1
|
Ran X, Li H, Wang Z, Wu F, Deng Z, Zhou Q, Dai C, Peng J, Lu L, Zhou K, Ran P, Zhou Y. Increased plasma interleukin-1β is associated with accelerated lung function decline in non-smokers. Pulmonology 2025; 31:2411811. [PMID: 39883490 DOI: 10.1080/25310429.2024.2411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/26/2024] [Indexed: 01/31/2025] Open
Abstract
Interleukin-1β is one of the major cytokines involved in the initiation and persistence of airway inflammation in chronic obstructive pulmonary disease (COPD). However, the association between plasma interleukin-1β and lung function decline remains unclear. We aimed to explore the association between plasma interleukin-1β and lung function decline. This longitudinal evaluation of data from the Early COPD study analysed the association between the plasma interleukin-1β concentration, lung function decline, and COPD exacerbation. Overall, 1,328 participants were included in the baseline analysis, and 1,135 (85%) completed the 1-year follow-up. Increased plasma interleukin-1β was associated with accelerated lung function decline in non-smokers (forced expiratory volume in 1 s: per unit natural log-transformed increase, adjusted unstandardised β [95% confidence interval] 101.46 [16.73-186.18] mL/year, p=0.019; forced vital capacity: per unit natural log-transformed increase, adjusted unstandardised β [95% confidence interval] 146.20 [93.65-198.75] mL/year, p<0.001), but not in smokers. In non-smokers, participants with an interleukin-1β concentration in the top 30% (>5.02 pg/mL) had more respiratory symptoms, more severe emphysema and air trapping, and higher levels of inflammation-related biomarkers. In this study, a subgroup with increased plasma interleukin-1β was identified among non-smokers, and increased plasma interleukin-1β was associated with lung function accelerated decline.
Collapse
Affiliation(s)
- Xinru Ran
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaorui Zhou
- The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kunning Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Liu GY, Perry AS, Washko GR, Farber-Eger E, Colangelo LA, Sheng Q, Wells Q, Huang X, Thyagarajan B, Guan W, Alexandria SJ, San José Estépar R, Bowler RP, Esposito AJ, Khan SS, Shah RV, Choi B, Kalhan R. Proteomic Risk Score of Increased Respiratory Susceptibility: A Multi-Cohort Study. Am J Respir Crit Care Med 2024; 211:64-74. [PMID: 39254293 PMCID: PMC11755364 DOI: 10.1164/rccm.202403-0613oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/17/2024] [Indexed: 09/11/2024] Open
Abstract
RATIONALE Accelerated decline in lung function is associated with incident COPD, hospitalizations and death. However, identifying this trajectory with longitudinal spirometry measurements is challenging in clinical practice. OBJECTIVE To determine whether a proteomic risk score trained on accelerated decline in lung function can assess risk of future respiratory disease and mortality. METHODS In CARDIA, a population-based cohort starting in young adulthood, longitudinal measurements of FEV1 percent predicted (up to six timepoints over 30 years) were used to identify accelerated and normal decline trajectories. Protein aptamers associated with an accelerated decline trajectory were identified with multivariable logistic regression followed by LASSO regression. The proteomic respiratory susceptibility score was derived based on these circulating proteins and applied to the UK Biobank and COPDGene studies to examine associations with future respiratory morbidity and mortality. MEASUREMENTS AND RESULTS Higher susceptibility score was independently associated with all-cause mortality (UKBB: HR 1.56, 95%CI 1.50-1.61; COPDGene: HR 1.75, 95%CI 1.63-1.88), respiratory mortality (UKBB: HR 2.39, 95% CI 2.16-2.64; COPDGene: HR 1.83, 95%CI 1.33-2.51), incident COPD (UKBB: HR 1.84, 95%CI 1.71-1.98), incident respiratory exacerbation (COPDGene: OR 1.11, 95%CI 1.03-1.20), and incident exacerbation requiring hospitalization (COPDGene: OR 1.18, 95%CI 1.08-1.28). CONCLUSIONS A proteomic signature of increased respiratory susceptibility identifies people at risk of respiratory death, incident COPD, and respiratory exacerbations. This susceptibility score is comprised of proteins with well-known and novel associations with lung health and holds promise for the early detection of lung disease without requiring years of spirometry measurements.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- University of California Davis School of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Sacramento, California, United States
| | - Andrew S Perry
- Vanderbilt University Medical Center, Division of Cardiology, Nashville, Tennessee, United States
| | - George R Washko
- Brigham and Women's Hospital, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Eric Farber-Eger
- Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Laura A Colangelo
- Northwestern University, Medicine/Cardiology, Chicago, Illinois, United States
| | - Quanhu Sheng
- Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Quinn Wells
- Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Xiaoning Huang
- Northwestern University Feinberg School of Medicine, Division of Cardiology, Chicago, Illinois, United States
| | | | - Weihua Guan
- University of Minnesota Twin Cities, Division of Biostatistics, Minneapolis, Minnesota, United States
| | - Shaina J Alexandria
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, Illinois, United States
| | | | - Russell P Bowler
- National Jewish Medical and Research Center, Department of Medicine, Denver, Colorado, United States
| | - Anthony J Esposito
- Northwestern Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, United States
| | - Sadiya S Khan
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Ravi V Shah
- Vanderbilt University Medical Center, Division of Cardiology, Nashville, Tennessee, United States
| | - Bina Choi
- Brigham and Women's Hospital, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Ravi Kalhan
- Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, United States;
| |
Collapse
|
3
|
Ngo D, Pratte KA, Flexeder C, Petersen H, Dang H, Ma Y, Keyes MJ, Gao Y, Deng S, Peterson BD, Farrell LA, Bhambhani VM, Palacios C, Quadir J, Gillenwater L, Xu H, Emson C, Gieger C, Suhre K, Graumann J, Jain D, Conomos MP, Tracy RP, Guo X, Liu Y, Johnson WC, Cornell E, Durda P, Taylor KD, Papanicolaou GJ, Rich SS, Rotter JI, Rennard SI, Curtis JL, Woodruff PG, Comellas AP, Silverman EK, Crapo JD, Larson MG, Vasan RS, Wang TJ, Correa A, Sims M, Wilson JG, Gerszten RE, O’Connor GT, Barr RG, Couper D, Dupuis J, Manichaikul A, O’Neal WK, Tesfaigzi Y, Schulz H, Bowler RP. Systemic Markers of Lung Function and Forced Expiratory Volume in 1 Second Decline across Diverse Cohorts. Ann Am Thorac Soc 2023; 20:1124-1135. [PMID: 37351609 PMCID: PMC10405603 DOI: 10.1513/annalsats.202210-857oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery β = 0.0561, Q = 4.05 × 10-10; β = 0.0421, Q = 1.12 × 10-3; and β = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; β = -4.3 ml/yr, Q = 0.049; β = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.
Collapse
Affiliation(s)
- Debby Ngo
- Cardiovascular Research Institute
- Division of Pulmonary, Critical Care, and Sleep Medicine, and
| | | | - Claudia Flexeder
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Hong Dang
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Claire Emson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Christian Gieger
- Institute of Epidemiology and
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Yongmei Liu
- Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Steven I. Rennard
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Prescott G. Woodruff
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | | | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Division of Preventive Medicine and
- Division of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thomas J. Wang
- Department of Medicine, UT (University of Texas) Southwestern Medical Center, Dallas, Texas
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - James G. Wilson
- Cardiovascular Research Institute
- Jackson Heart Study, Department of Medicine, and
| | - Robert E. Gerszten
- Cardiovascular Research Institute
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - George T. O’Connor
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University, New York, New York
| | - David Couper
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Wanda K. O’Neal
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Holger Schulz
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
| | | |
Collapse
|
4
|
Spittle DA, Mansfield A, Pye A, Turner AM, Newnham M. Predicting Lung Function Using Biomarkers in Alpha-1 Antitrypsin Deficiency. Biomedicines 2023; 11:2001. [PMID: 37509640 PMCID: PMC10377580 DOI: 10.3390/biomedicines11072001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Lung disease progression in alpha-1 antitrypsin deficiency (AATD) is heterogenous and manifests in different ways. Blood biomarkers are an attractive method of monitoring diseases as they are easy to obtain and repeatable. In non-AATD COPD, blood biomarker panels have predicted disease severity, progression, and mortality. We measured a panel of seven serum biomarkers in 200 AATD patients and compared levels between those with COPD and those without. We assessed whether biomarkers were associated with baseline lung function parameters (FEV1 and TLco) or absolute change in these parameters. In total, 111 patients with a severely deficient genotype of AATD (PiZZ) and COPD were included in the analyses. Pearson's correlation coefficient was measured for biomarker correlations and models were compared using ANOVA. CRP and CCL18 were significantly higher in the serum of AATD COPD versus AATD with no COPD. Biomarkers were not predictive of cross-sectional lung function measurements, however, CC16 was significantly associated with an absolute change in TLco (p = 0.018). An addition of biomarkers to the predictive model for TLco added significant value over covariates alone (R2 0.13 vs. 0.02, p = 0.028). Our findings suggest that CC16 is predictive of emphysema progression in AATD COPD. Proteomics data may reveal alternative candidate biomarkers and further work should include the use of longitudinal biomarker measurements.
