1
|
Tonne C, Ranzani O, Alari A, Ballester J, Basagaña X, Chaccour C, Dadvand P, Duarte T, Foraster M, Milà C, Nieuwenhuijsen MJ, Olmos S, Rico A, Sunyer J, Valentín A, Vivanco R. Air Pollution in Relation to COVID-19 Morbidity and Mortality: A Large Population-Based Cohort Study in Catalonia, Spain (COVAIR-CAT). Res Rep Health Eff Inst 2024:1-48. [PMID: 39468856 PMCID: PMC11525941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Evidence from epidemiological studies based on individual-level data indicates that air pollution may be associated with coronavirus disease 2019 (COVID-19) severity. We aimed to test whether (1) long-term exposure to air pollution is associated with COVID-19-related hospital admission or mortality in the general population; (2) short-term exposure to air pollution is associated with COVID-19-related hospital admission following COVID-19 diagnosis; (3) there are vulnerable population subgroups; and (4) the influence of long-term air pollution exposure on COVID-19-related hospital admissions differed from that for other respiratory infections. METHODS We constructed a cohort covering nearly the full population of Catalonia through registry linkage, with follow- up from January 1, 2015, to December 31, 2020. Exposures at residential addresses were estimated using newly developed spatiotemporal models of nitrogen dioxide (NO23), particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5), particulate matter ≤10 μm in aerodynamic diameter (PM10), and maximum 8-hr-average ozone (O3) at a spatial resolution of 250 m for the period 2018-2020. RESULTS The general population cohort included 4,660,502 individuals; in 2020 there were 340,608 COVID-19 diagnoses, 47,174 COVID-19-related hospital admissions, and 10,001 COVID-19 deaths. Mean (standard deviation) annual exposures were 26.2 (10.3) μg/m3 for NO2, 13.8 (2.2) μg/m3 for PM2.5, and 91.6 (8.2) μg/m3 for O3. In Aim 1, an increase of 16.1 μg/m3 NO2 was associated with a 25% (95% confidence interval [CI]: 22%-29%) increase in hospitalizations and an 18% (10%-27%) increase in deaths. In Aim 2, cumulative air pollution exposure over the previous 7 days was positively associated with COVID-19-related hospital admission in the second pandemic wave (June 20 to December 31, 2020). Associations of exposure were driven by exposure on the day of the hospital admission (lag0). Associations between short-term exposure to air pollution and COVID-19-related hospital admission were similar in all population subgroups. In Aim 3, individuals with lower individual- and area-level socioeconomic status (SES) were identified as particularly vulnerable to the effects of long-term exposure to NO2 and PM2.5 on COVID-19-related hospital admission. In Aim 4, long-term exposure to air pollution was associated with hospital admission for influenza and pneumonia: (6%; 95% CI: 2-11 per 16.4-μg/m3 NO2 and 5%; 1-8 per 2.6-μg/m3 PM2.5) as well as for all lower respiratory infections (LRIs) (18%; 14-22 per 16.4-μg/m3 NO2 and 14%; 11-17 per 2.6-μg/m3 PM2.5) before the COVID-19 pandemic. Associations for COVID-19-related hospital admission were larger than those for influenza or pneumonia for NO2, PM2.5, and O3 when adjusted for NO2. CONCLUSIONS Linkage across several registries allowed the construction of a large population-based cohort, tracking COVID-19 cases from primary care and testing data to hospital admissions, and death. Long- and short-term exposure to ambient air pollution were positively associated with severe COVID-19 events. The effects of long-term air pollution exposure on COVID-19 severity were greater among those with lower individual- and area-level SES.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - C Milà
- ISGlobal, Barcelona, Spain
| | | | | | - A Rico
- ISGlobal, Barcelona, Spain
| | | | | | - R Vivanco
- Agency for Health Quality and Assessment of Catalonia, Barcelona, Spain
| |
Collapse
|
2
|
Vergara-Vásquez E, Hernández Beleño LM, Castrillo-Borja TT, Bolaño-Ortíz TR, Camargo-Caicedo Y, Vélez-Pereira AM. Airborne particulate matter integral assessment in Magdalena department, Colombia: Patterns, health impact, and policy management. Heliyon 2024; 10:e36284. [PMID: 39262974 PMCID: PMC11388504 DOI: 10.1016/j.heliyon.2024.e36284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
The relevance of atmospheric particulate matter (PM) to health and the environment is widely known. Long-term studies are necessary for understanding current and future trends in air quality management. This study aimed to assess the long-term PM concentration in the Magdalena department (Colombia). It focused on the following aspects: i) spatiotemporal patterns, ii) correlation with meteorology, iii) compliance with standards, iv) temporal trends over time, v) impact on health, and vi) impact of policy management. Fifteen stations from 2003 to 2021 were analyzed. Spearman-Rho and Mann-Kendall methods were used to correlate concentration with meteorology. The temporal and five-year moving trends were determined, and the trend magnitude was calculated using Teil-Sen. Acute respiratory infection odd ratios and risk of cancer associated with PM concentration were used to assess the impact on health. The study found that the maximum PM10 concentration was 194.5 μg/m3, and the minimum was 3 μg/m3. In all stations, a negative correlation was observed between PM10 and atmospheric water content, while the wind speed and temperature showed a positive correlation. The global trends indicated an increasing value, with five fluctuations in five-year moving trends, consistent with PM sources and socio-economic behavior. PM concentrations were found to comply with national standard; however, the results showed a potential impact on population health. The management regulation had a limited impact on increasing concentration. Considering that national regulations tend to converge towards WHO standards, the study area must create a management program to ensure compliance.
