1
|
Wu Q, Ma Z, Pan Q, Liu T, Xin J, Xu Q. MBOVJF4278_00820 encodes a novel cytoadhesin of Mycoplasma bovis binding to heparin. Infect Immun 2025:e0060624. [PMID: 40265913 DOI: 10.1128/iai.00606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Mycoplasma bovis, a minimal bacterium but a notorious cattle pathogen, leads to serious economic losses. This pathogen binding to host cells is emerging as a complex process involving a broad range of surface-exposed structures. For mycoplasma, adhering to host tissue is the first and crucial step of infection. It is well known that the molecules contributing to microbial cytoadhesion are important virulence factors. Here, we cloned, expressed, and purified the recombinant protein, which is encoded by MBOVJF4278_00820, and induced polyclonal antibodies for it in mice. The cytoadhesive properties of this surface-exposed protein were demonstrated on embryonic bovine lung (EBL) and Madin-Darby bovine kidney (MDBK) cells. Furthermore, heparin as the binding target was confirmed, and the characteristics of the interaction between this protein and heparin have also been analyzed. Our data indicate that the surface-associated MBOVJF4278_00820-encoded protein is a novel adhesion-related factor of Mycoplasma bovis.IMPORTANCEAdhesins are crucial in facilitating Mycoplasma bovis infection. In this study, we identified a specific Mycoplasma bovis adhesin that interacts with heparin on the surface of host cells. Given that heparin is ubiquitously distributed across a wide range of tissue cells, the identification of the heparin-binding adhesin is significant for elucidating how Mycoplasma bovis targets diverse host cells and triggers a spectrum of clinical manifestations.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhixin Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Xinjiang, China
| |
Collapse
|
2
|
Sun X, Deng M, Cheng C, Zhao Y, Liu Z, Yang Y, Xu Q, Yao R, Hu M, Jin M, Kang C. Target antigen screening and development of a multi-component subunit vaccine against Mycoplasma synoviae in chickens. Front Cell Infect Microbiol 2024; 14:1458865. [PMID: 39507944 PMCID: PMC11537996 DOI: 10.3389/fcimb.2024.1458865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Mycoplasma synoviae (MS) is a globally important avian pathogen causing infectious synovitis and respiratory diseases in poultry, leading to significant economic losses. Despite advances in vaccine development, a commercially viable subunit vaccine against MS remains elusive. Methods We sequenced whole genomes of six clinical MS strains isolated from different Chinese provinces. Common genes were analyzed using Biopython software, identifying those with high copy numbers in virulent strains and shared among all strains. Vaxign2 and IEDB Antibody Epitope Prediction were used to analyze protein properties. We assessed immune protective effects of candidate proteins and developed a multivalent subunit vaccine. Results Ten candidate vaccine proteins were initially selected. A multivalent subunit vaccine composed of MSPB, Ppht, Cfba, and EF-G displayed the best protective effect. The optimal immunization dosage was 20μg, with each protein accounting for 25%. The immune production period was determined to be 28 days post-first immunization, lasting 180 days. The immune protection rate against highly virulent strains reached 90%∼100%. Discussion This study provides a new approach for screening vaccine antigens and develops an effective candidate vaccine for MS prevention. The multivalent subunit vaccine shows promising results in protecting against MS infections, potentially offering a solution to reduce economic losses in the poultry industry.