Collapse
Affiliation(s)
| | | | | | | | - Michael Newnham
- Institute of Applied Health Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Almuntashiri S, Alhumaid A, Zhu Y, Han Y, Dutta S, Khilji O, Zhang D, Wang X. TIMP-1 and its potential diagnostic and prognostic value in pulmonary diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:67-76. [PMID: 38343891 PMCID: PMC10857872 DOI: 10.1016/j.pccm.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 08/02/2024]
Abstract
Tissue inhibitors of metalloproteases (TIMPs) have caught the attention of many scientists due to their role in various physiological and pathological processes. TIMP-1, 2, 3, and 4 are known members of the TIMPs family. TIMPs exert their biological effects by, but are not limited to, inhibiting the activity of metalloproteases (MMPs). The balance between MMPs and TIMPs is critical for maintaining homeostasis of the extracellular matrix (ECM), while the imbalance between MMPs and TIMPs can lead to pathological changes, such as cancer. In this review, we summarized the current knowledge of TIMP-1 in several pulmonary diseases namely, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), pneumonia, asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and pulmonary fibrosis. Considering the potential of TIMP-1 serving as a non-invasive diagnostic and/or prognostic biomarker, we also reviewed the circulating TIMP-1 levels in translational and clinical studies.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Abdullah Alhumaid
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Yin Zhu
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Ohmed Khilji
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
6
|
DiLillo KM, Norman KC, Freeman CM, Christenson SA, Alexis NE, Anderson WH, Barjaktarevic IZ, Barr RG, Comellas AP, Bleecker ER, Boucher RC, Couper DJ, Criner GJ, Doerschuk CM, Wells JM, Han MK, Hoffman EA, Hansel NN, Hastie AT, Kaner RJ, Krishnan JA, Labaki WW, Martinez FJ, Meyers DA, O'Neal WK, Ortega VE, Paine R, Peters SP, Woodruff PG, Cooper CB, Bowler RP, Curtis JL, Arnold KB. A blood and bronchoalveolar lavage protein signature of rapid FEV 1 decline in smoking-associated COPD. Sci Rep 2023; 13:8228. [PMID: 37217548 PMCID: PMC10203309 DOI: 10.1038/s41598-023-32216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/24/2023] [Indexed: 05/24/2023] Open
Abstract
Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.
Collapse
Affiliation(s)
- Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katy C Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Christine M Freeman
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wayne H Anderson
- Marsico Lung Institute/Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA, USA
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David J Couper
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, USA
| | - Claire M Doerschuk
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Michael Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - MeiLan K Han
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Annette T Hastie
- Department of Internal Medicine, Wake Forest School of Medicine, Atrium Health, Wake Forest Baptist, Winston Salem, NC, USA
| | - Robert J Kaner
- Department of Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Wassim W Labaki
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victor E Ortega
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen P Peters
- Department of Internal Medicine, Wake Forest School of Medicine, Atrium Health, Wake Forest Baptist, Winston Salem, NC, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Russell P Bowler
- Division of Pulmonary and Critical Care, National Jewish Health, Denver, CO, USA
| | - Jeffrey L Curtis
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Kotlyarov S. The Role of Smoking in the Mechanisms of Development of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2023; 24:8725. [PMID: 37240069 PMCID: PMC10217854 DOI: 10.3390/ijms24108725] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tobacco smoking is a major cause of chronic obstructive pulmonary disease (COPD) and atherosclerotic cardiovascular disease (ASCVD). These diseases share common pathogenesis and significantly influence each other's clinical presentation and prognosis. There is increasing evidence that the mechanisms underlying the comorbidity of COPD and ASCVD are complex and multifactorial. Smoking-induced systemic inflammation, impaired endothelial function and oxidative stress may contribute to the development and progression of both diseases. The components present in tobacco smoke can have adverse effects on various cellular functions, including macrophages and endothelial cells. Smoking may also affect the innate immune system, impair apoptosis, and promote oxidative stress in the respiratory and vascular systems. The purpose of this review is to discuss the importance of smoking in the mechanisms underlying the comorbid course of COPD and ASCVD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Di Stefano A, Dossena F, Gnemmi I, D'Anna SE, Brun P, Balbi B, Piraino A, Spanevello A, Nucera F, Carriero V, Bertolini F, Maniscalco M, Adcock IM, Caramori G, Ricciardolo FLM. Decreased humoral immune response in the bronchi of rapid decliners with chronic obstructive pulmonary disease. Respir Res 2022; 23:200. [PMID: 35922811 PMCID: PMC9351175 DOI: 10.1186/s12931-022-02125-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Identification of COPD patients with a rapid decline in FEV1 is of particular interest for prognostic and therapeutic reasons.
Objective To determine the expression of markers of inflammation in COPD patients with rapid functional decline in comparison to slow or no decliners. Methods In COPD patients monitored for at least 3 years (mean ± SD: 5.8 ± 3 years) for lung functional decline, the expression and localization of inflammatory markers was measured in bronchial biopsies of patients with no lung functional decline (FEV1% + 30 ± 43 ml/year, n = 21), slow (FEV1% ml/year, − 40 ± 19, n = 14) and rapid decline (FEV1% ml/year, − 112 ± 53, n = 15) using immunohistochemistry. ELISA test was used for polymeric immunoglobulin receptor (pIgR) quantitation “in vitro”. Results The expression of secretory IgA was significantly reduced in bronchial epithelium (p = 0.011) and plasma cell numbers was significantly reduced in the bronchial lamina propria (p = 0.017) of rapid decliners compared to no decliners. Bronchial inflammatory cell infiltration, CD4, CD8, CD68, CD20, NK, neutrophils, eosinophils, mast cells, pIgR, was not changed in epithelium and lamina propria of rapid decliners compared to other groups. Plasma cells/mm2 correlated positively with scored total IgA in lamina propria of all patients. “In vitro” stimulation of 16HBE cells with LPS (10 μg/ml) and IL-8 (10 ng/ml) induced a significant increase while H2O2 (100 μM) significantly decreased pIgR epithelial expression. Conclusion These data show an impaired humoral immune response in rapid decliners with COPD, marked by reduced epithelial secretory IgA and plasma cell numbers in the bronchial lamina propria. These findings may help in the prognostic stratification and treatment of COPD.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy.
| | - Francesca Dossena
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy
| | - Silvestro Ennio D'Anna
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Telese, BN, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padua, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Veruno Institute, Via Per Revislate, 13, 28010, Veruno, NO, Italy
| | | | - Antonio Spanevello
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Tradate, VA, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, University of Turin, Orbassano, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, University of Turin, Orbassano, Turin, Italy
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Telese, BN, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Fabio L M Ricciardolo
- Department of Clinical and Biological Sciences, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
9
|
Hu Y, Cheng X, Qiu Z, Chen X. Identification of Metabolism-Associated Molecular Subtypes of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2351-2362. [PMID: 34429593 PMCID: PMC8374844 DOI: 10.2147/copd.s316304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose This study aimed to identify the COPD molecular subtypes reflecting pulmonary function damage on the basis of metabolism-related gene expression, which provided the opportunity to study the metabolic heterogeneity and the association of metabolic pathways with pulmonary function damage. Methods Univariate linear regression and the Boruta algorithm were used to select metabolism-related genes associated with forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) in the Evaluation of COPD to Longitudinally Identify Predictive Surrogate Endpoints (ECLIPSE) cohort. COPD subtypes were further identified by consensus clustering with best-fit. Then, we analyzed the differences in the clinical characteristics, metabolic pathways, immune cell characteristics, and transcription features among the subtypes. Results This study identified two subtypes (C1 and C2). C1 exhibited higher levels of lower pulmonary function and innate immunity than C2. Ten metabolic pathways were confirmed as key metabolic pathways. The pathways related to N-glycan, hexosamine, purine, alanine, aspartate and glutamate tended to be positively associated with the abundance of adaptive immune cells and negatively associated with the abundance of innate immune cells. In addition, other pathways had opposite trends. All results were verified in Genetic Epidemiology of COPD (COPDGene) datasets. Conclusion The two subtypes reflect the pulmonary function damage and help to further understand the metabolic mechanism of pulmonary function in COPD. Further studies are needed to prove the prognostic and therapeutic value of the subtypes.
Collapse
Affiliation(s)
- Yuanlong Hu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xiaomeng Cheng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Zhanjun Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xianhai Chen
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| |
Collapse
|
10
|
Becker EJ, Faiz A, van den Berge M, Timens W, Hiemstra PS, Clark K, Liu G, Xiao X, Alekseyev YO, O'Connor G, Lam S, Spira A, Lenburg ME, Steiling K. Bronchial gene expression signature associated with rate of subsequent FEV 1 decline in individuals with and at risk of COPD. Thorax 2021; 77:31-39. [PMID: 33972452 DOI: 10.1136/thoraxjnl-2019-214476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND COPD is characterised by progressive lung function decline. Leveraging prior work demonstrating bronchial airway COPD-associated gene expression alterations, we sought to determine if there are alterations associated with differences in the rate of FEV1 decline. METHODS We examined gene expression among ever smokers with and without COPD who at baseline had bronchial brushings profiled by Affymetrix microarrays and had longitudinal lung function measurements (n=134; mean follow-up=6.38±2.48 years). Gene expression profiles associated with the rate of FEV1 decline were identified by linear modelling. RESULTS Expression differences in 171 genes were associated with rate of FEV1 decline (false discovery rate <0.05). The FEV1 decline signature was replicated in an independent dataset of bronchial biopsies from patients with COPD (n=46; p=0.018; mean follow-up=6.76±1.32 years). Genes elevated in individuals with more rapid FEV1 decline are significantly enriched among the genes altered by modulation of XBP1 in two independent datasets (Gene Set Enrichment Analysis (GSEA) p<0.05) and are enriched in mucin-related genes (GSEA p<0.05). CONCLUSION We have identified and replicated an airway gene expression signature associated with the rate of FEV1 decline. Aspects of this signature are related to increased expression of XBP1-regulated genes, a transcription factor involved in the unfolded protein response, and genes related to mucin production. Collectively, these data suggest that molecular processes related to the rate of FEV1 decline can be detected in airway epithelium, identify a possible indicator of FEV1 decline and make it possible to detect, in an early phase, ever smokers with and without COPD most at risk of rapid FEV1 decline.