Collapse
Affiliation(s)
- Eliana Vergara-Vásquez
- Programa de Ingeniería Ambiental y Sanitaria, Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
- Grupo de Investigación en Modelación de Sistemas Ambientales (GIMSA), Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
| | - Luis M Hernández Beleño
- Programa de Ingeniería Ambiental y Sanitaria, Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
- Grupo de Investigación en Modelación de Sistemas Ambientales (GIMSA), Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
| | - Tailin T Castrillo-Borja
- Programa de Ingeniería Ambiental y Sanitaria, Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
- Grupo de Investigación en Modelación de Sistemas Ambientales (GIMSA), Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
| | - Tomás R Bolaño-Ortíz
- School of Natural Resources Engineering, Department of Agricultural Science, Universidad Católica del Maule, Curicó, Chile
| | - Yiniva Camargo-Caicedo
- Programa de Ingeniería Ambiental y Sanitaria, Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
- Grupo de Investigación en Modelación de Sistemas Ambientales (GIMSA), Facultad de Ingeniería, Universidad del Magdalena, Santa Marta, Colombia
| | - Andrés M Vélez-Pereira
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile
- Laboratorio de Investigaciones Medioambientales de Zonas Áridas, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
3
|
Dales R, Lukina AO, Romero-Meza R, Blanco-Vidal C, Cakmak S. Ambient air pollution exposure and COVID-19 related hospitalizations in Santiago, Chile. Sci Rep 2024; 14:14186. [PMID: 38902344 PMCID: PMC11190141 DOI: 10.1038/s41598-024-64668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Morbidity and mortality from several diseases are increased on days of higher ambient air pollution. We carried out a daily time-series analysis with distributive lags to study the influence of short-term air pollution exposure on COVID-19 related hospitalization in Santiago, Chile between March 16 and August 31, 2020. Analyses were adjusted for temporal trends, ambient temperature, and relative humidity, and stratified by age and sex. 26,579 COVID-19 hospitalizations were recorded of which 24,501 were laboratory confirmed. The cumulative percent change in hospitalizations (95% confidence intervals) for an interquartile range increase in air pollutants were: 1.1 (0.2, 2.0) for carbon monoxide (CO), 0.30 (0.0, 0.50) for nitrogen dioxide (NO2), and 2.7 (1.9, 3.0) for particulate matter of diameter ≤ 2.5 microns (PM2.5). Associations with ozone (O3), particulate matter of diameter ≤ 10 microns (PM10) and sulfur dioxide (SO2) were not significant. The observed effect of PM2.5 was significantly greater for females and for those individuals ≥ 65 years old. This study provides evidence that daily increases in air pollution, especially PM2.5, result in a higher observed risk of hospitalization from COVID-19. Females and the elderly may be disproportionately affected.
Collapse
Affiliation(s)
- Robert Dales
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederic Banting Driveway, Ottawa, ON, K1A 0K9, Canada
- University of Ottawa and Ottawa Hospital Research Institute, Ottawa, Canada
| | - Anna O Lukina
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederic Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Rafael Romero-Meza
- School of Economics and Business, Universidad Alberto Hurtado, Santiago, Chile
| | | | - Sabit Cakmak
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederic Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
4
|
Hajmohammadi H, Talaei M, Fecht D, Wang W, Vivaldi G, Faustini SE, Richter AG, Shaheen SO, Martineau AR, Sheikh A, Mudway IS, Griffiths CJ. Long-term air pollution exposure and risk of SARS-CoV-2 infection: A UK-wide cohort study. Respir Med 2024; 224:107567. [PMID: 38423343 DOI: 10.1016/j.rmed.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The association between air quality and risk of SARS-CoV-2 infection is poorly understood. We investigated this association using serological individual-level data adjusting for a wide range of confounders, in a large population-based cohort (COVIDENCE UK). METHODS We assessed the associations between long-term (2015-19) nitrogen dioxide (NO2) and fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5), exposures with SARS-CoV-2 infection, level of antibody response among those infected, and COVID-19 disease severity. We used serological data from 10,489 participants in the COVIDENCE UK cohort, and estimated annual average air pollution exposure at each participant's home postcode. RESULTS After controlling for potential confounders, we found a positive association between 5-year NO2 and PM2.5 exposures and the risk of seropositivity: 10 unit increase in NO2 (μg/m3) was associated with an increasing risk of seropositivity by 1.092 (95% CI 1.02 to 1.17; p-for-trend 0.012). For PM2.5, 10 unit increase (μg/m3) was associated with an increasing risk of seropositivity by 1.65 (95% CI 1.015-2.68; p-for-trend 0·049). In addition, we found that NO2 was positively associated with higher antibody titres (p-for-trend 0·013) among seropositive participants, with no evidence of an association for PM2.5. CONCLUSION Our findings suggest that the long-term burden of air pollution increased the risks of SARS-CoV-2 infection and has important implications for future pandemic preparedness. This evidence strengthens the case for reducing long-term air pollution exposures to reduce the vulnerability of individuals to respiratory viruses.
Collapse
Affiliation(s)
- Hajar Hajmohammadi
- Asthma UK Centre for Applied Research, Centre for Primary Care, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mohammad Talaei
- Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Heath, Imperial College London, London, UK; NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Weiyi Wang
- MRC Centre for Environment and Health, School of Public Heath, Imperial College London, London, UK; NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Giulia Vivaldi
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
| | - Sian E Faustini
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alex G Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Seif O Shaheen
- Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adrian R Martineau
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
| | - Aziz Sheikh
- Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ian S Mudway
- MRC Centre for Environment and Health, School of Public Heath, Imperial College London, London, UK; NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Imperial College London, London, UK; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Christopher J Griffiths
- Asthma UK Centre for Applied Research, Centre for Primary Care, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Ranzani O, Alari A, Olmos S, Milà C, Rico A, Basagaña X, Dadvand P, Duarte-Salles T, Forastiere F, Nieuwenhuijsen M, Vivanco-Hidalgo RM, Tonne C. Who is more vulnerable to effects of long-term exposure to air pollution on COVID-19 hospitalisation? ENVIRONMENT INTERNATIONAL 2024; 185:108530. [PMID: 38422877 DOI: 10.1016/j.envint.2024.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Factors that shape individuals' vulnerability to the effects of air pollution on COVID-19 severity remain poorly understood. We evaluated whether the association between long-term exposure to ambient NO2, PM2.5, and PM10 and COVID-19 hospitalisation differs by age, sex, individual income, area-level socioeconomic status, arterial hypertension, diabetes mellitus, and chronic obstructive pulmonary disease. METHODS We analysed a population-based cohort of 4,639,184 adults in Catalonia, Spain, during 2020. We fitted Cox proportional hazard models adjusted for several potential confounding factors and evaluated the interaction effect between vulnerability indicators and the 2019 annual average of NO2, PM2.5, and PM10. We evaluated interaction on both additive and multiplicative scales. RESULTS Overall, the association was additive between air pollution and the vulnerable groups. Air pollution and vulnerability indicators had a synergistic (greater than additive) effect for males and individuals with low income or living in the most deprived neighbourhoods. The Relative Excess Risk due to Interaction (RERI) was 0.21, 95 % CI, 0.15 to 0.27 for NO2 and 0.16, 95 % CI, 0.11 to 0.22 for PM2.5 for males; 0.13, 95 % CI, 0.09 to 0.18 for NO2 and 0.10, 95 % CI, 0.05 to 0.14 for PM2.5 for lower individual income and 0.17, 95 % CI, 0.12 to 0.22 for NO2 and 0.09, 95 % CI, 0.05 to 0.14 for PM2.5 for lower area-level socioeconomic status. Results for PM10 were similar to PM2.5. Results on multiplicative scale were inconsistent. CONCLUSIONS Long-term exposure to air pollution had a larger synergistic effect on COVID-19 hospitalisation for males and those with lower individual- and area-level socioeconomic status.
