end-stage disease. We monitored breathing patterns of unrestrained mice during wake-sleep states and while altering stress levels using movement restraint or threatening odorant (trimethylthiazoline). Respiratory motor patterns generated by in situ working heart-brainstem preparations (WHBPs) were measured to assess function of brainstem respiratory networks isolated from suprapontine structures. Data revealed two general stages of respiratory dysfunction in Mecp2(-/y) mice. At the early stage, respiratory abnormalities were limited to wakefulness, correlated with markers of stress (increased fecal deposition and blood corticosterone levels), and alleviated by antalarmin (corticotropin releasing hormone receptor 1 antagonist). Furthermore, the respiratory rhythm generated by WHBPs was similar in WT and Mecp2(-/y) mice. During the later stage, respiratory abnormalities were evident during wakefulness and sleep. Also, WHBPs from Mecp2(-/y) showed central apneas. We conclude that, at early disease stages, stress-related modulation from suprapontine structures is a significant factor in the Mecp2(-/y) respiratory phenotype and that anxiolytics may be effective. At later stages, abnormalities of brainstem respiratory networks are a significant cause of irregular breathing patterns and central apneas.
Collapse
|
42
|
Jin X, Cui N, Zhong W, Jin XT, Jiang C. GABAergic synaptic inputs of locus coeruleus neurons in wild-type and Mecp2-null mice. Am J Physiol Cell Physiol 2013; 304:C844-57. [PMID: 23392116 DOI: 10.1152/ajpcell.00399.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rett syndrome is an autism spectrum disorder resulting from defects in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Deficiency of the Mecp2 gene causes abnormalities in several systems in the brain, especially the norepinephrinergic and GABAergic systems. The norepinephrinergic neurons in the locus coeruleus (LC) modulate a variety of neurons and play an important role in multiple functions in the central nervous system. In Mecp2(-/Y) mice, defects in the intrinsic membrane properties of LC neurons have been identified, while how their synaptic inputs are affected remains unclear. Therefore, we performed these brain slice studies to demonstrate how LC neurons are regulated by GABAergic inputs and how such synaptic inputs are affected by Mecp2 knockout. In whole cell current clamp, the firing activity of LC neurons was strongly inhibited by the GABAA receptor agonist muscimol, accompanied by hyperpolarization and a decrease in input resistance. Such a postsynaptic inhibition was significantly reduced (by ~30%) in Mecp2(-/Y) mice. Post- and presynaptic GABABergic inputs were found in LC neurons, which were likely mediated by the G protein-coupled, Ba(2+)-sensitive K(+) channels. The postsynaptic GABABergic inhibition was deficient by ~50% in Mecp2 knockout mice. Although the presynaptic GABABergic modulation appeared normal, both frequency and amplitude of the GABAAergic mIPSCs were drastically decreased (by 30-40%) in Mecp2-null mice. These results suggest that the Mecp2 disruption causes defects in both post- and presynaptic GABAergic systems in LC neurons, impairing GABAAergic and GABABergic postsynaptic inhibition and decreasing the GABA release from presynaptic terminals.
Collapse
Affiliation(s)
- Xin Jin
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | | | |
Collapse
|
43
|
Tsai SJ. Peripheral administration of brain-derived neurotrophic factor to Rett syndrome animal model: a possible approach for the treatment of Rett syndrome. Med Sci Monit 2012; 18:HY33-36. [PMID: 22847207 PMCID: PMC3560688 DOI: 10.12659/msm.883251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rett syndrome (RTT) is a postnatal, severe, disabling neurodevelopmental disorder occurring almost exclusively in females and is the second most common cause for genetic mental retardation in girls. In the majority of cases it is caused by mutations in gene (MECP2) encoding methyl-CpG-binding protein 2. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor playing a major role in neuronal survival, neurogenesis and plasticity. Animal studies suggested that abnormalities in BDNF homeostasis may contribute to the pathogenesis in Mecp2 null mice, and BDNF administration in the Mecp2 mutant brain led to later onset/slower disease progression, suggesting that increased BDNF in the brain could be therapeutic for this disease. Mature BDNF is a 14 kDa protein that may have poor blood-brain barrier penetrability. However, recent animal studies demonstrated that peripheral administration of BDNF, either by intravenous injection or intranasal delivery, could increase BDNF levels in the brain. Thus it is proposed that peripheral administration of BDNF in the early stage could have therapeutic potential for RTT subjects. Furthermore, the combination use of mannitol may temporarily open the blood-brain barrier and facilitate the entry of BDNF into brain. The potential therapeutic effect of peripheral BDNF administration could be tested in RTT animal models such as Mecp2 KO mice, which may provide a new intervention for this devastating disease.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Lang M, Wither RG, Brotchie JM, Wu C, Zhang L, Eubanks JH. Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice. Hum Mol Genet 2012; 22:358-71. [PMID: 23077217 DOI: 10.1093/hmg/dds433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by mutations of the X-linked MECP2 gene. Although the loss of MeCP2 function affects many neural systems, impairments of catecholaminergic function have been hypothesized to underlie several of the cardinal behavioral deficits of RTT patients and Mecp2-deficient mice. Although recent Mecp2 reactivation studies indicate that RTT may be a reversible condition, it remains unclear whether specifically preserving Mecp2 function within a specific system will be sufficient to convey beneficial effects. Here, we test whether the selective preservation of Mecp2 within catecholaminergic cells will improve the phenotype of Mecp2-deficient mice. Our results show that this targeted preservation of Mecp2 significantly improves the lifespan, phenotypic severity and cortical epileptiform discharge activity of both male and female Mecp2-deficient mice. Further, we found that the catecholaminergic preservation of Mecp2 also improves the ambulatory rate, rearing activity, motor coordination, anxiety and nest-building performances of Mecp2-deficient mice of each gender. Interestingly, our results also revealed a gender-specific improvement, as specific cortical and hippocampal electroencephalographic abnormalities were significantly improved in male, but not female, rescue mice. Collectively, these results support the role of the catecholaminergic system in the pathogenesis of RTT and provide proof-of-principle that restoring MeCP2 function within this specific system could represent a treatment strategy for RTT.