Collapse
Affiliation(s)
- Elizabeth J Becker
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristopher Clark
- Internal Medicine Residency Program, Boston Medical Center, Boston, Massachusetts, USA
| | - Gang Liu
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaohui Xiao
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - George O'Connor
- Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Avrum Spira
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Marc E Lenburg
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Katrina Steiling
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA .,Bioinformatics Program, Boston University, Boston, Massachusetts, USA.,Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Machida H, Inoue S, Shibata Y, Kimura T, Sato K, Abe K, Murano H, Yang S, Nakano H, Sato M, Nemoto T, Sato C, Nishiwaki M, Yamauchi K, Igarashi A, Tokairin Y, Watanabe M. Thymus and activation-regulated chemokine (TARC/CCL17) predicts decline of pulmonary function in patients with chronic obstructive pulmonary disease. Allergol Int 2021; 70:81-88. [PMID: 32444304 DOI: 10.1016/j.alit.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The deterioration of pulmonary function, such as FEV1-decline, is strongly associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). However, few investigations shed light on useful biomarkers for predicting the decline of pulmonary function. We evaluated whether thymus and activation-regulated chemokine (TARC), a Th2 inflammation marker, could predict rapid FEV1-decline in COPD patients. METHODS We recruited 161 patients with stable COPD and performed pulmonary function test once every six months. At the time of registration, blood tests, including serum levels of TARC were performed. We assessed the correlation between changes in parameters of pulmonary function tests and serum levels of TARC. The rapid-decline in pulmonary function was determined using 25th percentile of change in FEV1 or FEV1 percent predicted (%FEV1) per year. RESULTS In the FEV1-rapid-decline group, the frequency of exacerbations, the degree of emphysema, and serum levels of TARC was higher than in the non-rapid-decline group. When using %FEV1 as a classifier instead of FEV1, age, the frequency of exacerbations, the degree of emphysema and serum levels of TARC in the rapid-decline group was significantly greater than those in the non-rapid-decline group. In univariate logistic regression analysis, TARC was the significant predictive factor for rapid-decline group. In multivariate analysis adjusted for emphysema, serum levels of TARC are independently significant predicting factors for the rapid-decline group. CONCLUSIONS TARC is an independent predictive biomarker for the rapid-decline in FEV1. Measuring serum TARC levels may help the management of COPD patients by predicting the risk of FEV1 decline.
Collapse
|
12
|
Eriksson Ström J, Pourazar J, Linder R, Blomberg A, Lindberg A, Bucht A, Behndig AF. Airway regulatory T cells are decreased in COPD with a rapid decline in lung function. Respir Res 2020; 21:330. [PMID: 33317530 PMCID: PMC7734742 DOI: 10.1186/s12931-020-01593-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Differences in the expression of regulatory T cells (Tregs) have been suggested to explain why some smokers develop COPD and some do not. Upregulation of Tregs in response to smoking would restrain airway inflammation and thus the development of COPD; while the absense of such upregulation would over time lead to chronic inflammation and COPD. We hypothesized that—among COPD patients—the same mechanism would affect rate of decline in lung function; specifically, that a decreased expression of Tregs would be associated with a more rapid decline in FEV1. Methods Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry. Results The proportions of Tregs with regulatory function (FoxP3+/CD4+CD25bright) were significantly lower in COPD subjects with a rapid decline in lung function compared to those with a non-rapid decline (p = 0.019). This result was confirmed in a mixed model regression analysis in which adjustments for inhaled corticosteroid usage, smoking, sex and age were evaluated. No significant difference was found between COPD subjects and smokers or non-smokers with normal lung function. Conclusions COPD subjects with a rapid decline in lung function had lower proportions of T cells with regulatory function in BAL fluid, suggesting that an inability to suppress the inflammatory response following smoking might lead to a more rapid decline in FEV1. Trial registration Clinicaltrials.gov identifier NCT02729220
Collapse
Affiliation(s)
- Jonas Eriksson Ström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden.
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Robert Linder
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Anders Bucht
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden.,Division of CBRN Defence and Security, Swedish Defence Research Agency, Stockholm, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
13
|
Rydell A, Nowak C, Janson C, Lisspers K, Ställberg B, Iggman D, Leppert J, Hedberg P, Sundström J, Ingelsson E, Lind L, Ärnlöv J. Plasma proteomics and lung function in four community-based cohorts. Respir Med 2020; 176:106282. [PMID: 33310204 DOI: 10.1016/j.rmed.2020.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Underlying mechanism leading to impaired lung function are incompletely understood. OBJECTIVES To investigate whether protein profiling can provide novel insights into mechanisms leading to impaired lung function. METHODS We used four community-based studies (n = 2552) to investigate associations between 79 cardiovascular/inflammatory proteins and forced expiratory volume in 1 s percent predicted (FEV1%) assessed by spirometry. We divided the cohorts into discovery and replication samples and used risk factor-adjusted linear regression corrected for multiple comparison (false discovery rate of 5%). We performed Mendelian randomization analyses using genetic and spirometry data from the UK Biobank (n = 421,986) to assess causality. MEASUREMENTS AND MAIN RESULTS In cross-sectional analysis, 22 proteins were associated with lower FEV1% in both the discovery and replication sample, regardless of stratification by smoking status. The combined proteomic data cumulatively explained 5% of the variation in FEV1%. In longitudinal analyses (n = 681), higher plasma levels of growth differentiation factor 15 (GDF-15) and interleukin 6 (IL-6) predicted a more rapid 5-year decline in lung function (change in FEV1% per standard deviation of protein level -1.4, (95% CI, -2.5 to -0.3) for GDF-15, and -0.8, (95% CI, -1.5 to -0.2) for IL-6. Mendelian randomization analysis in UK-biobank provided support for a causal effect of increased GDF-15 levels and reduced FEV1%. CONCLUSIONS Our combined approach identified GDF-15 as a potential causal factor in the development of impaired lung function in the general population. These findings encourage additional studies evaluating the role of GDF-15 as a causal factor for impaired lung function.
Collapse
Affiliation(s)
- Andreas Rydell
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Huddinge, Sweden; Region Dalarna, Falun, Sweden
| | - Christoph Nowak
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Huddinge, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Karin Lisspers
- Department of Public Health and Caring Science, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - Björn Ställberg
- Department of Public Health and Caring Science, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - David Iggman
- Region Dalarna, Falun, Sweden; Unit for Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jerzy Leppert
- Center for Clinical Research, Region Västmanland-Uppsala University, Hospital of Västmanland, Västerås, Sweden
| | - Pär Hedberg
- Center for Clinical Research, Region Västmanland-Uppsala University, Hospital of Västmanland, Västerås, Sweden; Department of Clinical Physiology, Hospital of Västmanland, Västerås, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden; The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Huddinge, Sweden; Region Dalarna, Falun, Sweden; School of Health and Social Sciences, Dalarna University, Falun, Sweden.
| |
Collapse
|
14
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Hao W, Li M, Zhang Y, Zhang C, Xue Y. Expressions of MMP-12, TIMP-4, and Neutrophil Elastase in PBMCs and Exhaled Breath Condensate in Patients with COPD and Their Relationships with Disease Severity and Acute Exacerbations. J Immunol Res 2019; 2019:7142438. [PMID: 31143784 PMCID: PMC6501161 DOI: 10.1155/2019/7142438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The purpose of this study was to compare matrix metalloproteinase-12 (MMP-12), neutrophil elastase (NE), and tissue inhibitor of metalloproteinase-4 (TIMP-4) in peripheral blood of patients with chronic obstructive pulmonary disease (COPD) and controls. At the same time, MMP-12, NE, and TIMP-4 in exhaled breath condensate (EBC) were also evaluated. METHODS Peripheral blood and EBC samples from COPD patients and healthy controls were collected. In serum and EBC, MMP-12, NE, and TIMP-4 proteins were detected by enzyme-linked immunoassays. The mRNA expression levels of MMP-12, NE, and TIMP-4 in peripheral blood mononuclear cells (PBMCs) were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The concentration of TIMP-4 protein in EBC was lower in patients with COPD (P < 0.001). MMP-12 (P = 0.046), NE (P = 0.027), and TIMP-4 (P = 0.005) proteins in serum of patients with COPD showed higher levels of concentration. The mRNA of MMP-12 (P = 0.0067), NE (P = 0.0058), and TIMP-4 (P = 0.0006) in PBMCs of COPD patients showed higher expression levels. Compared with stable patients, mRNA expression level of NE (P = 0.033) in PBMCs of patients with acute exacerbation of COPD was increased. There were differences in the ratio of MMP-12/TIMP-4 in PBMC (P = 0.0055), serum (P = 0.0427), and EBC (P = 0.0035) samples between COPD patients and healthy controls. The mRNA expression of MMP-12 (r = -0.3958, P = 0.0186) and NE (r = -0.3694, P = 0.0290) in COPD patients was negatively correlated with pulmonary function. However, the mRNA expression of TIMP-4 (r = 0.2871, P = 0.0945) in PBMCs was not correlated with the FEV1 of the pulmonary function. Serum MMP-12 level was positively correlated with the MMP-12 level in EBC (P = 0.0387). The level of TIMP-4 in serum was not correlated with the level in the EBC sample (P = 0.4332). CONCLUSION The expression levels of MMP-12, NE, and TIMP-4 in PBMCs and serum were elevated in COPD patients. In PBMCs of COPD patients, the mRNA expression level of NE may predict acute exacerbation, and MMP-12 mRNA expression level may be used to reflect the severity of airflow limitation. However, to better assess their diagnostic or prognostic value, larger studies are necessary.
Collapse
Affiliation(s)
- Wendong Hao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi, China
| | - Yunqing Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
| | - Cailian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
| | - Yani Xue
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716099 Shaanxi, China
| |
Collapse
|
16
|
Xiong G, Jiang X, Song T. The overexpression of lncRNA H19 as a diagnostic marker for coronary artery disease. ACTA ACUST UNITED AC 2019; 65:110-117. [PMID: 30892430 DOI: 10.1590/1806-9282.65.2.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/26/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Our study aimed to investigate the diagnostic value of lncRNA H19 for coronary artery disease (CAD) and to explore its possible mechanisms. METHODS A total of 30 CAD patients and 30 healthy individuals, as well as patients with different cardiovascular diseases, were included in this study. Blood was drawn from each participant to prepare serum samples, and the expression of lncRNA H19 was detected using qRT-PCR. The ROC curve analysis was used to analyze the diagnostic value of H19 for CAD. The effects of patients' basic information and lifestyle on H19 expression were analyzed. The plasma level of TGF-β1 was measured by ELISA. The H19 overexpression in the human primary coronary artery endothelial cell (HCAEC) line was constructed, and the effects of H19 overexpression on the TGF-β1 expression were analyzed using Western blot. The results of H19 expression were specifically upregulated in patients with CAD but not in healthy individuals and patients with other types of cardiovascular diseases. The ROC curve analysis showed that the H19 expression level could be used to predict CAD accurately. Gender, age, and patients' lifestyle had no significant effects on H19 expression, but H19 expression was higher in patients with a longer course of disease in comparison with the controls. H19 expression was positively correlated with the serum level of TGF-β1, and H19 overexpression significantly increased TGF-β1 protein level in HCAEC. CONCLUSION H19 overexpression participates in the pathogenesis of CAD by increasing the expression level of TGF-β1, and H19 expression level may serve as a diagnostic marker for CAD.