Collapse
Affiliation(s)
- Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alex Rico
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Francesco Forastiere
- National Research Council, IFT, Palermo, Italy; Environmental Research Group, Imperial College London, London, UK
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
6
|
Conte MN, Gordon M, Swartwood NA, Wilwerding R, Yu CA(A. Observational studies generate misleading results about the health effects of air pollution: Evidence from chronic air pollution and COVID-19 outcomes. PLoS One 2024; 19:e0296154. [PMID: 38165918 PMCID: PMC10760733 DOI: 10.1371/journal.pone.0296154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024] Open
Abstract
Several observational studies from locations around the globe have documented a positive correlation between air pollution and the severity of COVID-19 disease. Observational studies cannot identify the causal link between air quality and the severity of COVID-19 outcomes, and these studies face three key identification challenges: 1) air pollution is not randomly distributed across geographies; 2) air-quality monitoring networks are sparse spatially; and 3) defensive behaviors to mediate exposure to air pollution and COVID-19 are not equally available to all, leading to large measurement error bias when using rate-based COVID-19 outcome measures (e.g., incidence rate or mortality rate). Using a quasi-experimental design, we explore whether traffic-related air pollutants cause people with COVID-19 to suffer more extreme health outcomes in New York City (NYC). When we address the previously overlooked challenges to identification, we do not detect causal impacts of increased chronic concentrations of traffic-related air pollutants on COVID-19 death or hospitalization counts in NYC census tracts.
Collapse
Affiliation(s)
- Marc N. Conte
- Department of Economics, Fordham University, Bronx, NY, United States of America
| | | | - Nicole A. Swartwood
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Rachel Wilwerding
- Department of Economics, Fordham University, Bronx, NY, United States of America
| | - Chu A. (Alex) Yu
- Department of Economics, Wake Forest University, Winston-Salem, NC, United States of America
| |
Collapse
|
7
|
Houweling L, Maitland-Van der Zee AH, Holtjer JCS, Bazdar S, Vermeulen RCH, Downward GS, Bloemsma LD. The effect of the urban exposome on COVID-19 health outcomes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 240:117351. [PMID: 37852458 DOI: 10.1016/j.envres.2023.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The global severity of SARS-CoV-2 illness has been associated with various urban characteristics, including exposure to ambient air pollutants. This systematic review and meta-analysis aims to synthesize findings from ecological and non-ecological studies to investigate the impact of multiple urban-related features on a variety of COVID-19 health outcomes. METHODS On December 5, 2022, PubMed was searched to identify all types of observational studies that examined one or more urban exposome characteristics in relation to various COVID-19 health outcomes such as infection severity, the need for hospitalization, ICU admission, COVID pneumonia, and mortality. RESULTS A total of 38 non-ecological and 241 ecological studies were included in this review. Non-ecological studies highlighted the significant effects of population density, urbanization, and exposure to ambient air pollutants, particularly PM2.5. The meta-analyses revealed that a 1 μg/m3 increase in PM2.5 was associated with a higher likelihood of COVID-19 hospitalization (pooled OR 1.08 (95% CI:1.02-1.14)) and death (pooled OR 1.06 (95% CI:1.03-1.09)). Ecological studies, in addition to confirming the findings of non-ecological studies, also indicated that higher exposure to nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), and carbon monoxide (CO), as well as lower ambient temperature, humidity, ultraviolet (UV) radiation, and less green and blue space exposure, were associated with increased COVID-19 morbidity and mortality. CONCLUSION This systematic review has identified several key vulnerability features related to urban areas in the context of the recent COVID-19 pandemic. The findings underscore the importance of improving policies related to urban exposures and implementing measures to protect individuals from these harmful environmental stressors.
Collapse
Affiliation(s)
- Laura Houweling
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Anke-Hilse Maitland-Van der Zee
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Judith C S Holtjer
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Somayeh Bazdar
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Roel C H Vermeulen
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - George S Downward
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lizan D Bloemsma
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Woodward SM, Mork D, Wu X, Hou Z, Braun D, Dominici F. Combining aggregate and individual-level data to estimate individual-level associations between air pollution and COVID-19 mortality in the United States. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002178. [PMID: 37531330 PMCID: PMC10395946 DOI: 10.1371/journal.pgph.0002178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023]
Abstract
Imposing stricter regulations for PM2.5 has the potential to mitigate damaging health and climate change effects. Recent evidence establishing a link between exposure to air pollution and COVID-19 outcomes is one of many arguments for the need to reduce the National Ambient Air Quality Standards (NAAQS) for PM2.5. However, many studies reporting a relationship between COVID-19 outcomes and PM2.5 have been criticized because they are based on ecological regression analyses, where area-level counts of COVID-19 outcomes are regressed on area-level exposure to air pollution and other covariates. It is well known that regression models solely based on area-level data are subject to ecological bias, i.e., they may provide a biased estimate of the association at the individual-level, due to within-area variability of the data. In this paper, we augment county-level COVID-19 mortality data with a nationally representative sample of individual-level covariate information from the American Community Survey along with high-resolution estimates of PM2.5 concentrations obtained from a validated model and aggregated to the census tract for the contiguous United States. We apply a Bayesian hierarchical modeling approach to combine county-, census tract-, and individual-level data to ultimately draw inference about individual-level associations between long-term exposure to PM2.5 and mortality for COVID-19. By analyzing data prior to the Emergency Use Authorization for the COVID-19 vaccines we found that an increase of 1 μg/m3 in long-term PM2.5 exposure, averaged over the 17-year period 2000-2016, is associated with a 3.3% (95% credible interval, 2.8 to 3.8%) increase in an individual's odds of COVID-19 mortality. Code to reproduce our study is publicly available at https://github.com/NSAPH/PM_COVID_ecoinference. The results confirm previous evidence of an association between long-term exposure to PM2.5 and COVID-19 mortality and strengthen the case for tighter regulations on harmful air pollution and greenhouse gas emissions.