Collapse
Affiliation(s)
- Xiaomei Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mingyong Deng
- Research Institute of Wuhan Keqian biology Co., Ltd, Wuhan, China
| | - Chuxing Cheng
- Research Institute of Wuhan Keqian biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zuqing Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yu Yang
- Research Institute of Wuhan Keqian biology Co., Ltd, Wuhan, China
| | - Qiaoxia Xu
- Research Institute of Wuhan Keqian biology Co., Ltd, Wuhan, China
| | - Rong Yao
- Research Institute of Wuhan Keqian biology Co., Ltd, Wuhan, China
| | - Min Hu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Province Animal Disease Comprehensive Prevention and Control Industry Technology Innovation Alliance, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian biology Co., Ltd, Wuhan, China
- Hubei Province Animal Disease Comprehensive Prevention and Control Industry Technology Innovation Alliance, Wuhan, China
| |
Collapse
|
3
|
Wynn EL, Browne AS, Clawson ML. Diversity and antigenic potentials of Mycoplasmopsis bovis secreted and outer membrane proteins within a core genome of strains isolated from North American bison and cattle. Genome 2024; 67:204-209. [PMID: 38330385 DOI: 10.1139/gen-2023-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mycoplasmopsis bovis is a worldwide economically important pathogen of cattle that can cause or indirectly contribute to bovine respiratory disease. M. bovis is also a primary etiological agent of respiratory disease in bison with high mortality rates. A major challenge in the development of an efficacious M. bovis vaccine is the design of antigens that contain both MHC-1 and MHC-2 T-cell epitopes, and that account for population level diversity within the species. Publicly available genomes and sequence read archive libraries of 381 M. bovis strains isolated from cattle (n = 202) and bison (n = 179) in North America were used to identify a core genome of 575 genes, including 38 that encode either known or predicted secreted or outer membrane proteins. The antigenic potentials of the proteins were characterized by the presence and strength of their T-cell epitopes, and their protein variant diversity at the population-level. The proteins had surprisingly low diversity and varying predictive levels of T-cell antigenicity. These results provide a reference for the selection or design of antigens for vaccine testing against strains infecting North American cattle and bison.
Collapse
Affiliation(s)
- Emily L Wynn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS) US Meat Animal Research Center, Clay Center, NE, USA
| | - A Springer Browne
- USDA, Animal and Plant Health Inspection Service (APHIS), Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Michael L Clawson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS) US Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
4
|
Gelgie AE, Desai SE, Gelalcha BD, Kerro Dego O. Mycoplasma bovis mastitis in dairy cattle. Front Vet Sci 2024; 11:1322267. [PMID: 38515536 PMCID: PMC10956102 DOI: 10.3389/fvets.2024.1322267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.
Collapse
Affiliation(s)
- Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Sarah E. Desai
- College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Lan S, Li Z, Hao H, Liu S, Huang Z, Bai Y, Li Y, Yan X, Gao P, Chen S, Chu Y. A genome-wide transposon mutagenesis screening identifies LppB as a key factor associated with Mycoplasma bovis colonization and invasion into host cells. FASEB J 2023; 37:e23176. [PMID: 37665592 DOI: 10.1096/fj.202300678r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Mycoplasma spp., the smallest self-replicating and genome-reduced organisms, have raised a great concern in both the medical and veterinary fields due to their pathogenicity. The molecular determinants of these wall-less bacterium efficiently use their limited genes to ensure successful infection of the host remain unclear. In the present study, we used the ruminant pathogen Mycoplasma bovis as a model to identify the key factors for colonization and invasion into host cells. We constructed a nonredundant fluorescent transposon mutant library of M. bovis using a modified transposon plasmid, and identified 34 novel adhesion-related genes based on a high-throughput screening approach. Among them, the ΔLppB mutant exhibited the most apparent decrease in adhesion to embryonic bovine lung (EBL) cells. The surface-localized lipoprotein LppB, which is highly conserved in Mycoplasma species, was then confirmed as a key factor for M. bovis adhesion with great immunogenicity. LppB interacted with various components (fibronectin, vitronectin, collagen IV, and laminin) of host extracellular matrix (ECM) and promoted plasminogen activation through tPA to degrade ECM. The 439-502 amino acid region of LppB is a critical domain, and F465 and Y493 are important residues for the plasminogen activation activity. We further revealed LppB as a key factor facilitating internalization through clathrin- and lipid raft-mediated endocytosis, which helps the Mycoplasma invade the host cells. Our study indicates that LppB plays a key role in Mycoplasma infection and is a potential new therapeutic and vaccine target for Mycoplasma species.
Collapse
Affiliation(s)
- Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhicheng Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yutong Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yanzhao Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
6
|
Wang J, Liang K, Chen L, Su X, Liao D, Yu J, He J. Unveiling the stealthy tactics: mycoplasma's immune evasion strategies. Front Cell Infect Microbiol 2023; 13:1247182. [PMID: 37719671 PMCID: PMC10502178 DOI: 10.3389/fcimb.2023.1247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Mycoplasmas, the smallest known self-replicating organisms, possess a simple structure, lack a cell wall, and have limited metabolic pathways. They are responsible for causing acute or chronic infections in humans and animals, with a significant number of species exhibiting pathogenicity. Although the innate and adaptive immune responses can effectively combat this pathogen, mycoplasmas are capable of persisting in the host, indicating that the immune system fails to eliminate them completely. Recent studies have shed light on the intricate and sophisticated defense mechanisms developed by mycoplasmas during their long-term co-evolution with the host. These evasion strategies encompass various tactics, including invasion, biofilm formation, and modulation of immune responses, such as inhibition of immune cell activity, suppression of immune cell function, and resistance against immune molecules. Additionally, antigen variation and molecular mimicry are also crucial immune evasion strategies. This review comprehensively summarizes the evasion mechanisms employed by mycoplasmas, providing valuable insights into the pathogenesis of mycoplasma infections.