Collapse
Affiliation(s)
- Gang Xiong
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Jiefang Road 238, Wuchang, 430060, Wuhan, PR China
| | - Tao Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Jiefang Road 238, Wuchang, 430060, Wuhan, PR China.,Department of Cardiology, the 4th Division Hospital of Xinjiang Production and Construction Corps, Bole, Xinjiang, China
| |
Collapse
|
17
|
Aschner Y, Davidson JA. Early Plasma Matrix Metalloproteinase Profiles Offer New Insight into the Biology and Prognosis of Pediatric Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:134-136. [PMID: 30160977 DOI: 10.1164/rccm.201808-1500ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yael Aschner
- 1 Department of Medicine University of Colorado Aurora, Colorado and
| | - Jesse A Davidson
- 2 Department of Pediatrics University of Colorado/Children's Hospital Colorado| Aurora, Colorado
| |
Collapse
|
18
|
Miele CH, Grigsby MR, Siddharthan T, Gilman RH, Miranda JJ, Bernabe-Ortiz A, Wise RA, Checkley W. Environmental exposures and systemic hypertension are risk factors for decline in lung function. Thorax 2018; 73:1120-1127. [PMID: 30061168 PMCID: PMC7289445 DOI: 10.1136/thoraxjnl-2017-210477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic lung disease is a leading contributor to the global disease burden; however, beyond tobacco smoke, we do not fully understand what risk factors contribute to lung function decline in low-income and middle-income countries. METHODS We collected sociodemographic and clinical data in a randomly selected, age-stratified, sex-stratified and site-stratified population-based sample of 3048 adults aged ≥35 years from four resource-poor settings in Peru. We assessed baseline and annual pre-bronchodilator and post-bronchodilator lung function over 3 years. We used linear mixed-effects models to assess biological, socioeconomic and environmental risk factors associated with accelerated lung function decline. RESULTS Mean±SD enrolment age was 55.4±12.5 years, 49.2% were male and mean follow-up time was 2.36 (SD 0.61) years. Mean annual pre-bronchodilator FEV1 decline was 30.3 mL/year (95% CI 28.6 to 32.0) and pre-bronchodilator FVC decline was 32.2 mL/year (30.0 to 34.4). Using multivariable linear mixed-effects regression, we found that urban living, high-altitude dwelling and having hypertension accounted for 25.9% (95% CI 15.7% to 36.1%), 21.3% (11.1% to 31.5%) and 15.7% (3.7% to 26.9%) of the overall mean annual decline in pre-bronchodilator FEV1/height2, respectively. Corresponding estimates for pre-bronchodilator FVC/height2 were 42.1% (95% CI% 29.8% to 54.4%), 36.0% (23.7% to 48.2%) and 15.8% (2.6% to 28.9%) of the overall mean annual decline, respectively. CONCLUSION Urbanisation, living at high altitude and hypertension were associated with accelerated lung function decline in a population with low daily smoking prevalence.
Collapse
Affiliation(s)
- Catherine H Miele
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew R Grigsby
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Robert H Gilman
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - J Jaime Miranda
- CRONICAS Center of Excellence for Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Medicina, Escuela de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Antonio Bernabe-Ortiz
- CRONICAS Center of Excellence for Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert A Wise
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
19
|
Rapid shortening of leukocyte telomeres is associated with poorer pulmonary function among healthy adults. Respir Med 2018; 145:73-79. [DOI: 10.1016/j.rmed.2018.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023]
|
20
|
Manciu M, Hosseini S, Di Desidero T, Allegrini G, Falcone A, Bocci G, Kirken RA, Francia G. Optimization of biomarkers-based classification scores as progression-free survival predictors: an intuitive graphical representation. Future Sci OA 2018; 4:FSO346. [PMID: 30450233 PMCID: PMC6234460 DOI: 10.4155/fsoa-2018-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/17/2018] [Indexed: 02/04/2023] Open
Abstract
Aim To construct classification scores based on a combination of cancer patient plasma biomarker levels, for predicting progression-free survival. Methods The approach is based on the optimization of the biomarker cut-off values, which maximize the statistical differences between the groups with values lower or larger than the cut-offs, respectively. An intuitive visualization of the quality of the classification score is also proposed. Results Even if there are only weak correlations between individual biomarker levels and progression-free survival, scores based on suitably chosen combination of three biomarkers have classification power comparable with the Response Evaluation Criteria in Solid Tumors criteria classification of response to treatments in solid tumors. Conclusion Our approach has the potential to improve the selection of the patients who will benefit from a given anticancer treatment.
Collapse
Affiliation(s)
- Marian Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Sorour Hosseini
- Department of Physics, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Teresa Di Desidero
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Allegrini
- Division of Medical Oncology, Pontedera Hospital, Azienda USL of Pisa, Pontedera, Italy
| | | | - Guido Bocci
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Robert A Kirken
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
21
|
Fu X, Zhang F. Role of the HIF-1 signaling pathway in chronic obstructive pulmonary disease. Exp Ther Med 2018; 16:4553-4561. [PMID: 30542404 PMCID: PMC6257248 DOI: 10.3892/etm.2018.6785] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most common cause of chronic morbidity and mortality. However, the molecular mechanisms underlying COPD remain largely unknown. The purpose of the present study was to investigate the expression patterns of hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and VEGF receptor 2 (R2) in regard to the HIF-1 signaling pathway in COPD. The expressions of HIF-1α, VEGF and VEGFR2 were examined and quantified in the human lung tissues of 102 subjects with a defined smoking status, with or without COPD. The expressions of HIF-1α, VEGF and VEGFR2 were observed to be increased in the lung tissues collected from smoking COPD subjects when compared with those tissues from smoking subjects without COPD and non-smoking subjects without COPD. The expression of HIF-1α was shown to be positively associated with the expression of VEGF and VEGFR2. In addition, increased expression of HIF-1α, VEGF and VEGFR2 reflected the disease severity of COPD. The key findings obtained from the present study indicated that high expression of HIF-1α, VEGF and VEGFR2 may be associated with decreased lung function and reduced quality of life, contributing to disease progression in COPD.
Collapse
Affiliation(s)
- Xiang Fu
- Department of Respiratory Medicine, The No. 5 Hospital of Xiamen, Xiamen, Fujian 361100, P.R. China
| | - Fengling Zhang
- Department of Respiratory Medicine, The No. 5 Hospital of Xiamen, Xiamen, Fujian 361100, P.R. China
| |
Collapse
|
22
|
Oh JY, Lee YS, Min KH, Hur GY, Lee SY, Kang KH, Rhee CK, Park SJ, Shim JJ. Elevated interleukin-6 and bronchiectasis as risk factors for acute exacerbation in patients with tuberculosis-destroyed lung with airflow limitation. J Thorac Dis 2018; 10:5246-5253. [PMID: 30416771 DOI: 10.21037/jtd.2018.08.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Patients with tuberculosis-destroyed lungs (TDLs), with airflow limitation, have clinical characteristics similar to those of patients with chronic obstructive pulmonary disease (COPD). Acute exacerbation is an important factor in the management of TDL. Therefore, the aim of this study was to investigate the factors associated with acute exacerbations in patients with stable TDL with airflow limitation. Methods We evaluated the clinical characteristics, such as lung function, image findings, and serum laboratory findings, including C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and interleukin (IL)-6, in patients with TDL with chronic airflow limitation (n=94). We evaluated the correlation of these parameters with acute exacerbation. Results We found that patients with exacerbation were more likely to have bronchiectasis than those without exacerbation (patients with exacerbation, 66.7%; patients without exacerbation, 30.5%; P=0.001). CRP and IL-6 levels were significantly higher in patients with exacerbation than in those without exacerbation (P=0.001 and P<0.001, respectively). Bronchiectasis [OR, 3.248; 95% confidence interval (CI), 1.063-9.928; P=0.039] and elevated IL-6 levels (OR, 1.128; 95% CI, 1.013-1.257; P=0.028) were the most important parameters associated with acute exacerbation in patients with TDL with airflow limitation. Conclusions Patients with bronchiectasis and high IL-6 levels may require more intensive treatment to prevent acute exacerbation.
Collapse
Affiliation(s)
- Jee Youn Oh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Seok Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hoon Min
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gyu Young Hur
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ho Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seoung Ju Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jae Jeong Shim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Proteases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. J Clin Med 2018; 7:jcm7090244. [PMID: 30154365 PMCID: PMC6162857 DOI: 10.3390/jcm7090244] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/21/2022] Open
Abstract
In the context of respiratory disease, chronic obstructive pulmonary disease (COPD) is the leading cause of mortality worldwide. Despite much development in the area of drug development, currently there are no effective medicines available for the treatment of this disease. An imbalance in the protease: Antiprotease ratio in the COPD lung remains an important aspect of COPD pathophysiology and several studies have shown the efficacy of antiprotease therapy in both in vitro and in vivo COPD models. However more in-depth studies will be required to validate the efficacy of lead drug molecules targeting these proteases. This review discusses the current status of protease-directed drugs used for treating COPD and explores the future prospects of utilizing the potential of antiprotease-based therapeutics as a treatment for this disease.