Collapse
Affiliation(s)
- Sophie M. Woodward
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel Mork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Xiao Wu
- Department of Biostatistics, Columbia University, New York, New York, United States of America
| | - Zhewen Hou
- Department of Statistics, Columbia University, New York, New York, United States of America
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Zhang J, Lim YH, So R, Jørgensen JT, Mortensen LH, Napolitano GM, Cole-Hunter T, Loft S, Bhatt S, Hoek G, Brunekreef B, Westendorp R, Ketzel M, Brandt J, Lange T, Kølsen-Fisher T, Andersen ZJ. Long-term exposure to air pollution and risk of SARS-CoV-2 infection and COVID-19 hospitalisation or death: Danish nationwide cohort study. Eur Respir J 2023; 62:2300280. [PMID: 37343976 PMCID: PMC10288813 DOI: 10.1183/13993003.00280-2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Early ecological studies have suggested links between air pollution and risk of coronavirus disease 2019 (COVID-19), but evidence from individual-level cohort studies is still sparse. We examined whether long-term exposure to air pollution is associated with risk of COVID-19 and who is most susceptible. METHODS We followed 3 721 810 Danish residents aged ≥30 years on 1 March 2020 in the National COVID-19 Surveillance System until the date of first positive test (incidence), COVID-19 hospitalisation or death until 26 April 2021. We estimated residential annual mean particulate matter with diameter ≤2.5 μm (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) in 2019 by the Danish DEHM/UBM model, and used Cox proportional hazards regression models to estimate the associations of air pollutants with COVID-19 outcomes, adjusting for age, sex, individual- and area-level socioeconomic status, and population density. RESULTS 138 742 individuals were infected, 11 270 were hospitalised and 2557 died from COVID-19 during 14 months. We detected associations of PM2.5 (per 0.53 μg·m-3) and NO2 (per 3.59 μg·m-3) with COVID-19 incidence (hazard ratio (HR) 1.10 (95% CI 1.05-1.14) and HR 1.18 (95% CI 1.14-1.23), respectively), hospitalisations (HR 1.09 (95% CI 1.01-1.17) and HR 1.19 (95% CI 1.12-1.27), respectively) and death (HR 1.23 (95% CI 1.04-1.44) and HR 1.18 (95% CI 1.03-1.34), respectively), which were strongest in the lowest socioeconomic groups and among patients with chronic respiratory, cardiometabolic and neurodegenerative diseases. We found positive associations with BC and negative associations with O3. CONCLUSION Long-term exposure to air pollution may contribute to increased risk of contracting severe acute respiratory syndrome coronavirus 2 infection as well as developing severe COVID-19 disease requiring hospitalisation or resulting in death.
Collapse
Affiliation(s)
- Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette T Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - George M Napolitano
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Rudi Westendorp
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iCLIMATE, Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Theis Lange
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kølsen-Fisher
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Nordsjaellands Hospital, Hilleroed, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Sheppard N, Carroll M, Gao C, Lane T. Particulate matter air pollution and COVID-19 infection, severity, and mortality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163272. [PMID: 37030371 PMCID: PMC10079587 DOI: 10.1016/j.scitotenv.2023.163272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Ecological evidence links ambient particulate matter ≤2.5 mm (PM2.5) and the rate of COVID-19 infections, severity, and deaths. However, such studies are unable to account for individual-level differences in major confounders like socioeconomic status and often rely on imprecise measures of PM2.5. We conducted a systematic review of case-control and cohort studies, which rely on individual-level data, searching Medline, Embase, and the WHO COVID-19 database up to 30 June 2022. Study quality was evaluated using the Newcastle-Ottawa Scale. Results were pooled with a random effects meta-analysis, with Egger's regression, funnel plots, and leave-one-out/trim-and-fill sensitivity analyses to account for publication bias. N = 18 studies met inclusion criteria. A 10 μg/m3 increase in PM2.5 was associated with 66 % (95 % CI: 1.31-2.11) greater odds of COVID-19 infection (N = 7) and 127 % (95 % CI: 1.41-3.66) odds of severe illness (hospitalisation, ICU admission, or requiring respiratory support) (N = 6). Pooled mortality results (N = 5) indicated increased deaths due to PM2.5 but were non-significant (OR 1.40; 0.94 to 2.10). Most studies were rated "good" quality (14/18 studies), though there were numerous methodological issues; few used individual-level data to adjust for socioeconomic status (4/18 studies), instead using area-based indicators (11/18 studies) or no such adjustments (3/18 studies). Most severity (9/10 studies) and mortality studies (5/6 studies) were based on people already diagnosed COVID-19, potentially introducing collider bias. There was evidence of publication bias in studies of infection (p = 0.012) but not severity (p = 0.132) or mortality (p = 0.100). While methodological limits and evidence of bias require cautious interpretation of the findings, we found compelling evidence that PM2.5 increases the risk of COVID-19 infection and severe disease, and weaker evidence of an increase in mortality risk.
Collapse
Affiliation(s)
- Nicola Sheppard
- Monash School of Medicine, Monash University, Clayton, Victoria, Australia
| | - Matthew Carroll
- Monash Rural Health Churchill, Monash University, Churchill, VIC, Australia
| | - Caroline Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Orygen, Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tyler Lane
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Rigolon A, Németh J, Anderson-Gregson B, Miller AR, deSouza P, Montague B, Hussain C, Erlandson KM, Rowan SE. The neighborhood built environment and COVID-19 hospitalizations. PLoS One 2023; 18:e0286119. [PMID: 37314984 DOI: 10.1371/journal.pone.0286119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Research on the associations between the built environment and COVID-19 outcomes has mostly focused on incidence and mortality. Also, few studies on the built environment and COVID-19 have controlled for individual-level characteristics across large samples. In this study, we examine whether neighborhood built environment characteristics are associated with hospitalization in a cohort of 18,042 individuals who tested positive for SARS-CoV-2 between May and December 2020 in the Denver metropolitan area, USA. We use Poisson models with robust standard errors that control for spatial dependence and several individual-level demographic characteristics and comorbidity conditions. In multivariate models, we find that among individuals with SARS-CoV-2 infection, those living in multi-family housing units and/or in places with higher particulate matter (PM2.5) have a higher incident rate ratio (IRR) of hospitalization. We also find that higher walkability, higher bikeability, and lower public transit access are linked to a lower IRR of hospitalization. In multivariate models, we did not find associations between green space measures and the IRR of hospitalization. Results for non-Hispanic white and Latinx individuals highlight substantial differences: higher PM2.5 levels have stronger positive associations with the IRR of hospitalization for Latinx individuals, and density and overcrowding show stronger associations for non-Hispanic white individuals. Our results show that the neighborhood built environment might pose an independent risk for COVID-19 hospitalization. Our results may inform public health and urban planning initiatives to lower the risk of hospitalization linked to COVID-19 and other respiratory pathogens.
