1
|
Wei YF, Chen HW, Liu K, Wang SA, Fan WD, Shao ZH, Cao BF, Liang YQ, Xu ZY, Liao KY, Zhao ZX, Yang LR, Deng XR, Chen HB, Wu XB. Independent and joint effects of volatile organic compounds on pulmonary function in U.S. adults from NHANES: the mediating role of platelet-to-lymphocyte ratio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126473. [PMID: 40383476 DOI: 10.1016/j.envpol.2025.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Volatile organic compounds (VOCs) are known to impair pulmonary function. However, the specific VOC with the main significant impact on pulmonary function and the joint effect of combined VOC exposure on pulmonary health, and the underlying mechanisms remain unclear. We used the of data 1,697 participants aged ≥18 years old from the National Health and Nutrition Examination Survey 2007-2012. Forced expiratory volume in the first 1.0 s (FEV1), pre-bronchodilator forced vital capacity (FVC), peak expiratory flow rate (PEF) and FEV1/FVC % were used to evaluate pulmonary function. A covariate-adjusted multiple linear regression model evaluated associations between pulmonary function and blood concentrations of seven selected VOCs. Additionally, Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression were employed to assess combined VOC effects, interactions, and nonlinear dose-response relationships. Parallel mediation analyses explored the mediating role of platelet-to-lymphocyte ratio (PLR) in the associations between VOC mixtures and pulmonary function, utilizing a WQS-derived VOC index. In an analytical sample of 1,697 general adults, the concentrations of blood 1,4-dichlorobenzene, m-/p-xylene, bromodichloromethane, and nitromethane were significantly negatively correlated with pulmonary function, whilst dibromochloromethane was significantly positively correlated with pulmonary function. The joint effect of the seven blood VOCs was also negatively associated with pulmonary function. Particularly, 1,4-dichlorobenzene (PIP = 0.992 for FEV1; 0.998 for FVC) and nitromethane (PIP = 0.990 for FEV1; 1.000 for FVC; 0.845 for PEF) as the most influential VOCs contributing to the overall mixture effect. PLR partially mediated the association between VOC mixtures and pulmonary function, particularly impacting FEV1, FVC, and PEF. This study demonstrated that in addition to chloroform, dibromochloromethane and toluene, the other four blood VOCs were associated with pulmonary function impairment. Their combined exposure effects reflect realistic environmental scenarios. Further research is needed to elucidate the underlying biological mechanisms of these associations.
Collapse
Affiliation(s)
- Yan-Fei Wei
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Hao-Wen Chen
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Kuan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Shi-Ao Wang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Wei-Dong Fan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Zhan-Hui Shao
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Bi-Fei Cao
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Yong-Qi Liang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Zheng-Yun Xu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Kai-Yue Liao
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Zi-Xuan Zhao
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Lu-Rong Yang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Xin-Ran Deng
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Hao-Bang Chen
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China.
| |
Collapse
|
2
|
Meng L, Wang Y, Wang X, Mu M, Zheng H. Association between exposure to volatile organic compounds and atherogenic index of plasma in NHANES 2011-2018. Sci Rep 2025; 15:9024. [PMID: 40091104 PMCID: PMC11911419 DOI: 10.1038/s41598-025-93833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Volatile organic compounds (VOCs) are prevalent in daily life, yet the relationship between VOCs exposure and the atherogenic index of plasma (AIP) remains inadequately explored, especially in populations with high levels of exposure. This study aims to investigate the non-linear association between VOCs exposure and AIP in the U.S. adult population. Data from the National Health and Nutrition Examination Survey (NHANES) collected between 2011 and 2018 were analyzed. A range of statistical techniques, including Spearman's correlation analysis, weighted quantile sum (WQS), multivariate logistic regression, restricted cubic splines (RCS), stratified threshold models, and bayesian kernel machine regression (BKMR), were systematically employed to assess the relationship between high-dose VOCs exposure and AIP in U.S. adults. The study included 6,027 participants, with an average age of 37 (18-59), and 50.46% were male. Of these, 3,011 had elevated AIP levels. The Mann-Whitney U test compared VOCs exposure across quartiles (Q1-Q4). Spearman models revealed strong joint exposure effects between VOCs like IPMA3 and HMPMA (ρ = 0.97). WQS regression showed a positive association between VOCs and total cholesterol (TC) (β = 5.45, 95% CI = 5.42-5.58, P = 0.04) and high-density lipoprotein cholesterol (HDL-C) (β = 1.07, 95% CI = 1.03-1.10, P = 0.02). After adjusting for confounders, logistic regression revealed that VOCs such as 3-4MHA, 34DMA, AAMA, ATCA, CYMA, HEMA, and SBMA were linked to higher AIP. RCS analysis indicated a nonlinear association between VOCs and AIP. Stratified modeling found that ATCA was significantly and positively associated with AIP (OR = 1.60, 95% CI = 1.20-2.14, p < 0.01), and that when ATCA levels exceeded 128.60 ng/mL, there was a 60% increased risk of elevated AIP. Higher urinary VOCs levels, particularly ATCA, are significantly associated with increased AIP, offering new insights into the potential link between VOCs exposure and cardiovascular disease.