Collapse
Affiliation(s)
- Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Bi K, Du J, Chen J, Wang H, Zhang K, Wang Y, Hou L, Meng Q. Screening and functional analysis of three Spiroplasma eriocheiris glycosylated protein interactions with Macrobrachium nipponense C-type lectins. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108810. [PMID: 37169109 DOI: 10.1016/j.fsi.2023.108810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
N-glycosylation, one of the main protein posttranslational modifications (PTMs), plays an important role in the pathogenic process of pathogens through binding and invasion of host cells or regulating the internal environment of host cells to benefit their survival. However, N-glycosylation has remained mostly unexplored in Spiroplasma eriocheiris, a novel type of pathogen which has serious adverse effects on aquaculture. In most cases, N-glycoproteins can be detected and analyzed by lectins dependent on sugar recognition domains. In this study, three Macrobrachium nipponense C-type lectins, namely, MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3, were used to screen S. eriocheiris glycosylated proteins. First, qRT-PCR results showed that the expression levels of the three kinds of lectins were all significantly up-regulated in prawn hearts when the host was against S. eriocheiris infection. A bacterial binding assay showed that purified recombinant MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3 could directly bind to S. eriocheiris in vitro. Second, three S. eriocheiris glycosylated proteins, ATP synthase subunit beta (ATP beta), molecular chaperone Dnak (Dnak) and fructose bisphosphate aldolase (FBPA), were screened and identified using the three kinds of full-length C-type lectins. Far-Western blot and coimmunoprecipitation (CO-IP) further demonstrated that there were interactions between the three lectins with ATP beta, Dnak and FBPA. Furthermore, antibody neutralization assay results showed that pretreatment of S. eriocheiris with ATP beta, Dnak and FBPA antibodies could significantly block this pathogen infection. All the above studies showed that the glycosylated protein played a vital role in the process of S. eriocheiris infection.
Collapse
Affiliation(s)
- Keran Bi
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Jun Chen
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Huicong Wang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Kun Zhang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Yuheng Wang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China.
| |
Collapse
|
8
|
Xu QY, Pan Q, Wu Q, Xin JQ. Mycoplasma Bovis adhesins and their target proteins. Front Immunol 2022; 13:1016641. [PMID: 36341375 PMCID: PMC9630594 DOI: 10.3389/fimmu.2022.1016641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mycoplasmosis is an important infectious disease of cattle caused by Mycoplasma bovis (M. bovis) which poses a serious threat to the breeding industry. Adhesin is involved in the initial process of M. bovis colonization, which is closely related to the infection, cell invasion, immune escape and virulence of this pathogenic microorganism. For the reason that M. bovis lacks a cell wall, its adhesin is predominantly located on the surface of the cell membrane. The adhesins of M. bovis are usually identified by adhesion and adhesion inhibition analysis, and more than 10 adhesins have been identified so far. These adhesins primarily bind to plasminogen, fibronectin, heparin and amyloid precursor-like protein-2 of host cells. This review aims to concisely summarize the current knowledge regarding the adhesins of M. bovis and their target proteins of the host cell. Additionally, the biological characteristics of the adhesin will be briefly analyzed.