Collapse
Affiliation(s)
- Alessandro Rigolon
- Department of City and Metropolitan Planning, The University of Utah, Salt Lake City, Utah, United States of America
| | - Jeremy Németh
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Brenn Anderson-Gregson
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Ana Rae Miller
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Priyanka deSouza
- Department of Urban and Regional Planning, University of Colorado Denver, Denver, Colorado, United States of America
| | - Brian Montague
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Cory Hussain
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
- Division of Infectious Diseases, Denver Health and Hospital Authority, Denver, Colorado, United States of America
| | - Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Sarah E Rowan
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Denver, Colorado, United States of America
- Division of Infectious Diseases, Denver Health and Hospital Authority, Denver, Colorado, United States of America
| |
Collapse
|
12
|
Ranzani O, Alari A, Olmos S, Milà C, Rico A, Ballester J, Basagaña X, Chaccour C, Dadvand P, Duarte-Salles T, Foraster M, Nieuwenhuijsen M, Sunyer J, Valentín A, Kogevinas M, Lazcano U, Avellaneda-Gómez C, Vivanco R, Tonne C. Long-term exposure to air pollution and severe COVID-19 in Catalonia: a population-based cohort study. Nat Commun 2023; 14:2916. [PMID: 37225741 DOI: 10.1038/s41467-023-38469-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
The association between long-term exposure to ambient air pollutants and severe COVID-19 is uncertain. We followed 4,660,502 adults from the general population in 2020 in Catalonia, Spain. Cox proportional models were fit to evaluate the association between annual averages of PM2.5, NO2, BC, and O3 at each participant's residential address and severe COVID-19. Higher exposure to PM2.5, NO2, and BC was associated with an increased risk of COVID-19 hospitalization, ICU admission, death, and hospital length of stay. An increase of 3.2 µg/m3 of PM2.5 was associated with a 19% (95% CI, 16-21) increase in hospitalizations. An increase of 16.1 µg/m3 of NO2 was associated with a 42% (95% CI, 30-55) increase in ICU admissions. An increase of 0.7 µg/m3 of BC was associated with a 6% (95% CI, 0-13) increase in deaths. O3 was positively associated with severe outcomes when adjusted by NO2. Our study contributes robust evidence that long-term exposure to air pollutants is associated with severe COVID-19.
Collapse
Affiliation(s)
- Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alex Rico
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joan Ballester
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Chaccour
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universidad de Navarra, Pamplona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Maria Foraster
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Antònia Valentín
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Uxue Lazcano
- Instituto Biodonostia, Grupo Atención Primaria, San Sebastian, Spain
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | | | - Rosa Vivanco
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
13
|
Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological Effects of Fine Particulate Matter (PM 2.5): Health Risks and Associated Systemic Injuries-Systematic Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:346. [PMID: 37250231 PMCID: PMC10208206 DOI: 10.1007/s11270-023-06278-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023]
Abstract
Previous studies focused on investigating particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have shown the risk of disease development, and association with increased morbidity and mortality rates. The current review investigate epidemiological and experimental findings from 2016 to 2021, which enabled the systemic overview of PM2.5's toxic impacts on human health. The Web of Science database search used descriptive terms to investigate the interaction among PM2.5 exposure, systemic effects, and COVID-19 disease. Analyzed studies have indicated that cardiovascular and respiratory systems have been extensively investigated and indicated as the main air pollution targets. Nevertheless, PM2.5 reaches other organic systems and harms the renal, neurological, gastrointestinal, and reproductive systems. Pathologies onset and/or get worse due to toxicological effects associated with the exposure to this particle type, since it can trigger several reactions, such as inflammatory responses, oxidative stress generation and genotoxicity. These cellular dysfunctions lead to organ malfunctions, as shown in the current review. In addition, the correlation between COVID-19/Sars-CoV-2 and PM2.5 exposure was also assessed to help better understand the role of atmospheric pollution in the pathophysiology of this disease. Despite the significant number of studies about PM2.5's effects on organic functions, available in the literature, there are still gaps in knowledge about how this particulate matter can hinder human health. The current review aimed to approach the main findings about the effect of PM2.5 exposure on different systems, and demonstrate the likely interaction of COVID-19/Sars-CoV-2 and PM2.5.
Collapse
Affiliation(s)
- Amanda Garcia
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Eduarda Santa-Helena
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| |
Collapse
|
14
|
Guo S, Chen D, Chen J, Zhu C, Huang L, Chen Z. Relationship between meteorological and environmental factors and acute exacerbation for pediatric bronchial asthma: Comparative study before and after COVID-19 in Suzhou. Front Public Health 2023; 11:1090474. [PMID: 36778545 PMCID: PMC9911831 DOI: 10.3389/fpubh.2023.1090474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Objective Climate and environmental change is a well-known factor causing bronchial asthma in children. After the outbreak of coronavirus disease (COVID-19), climate and environmental changes have occurred. The present study investigated the relationship between climate changes (meteorological and environmental factors) and the number of hospitalizations for pediatric bronchial asthma in Suzhou before and after the COVID-19 pandemic. Methods From 2017 to 2021, data on daily inpatients diagnosed with bronchial asthma at Children's Hospital of Soochow University were collected. Suzhou Meteorological and Environmental Protection Bureau provided daily meteorological and environmental data. To assess the relationship between bronchial asthma-related hospitalizations and meteorological and environmental factors, partial correlation and multiple stepwise regression analyses were used. To estimate the effects of meteorological and environmental variables on the development of bronchial asthma in children, the autoregressive integrated moving average (ARIMA) model was used. Results After the COVID-19 outbreak, both the rate of acute exacerbation of bronchial asthma and the infection rate of pathogenic respiratory syncytial virus decreased, whereas the proportion of school-aged children and the infection rate of human rhinovirus increased. After the pandemic, the incidence of an acute asthma attack was negatively correlated with monthly mean temperature and positively correlated with PM2.5. Stepwise regression analysis showed that monthly mean temperature and O3 were independent covariates (risk factors) for the rate of acute asthma exacerbations. The ARIMA (1, 0, 0) (0, 0, 0) 12 model can be used to predict temperature changes associated with bronchial asthma. Conclusion Meteorological and environmental factors are related to bronchial asthma development in children. The influence of meteorological and environmental factors on bronchial asthma may be helpful in predicting the incidence and attack rates.