Collapse
Affiliation(s)
- Lidian Meng
- School of Physical Education, Huaibei Normal University, Huaibei, 23500, Anhui, China
| | - Yuqing Wang
- School of Physical Education, Huaibei Normal University, Huaibei, 23500, Anhui, China
| | - Xisheng Wang
- School of Physical Education, Huaibei Normal University, Huaibei, 23500, Anhui, China
| | - Menghui Mu
- School of Physical Education, Huaibei Normal University, Huaibei, 23500, Anhui, China
| | - He Zheng
- School of Physical Education, Huaibei Normal University, Huaibei, 23500, Anhui, China.
| |
Collapse
|
3
|
Nalini M, Poustchi H, Bhandari D, Blount BC, Kenwood BM, Chang CM, Gross A, Ellison C, Khoshnia M, Pourshams A, Gail MH, Graubard BI, Dawsey SM, Kamangar F, Boffetta P, Brennan P, Abnet CC, Malekzadeh R, Freedman ND, Etemadi A. Exposure to volatile organic compounds and chronic respiratory disease mortality, a case-cohort study. Respir Res 2025; 26:88. [PMID: 40045272 PMCID: PMC11884121 DOI: 10.1186/s12931-025-03165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Chronic respiratory diseases (CRDs) are the third leading cause of death worldwide. Data of the associations between specific volatile organic compounds (VOCs), a major component of air pollution and tobacco smoke, and subsequent CRD mortality in the general population are scarce. METHODS In a case-cohort analysis within the population-based Golestan cohort study (n = 50045, aged 40-75 years, 58% women, enrollment: 2004-2008, northeastern Iran), we included all participants who died from CRD during follow-up through 2018 (n = 242) as cases and stratified them into 16 strata defined by age, sex, residence, and tobacco smoking. Subcohort participants (n = 610) were randomly selected from all eligible cohort participants in each stratum, and sampling fractions were calculated. Baseline urine samples were used to measure 20 VOCs using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. After excluding participants with previous history of CRDs, we used stratified Cox regression models weighted by the inverse sampling fractions (i.e. inverse probability weighting) adjusted for potential confounders, including urinary cotinine and pack-years of smoking, to calculate hazard ratios (HR) for the associations between biomarker tertiles and CRD mortality. RESULTS Data from 545 non-case, sub-cohort participants and 149 cases (69.1% chronic obstructive pulmonary disease, 13.4% asthma, 17.5% other CRDs) were assessed in this study. During a follow-up of 10.5 years, associations [2nd and 3rd vs. 1st tertiles, HR (95% confidence interval), p for trend] were observed between metabolites of acrolein [1.56 (0.64,3.79), 3.53 (1.53,8.16), 0.002] and styrene/ethylbenzene [1.17 (0.53,2.60), 3.24 (1.37,7.66), 0.005] and CRD mortality, which persisted after excluding the first four years of follow-up. CONCLUSION Our findings support prior research suggesting respiratory toxicity of VOCs. Further investigation and monitoring of these compounds, especially acrolein and styrene/ethylbenzene, as CRD risk factors, are recommended.