Collapse
|
24
|
Linder R, Rönmark E, Pourazar J, Behndig AF, Blomberg A, Lindberg A. Proteolytic biomarkers are related to prognosis in COPD- report from a population-based cohort. Respir Res 2018; 19:64. [PMID: 29650051 PMCID: PMC5897990 DOI: 10.1186/s12931-018-0772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The imbalance between proteases and anti-proteases is considered to contribute to the development of COPD. Our aim was to evaluate the protease MMP-9, the antiprotease TIMP-1 and the MMP-9/TIMP-1-ratio as biomarkers in relation to prognosis. Prognosis was assessed as lung function decline and mortality. This was done among subjects with COPD in a population-based cohort. METHODS In 2005, clinical examinations including spirometry and peripheral blood sampling, were made in a longitudinal population-based cohort. In total, 1542 individuals participated, whereof 594 with COPD. In 2010, 1031 subjects participated in clinical examinations, and 952 subjects underwent spirometry in both 2005 and 2010. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbent assay (ELISA). Mortality data were collected from the Swedish national mortality register from the date of examination in 2005 until 31st December 2010. RESULTS The correlation between biomarkers and lung function decline was similar in non-COPD and COPD, but only significant for MMP-9 and MMP-9/TIMP-1-ratio in non-COPD. Mortality was higher in COPD than non-COPD (16% vs. 10%, p = 0.008). MMP-9 concentrations and MMP-9/TIMP-1 ratios in 2005 were higher among those who died during follow up, as well as among those alive but not participating in 2010, when compared to those participating in the 2010-examination. In non-COPD, male sex, age, burden of smoking, heart disease and MMP-9/TIMP-1 ratio were associated with increased risk for death, while increased TIMP-1 was protective. Among those with COPD, age, current smoking, increased MMP-9 and MMP-9/TIMP-1 ratio were associated with an increased risk for death. CONCLUSIONS The expected association between these biomarkers and lung function decline in COPD was not confirmed in this population-based study, probably due to a healthy survivor effect. Still, it is suggested that increased proteolytic imbalance may be of greater prognostic importance in COPD than in non-COPD.
Collapse
Affiliation(s)
- Robert Linder
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, SE-90187 Umeå, Sweden
| | - Eva Rönmark
- Department of Public Health and Clinical Medicine, the OLIN unit, Division of Occupational and Environmental Medicine, Umeå University, SE-90187 Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, SE-90187 Umeå, Sweden
| | - Annelie F. Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, SE-90187 Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, SE-90187 Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
25
|
Shahriary A, Ghanei M, Rahmani H. The systemic nature of mustard lung: Comparison with COPD patients. Interdiscip Toxicol 2018; 10:114-127. [PMID: 30174535 PMCID: PMC6107649 DOI: 10.1515/intox-2017-0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/02/2017] [Indexed: 01/14/2023] Open
Abstract
Sulphur mustard (SM) is a powerful blister-causing alkylating chemical warfare agent used by Iraqi forces against Iran. One of the known complications of mustard gas inhalation is mustard lung which is discussed as a phenotype of chronic obstructive pulmonary disease (COPD). In this complication, there are clinical symptoms close to COPD with common etiologies, such as in smokers. Based on information gradually obtained by conducting the studies on mustard lung patients, systemic symptoms along with pulmonary disorders have attracted the attention of researchers. Changes in serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), nuclear factor κB (NF-κB), matrix metalloproteinases (MMPs), interleukin (IL), chemokines, selectins, immunoglobulins, and signs of imbalance in oxidant-antioxidant system at serum level, present the systemic changes in these patients. In addition to these, reports of extra-pulmonary complications, such as osteoporosis and cardiovascular disease are also presented. In this study, the chance of developing the systemic nature of this lung disease have been followed on using the comparative study of changes in the mentioned markers in mustard lung and COPD patients at stable phases and the mechanisms of pathogenesis and phenomena, such as airway remodeling in these patients.
Collapse
Affiliation(s)
- Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Rahmani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Shahriary A, Panahi Y, Shirali S, Rahmani H. Relationship of serum levels of interleukin 6, interleukin 8, and C-reactive protein with forced expiratory volume in first second in patients with mustard lung and chronic obstructive pulmonary diseases: systematic review and meta-analysis. Postepy Dermatol Alergol 2017; 34:192-198. [PMID: 28670246 PMCID: PMC5471374 DOI: 10.5114/ada.2017.67841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION The chronic systemic inflammation is a result of releasing inflammatory cytokines from the cells relating to the body immunity system and chronic activation of the innate immunity system. AIM To evaluate the relationship among serum levels of interleukin 6 (IL-6), interleukin 8 (IL-8), C-reactive protein (CRP) with forced expiratory volume in 1st s (FEV1) in patients with mustard lung (ML) and chronic obstructive pulmonary diseases (COPD). MATERIAL AND METHODS A published literature search was performed through SID, web of science, ISI, Science Direct, Scopus, Medline, and PubMed databases for articles published in English. The correlation coefficient (r) and 95% confidence intervals (95% CIs) were calculated using random or fixed effects models. Heterogeneity was assessed using χ2 and I2 statistics. RESULTS In total, 4 published studies were included in the final analysis. Using the random-effect model, meta-analysis showed that the r was -0.052 (95% CI: -0.14-0.049, p = 0.28) at serum level of IL-8, serum levels of CRP and FEV1 in these results were r = -0.13, p = 0.012, serum levels of tumor necrosis factor (TNF) and FEV1 levels were r = -0.39, p = 0.03 in the conducted studies on mustard lung patients. The IL-6 serum level was explored in COPD patients. The results of the given studies in these patients are r = -0.006, 95% CI: -0.37-0.15, and p = 0.44. CONCLUSIONS In this meta-analysis, there was evidence that serum levels of CRP and TNF have been significantly increased in chronic obstructive pulmonary diseases compared to the healthy control group, which signifies the presence of systemic inflammation in ML and COPD patients.
Collapse
Affiliation(s)
- Alireza Shahriary
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Shirali
- Hyperlipidemia Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Rahmani
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Hobbins S, Chapple IL, Sapey E, Stockley RA. Is periodontitis a comorbidity of COPD or can associations be explained by shared risk factors/behaviors? Int J Chron Obstruct Pulmon Dis 2017; 12:1339-1349. [PMID: 28496317 PMCID: PMC5422335 DOI: 10.2147/copd.s127802] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COPD is recognized as having a series of comorbidities potentially related to common inflammatory processes. Periodontitis is one of the most common human inflammatory diseases and has previously been associated with COPD in numerous observational studies. As periodontitis and COPD are both chronic, progressive conditions characterized by neutrophilic inflammation with subsequent proteolytic destruction of connective tissue, it has been proposed that they share common pathophysiological processes. The mechanisms proposed to link COPD and periodontitis include mechanical aspiration of oral contents into the respiratory tree, overspill of locally produced inflammatory mediators into the systemic circulation or oral or lung-derived bacteremia activating an acute-phase response and also reactive oxygen species (ROS) and cytokine release by systemic neutrophils at distant sites. Studies of systemic neutrophils in COPD and chronic periodontitis describe altered cellular functions that would predispose to inflammation and tissue destruction both in the lung and in the mouth, again potentially connecting these conditions. However, COPD and periodontitis also share risk factors such as age, chronic tobacco smoke exposure, and social deprivation that are not always considered in observational and interventional studies. Furthermore, studies reporting associations have often utilized differing definitions of both COPD and periodontitis. This article reviews the current available evidence supporting the hypothesis that COPD and inflammatory periodontal disease (periodontitis) could be pathologically associated, including a review of shared inflammatory mechanisms. It highlights the potential limitations of previous studies, in particular, the lack of uniformly applied case definitions for both COPD and periodontitis and poor recognition of shared risk factors. Understanding associations between these conditions may inform why patients with COPD suffer such a burden of comorbid illness and new therapeutic strategies for both the diseases. However, further research is needed to clarify factors that may be directly causal as opposed to confounding relationships.
Collapse
Affiliation(s)
| | | | - Elizabeth Sapey
- Institute of Inflammation and Aging.,Centre for Translational Inflammation Research, Institute of Inflammation and Aging, Queen Elizabeth Hospital
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| |
Collapse
|
28
|
Gleeson A, Parry A, Higginson R. End-of-life prognostic indicators in patients with COPD: Part 1. Int J Palliat Nurs 2017; 22:508-514. [PMID: 27802088 DOI: 10.12968/ijpn.2016.22.10.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the UK, chronic respiratory diseases cause 13% of adult disability. The major chronic respiratory disease is chronic obstructive pulmonary disease (COPD), a condition involving chronic airway inflammation that causes airflow obstruction and destruction of lung tissue. This leads to a progressive loss of respiratory membrane, which accounts for the clinical manifestation of COPD, which is difficulty maintaining sufficient gas exchange to meet metabolic demands. The primary cause is smoking, with the vast majority of COPD patients having a past or present history of smoking. However exposure to industrial pollutants is also a contributing factor, as is a rare genetic predisposition to developing COPD.
Collapse
Affiliation(s)
- Aoife Gleeson
- Consultant in Palliative Medicine, Ysbyty Ystrad Fawr, Ystrad Mynach
| | - Andy Parry
- Senior Lecturer in Critical Care School of Care Sciences Glyntaf Campus University of South Wales
| | - Ray Higginson
- Senior Lecturer in Critical Care School of Care Sciences Glyntaf Campus University of South Wales
| |
Collapse
|
29
|
Bchir S, Nasr HB, Bouchet S, Benzarti M, Garrouch A, Tabka Z, Susin S, Chahed K, Bauvois B. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease. J Cell Mol Med 2016; 21:1280-1291. [PMID: 28004483 PMCID: PMC5487915 DOI: 10.1111/jcmm.13057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence points towards smoking‐related phenotypic differences in chronic obstructive pulmonary disease (COPD). As COPD is associated with systemic inflammation, we determined whether smoking status is related to serum levels of matrix metalloproteinase‐9 (pro‐ and active MMP‐9), neutrophil gelatinase‐associated lipocalin (NGAL) and the proMMP‐9/NGAL complex in patients with COPD. Serum samples were collected in 100 stable‐phase COPD patients (82 smokers, 18 never‐smokers) and 28 healthy adults (21 smokers, 7 never‐smokers). Serum levels of studied factors were measured in ELISA. Our data provide the first evidence of simultaneously elevated serum levels of MMP‐9, NGAL and proMMP‐9/NGAL in COPD smokers. While the triad discriminated between smokers and non‐smokers in the COPD group, MMP‐9 and proMMP‐9/NGAL (but not NGAL) discriminated between smokers with and without COPD. Adjustment for age and smoking pack‐years did not alter the findings. Serum MMP‐9, NGAL and proMMP‐9/NGAL levels were not correlated with the GOLD stage or FEV1 decline. Furthermore, serum levels of neutrophil elastase (NE) and MMP‐3 (but not of IL‐6 and MMP‐12) were also higher in COPD smokers than in healthy smokers before and after adjustment for age and pack‐years. Among COPD smokers, levels of MMP‐9, NGAL and proMMP‐9/NGAL were positively correlated with NE (P < 0.0001) but not with the remaining factors. Gelatin zymography detected proMMP‐9 in serum samples of healthy and COPD smoking groups. Our results suggest that associated serum levels of proMMP‐9, NGAL, proMMP‐9/NGAL and NE may reflect the state of systemic inflammation in COPD related to cigarette smoking.