Collapse
Affiliation(s)
| | | | | | | | - Li Huang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
16
|
Wang Q, Liu S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:493-506. [PMID: 37056681 PMCID: PMC10086390 DOI: 10.2147/copd.s402122] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous disease, is the leading cause of death worldwide. In recent years, air pollution, especially particulate matter (PM), has been widely studied as a contributing factor to COPD. As an essential component of PM, PM2.5 is associated with COPD prevalence, morbidity, and acute exacerbations. However, the specific pathogenic mechanisms were still unclear and deserve further research. The diversity and complexity of PM2.5 components make it challenging to get its accurate effects and mechanisms for COPD. It has been determined that the most toxic PM2.5 components are metals, polycyclic aromatic hydrocarbons (PAHs), carbonaceous particles (CPs), and other organic compounds. PM2.5-induced cytokine release and oxidative stress are the main mechanisms reported leading to COPD. Nonnegligibly, the microorganism in PM 2.5 may directly cause mononuclear inflammation or break the microorganism balance contributing to the development and exacerbation of COPD. This review focuses on the pathophysiology and consequences of PM2.5 and its components on COPD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
- Correspondence: Sha Liu, Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, 35 Jiefang Avenue, Zhengxiang District, Hengyang, Hunan, 421001, People’s Republic of China, Email
| |
Collapse
|
17
|
Hernandez Carballo I, Bakola M, Stuckler D. The impact of air pollution on COVID-19 incidence, severity, and mortality: A systematic review of studies in Europe and North America. ENVIRONMENTAL RESEARCH 2022; 215:114155. [PMID: 36030916 PMCID: PMC9420033 DOI: 10.1016/j.envres.2022.114155] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Air pollution is speculated to increase the risks of COVID-19 spread, severity, and mortality. OBJECTIVES We systematically reviewed studies investigating the relationship between air pollution and COVID-19 cases, non-fatal severity, and mortality in North America and Europe. METHODS We searched PubMed, Web of Science, and Scopus for studies investigating the effects of harmful pollutants, including particulate matter with diameter ≤2.5 or 10 μm (PM2.5 or PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO), on COVID-19 cases, severity, and deaths in Europe and North America through to June 19, 2021. Articles were included if they quantitatively measured the relationship between exposure to air pollution and COVID-19 health outcomes. RESULTS From 2,482 articles screened, we included 116 studies reporting 355 separate pollutant-COVID-19 estimates. Approximately half of all evaluations on incidence were positive and significant associations (52.7%); for mortality the corresponding figure was similar (48.1%), while for non-fatal severity this figure was lower (41.2%). Longer-term exposure to pollutants appeared more likely to be positively associated with COVID-19 incidence (63.8%). PM2.5, PM10, O3, NO2, and CO were most strongly positively associated with COVID-19 incidence, while PM2.5 and NO2 with COVID-19 deaths. All studies were observational and most exhibited high risk of confounding and outcome measurement bias. DISCUSSION Air pollution may be associated with worse COVID-19 outcomes. Future research is needed to better test the air pollution-COVID-19 hypothesis, particularly using more robust study designs and COVID-19 measures that are less prone to measurement error and by considering co-pollutant interactions.
Collapse
Affiliation(s)
- Ireri Hernandez Carballo
- Department of Social and Political Sciences, Bocconi University, Milan, Lombardy, Italy; RFF-CMCC European Institute of Economics and the Environment, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Milan, Lombardy, Italy.
| | - Maria Bakola
- Research Unit for General Medicine and Primary Health Care, Faculty of Medicine, School of Health Science, University of Ioannina, Ioannina, Greece
| | - David Stuckler
- Department of Social and Political Sciences, Bocconi University, Milan, Lombardy, Italy; DONDENA Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Lombardy, Italy
| |
Collapse
|
18
|
English PB, Von Behren J, Balmes JR, Boscardin J, Carpenter C, Goldberg DE, Horiuchi S, Richardson M, Solomon G, Valle J, Reynolds P. Association between long-term exposure to particulate air pollution with SARS-CoV-2 infections and COVID-19 deaths in California, U.S.A. ENVIRONMENTAL ADVANCES 2022; 9:100270. [PMID: 35912397 PMCID: PMC9316717 DOI: 10.1016/j.envadv.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 05/08/2023]
Abstract
Previous studies have reported associations between air pollution and COVID-19 morbidity and mortality, but most have limited their exposure assessment to a large area, have not used individual-level variables, nor studied infections. We examined 3.1 million SARS-CoV-2 infections and 49,691 COVID-19 deaths that occurred in California from February 2020 to February 2021 to evaluate risks associated with long-term neighborhood concentrations of particulate matter less than 2.5 μm in diameter (PM2.5). We obtained individual address data on SARS-CoV-2 infections and COVID-19 deaths and assigned 2000-2018 1km-1km gridded PM2.5 surfaces to census block groups. We included individual covariate data on age and sex, and census block data on race/ethnicity, air basin, Area Deprivation Index, and relevant comorbidities. Our analyses were based on generalized linear mixed models utilizing a Poisson distribution. Those living in the highest quintile of long-term PM2.5 exposure had risks of SARS-CoV-2 infections 20% higher and risks of COVID-19 mortality 51% higher, compared to those living in the lowest quintile of long-term PM2.5 exposure. Those living in the areas of highest long-term PM2.5 exposure were more likely to be Hispanic and more vulnerable, based on the Area Deprivation Index. The increased risks for SARS-CoV-2 Infections and COVID-19 mortality associated with highest long-term PM2.5 concentrations at the neighborhood-level in California were consistent with a growing body of literature from studies worldwide, and further highlight the importance of reducing levels of air pollution to protect public health.
Collapse
Affiliation(s)
- Paul B English
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Julie Von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - John R Balmes
- Department of Medicine, University of California, San Francisco, CA, United States
| | - John Boscardin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Catherine Carpenter
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Debbie E Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Sophia Horiuchi
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Maxwell Richardson
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Gina Solomon
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Jhaqueline Valle
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Sheridan C, Klompmaker J, Cummins S, James P, Fecht D, Roscoe C. Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: Observational evidence from UK Biobank. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119686. [PMID: 35779662 PMCID: PMC9243647 DOI: 10.1016/j.envpol.2022.119686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 05/26/2023]
Abstract
Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory test results were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March-December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006-2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08), respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM10 were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM2.5 and NO2 was associated with a COVID-19 positive test result in UK Biobank, though not with COVID-19 hospitalisations or deaths.