Collapse
Affiliation(s)
- Mahdi Nalini
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreaticobilliary Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Deepak Bhandari
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brandon M Kenwood
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cindy M Chang
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Amy Gross
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher Ellison
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Masoud Khoshnia
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitchell H Gail
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry I Graubard
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanford M Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zhang Z, Liang X, Lin K, Deng Y, Liang Y. Volatile organic compounds exposure associated with skin cancer among U. S. adults: results from NHANES 2011-2018. Arch Dermatol Res 2025; 317:401. [PMID: 39951040 DOI: 10.1007/s00403-025-03954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
Skin cancer, including melanoma, squamous cell carcinoma, and basal cell carcinoma, ranks as the fifth most common cancer globally. It exhibits a high incidence rate, with men being more susceptible, particularly as they age, making middle-aged and older men a high-risk group. This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018 to investigate the relationship between skin cancer and 15 urinary volatile organic compounds (VOC). VOC are a class of gases that are volatile at room temperature and atmospheric pressure, with carbon as the main structural atom. We used binary logistic regression to comprehensively assess the potential association between each urinary VOC exposure and skin cancer, while weighted quantile sum regression was employed to explore the associations of mixed co-exposures. Specific VOC, notably mercapturic acid (MA), showed significant correlations with skin cancer risk, particularly in females. Our research presents a comprehensive assessment of the link between VOC and skin cancer, aiming to provide a scientific basis for understanding the correlation between VOC and skin cancer within human populations.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofeng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Kefan Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ying Deng
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Wu Q, Jin C, Liu X, Zhang Q, Jiao B, Yu H. 1-Bromopropane induces mitochondrial damage and lipid metabolism imbalance in respiratory epithelial cells through the PGC-1α/PPARα pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117492. [PMID: 39644563 DOI: 10.1016/j.ecoenv.2024.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
1-Bromopropane (1-BP) has become a new air pollutant in occupational and living environments due to its advantages in industrial applications and as a representative compound of volatile organic compounds (VOCs). As an irritant, its damaging effects on respiratory epithelium are worthy of further study. This study aimed to explore the damage effects of 1-BP on respiratory epithelial cells and reveal its underlying mechanisms. We found that exposure to 1-BP markedly reduced the viability of respiratory epithelial cells in a dose-dependent manner, and induced oxidative stress and vacuolation changes in respiratory epithelial cells. Subsequently, through RNA-seq analysis, we identified that the 1-BP-induced damage of respiratory epithelial cells was related to the mitochondrial function pathway and further verified that 1-BP caused mitochondrial damage of respiratory epithelial cells, which was manifested as ultrastructural damage, decreased membrane potential, ATP, and MFN2 levels. These damages were associated with cellular oxidative stress responses. Pretreating cells with the agonists of PGC-1α and PPARα, we revealed that 1-BP affected the expression of PGC-1α and interfered with its coactivator PPARα levels, causing an increase in the expression of lipid-producing genes and a decrease in the expression of lipid-decomposing genes, thus leading to a lipid accumulation in respiratory epithelial cells. Meanwhile, the imbalance of lipid metabolism in respiratory epithelial cells induced by 1-BP further caused mitochondrial damage, and the effect was bidirectional. These findings suggested that 1-BP has a potential role in inducing respiratory epithelial cell damage and is associated with the PGC-1α/PPARα signaling pathway.
Collapse
Affiliation(s)
- Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, China.
| | - Chunmeng Jin
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Liu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Qianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Biyang Jiao
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongmin Yu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
6
|
Jang H, Cho J, Kim C. Association of 1-bromopropane exposure with asthma prevalence: A Korean National health and Nutritional examination survey (2020-2021)-based study. ENVIRONMENTAL RESEARCH 2024; 259:119586. [PMID: 39002635 DOI: 10.1016/j.envres.2024.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Exposure to 1-bromopropane (1-BP) is an emerging environmental and health concern due to its increasing environmental prevalence. Although the health effects of 1-BP exposure have been under-recognized, current evidence suggests the possibility of adverse pulmonary health effects due to 1-BP exposure. However, the association between 1-BP exposure and asthma prevalence remains unclear. Thus, we aimed to examine the association between 1-BP exposure and asthma prevalence in the general population. Using nationally representative data, we explored the potential impacts of indoor air quality (IAQ)-related behavioral factors on the level of 1-BP exposure. This study included 1506 adults from the 2020-2021 Korea National Health and Nutrition Examination Survey. The prevalence of asthma was based on self-reported physician-diagnosed asthma. Urinary N-acetyl-S-(n-propyl)-L-cysteine (BPMA) levels were measured as a biomarker of 1-BP exposure, using high-performance liquid chromatography-mass spectrometry. Multiple logistic regression models were performed to investigate the associations between urinary BPMA metabolite and asthma prevalence after adjusting for potential confounders. Log-linear multiple regression models were used to examine the association between IAQ-related behavior and urinary BPMA concentration. Forty-seven individuals with asthma and 1459 without asthma were included. Individuals in the highest quartile of urinary BPMA concentration had a 2.9 times higher risk of asthma than those in the lowest quartile (odds ratio [OR]: 2.85, 95% confidence interval [CI]: 1.02-7.98). The combination of natural and mechanical ventilation was associated with a reduced urinary BPMA concentration. Our findings suggest that 1-BP exposure is associated with the prevalence of asthma in adults and revealed higher urinary levels of BPMA in our study population compared to those in other countries. Given the emerging importance of IAQ, actively managing and modifying behavioral patterns to reduce 1-BP exposure in indoor environments could substantially attenuate the risk of asthma-related to 1-BP exposure.