Collapse
Affiliation(s)
- Sarra Bchir
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.,Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Hela Ben Nasr
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Sandrine Bouchet
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Mohamed Benzarti
- Service de Pneumo-Allergologie, CHU Farhat Hached, Sousse, Tunisia
| | | | - Zouhair Tabka
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Santos Susin
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Karim Chahed
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
30
|
Sng JJ, Prazakova S, Thomas PS, Herbert C. MMP-8, MMP-9 and Neutrophil Elastase in Peripheral Blood and Exhaled Breath Condensate in COPD. COPD 2016; 14:238-244. [PMID: 27880043 DOI: 10.1080/15412555.2016.1249790] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by progressive and irreversible airflow limitation associated with chronic inflammation involving cytokines and metalloproteinases (MMPs). MMP-8, MMP-9 and neutrophil elastase (NE) are known to be implicated in COPD but the factors influencing activation and suppression remain unclear. This study aimed to compare MMP-8, MMP-9 and NE in the peripheral blood of COPD patients and controls and to likewise assess exhaled breath condensate (EBC) for these MMPs. Peripheral blood micro(mi)RNA139-5p levels, which may regulate MMPs in COPD, were also measured. Blood and EBC were collected from COPD patients (stable and during exacerbations) and healthy controls. Expression of mRNA for MMP-8, MMP-9, NE and miRNA-139-5p expression in peripheral blood mononuclear cells (PBMCs) was measured using qRT-PCR. MMP-8, MMP-9 and NE protein in plasma as well as MMP-8 and MMP-9 protein in EBC were analysed by enzyme-linked immunoassays. PBMCs from COPD patients showed greater expression of mRNA for MMP-8 (p = 0.0004), MMP-9 (p = 0.0023) and NE (p = 0.0019). PBMC expression of mRNA for NE was significantly higher in COPD exacerbations compared to stable cases (p < 0.05). Expression of mRNA for MMP-9 and NE correlated negatively with spirometry in patients (p < 0.05). Plasma from COPD patients showed greater levels of protein for MMP-8 (p = 0.003), MMP-9 (p = 0.046) and NE (p = 0.018). MMP-8 protein levels were lower in the EBC of COPD patients (p < 0.0001). In PBMCs, enhanced expression of mRNA for MMP-9 and NE is associated with COPD and may correlate with disease severity and exacerbations.
Collapse
Affiliation(s)
- JieHao Joshua Sng
- a Inflammation and Infection Research, School of Medical Sciences, UNSW Australia , Sydney , NSW , Australia.,b Department of Respiratory Medicine , Prince of Wales Hospital , Randwick , NSW , Australia
| | - Silvie Prazakova
- b Department of Respiratory Medicine , Prince of Wales Hospital , Randwick , NSW , Australia
| | - Paul S Thomas
- a Inflammation and Infection Research, School of Medical Sciences, UNSW Australia , Sydney , NSW , Australia.,b Department of Respiratory Medicine , Prince of Wales Hospital , Randwick , NSW , Australia
| | - Cristan Herbert
- a Inflammation and Infection Research, School of Medical Sciences, UNSW Australia , Sydney , NSW , Australia
| |
Collapse
|
31
|
Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2016; 2016:3604842. [PMID: 27524865 PMCID: PMC4976159 DOI: 10.1155/2016/3604842] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1–3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease.
Collapse
|
32
|
Koo HK, Hong Y, Lim MN, Yim JJ, Kim WJ. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int J Chron Obstruct Pulmon Dis 2016; 11:1129-37. [PMID: 27313452 PMCID: PMC4890689 DOI: 10.2147/copd.s103281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objective Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in the airway and lung. A protease–antiprotease imbalance has been suggested as a possible pathogenic mechanism for COPD. We evaluated the relationship between matrix metalloproteinase (MMP) levels and COPD severity. Methods Plasma levels of MMP-1, MMP-8, MMP-9, and MMP-12 were measured in 57 COPD patients and 36 normal controls. The relationship between MMP levels and lung function, emphysema index, bronchial wall thickness, pulmonary artery pressure, and quality of life was examined using general linear regression analyses. Results There were significant associations of MMP-1 with bronchodilator reversibility and of MMP-8 and MMP-9 with lung function. Also, MMP-1, MMP-8, and MMP-9 levels were correlated with the emphysema index, independent of lung function. However, MMP-12 was not associated with lung function or emphysema severity. Associations between MMP levels and bronchial wall thickness, pulmonary artery pressure, and quality of life were not statistically significant. Conclusion Plasma levels of MMP-1, MMP-8, and MMP-9 are associated with COPD severity and can be used as a biomarker to better understand the characteristics of COPD patients.
Collapse
Affiliation(s)
- Hyeon-Kyoung Koo
- Department of Internal Medicine, Division of Pulmonary and Critical Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Myoung Nam Lim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Jae-Joon Yim
- Department of Internal Medicine and Lung Institute, Division of Pulmonary and Critical Care Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| |
Collapse
|
33
|
Sikkeland LIB, Johnsen HL, Riste TB, Alexis NE, Halvorsen B, Søyseth V, Kongerud J. Sputum neutrophils are elevated in smelter workers, and systemic neutrophils are associated with rapid decline in FEV1. Occup Environ Med 2016; 73:459-66. [PMID: 27052769 DOI: 10.1136/oemed-2015-103083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/21/2016] [Indexed: 11/03/2022]
Abstract
OBJECTIVES In a previous study on smelter workers we, found significant relationship between exposure to dust and accelerated annual decline in forced expiratory volume in 1 s (FEV1). In this cross-sectional study at the end of a follow-up, we aimed to investigate the possible association between annual decline in FEV1 and markers of airways, and systemic inflammation in smelter workers. METHODS Employees (n=76 (27 current smokers)) who had been part of a longitudinal study (9-13 years) that included spirometry (>6 measurements) and respiratory questionnaires, performed induced sputum, exhaled NO and had blood drawn. Participants with annual decline in FEV1≥45 mL were compared with participants with annual decline <45 mL; also 26 non-exposed controls were included. RESULTS Compared with non-exposed controls, smelter workers demonstrated a significantly increased percentage of neutrophils (mean (SD)) (57% (17) vs 31% (15)) and matrix metalloproteinases 8 (MMP-8) levels in sputum, and MMP-9, surfactant protein D (SpD) and transforming growth factor β (TGFb) levels in blood. A significant association in FEV1≥45 mL was found for blood neutrophils when controlling for smoking habits (OR=1.7 (95% CI 1.0 to 2.8), p=0.045). Airway and blood protein markers were not associated with annual decline in FEV1. CONCLUSIONS All workers displayed airway and systemic inflammation characterised by increased levels of neutrophils and MMP-8 in sputum, and MMP-9, SpD and TGFβ in blood compared with non-exposed controls. Blood neutrophils in particular were significantly elevated in those workers with the most rapid decline in lung function. A similar observation was not seen with airway neutrophils. In the present study, we were able to identify systemic but not airway inflammatory markers that can predict increased decline in FEV1 in smelter workers.
Collapse
Affiliation(s)
| | | | - Tonje Bøyum Riste
- Department of Respiratory Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bente Halvorsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Vidar Søyseth
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway Department of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Johny Kongerud
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway Department of Respiratory Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Ongay S, Sikma M, Horvatovich P, Hermans J, Miller BE, Ten Hacken NHT, Bischoff R. Free Urinary Desmosine and Isodesmosine as COPD Biomarkers: The Relevance of Confounding Factors. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2016; 3:560-569. [PMID: 28848880 DOI: 10.15326/jcopdf.3.2.2015.0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Desmosine (DES) and isodesmosine (IDES) have been widely discussed as potential biomarkers of COPD. However, their clinical utility and validity remains unproven. Aim: This study aims to progress DES/IDES evaluation as a chronic obstructive pulmonary disease (COPD) biomarker by investigating its urinary excretion in a large sample cohort with respect to a) which factors influence DES/IDES levels in a population of healthy control individuals and COPD individuals; b) whether DES/IDES levels enable the differentiation between COPD individuals and healthy control individuals; c) whether DES/IDES can be used to differentiate between fast and slow decliners in lung function. Methods: Urinary DES and IDES were quantified in 365 individuals (147 healthy control individuals and 218 COPD individuals) from the Evaluation of COPD Longitudinally to Indentify Predictive Surrogate Endpoints (ECLIPSE) study (NCT00292552) by employing a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Results: Age, gender, body mass index (BMI) and smoking have a significant (p<0.05) influence on DES/IDES urinary excretion and need to be corrected for when investigating DES/IDES as a disease biomarker. Urinary DES/IDES allowed a statistically relevant differentiation (p<0.05) between stable COPD individuals and healthy control individuals, however, assay sensitivity and specificity were low (62% and 73%, respectively). Furthermore, urinary DES/IDES does not allow the differentiation of fast and slow decliners in lung function. Conclusions: The present results suggest that while urinary DES/IDES excretion is related to COPD, it is not a sensitive or specific biomarker for COPD diagnosis or prognosis.