Collapse
Affiliation(s)
- Min Lang
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | | | | | | | | | | |
Collapse
|
45
|
Ricceri L, De Filippis B, Laviola G. Rett syndrome treatment in mouse models: searching for effective targets and strategies. Neuropharmacology 2012; 68:106-15. [PMID: 22940001 DOI: 10.1016/j.neuropharm.2012.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 11/24/2022]
Abstract
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Dept. Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | | | | |
Collapse
|
46
|
Warren KA, Solomon IC. Chronic serotonin-norepinephrine reuptake transporter inhibition modifies basal respiratory output in adult mouse in vitro and in vivo. Respir Physiol Neurobiol 2012; 184:9-15. [PMID: 22871263 DOI: 10.1016/j.resp.2012.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/26/2012] [Accepted: 07/05/2012] [Indexed: 11/16/2022]
Abstract
Respiratory disturbances are a common feature of panic disorder and present as breathing irregularity, hyperventilation, and increased sensitivity to carbon dioxide. Common therapeutic interventions, such as tricyclic (TCA) and selective serotonin reuptake inhibitor (SSRI) antidepressants, have been shown to ameliorate not only the psychological components of panic disorder but also the respiratory disturbances. These drugs are also prescribed for generalized anxiety and depressive disorders, neither of which are characterized by respiratory disturbances, and previous studies have demonstrated that TCAs and SSRIs exert effects on basal respiratory activity in animal models without panic disorder symptoms. Whether serotonin-norepinephrine reuptake inhibitors (SNRIs) have similar effects on respiratory activity remains to be determined. Therefore, the current study was designed to investigate the effects of chronic administration of the SNRI antidepressant venlafaxine (VHCL) on basal respiratory output. For these experiments, we recorded phrenic nerve discharge in an in vitro arterially-perfused adult mouse preparation and diaphragm electromyogram (EMG) activity in an in vivo urethane-anesthetized adult mouse preparation. We found that following 28-d VHCL administration, basal respiratory burst frequency was markedly reduced due to an increase in expiratory duration (T(E)), and the inspiratory duty cycle (T(I)/T(tot)) was significantly shortened. In addition, post-inspiratory and spurious expiratory discharges were seen in vitro. Based on our observations, we suggest that drugs capable of simultaneously blocking both 5-HT and NE reuptake transporters have the potential to influence the respiratory control network in patients using SNRI therapy.
Collapse
Affiliation(s)
- Kelly A Warren
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
47
|
Pan CH, Tsai S. Early intervention with psychostimulants or antidepressants to increase methyl-CpG-binding protein 2 (MeCP2) expressions: a potential therapy for Rett syndrome. Med Sci Monit 2012; 18:HY1-3. [PMID: 22207122 PMCID: PMC3560675 DOI: 10.12659/msm.882183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rett syndrome (RTT) is a severe X-linked postnatal neurodevelopmental disorder. The syndrome is caused primarily by mutations in the methyl CpG binding protein 2 (MeCP2) gene on Xq28. Most individuals with RTT are female, and female RTT is normally heterozygous for mutations in MeCP2. Patients with RTT display a normal period of development prior to the onset of symptoms, at which point they undergo a period of regression. Currently, no effective medication is available for this disorder, although animal studies have suggested that RTT symptoms are potentially reversible. For females with RTT, the severity of symptoms and progression of the disease varies a great deal, despite its homogenous genetic origin. These differences could be attributed to differences in the mutation points of MeCP2 and the skew caused by X-chromosome inactivation. Thus, the increased expression in the normal MeCP2 gene could decrease the severity of the disease. Based on findings from studies on animals indicating that fluoxetine (an antidepressant) and cocaine (a psychostimulant) can increase MeCP2 expression in the brain, it is suggested that early intervention with antidepressants or psychostimulants could increase the normal MeCP2 expression in females with RTT, who are normally heterozygous. This therapeutic hypothesis could be tested in an RTT animal model. Following the identification of the antidepressants or psychostimulants with the greatest influence on MeCP2 expression, a combination of early detection of the disorder with early intervention may result in improved therapeutic outcomes. Furthermore, a trial investigating the effects of antidepressants or psychostimulants on MeCP2 expression in lymphocyte culture from patients with RTT is suggested for clinical therapeutic prediction.