Collapse
Affiliation(s)
- Heeseon Jang
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, 21983, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, 21983, Republic of Korea; Institute for Environmental Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Mendy A. Disinfection byproducts in US drinking water and cancer mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-11. [PMID: 39254349 PMCID: PMC11891084 DOI: 10.1080/09603123.2024.2400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Trihalomethanes, the main drinking water disinfection byproducts, may be carcinogenic and are regulated to amaximum total trihalomethanes (TTHM) of 80 µg/l in the US. We aimed to determine whether total and individual trihalomethanes in drinking water across the US are associated with higher cancer mortality in 6,260 adult participants to the National Health and Nutrition Examination Surveys from 1999 to 2008 followed for mortality until 2019 (median: 14.4 years). At baseline, the geometric mean (standard error) of TTHM in drinking water was 9.61 (0.85) µg/l. During follow-up, 873 deaths occurred, including 207 from cancer. In Cox proportional hazards regression adjusted for relevant covariates, drinking water TTHM (HR: 1.45, 95% CI: 1.16-1.82), chloroform (HR: 1.35, 95% CI: 1.12-1.64), and bromodichloromethane (HR: 1.30, 95% CI: 1.05-1.59) were associated with 30% to 45% higher cancer mortality. Therefore, drinking water trihalomethanes, especially chloroform and bromodichloromethane maybe risk factors for cancer mortality.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Wang Y, Yu Y, Zhang X, Zhang H, Zhang Y, Wang S, Yin L. Combined association of urinary volatile organic compounds with chronic bronchitis and emphysema among adults in NHANES 2011-2014: The mediating role of inflammation. CHEMOSPHERE 2024; 361:141485. [PMID: 38438022 DOI: 10.1016/j.chemosphere.2024.141485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Evidence on the association of volatile organic compounds (VOCs) with chronic bronchitis (CB) and emphysema is spare and defective. To evaluate the relationship between urinary metabolites of VOCs (mVOCs) with CB and emphysema, and to identify the potential mVOC of paramount importance, data from NHANES 2011-2014 waves were utilized. Logistic regression was conducted to estimate the independent association of mVOCs with respiratory outcomes. Least absolute shrinkage and selection operator (LASSO) regression was performed to screen a parsimonious set of CB- and emphysema-relevant mVOCs that were used for further co-exposure analyses of weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). Mediation analysis was employed to detect the mediating role of inflammatory makers in such associations. In single exposure analytic model, nine mVOCs were individually and positively associated with CB, while four mVOCs were with emphysema. In WQS regression, positive association between LASSO selected mVOCs and CB was identified (OR = 1.82, 95% CI: 1.25 to 2.69), and N-acetyl-S-(4-hydroxy-2-butenyl)-l-cysteine (MHBMA3) weighted the highest. Results from BKMR further validated such combined association and the significance of MHBMA3. As for emphysema, significantly positive overall trend of mVOCs was only observed in BKMR model and N-acetyl-S-(N-methylcarbamoyl)-l-cysteine (AMCC) contributed most to the mixed effect. White blood cell count (WBC) and lymphocyte number (LYM) were mediators in the positive pattern of mVOCs mixture with CB, while association between mVOCs mixture and emphysema was significantly mediated by LYM and segmented neutrophils num (NEO). This study demonstrated that exposure to VOCs was associated with CB and emphysema independently and combinedly, which might be partly speculated that VOCs were linked to activated inflammations. Our findings shed novel light on VOCs related respiratory illness, and provide a new basis for the contribution of certain VOCs to the risk of CB and emphysema, which has potential public health implications.
Collapse
Affiliation(s)
- Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoxuan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Feng X, Qiu F, Zheng L, Zhang Y, Wang Y, Wang M, Xia H, Tang B, Yan C, Liang R. Exposure to volatile organic compounds and mortality in US adults: A population-based prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172512. [PMID: 38636853 DOI: 10.1016/j.scitotenv.2024.172512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Volatile organic compounds (VOCs) are ubiquitous in both indoor and outdoor environments. Evidence on the associations of individual and joint VOC exposure with all-cause and cause-specific mortality is limited. Measurements of 15 urinary VOC metabolites were available to estimate exposure to 12 VOCs in the National Health and Nutritional Examination Survey (NHANES) 2005-2006 and 2011-2018. The environment risk score (ERS) was calculated using LASSO regression to reflect joint exposure to VOCs. Follow-up data on death were obtained from the NHANES Public-Use Linked Mortality File through December 31, 2019. Cox proportional hazard models and restricted cubic spline models were applied to evaluate the associations of individual and joint VOC exposures with all-cause and cause-specific mortality. Population attributable fractions were calculated to assess the death burden attributable to VOC exposure. During a median follow-up of 6.17 years, 734 (8.34 %) deaths occurred among 8799 adults. Urinary metabolites of acrolein, acrylonitrile, 1,3-butadiene, and ethylbenzene/styrene were significantly associated with all-cause, cardiovascular disease (CVD), respiratory disease (RD), and cancer mortality in a linear dose-response manner. Linear and robust dose-response relationships were also observed between ERS and all-cause and cause-specific mortality. Each 1-unit increase in ERS was associated with a 33.6 %, 39.1 %, 109.8 %, and 67.8 % increase for all-cause, CVD, RD, and cancer mortality risk, respectively. Moreover, joint exposure to VOCs contributed to 17.95 % of all-cause deaths, 13.49 % of CVD deaths, 35.65 % of RD deaths, and 33.85 % of cancer deaths. Individual and joint exposure to VOCs may enhance the risk of all-cause and cause-specific mortality. Reducing exposure to VOCs may alleviate the all-cause and cause-specific death burden.