Collapse
Affiliation(s)
- Sara Ongay
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Marijke Sikma
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands.,Van Hall Larenstein Hogeschool, Leeuwarden, Agora, The Netherlands
| | | | - Jos Hermans
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Bruce E Miller
- GlaxoSmithKline Research and Development, King of Prussia, Pennsylvania
| | - Nick H T Ten Hacken
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| |
Collapse
|
35
|
Zhang P, Wu HM, Shen QY, Liu RY, Qi XM. Associations of pulmonary function with serum biomarkers and dialysis adequacy in patients undergoing peritoneal dialysis. Clin Exp Nephrol 2016; 20:951-959. [PMID: 26868146 DOI: 10.1007/s10157-016-1244-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND As lung impairment is an indicator of increased morbidity and mortality in patients receiving continuous ambulatory peritoneal dialysis (CAPD), the risk factors associated with impaired lung function are of great significance. The aim of this study is to elucidate the effects of inflammatory biomarkers and dialysis adequacy on pulmonary function, in CAPD patients. METHODS 101 patients undergoing CAPD, 30 CKD5 patients and 30 healthy subjects were enrolled. Spirometry and serum biomarkers were evaluated in each subject. Pulmonary function was compared among patients and control groups. Pearson analysis was used to analyze the correlation between serum biomarkers, dialysis adequacy and pulmonary function. RESULTS Lower vital capacity, maximal voluntary ventilation (MVV), forced vital capacity (FVC), peak expiratory flow (PEF), maximal mid-expiratory flow rate (MMEF), and diffusing capacity of the lung for carbon monoxide (DLCO) were observed in the CAPD group (all P < 0.05) when compared with control subjects. DLCO % was negatively correlated with CRP (r = -0.349, P = 0.007) and positively correlated with albumin (r = 0.401, P = 0.002). Total Kt/V was associated positively with MMEF % (r = 0.316, P = 0.019), and MVV % (r = 0.362, P = 0.007). nPNA was positively correlated with FVC % (r = 0.295, P = 0.049) and MMEF % (r = 0.381, P = 0.010). CONCLUSION The results suggest that lung function decline was directly related to higher CRP level, hypoalbuminemia, and dialysis inadequacy. These findings provide the evidence that inflammation and dialysis adequacy play a role in predicting outcomes of CAPD patients with pulmonary impairment.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.,Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hui-Mei Wu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.,Institute of Respiratory Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qi-Ying Shen
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China.,Institute of Respiratory Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Rong-Yu Liu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, People's Republic of China. .,Institute of Respiratory Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Xiang-Ming Qi
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
36
|
Lopez-Campos JL, Calero-Acuña C, Lopez-Ramirez C, Abad-Arranz M, Márquez-Martín E, Ortega-Ruiz F, Arellano E. Implications of the inflammatory response for the identification of biomarkers of chronic obstructive pulmonary disease. Biomark Med 2016; 10:109-22. [PMID: 26808692 DOI: 10.2217/bmm.15.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by both local and systemic inflammation. Because inflammation plays a critical role in the development, course and severity of COPD, inflammatory markers have the potential to improve the current diagnostic and prognostic approaches. Local inflammation in COPD is characterized by an infiltration of inflammatory cells, with an increased expression of cytokines, chemokines, enzymes, growth factors and adhesion molecules. Systemic low-grade inflammation is another common but nonspecific finding in COPD. Exacerbations of COPD are acute clinical events accompanied by an exaggerated inflammatory response. Future investigations in the field of COPD biomarkers should take into account different study designs and biochemical assays, disease course and duration, variations in symptom severity and timing of measurement.
Collapse
Affiliation(s)
- Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Calero-Acuña
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilia Lopez-Ramirez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - María Abad-Arranz
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Eduardo Márquez-Martín
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Francisco Ortega-Ruiz
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Arellano
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
37
|
Chen Q, Deeb RS, Ma Y, Staudt MR, Crystal RG, Gross SS. Serum Metabolite Biomarkers Discriminate Healthy Smokers from COPD Smokers. PLoS One 2015; 10:e0143937. [PMID: 26674646 PMCID: PMC4682670 DOI: 10.1371/journal.pone.0143937] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022] Open
Abstract
COPD (chronic obstructive pulmonary disease) is defined by a fixed expiratory airflow obstruction associated with disordered airways and alveolar destruction. COPD is caused by cigarette smoking and is the third greatest cause of mortality in the US. Forced expiratory volume in 1 second (FEV1) is the only validated clinical marker of COPD, but it correlates poorly with clinical features and is not sensitive enough to predict the early onset of disease. Using LC/MS global untargeted metabolite profiling of serum samples from a well-defined cohort of healthy smokers (n = 37), COPD smokers (n = 41) and non-smokers (n = 37), we sought to discover serum metabolic markers with known and/or unknown molecular identities that are associated with early-onset COPD. A total of 1,181 distinct molecular ions were detected in 95% of sera from all study subjects and 23 were found to be differentially-expressed in COPD-smokers vs. healthy-smokers. These 23 putative biomarkers were differentially-correlated with lung function parameters and used to generate a COPD prediction model possessing 87.8% sensitivity and 86.5% specificity. In an independent validation set, this model correctly predicted COPD in 8/10 individuals. These serum biomarkers included myoinositol, glycerophopshoinositol, fumarate, cysteinesulfonic acid, a modified version of fibrinogen peptide B (mFBP), and three doubly-charged peptides with undefined sequence that significantly and positively correlate with mFBP levels. Together, elevated levels of serum mFBP and additional disease-associated biomarkers point to a role for chronic inflammation, thrombosis, and oxidative stress in remodeling of the COPD airways. Serum metabolite biomarkers offer a promising and accessible window for recognition of early-stage COPD.
Collapse
Affiliation(s)
- Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States of America
| | - Ruba S. Deeb
- Department of Genetic Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States of America
| | - Yuliang Ma
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States of America
| | - Michelle R. Staudt
- Department of Genetic Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States of America
- * E-mail: (RGC); (SSG)
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States of America
- * E-mail: (RGC); (SSG)
| |
Collapse
|
38
|
Matrix Metalloproteinases and Their Inhibitors in Chronic Obstructive Pulmonary Disease. Arch Immunol Ther Exp (Warsz) 2015; 64:177-93. [DOI: 10.1007/s00005-015-0375-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/25/2015] [Indexed: 01/04/2023]
|
39
|
Wu Y, Shen Y, Zhang J, Wan C, Wang T, Xu D, Yang T, Wen F. Increased serum TRAIL and DR5 levels correlated with lung function and inflammation in stable COPD patients. Int J Chron Obstruct Pulmon Dis 2015; 10:2405-12. [PMID: 26609227 PMCID: PMC4644161 DOI: 10.2147/copd.s92260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is associated with abnormal systemic inflammation, and apoptosis is one of the pathogenic mechanisms of COPD. Several studies have suggested that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors were not only involved in diseases associated with apoptosis but also in inflammatory diseases. However, limited data about the possible relationship between COPD and TRAIL/TRAIL-receptors are available. Objective To evaluate the potential relationship between TRAIL/TRAIL-receptors and COPD. Methods Serum levels of TRAIL, decoy receptor 5 (DR5), C-reactive protein, and tumor necrosis factor-α were analyzed using multiplex enzyme-linked immunosorbent assay kits. Then, serum levels of TRAIL and DR5 in 57 COPD patients with 35 healthy controls were compared and correlated with lung function and systemic inflammation. Results Mean levels of serum TRAIL and DR5 were significantly higher in COPD patients than those in controls (50.17±17.70 versus 42.09±15.49 pg/mL, P=0.029; 48.15±22.88 versus 38.94±10.95 pg/mL, P=0.032, respectively). Serum levels of TRAIL and DR5 correlated inversely with forced expiratory volume in 1 second % predicted, an index of lung function in COPD (r=-0.354, P=0.007 for TRAIL; r=−0.394, P=0.002 for DR5) in all participants (r=-0.291, P=0.005 for TRAIL; r=−0.315, P=0.002 for DR5), while DR5 correlated positively with C-reactive protein (r=0.240, P=0.021 for total subjects) and TRAIL correlated positively with tumor necrosis factor-α (r=0.371, P=0.005 for COPD; r=0.349, P=0.001 for total subjects). Conclusion Our results suggested that circulating TRAIL and DR5 increased in COPD patients and were associated with lung function and systemic inflammation in COPD. Future studies are needed to verify whether and how TRAIL and its receptors play roles in COPD.
Collapse
Affiliation(s)
- Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China ; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan, People's Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China ; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan, People's Republic of China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chun Wan
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China ; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China ; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan, People's Republic of China
| | - Dan Xu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China ; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China ; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan, People's Republic of China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China ; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
40
|
Left ventricular diastolic dysfunction in patients with chronic obstructive pulmonary disease (COPD), prevalence and association with disease severity: Using tissue Doppler study. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2015. [DOI: 10.1016/j.ejcdt.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Cane JL, Mallia-Millanes B, Forrester DL, Knox AJ, Bolton CE, Johnson SR. Matrix metalloproteinases -8 and -9 in the Airways, Blood and Urine During Exacerbations of COPD. COPD 2015; 13:26-34. [PMID: 26418236 DOI: 10.3109/15412555.2015.1043522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are elevated in the airways and blood of COPD patients, contributing to disease pathogenesis and tissue remodelling. However, it is not clear if MMP levels in airways, blood and urine are related or if MMP levels are related to disease severity or presence of exacerbations requiring hospitalisation. Seventy-two patients requiring hospitalisation for COPD exacerbations had serum, urine and sputum MMP-8, -9 and active MMP-9 measured by ELISA and gelatin zymography on day one, five and four weeks later (recovery). Clinical history, spirometry, COPD Assessment Test and MRC dyspnoea score were obtained. Twenty-two stable COPD patients had MMP measurements one week apart. During exacerbations, serum and urine MMP-9 were slightly elevated by 17% and 30% compared with recovery values respectively (p = 0.001 and p = 0.026). MMP-8 was not significantly changed. These MMP levels related to serum neutrophil numbers but not to outcome of exacerbations, disease severity measures or smoking status. In clinically stable patients, serum MMP levels did not vary significantly over 7 days, whereas urine MMPs varied by up to nine fold for MMP-8 (p = 0.003). Sputum, serum and urine contained different MMP species and complexes. Median values for sputum active MMP-9 were significantly different from serum (p = 0.035) and urine (p = 0.024). Serum and urine MMPs are only modestly elevated during exacerbations of COPD and unlikely to be useful biomarkers in this clinical setting. Airway, serum and urine MMP levels are independent of each other in COPD patients. Further, MMP levels are variable between patients and do not reflect airflow obstruction.