Collapse
Affiliation(s)
- Charlotte Sheridan
- London School of Hygiene & Tropical Medicine, Keppel St., London, WC1E 7HT, United Kingdom.
| | - Jochem Klompmaker
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States.
| | - Steven Cummins
- Population Health Innovation Lab, Department of Public Health, Environments and Society, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, Keppel St., London, United Kingdom.
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401 East, Boston, MA, 02215, United States.
| | - Daniela Fecht
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom.
| | - Charlotte Roscoe
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
20
|
Abstract
Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
21
|
Prinz AL, Richter DJ. Long-term exposure to fine particulate matter air pollution: An ecological study of its effect on COVID-19 cases and fatality in Germany. ENVIRONMENTAL RESEARCH 2022; 204:111948. [PMID: 34464613 PMCID: PMC8400616 DOI: 10.1016/j.envres.2021.111948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND COVID-19 is a lung disease, and there is medical evidence that air pollution is one of the external causes of lung diseases. Fine particulate matter is one of the air pollutants that damages pulmonary tissue. The combination of the coronavirus and fine particulate matter air pollution may exacerbate the coronavirus' effect on human health. RESEARCH QUESTION This paper considers whether the long-term concentration of fine particulate matter of different sizes changes the number of detected coronavirus infections and the number of COVID-19 fatalities in Germany. STUDY DESIGN Data from 400 German counties for fine particulate air pollution from 2002 to 2020 are used to measure the long-term impact of air pollution. Kriging interpolation is applied to complement data gaps. With an ecological study, the correlation between average particulate matter air pollution and COVID-19 cases, as well as fatalities, are estimated with OLS regressions. Thereby, socioeconomic and demographic covariates are included. MAIN FINDINGS An increase in the average long-term air pollution of 1 μg/m3 particulate matter PM2.5 is correlated with 199.46 (SD = 29.66) more COVID-19 cases per 100,000 inhabitants in Germany. For PM10 the respective increase is 52.38 (SD = 12.99) more cases per 100,000 inhabitants. The number of COVID-19 deaths were also positively correlated with PM2.5 and PM10 (6.18, SD = 1.44, respectively 2.11, SD = 0.71, additional COVID-19 deaths per 100,000 inhabitants). CONCLUSION Long-term fine particulate air pollution is suspected as causing higher numbers of COVID-19 cases. Higher long-term air pollution may even increase COVID-19 death rates. We find that the results of the correlation analysis without controls are retained in a regression analysis with controls for relevant confounding factors. Nevertheless, additional epidemiological investigations are required to test the causality of particulate matter air pollution for COVID-19 cases and the severity.
Collapse
Affiliation(s)
- Aloys L Prinz
- Institute of Public Economics, University of Muenster, Wilmergasse 6-8, 48143, Muenster, Germany.
| | - David J Richter
- Institute of Public Economics, University of Muenster, Wilmergasse 6-8, 48143, Muenster, Germany.
| |
Collapse
|
22
|
Ecological studies of COVID-19 and air pollution: How useful are they? Environ Epidemiol 2022; 6:e195. [PMID: 35169673 PMCID: PMC8835551 DOI: 10.1097/ee9.0000000000000195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Results from ecological studies have suggested that air pollution increases the risk of developing and dying from COVID-19. Drawing causal inferences from the measures of association reported in ecological studies is fraught with challenges given biases arising from an outcome whose ascertainment is incomplete, varies by region, time, and across sociodemographic characteristics, and cannot account for clustering or within-area heterogeneity. Through a series of analyses, we illustrate the dangers of using ecological studies to assess whether ambient air pollution increases the risk of dying from, or transmitting, COVID-19. Methods: We performed an ecological analysis in the continental United States using county-level ambient concentrations of fine particulate matter (PM2.5) between 2000 and 2016 and cumulative COVID-19 mortality counts through June 2020, December 2020, and April 2021. To show that spurious associations can be obtained in ecological data, we modeled the association between PM2.5 and the prevalence of human immunodeficiency virus (HIV). We fitted negative binomial models, with a logarithmic offset for county-specific population, to these data. Natural cubic splines were used to describe the shape of the exposure-response curves. Results: Our analyses revealed that the shape of the exposure-response curve between PM2.5 and COVID-19 changed substantially over time. Analyses of COVID-19 mortality through June 30, 2021, suggested a positive linear relationship. In contrast, an inverse pattern was observed using county-level concentrations of PM2.5 and the prevalence of HIV. Conclusions: Our analyses indicated that ecological analyses are prone to showing spurious relationships between ambient air pollution and mortality from COVID-19 as well as the prevalence of HIV. We discuss the many potential biases inherent in any ecological-based analysis of air pollution and COVID-19.