Collapse
Affiliation(s)
- Xiaobing Feng
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Feng Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Zheng
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Yue Zhang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Yuji Wang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Min Wang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Han Xia
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Bingrong Tang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Chunxiang Yan
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China.
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
10
|
Wang Y, Meng Z, Wei S, Li X, Su Z, Jiang Y, Wu H, Pan H, Wang J, Zhou Q, Qiao Y, Fan Y. Urinary volatile organic compound metabolites and COPD among US adults: mixture, interaction and mediation analysis. Environ Health 2024; 23:45. [PMID: 38702703 PMCID: PMC11067234 DOI: 10.1186/s12940-024-01086-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) encompass hundreds of high production volume chemicals and have been reported to be associated with adverse respiratory outcomes such as chronic obstructive pulmonary disease (COPD). However, research on the combined toxic effects of exposure to various VOCs on COPD is lacking. We aimed to assess the effect of VOC metabolite mixture on COPD risk in a large population sample. METHODS We assessed the effect of VOC metabolite mixture on COPD risk in 5997 adults from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2020 (pre-pandemic) using multivariate logistic regression, Bayesian weighted quantile sum regression (BWQS), quantile-based g-Computation method (Qgcomp), and Bayesian kernel machine regression (BKMR). We explored whether these associations were mediated by white blood cell (WBC) count and total bilirubin. RESULTS In the logistic regression model, we observed a significantly increased risk of COPD associated with 9 VOC metabolites. Conversely, N-acetyl-S-(benzyl)-L-cysteine (BMA) and N-acetyl-S-(n-propyl)-L-cysteine (BPMA) showed insignificant negative correlations with COPD risk. The overall mixture exposure demonstrated a significant positive relationship with COPD in both the BWQS model (adjusted odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.06, 1.58) and BKMR model, and with marginal significance in the Qgcomp model (adjusted OR = 1.22, 95% CI: 0.98, 1.52). All three models indicated a significant effect of the VOC metabolite mixture on COPD in non-current smokers. WBC count mediated 7.1% of the VOC mixture associated-COPD in non-current smokers. CONCLUSIONS Our findings provide novel evidence suggesting that VOCs may have adverse associations with COPD in the general population, with N, N- Dimethylformamide and 1,3-Butadiene contributing most. These findings underscore the significance of understanding the potential health risks associated with VOC mixture and emphasize the need for targeted interventions to mitigate the adverse effects on COPD risk.
Collapse
Affiliation(s)
- Ying Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Sen Wei
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zheng Su
- Department of Tobacco Control and Prevention of Respiratory Disease, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yong Jiang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Youlin Qiao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Center of Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
11
|
Mendy A, Burcham S, Merianos AL, Mersha TB, Yolton K, Chen A, Mahabee-Gittens EM. Urinary Volatile Organic Compound Metabolites Are Associated with Reduced Lung Function in U.S. Children and Adolescents. TOXICS 2024; 12:289. [PMID: 38668512 PMCID: PMC11054577 DOI: 10.3390/toxics12040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
(1) Background: Volatile organic compounds (VOCs) are indoor pollutants absorbed by inhalation. The association of several VOCs with lung function in children and adolescents is unknown. (2) Methods: We analyzed 505 participants, 6-17-year-olds from the 2011-2012 National Health and Nutrition Examination Survey. Multiple linear regression models were fitted to estimate the associations of VOC metabolites with spirometry outcomes adjusting for covariates. (3) Results: Urinary metabolites of xylene, acrylamide, acrolein, 1,3-butadiene, cyanide, toluene, 1-bromopropane, acrylonitrile, propylene oxide, styrene, ethylbenzene, and crotonaldehyde were all detected in ≥64.5% of participants. Forced expiratory volume in 1 s (FEV1) % predicted was lower in participants with higher levels of metabolites of acrylamide (β: -7.95, 95% CI: -13.69, -2.21) and styrene (β: -6.33, 95% CI: -11.60, -1.07), whereas the FEV1 to forced vital capacity (FVC) ratio % was lower in children with higher propylene oxide metabolite levels (β: -2.05, 95% CI: -3.49, -0.61). FEV1 % predicted was lower with higher crotonaldehyde metabolite levels only in overweight/obese participants (β: -15.42, 95% CI: -26.76, -4.08) (Pinteraction < 0.001) and with higher 1-bromopropane metabolite levels only in those with serum cotinine > 1 ng/mL (β: -6.26, 95% CI: -9.69, -2.82) (Pinteraction < 0.001). (4) Conclusions: We found novel associations of metabolites for acrylamide, propylene oxide, styrene, 1-bromopropane and crotonaldehyde with lower lung function in children and adolescents.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (A.M.); (S.B.)