Collapse
Affiliation(s)
- Jennifer L Cane
- a Division of Respiratory Medicine and Nottingham Respiratory Research Unit, School of Medicine , University of Nottingham , Nottingham , United Kingdom
| | - Brendan Mallia-Millanes
- a Division of Respiratory Medicine and Nottingham Respiratory Research Unit, School of Medicine , University of Nottingham , Nottingham , United Kingdom
| | - Douglas L Forrester
- a Division of Respiratory Medicine and Nottingham Respiratory Research Unit, School of Medicine , University of Nottingham , Nottingham , United Kingdom
| | - Alan J Knox
- a Division of Respiratory Medicine and Nottingham Respiratory Research Unit, School of Medicine , University of Nottingham , Nottingham , United Kingdom
| | - Charlotte E Bolton
- a Division of Respiratory Medicine and Nottingham Respiratory Research Unit, School of Medicine , University of Nottingham , Nottingham , United Kingdom
| | - Simon R Johnson
- a Division of Respiratory Medicine and Nottingham Respiratory Research Unit, School of Medicine , University of Nottingham , Nottingham , United Kingdom
| |
Collapse
|
42
|
Li D, Wu Y, Tian P, Zhang X, Wang H, Wang T, Ying B, Wang L, Shen Y, Wen F. Adipokine CTRP-5 as a Potential Novel Inflammatory Biomarker in Chronic Obstructive Pulmonary Disease. Medicine (Baltimore) 2015; 94:e1503. [PMID: 26356719 PMCID: PMC4616636 DOI: 10.1097/md.0000000000001503] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Local and systemic inflammation often present in chronic obstructive pulmonary disease (COPD). Adipokines are secretory protein mediators by adipose tissue, which have been found to involve in inflammatory responses in many chronic inflammatory diseases. Therefore, we performed this preliminary clinical study to investigate the possible association between 2 adipokines, C1q/tumor necrosis factor-related protein-3 and -5 (CTRP-3 and CTRP-5), with lung function and other markers of inflammation in COPD. Serum CTRP-3 and CTRP-5 levels were measured in 73 COPD patients and 54 health controls, together with lung function and levels of adiponectin, CRP, TNF-α, and MPO in both groups. Pearson's partial correlation was used to analyze the correlations between CTRPs and other serum markers or lung function. Serum CTRP-5 was significantly elevated in COPD patients (0.41 ± 0.35 versus 0.29 ± 0.28 μg/ml, P = 0.01) and correlated inversely with FEV1/FVC ratio in all patients (r = -0.31, P = 0.001). In COPD patients, CTRP-5 was also correlated negatively with FEV1% predicted (r = -0.464, P < 0.001) and had a positive association with CRP levels (r = 0.262, P = 0.04). However, serum CTRP-3 levels were not correlated with measures of lung function or systemic inflammation. In conclusion, circulating CTRP-5 was associated with the severity of airflow obstruction and systemic inflammation in patients with COPD, which suggests that it may be used as a potential novel inflammatory biomarker in COPD. Further studies should be performed to clarify the exact role of CTRP-5 on the pathogenesis and outcomes of COPD.
Collapse
Affiliation(s)
- Diandian Li
- From the Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University (DL, YW, PT, XZ, HW, TW, YS, FW); Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University (DL, YW, PT, XZ, HW, TW, YS, FW); and Department of Laboratorial Medicine, West China Hospital of Sichuan University (BY, LW)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Linder R, Rönmark E, Pourazar J, Behndig A, Blomberg A, Lindberg A. Serum metalloproteinase-9 is related to COPD severity and symptoms - cross-sectional data from a population based cohort-study. Respir Res 2015; 16:28. [PMID: 25849664 PMCID: PMC4337188 DOI: 10.1186/s12931-015-0188-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease, COPD, is an increasing cause of morbidity and mortality worldwide, and an imbalance between proteases and antiproteases has been implicated to play a role in COPD pathogenesis. Matrix metalloproteinases (MMP) are important proteases that along with their inhibitors, tissue inhibitors of metalloproteinases (TIMP), affect homeostasis of elastin and collagen, of importance for the structural integrity of human airways. Small observational studies indicate that these biomarkers are involved in the pathogenesis of COPD. The aim of this study was to investigate serum levels of MMP-9 and TIMP-1 in a large Swedish population-based cohort, and their association with disease severity and important clinical symptoms of COPD such as productive cough. METHODS Spirometry was performed and peripheral blood samples were collected in a populations-based cohort (median age 67 years) comprising subjects with COPD (n = 594) and without COPD (n = 948), in total 1542 individuals. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbant assay (ELISA) and related to lung function data and symptoms. RESULTS Median serum MMP-9 values were significantly higher in COPD compared with non-COPD 535 vs. 505 ng/ml (P = 0.017), without any significant differences in serum TIMP-1-levels or MMP-9/TIMP-1-ratio. In univariate analysis, productive cough and decreasing FEV1% predicted correlated significantly with increased MMP-9 among subjects with COPD (P = 0.004 and P = 0.001 respectively), and FEV1% predicted remained significantly associated to MMP-9 in a multivariate model adjusting for age, sex, pack years and productive cough (P = 0.033). CONCLUSION Productive cough and decreasing FEV1 were each associated with MMP-9 in COPD, and decreasing FEV1 remained significantly associated with MMP-9 also after adjustment for common confounders in this population-based COPD cohort. The increased serum MMP-9 concentrations in COPD indicate an enhanced proteolytic activity that is related to disease severity, and further longitudinal studies are important for the understanding of MMP-9 in relation to the disease process and the pathogenesis of different COPD phenotypes.
Collapse
|
44
|
Therapy with plasma purified alpha1-antitrypsin (Prolastin®) induces time-dependent changes in plasma levels of MMP-9 and MPO. PLoS One 2015; 10:e0117497. [PMID: 25635861 PMCID: PMC4311911 DOI: 10.1371/journal.pone.0117497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/25/2014] [Indexed: 01/04/2023] Open
Abstract
The common Z mutation (Glu342Lys) of α1-antitrypsin (A1AT) results in the polymerization and intracellular retention of A1AT protein. The concomitant deficiency of functional A1AT predisposes PiZZ subjects to early onset emphysema. Clinical studies have implied that, among the biomarkers associated with emphysema, matrix metalloproteinase 9 (MMP-9) is of particular importance. Increased plasma MMP-9 levels are proposed to predict the decline of lung function as well as greater COPD exacerbations in A1AT deficiency-associated emphysema. The aim of the present study was to investigate the effect of A1AT therapy (Prolastin) on plasma MMP-9 and myeloperoxidase (MPO) levels. In total 34 PiZZ emphysema patients were recruited: 12 patients without and 22 with weekly intravenous (60 mg/kg body weight) A1AT therapy. The quantitative analysis of A1AT, MMP-9 and MPO was performed in serum and in supernatants of blood neutrophils isolated from patients before and after therapy. Patients with Prolastin therapy showed significantly lower serum MMP-9 and MPO levels than those without therapy. However, parallel analysis revealed that a rapid infusion of Prolastin is accompanied by a transient elevation of plasma MMP-9 and MPO levels. Experiments with freshly isolated blood neutrophils confirmed that therapy with Prolastin causes transient MMP-9 and MPO release. Prolastin induced the rapid release of MMP-9 and MPO when added directly to neutrophil cultures and this reaction was associated with the presence of IgA in A1AT preparation. Our data support the conclusion that changes in plasma levels of MMP-9 and MPO mirror the effect of Prolastin on blood neutrophils.
Collapse
|
45
|
El Gammal AI, O’Farrell R, O’Mahony L, Shanahan F, Killian K, O’Connor TM. Systemic Inflammatory Markers and Disease Severity in Chronic Obstructive Pulmonary Disease—The Effect of Acute Exercise and Pulmonary Rehabilitation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojrd.2015.51003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
El-Shimy WS, El-Dib AS, Nagy HM, Sabry W. A study of IL-6, IL-8, and TNF-α as inflammatory markers in COPD patients. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2014. [DOI: 10.4103/1687-8426.145698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Lock-Johansson S, Vestbo J, Sorensen GL. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease. Respir Res 2014; 15:147. [PMID: 25425298 PMCID: PMC4256818 DOI: 10.1186/s12931-014-0147-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary and activation-regulated chemokine (PARC/CCL-18)) and systemic inflammatory biomarkers (C-reactive protein (CRP) and fibrinogen) with COPD. The relevance of these biomarkers for COPD is discussed in terms of their biological plausibility, their independent association to disease and hard clinical outcomes, their modification by interventions, and whether changes in clinical outcomes are reflected by changes in the biomarker.
Collapse
Affiliation(s)
- Sofie Lock-Johansson
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsloews Vej 25.3, Odense, 5000, Denmark.
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark.
- Respiratory Research Group, Manchester Academic Science Centre University Hospital South Manchester NHS Foundation Trust Manchester, Manchester, UK.
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, JB Winsloews Vej 25.3, Odense, 5000, Denmark.
| |
Collapse
|
48
|
Esa SA, Rawy AM, EL-Behissy MM, Kamel MH, El-Hwaitty HMMM. Study of the level of sputum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor metalloproteinase-1 (TIMP-1) in COPD patients. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2014.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
An observational study of matrix metalloproteinase (MMP)-9 in cystic fibrosis. J Cyst Fibros 2014; 13:557-63. [DOI: 10.1016/j.jcf.2014.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
50
|
Song BG, Park YH. Presence of Renal Simple Cysts Is Associated With Increased Risk of Abdominal Aortic Aneurysms. Angiology 2014; 71:465-470. [DOI: 10.1177/0003319714548565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compared the incidence of renal simple cysts in 271 patients with abdominal aortic aneurysm (AAA) and 1387 patients without AAA (controls) using computed tomography (CT) angiography and abdominal CT, as a health screening program. The AAA group had significantly higher prevalence of renal simple cysts (55% vs 19%, P = .001) and chronic obstructive pulmonary disease (COPD; 12% vs 1%, P = .011) than the controls. After propensity score matching (n = 164), the prevalence of renal simple cysts was still significantly higher in the AAA group. In multivariate analysis, independent predictors of AAA were age, male gender, smoking history, hypertension, high-sensitivity C-reactive protein, creatinine, COPD, and renal simple cysts. The structural weakness predisposing for renal simple cysts may be associated with the initiation of AAA formation. More studies are needed to determine whether the presence of renal simple cysts can be considered as a risk factor for AAA.
Collapse
Affiliation(s)
- Bong Gun Song
- Division of Cardiology, Department of Medicine, Cardiac and Vascular Center, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Yong Hwan Park
- Division of Cardiology, Department of Medicine, Cardiac and Vascular Center, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| |
Collapse
|