Collapse
|
23
|
Marquès M, Domingo JL. Positive association between outdoor air pollution and the incidence and severity of COVID-19. A review of the recent scientific evidences. ENVIRONMENTAL RESEARCH 2022; 203:111930. [PMID: 34425111 PMCID: PMC8378989 DOI: 10.1016/j.envres.2021.111930] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
In June 2020, we published a review focused on assessing the influence of various air pollutants on the transmission of SARS-CoV-2, and the severity of COVID-19 in patients infected by the coronavirus. The results of most of those reviewed studies suggested that chronic exposure to certain air pollutants might lead to more severe and lethal forms of COVID-19, as well as delays/complications in the recovery of the patients. Since then, a notable number of studies on this topic have been published, including also various reviews. Given the importance of this issue, we have updated the information published since our previous review. Taking together the previous results and those of most investigations now reviewed, we have concluded that there is a significant association between chronic exposure to various outdoor air pollutants: PM2.5, PM10, O3, NO2, SO2 and CO, and the incidence/risk of COVID-19 cases, as well as the severity/mortality of the disease. Unfortunately, studies on the potential influence of other important air pollutants such as VOCs, dioxins and furans, or metals, are not available in the scientific literature. In relation to the influence of outdoor air pollutants on the transmission of SARS-CoV-2, although the scientific evidence is much more limited, some studies point to PM2.5 and PM10 as potential airborne transmitters of the virus. Anyhow, it is clear that environmental air pollution plays an important negative role in COVID-19, increasing its incidence and mortality.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
24
|
Hansell AL, Villeneuve PJ. Invited Perspective: Ambient Air Pollution and SARS-CoV-2: Research Challenges and Public Health Implications. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:111303. [PMID: 34797163 PMCID: PMC8604045 DOI: 10.1289/ehp10540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Affiliation(s)
- Anna L. Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Paul J. Villeneuve
- CHAIM Research Centre, Faculty of Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Chaudhary V, Gautam A, Mishra YK, Kaushik A. Emerging MXene-Polymer Hybrid Nanocomposites for High-Performance Ammonia Sensing and Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2496. [PMID: 34684936 PMCID: PMC8538932 DOI: 10.3390/nano11102496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Ammonia (NH3) is a vital compound in diversified fields, including agriculture, automotive, chemical, food processing, hydrogen production and storage, and biomedical applications. Its extensive industrial use and emission have emerged hazardous to the ecosystem and have raised global public health concerns for monitoring NH3 emissions and implementing proper safety strategies. These facts created emergent demand for translational and sustainable approaches to design efficient, affordable, and high-performance compact NH3 sensors. Commercially available NH3 sensors possess three major bottlenecks: poor selectivity, low concentration detection, and room-temperature operation. State-of-the-art NH3 sensors are scaling up using advanced nano-systems possessing rapid, selective, efficient, and enhanced detection to overcome these challenges. MXene-polymer nanocomposites (MXP-NCs) are emerging as advanced nanomaterials of choice for NH3 sensing owing to their affordability, excellent conductivity, mechanical flexibility, scalable production, rich surface functionalities, and tunable morphology. The MXP-NCs have demonstrated high performance to develop next-generation intelligent NH3 sensors in agricultural, industrial, and biomedical applications. However, their excellent NH3-sensing features are not articulated in the form of a review. This comprehensive review summarizes state-of-the-art MXP-NCs fabrication techniques, optimization of desired properties, enhanced sensing characteristics, and applications to detect airborne NH3. Furthermore, an overview of challenges, possible solutions, and prospects associated with MXP-NCs is discussed.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Yogendra K. Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| |
Collapse
|
26
|
Mendy A, Wu X, Keller JL, Fassler CS, Apewokin S, Mersha TB, Xie C, Pinney SM. Air pollution and the pandemic: Long-term PM 2.5 exposure and disease severity in COVID-19 patients. Respirology 2021; 26:1181-1187. [PMID: 34459069 PMCID: PMC8662216 DOI: 10.1111/resp.14140] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Background and objective Ecological studies have suggested an association between exposure to particulate matter ≤2.5 μm (PM2.5) and coronavirus disease 2019 (COVID‐19) severity. However, these findings are yet to be validated in individual‐level studies. We aimed to determine the association of long‐term PM2.5 exposure with hospitalization among individual patients infected with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Methods We estimated the 10‐year (2009–2018) PM2.5 exposure at the residential zip code of COVID‐19 patients diagnosed at the University of Cincinnati healthcare system between 13 March 2020 and 30 September 2020. Logistic regression was used to determine the odds ratio (OR) and 95% CI for COVID‐19 hospitalizations associated with PM2.5, adjusting for socioeconomic characteristics and comorbidities. Results Among the 14,783 COVID‐19 patients included in our study, 13.6% were hospitalized; the geometric mean (SD) PM2.5 was 10.48 (1.12) μg/m3. In adjusted analysis, 1 μg/m3 increase in 10‐year annual average PM2.5 was associated with 18% higher hospitalization (OR: 1.18, 95% CI: 1.11–1.26). Likewise, 1 μg/m3 increase in PM2.5 estimated for the year 2018 was associated with 14% higher hospitalization (OR: 1.14, 95% CI: 1.08–1.21). Conclusion Long‐term PM2.5 exposure is associated with increased hospitalization in COVID‐19. Therefore, more stringent COVID‐19 prevention measures may be needed in areas with higher PM2.5 exposure to reduce the disease morbidity and healthcare burden.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiao Wu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jason L Keller
- Center for Health Informatics, Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Cecily S Fassler
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Senu Apewokin
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Susan M Pinney
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Abstract
We reviewed studies linking COVID-19 cases and deaths with the environment, focusing on relationships with air pollution. We found both short- and long-term observational relationships with a range of regulated pollutants, although only two studies considered both cases (i.e., infections) and deaths within a common analytical framework. Most of these studies were limited to a few months of the pandemic period. Statistically significant relationships were found more often for PM2.5 and NO2 than for other regulated pollutants, but no rationale was suggested for such short-term relationships; latency was seldom considered for long-term relationships. It was also unclear whether confounding had been adequately controlled in either type of study. Studies of air quality improvement following lockdowns found more robust relationships with local (CO, NO2) rather than regional (PM2.5, O3) pollutants, but meteorological confounding was seldom considered. Only one of seven studies of airborne virus transmission reported actual measurements. Overall, we found the existing body of literature to be more suggestive than definitive. Due to these various deficiencies, we assembled a new state-level database of cumulative COVID-19 cases and deaths through March 2021 with a range of potential predictor variables and performed linear regression analyses on various combinations. As single predictors, we found significant (p < 0.05) relationships between cumulative cases and household crowding (+), education (−), face-mask usage (−), or voting Republican (+). For cumulative deaths, we found significant relationships with education (−), black race (+), or previous levels of PM2.5 (+). NOx (+), and elemental carbon (EC, +). We found no relationships between long-term air quality and cumulative COVID-19 cases. Our associations linking air pollution with COVID-19 mortality were not statistically different from those for all-cause mortality in previous studies. In multiple mortality regressions combining air pollution, race, and education, NOx and EC remained significant but PM2.5 did not. We concluded that the current worldwide emphasis on PM2.5 is misplaced. We predicted air pollutant effects of a few percentage points, but individual differences between races, political identification, and post-graduate education were of the order of factors of 2 to 4. In general, the factors predicting infection were personal and related to COVID-19 exposure, while those predicting subsequent mortality tended to be more situational and related to geography. Overall, we concluded that how you live is more important than where you live.
Collapse
|
28
|
Abstract
Certain cells that participate in the immune response are known to become polarized in their production of cytokines. It is postulated that, after initial polarization at the site of antigenic encounter, the different types of cell arriving at this site are induced to conform to the local cytokine field, implying that they share common regulatory circuits. As they migrate, these cells might, in turn, spread the particular cytokine field. Therefore, the field is 'infectious' in nature. Propagation of the cytokine field must be regulated somehow. The invasion of the cytokine field into an organ or the entire body could have major immunological consequences.
Collapse
Affiliation(s)
- P Kourilsky
- Department of Immunology, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | | |
Collapse
|