| | - Sara Burcham
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (A.M.); (S.B.)
| | - Ashley L. Merianos
- School of Human Services, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Tesfaye B. Mersha
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA;
| | - Kimberly Yolton
- General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA;
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - E. Melinda Mahabee-Gittens
- Division of Emergency Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Xiong Y, Liu X, Li T. The urinary metabolites of volatile organic compounds and asthma in young children: NHANES 2011-2018. Heliyon 2024; 10:e24199. [PMID: 38317969 PMCID: PMC10838696 DOI: 10.1016/j.heliyon.2024.e24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
The vast majority of volatile organic compounds (VOCs) are of biological origin and do not affect human health, while some VOCs or their oxidation products can damage the respiratory system, nervous system, digestive system and blood system after long-term inhalation by humans. There is limited evidence regarding the association of VOCs exposure with childhood asthma. In this study, we examined the associations between metabolites of VOCs (mVOCs) in urine and childhood asthma. We included a total of 1542 children aged 3-12 years who had information on urinary mVOCs, asthma and essential covariates in the current analyses. After controlling for covariates, we used logistic regression to assess the association between urinary mVOCs and childhood asthma. Then, we examined effect measure modification by child age, gender, race/ethnicity and serum cotinine. 2-Methylhippuric acid (xylene metabolites) (OR: 1.14; 95 % CI: 0.87, 1.59), N-acetyl-S-(benzyl)-l-cysteine (toluene metabolites) (OR: 1.15 95 % CI: 0.76, 1.71), N-acetyl-S-(2-carboxyethyl)-l-cysteine (acrolein metabolites) (OR: 1.09; 95 % CI: 0.61, 1.75), N-acetyl-S-(3-hydroxypropyl)-l-cysteine (acrolein metabolites) (OR: 1.10; 95 % CI: 0.66, 1.80), and N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine (crotonaldehyde metabolites) (OR: 1.18; 95 % CI: 0.68, 2.01) were weakly associated with the prevalence of asthma in children. Among female children, 2MHA (2-methylhippuric acid) in urine was significantly associated with the prevalence of asthma (OR: 1.81 95 % CI: 1.07, 3.05). At the same time, BMA (N-acetyl-S-(benzyl)-l-cysteine) was significantly associated with the prevalence of asthma in non-Hispanic White (OR:2.09 95 % CI: 0.91, 4.66) and Black (OR:1.90 95 % CI: 0.96, 3.71) children. We found that gender modified the associations between urinary 2MHA and the odds of asthma (interaction term p value = 0.03). Therefore, exposure to VOCs and the development of childhood asthma remains controversial, and the interpretation of these results needs to be treated with caution and should be confirmed in future studies.Therefore, exposure to VOCs and the development of childhood asthma remains controversial, and the interpretation of these results needs to be treated with caution and should be confirmed in future studies.
Collapse
Affiliation(s)
- Yixiao Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Xin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
13
|
Tang L, Liu M, Tian J. Volatile organic compounds exposure associated with depression among U.S. adults: Results from NHANES 2011-2020. CHEMOSPHERE 2024; 349:140690. [PMID: 37995973 DOI: 10.1016/j.chemosphere.2023.140690] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Volatile organic compounds (VOCs) are important contributors to air pollution. VOCs exposure was associated with various human diseases. Depression is one of the most prevalent mental disorders and poses a serious mental health burden. Although VOCs are neurotoxic and can damage the central nervous system, the association between VOCs exposure and depression remains obscure. Based on data from the National Health and Nutrition Examination Survey, we included 5676 adult individuals and 15 major components of urinary volatile organic compound metabolites (mVOCs). We comprehensively evaluated the potential association between each single urinary mVOC exposure and depressive symptoms using binary logistic and restricted cubic spline regression, whereas the weighted quantile sum regression and least absolute shrinkage and selection operator regression model were used to explore the mixture co-exposure association. The results indicated significantly higher mean concentrations of the 11 urinary mVOC components in the depression group than that in the non-depression group. And 12 mVOC components had a significantly positive association with depression. The overall effect of all 15 mVOCs components was also significantly positive. The corresponding odds ratio was 1.56 (95%CI: 1.2-2.03) in the categorical variable model and the regression coefficient was 0.36 (95%CI: 0.12-0.6) in the numerical variable model. Five urinary mVOCs (URXCYM, URXPHG, URX34 M, URXMB3, and URXAMC) were identified as the most relevant components associated with depression, with 89.06% total weights in the categorical variable model and 89.39% in the numerical variable model. The mVOCs were the biomarkers of VOCs, their concentrations in urine could specifically represent the contents of their metabolic parents in the human body. Considering that the metabolic parents of the above five mVOCs were predominantly acrylonitrile, toluene, styrene, acrylamide, 1,3-Butadiene, and xylenes, our results further indicated that exposure to these VOCs was closely related to depression, and more attention should be paid to the mental health risks of VOCs exposure.