Collapse
Affiliation(s)
- Chia-Ho Pan
- Department of Psychiatry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | |
Collapse
|
48
|
Schmid DA, Yang T, Ogier M, Adams I, Mirakhur Y, Wang Q, Massa SM, Longo FM, Katz DM. A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. J Neurosci 2012; 32:1803-10. [PMID: 22302819 PMCID: PMC3710112 DOI: 10.1523/jneurosci.0865-11.2012] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 12/02/2011] [Accepted: 12/13/2011] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) results from loss-of-function mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2) and is characterized by abnormal motor, respiratory and autonomic control, cognitive impairment, autistic-like behaviors and increased risk of seizures. RTT patients and Mecp2-null mice exhibit reduced expression of brain-derived neurotrophic factor (BDNF), which has been linked in mice to increased respiratory frequency, a hallmark of RTT. The present study was undertaken to test the hypotheses that BDNF deficits in Mecp2 mutants are associated with reduced activation of the BDNF receptor, TrkB, and that pharmacologic activation of TrkB would improve respiratory function. We characterized BDNF protein expression, TrkB activation and respiration in heterozygous female Mecp2 mutant mice (Het), a model that recapitulates the somatic mosaicism for mutant MECP2 found in typical RTT patients, and evaluated the ability of a small molecule TrkB agonist, LM22A-4, to ameliorate biochemical and functional abnormalities in these animals. We found that Het mice exhibit (1) reduced BDNF expression and TrkB activation in the medulla and pons and (2) breathing dysfunction, characterized by increased frequency due to periods of tachypnea, and increased apneas, as in RTT patients. Treatment of Het mice with LM22A-4 for 4 weeks rescued wild-type levels of TrkB phosphorylation in the medulla and pons and restored wild-type breathing frequency. These data provide new insight into the role of BDNF signaling deficits in the pathophysiology of RTT and highlight TrkB as a possible therapeutic target in this disease.
Collapse
Affiliation(s)
- Danielle A. Schmid
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, and
| | - Michael Ogier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Ian Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Yatin Mirakhur
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Qifang Wang
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, San Francisco Veterans Affairs Medical Center, and Department of Neurology, University of California, San Francisco, California 94121
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, and
| | - David M. Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
49
|
Banerjee A, Castro J, Sur M. Rett syndrome: genes, synapses, circuits, and therapeutics. Front Psychiatry 2012; 3:34. [PMID: 22586411 PMCID: PMC3346964 DOI: 10.3389/fpsyt.2012.00034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/28/2012] [Indexed: 12/21/2022] Open
Abstract
Development of the nervous system proceeds through a set of complex checkpoints which arise from a combination of sequential gene expression and early neural activity sculpted by the environment. Genetic and environmental insults lead to neurodevelopmental disorders which encompass a large group of diseases that result from anatomical and physiological abnormalities during maturation and development of brain circuits. Rett syndrome (RTT) is a neurological disorder of genetic origin, caused by mutations in the X-linked gene methyl-CpG binding protein 2 (MeCP2). It features a range of neuropsychiatric abnormalities including motor dysfunctions and mild to severe cognitive impairment. Here, we discuss key questions and recent studies describing animal models, cell-type specific functions of methyl-CpG binding protein 2 (MeCP2), defects in neural circuit plasticity, and attempts to evaluate possible therapeutic strategies for RTT. We also discuss how genes, proteins, and overlapping signaling pathways affect the molecular etiology of apparently unrelated neuropsychiatric disorders, an understanding of which can offer novel therapeutic strategies for a range of autism spectrum disorders (ASDs).
Collapse
Affiliation(s)
- Abhishek Banerjee
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| | | | | |
Collapse
|
50
|
Braun S, Kottwitz D, Nuber UA. Pharmacological interference with the glucocorticoid system influences symptoms and lifespan in a mouse model of Rett syndrome. Hum Mol Genet 2011; 21:1673-80. [DOI: 10.1093/hmg/ddr602] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|