Collapse
Affiliation(s)
- Liwei Tang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
14
|
Mersha TB. From Mendel to multi-omics: shifting paradigms. Eur J Hum Genet 2024; 32:139-142. [PMID: 37468578 PMCID: PMC10853174 DOI: 10.1038/s41431-023-01420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Tesfaye B Mersha
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Mendy A, Percy Z, Braun JM, Lanphear B, La Guardia MJ, Hale RC, Yolton K, Chen A. Prenatal exposure to replacement flame retardants and organophosphate esters and childhood adverse respiratory outcomes. ENVIRONMENTAL RESEARCH 2024; 240:117523. [PMID: 37925128 PMCID: PMC10696592 DOI: 10.1016/j.envres.2023.117523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The association of prenatal exposure to organophosphate esters (OPEs) and replacement brominated flame retardants (RBFRs) with respiratory outcomes has not been previously investigated in humans, despite reports that these chemicals can cross the placenta and alter lung development as well as immune functions. METHODS In a cohort of 342 pregnant women recruited between 2003 and 2006 in the greater Cincinnati, Ohio Metropolitan area, we measured indoor dust OPEs and RBFRs at 20 weeks of gestation and urinary OPEs at 16 and 26 weeks of gestation and at delivery. We performed generalized estimating equations and linear mixed models adjusting for covariates to determine the associations of prenatal OPEs and RBFRs exposures with adverse respiratory outcomes in childhood, reported every six months until age 5 years and with lung function at age 5 years. We used multiple informant modeling to examine time-specific associations between maternal urinary OPEs and the outcomes. RESULTS Dust concentrations of triphenyl phosphate (TPHP) (RR: 1.40, 95% CI: 1.18-1.66), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (RR: 1.51, 95% CI: 1.23-1.85), and bis(2-ethylhexyl) tetrabromophthalate (RR: 1.57, 95% CI: 1.28-1.94) were associated with higher risk of wheezing during childhood. Dust TPHP concentrations were associated with higher risk of respiratory infections (RR: 1.43, 95% CI: 1.08-1.94), and dust tris-(2-chloroethyl) phosphate concentrations were associated with hay fever/allergies (RR: 1.11, 95% CI: 1.01-1.21). We also found that dust tris-(2-chloroethyl) phosphate loadings were associated with lower lung function. Urinary OPEs mainly at week 16 of gestation tended to be associated with adverse respiratory outcome, while bis(1-chloro-2-propyl) phosphate and diphenyl phosphate at delivery were associated with lower risk of hay fever/allergies. CONCLUSIONS In-utero exposure to OPEs and RBFRs may be a risk factor for adverse respiratory outcomes in childhood, depending on the timing of exposure.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Zana Percy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Mark J La Guardia
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Robert C Hale
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Kimberly Yolton
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Wang X, He W, Wu X, Song X, Yang X, Zhang G, Niu P, Chen T. Exposure to volatile organic compounds is a risk factor for diabetes: A cross-sectional study. CHEMOSPHERE 2023; 338:139424. [PMID: 37419158 DOI: 10.1016/j.chemosphere.2023.139424] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Currently, more studies showed that environmental chemicals were associated with the development of diabetes. However, the effect of volatile organic compounds (VOCs) on diabetes remained uncertain and needed to be studied. This cross-sectional study examined whether exposure to low levels of VOCs was associated with diabetes, insulin resistance (TyG index) and glucose-related indicators (FPG,HbA1c, insulin) in the general population by using the NHANES dataset (2013-2014 and 2015-2016). We analyzed the association between urinary VOC metabolism (mVOCs) and these indicators in 1409 adults by multiple linear regression models or logistic regression models, further Bayesian kernel machine regression (BKMR) models were performed for mixture exposure analysis. The results showed positive associations between multiple mVOCs and diabetes, TyG index, FPG, HbA1c and insulin, respectively. Among them, HPMMA concentration in urine was significantly positively correlated with diabetes and related indicators (TyG index, FPG and HbA1c), and the concentration of CEMA was significantly positively correlated with insulin. The positive association of mVOCs with diabetes and its related indicators was more significant in the female group and in the 40-59 years group. Thus, our study suggested that exposure to VOCs affected insulin resistance and glucose homeostasis, further affecting diabetes levels, which had important public health implications.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaojuan Wu
- Department of Endocrinology, Fu Xing Hospital, Capital Medical University, 100038, Beijing, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Gaoman Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Chen WY, Fu YP, Tu H, Zhong W, Zhou L. The association between exposure to volatile organic compounds and serum lipids in the US adult population. Lipids Health Dis 2023; 22:129. [PMID: 37568143 PMCID: PMC10422774 DOI: 10.1186/s12944-023-01895-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND AND AIM Epidemiological evidence on the relationship between exposure to volatile organic compounds (VOCs), both single and mixed, and serum lipid levels is limited, and their relationship remains unclear. Our study aimed to investigate the associations of exposure to VOCs with serum lipid levels in the US adult population. METHODS AND RESULTS The study examined the association of 16 VOC levels (2-methylhippuric acid, 3- and 4-methylhippuric acid, N-acetyl-S-(2-carbamoylethyl)-L-cysteine, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine, 2-aminothiazoline-4-carboxylic acid, N-acetyl-S-(benzyl)-L-cysteine, N-acetyl-S-(n-propyl)-L-cysteine, N-acetyl-S-(2-carboxyethyl)-L-cysteine, N-acetyl-S-(2-cyanoethyl)-L-cysteine, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine, N-acetyl-S-(2-hydroxypropyl)-L-cysteine. N-Acetyl-S-(3-hydroxypropyl)-L-cysteine, mandelic acid, N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine, phenylglyoxylic acid and N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine) with total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) using data from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2015, and a total of 1410 adults were enrolled. The association was evaluated by Bayesian kernel machine regression (BKMR), multiple linear regression and weighted quantile sum (WQS) regression. In BKMR analysis, exposure to VOCs is positively correlated with levels of TC, TG, and LDL-C. However, statistical significance was observed only for the impact on TG. Our linear regression analysis and WQS regression generally support the BKMR results. Several VOCs were positively associated with serum lipid profiles (e.g., the ln-transformed level of mandelic acid (MA) displayed an increase in estimated changes of 7.01 (95% CIs: 2.78, 11.24) mg/dL for TC level), even after the effective number of tests for multiple testing (P < 0.05). CONCLUSIONS Exposure to VOCs was associated with serum lipids, and more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Wen-Yu Chen
- Cardiovascular Medicine Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| | - Yan-Peng Fu
- Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006 China
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Hui Tu
- Nusring Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| | - Wen Zhong
- Cardiovascular Medicine Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| | - Liang Zhou
- Cardiovascular Medicine Department, Nanchang University Second Affiliated Hospital, Nanchang, Jiangxi 330006 China
| |
Collapse
|
18
|
Lv JJ, Li XY, Shen YC, You JX, Wen MZ, Wang JB, Yang XT. Assessing volatile organic compounds exposure and chronic obstructive pulmonary diseases in US adults. Front Public Health 2023; 11:1210136. [PMID: 37475768 PMCID: PMC10354632 DOI: 10.3389/fpubh.2023.1210136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background Volatile organic compounds (VOCs) are a large group of chemicals widely used in People's Daily life. There is increasing evidence of the cumulative toxicity of VOCs. However, the association between VOCs and the risk of COPD has not been reported. Objective We comprehensively evaluated the association between VOCs and COPD. Methods Our study included a total of 1,477 subjects from the National Health and Nutrition Examination Survey, including VOCs, COPD, and other variables in the average US population. Multiple regression models and smooth-curve fitting (penalty splines) were constructed to examine potential associations, and stratified analyses were used to identify high-risk groups. Results We found a positive association between blood benzene and blood o-xylene concentrations and COPD risk and identified a concentration relationship between the two. That is, when the blood benzene and O-xylene concentrations reached 0.28 ng/mL and 0.08 ng/mL, respectively, the risk of COPD was the highest. In addition, we found that gender, age, and MET influence the relationship, especially in women, young people, and people with low MET. Significance This study revealed that blood benzene and blood o-xylene were independently and positively correlated with COPD risk, suggesting that long-term exposure to benzene and O-xylene may cause pulmonary diseases, and providing a new standard of related blood VOCs concentration for the prevention of COPD.
Collapse
Affiliation(s)
- Jia-jie Lv
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-yu Li
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-chen Shen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-xiong You
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-zhe Wen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-bing Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|