Collapse
|
9
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Wang J, Yu Y, Li Y, Li S, Wang L, Wei Y, Wu Y, Pillay B, Olaniran AO, Chiliza TE, Shao G, Feng Z, Xiong Q. A multifunctional enolase mediates cytoadhesion and interaction with host plasminogen and fibronectin in Mycoplasma hyorhinis. Vet Res 2022; 53:26. [PMID: 35337383 PMCID: PMC8951703 DOI: 10.1186/s13567-022-01041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma hyorhinis may cause systemic inflammation of pigs, typically polyserositis and arthritis, and is also associated with several types of human cancer. However, the pathogenesis of M. hyorhinis colonizing and breaching the respiratory barrier to establish systemic infection is poorly understood. Glycolytic enzymes are important moonlighting proteins and virulence-related factors in various bacteria. In this study, we investigated the functions of a glycolytic critical enzyme, enolase in the infection and systemic spread of M. hyorhinis. Bacterial surface localization of enolase was confirmed by flow cytometry and colony hybridization assay. Recombinant M. hyorhinis enolase (rEno) was found to adhere to pig kidney (PK-15) cells, and anti-rEno serum significantly decreased adherence. The enzyme was also found to bind host plasminogen and fibronectin, and interactions were specific and strong, with dissociation constant (KD) values of 1.4 nM and 14.3 nM, respectively, from surface plasmon resonance analysis. Activation of rEno-bound plasminogen was confirmed by its ability to hydrolyze plasmin-specific substrates and to degrade a reconstituted extracellular matrix. To explore key sites during these interactions, C-terminal lysine residues of enolase were replaced with leucine, and the resulting single-site and double-site mutants show significantly reduced interaction with plasminogen in far-Western blotting and surface plasmon resonance tests. The binding affinities of all mutants to fibronectin were reduced as well. Collectively, these results imply that enolase moonlights as an important adhesin of M. hyorhinis, and interacts with plasminogen and fibronectin. The two lysine residues in the C-terminus are important binding sites for its multiple binding activities.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yanfei Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yao Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shiyang Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Li Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yuzi Wu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bala Pillay
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | | | - Thamsanqa E Chiliza
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Guoqing Shao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Zhixin Feng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, China. .,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa. .,School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
11
|
Facchetti A, Wheeler JX, Vipond C, Whiting G, Lavender H, Feavers IM, Maiden MCJ, Maharjan S. Factor H binding protein (fHbp)-mediated differential complement resistance of a serogroup C Neisseria meningitidis isolate from cerebrospinal fluid of a patient with invasive meningococcal disease. Access Microbiol 2021; 3:000255. [PMID: 34712903 PMCID: PMC8549389 DOI: 10.1099/acmi.0.000255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
During an outbreak of invasive meningococcal disease (IMD) at the University of Southampton, UK, in 1997, two Neisseria meningitidis serogroup C isolates were retrieved from a student ('Case'), who died of IMD, and a close contact ('Carrier') who, after mouth-to-mouth resuscitation on the deceased, did not contract the disease. Genomic comparison of the isolates demonstrated extensive nucleotide sequence identity, with differences identified in eight genes. Here, comparative proteomics was used to measure differential protein expression between the isolates and investigate whether the differences contributed to the clinical outcomes. A total of six proteins were differentially expressed: four proteins (methylcitrate synthase, PrpC; hypothetical integral membrane protein, Imp; fructose-1,6-bisphosphate aldolase, Fba; aldehyde dehydrogenase A, AldA) were upregulated in the Case isolate, while one protein (Type IV pilus-associated protein, PilC2) was downregulated. Peptides for factor H binding protein (fHbp), a major virulence factor and antigenic protein, were only detected in the Case, with a single base deletion (ΔT366) in the Carrier fHbp causing lack of its expression. Expression of fHbp resulted in an increased resistance of the Case isolate to complement-mediated killing in serum. Complementation of fHbp expression in the Carrier increased its serum resistance by approximately 8-fold. Moreover, a higher serum bactericidal antibody titre was seen for the Case isolate when using sera from mice immunized with Bexsero (GlaxoSmithKline), a vaccine containing fHbp as an antigenic component. This study highlights the role of fHbp in the differential complement resistance of the Case and the Carrier isolates. Expression of fHbp in the Case resulted in its increased survival in serum, possibly leading to active proliferation of the bacteria in blood and death of the student through IMD. Moreover, enhanced killing of the Case isolate by sera raised against an fHbp-containing vaccine, Bexsero, underlines the role and importance of fHbp in infection and immunity.
Collapse
Affiliation(s)
- Alessandra Facchetti
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Jun X Wheeler
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gail Whiting
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Sunil Maharjan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
12
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
13
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
14
|
Elamin Elhasan LM, Hassan MB, Elhassan RM, Abdelrhman FA, Salih EA, Ibrahim H A, Mohamed AA, Osman HS, Khalil MSM, Alsafi AA, Idris AB, Hassan MA. Epitope-Based Peptide Vaccine Design against Fructose Bisphosphate Aldolase of Candida glabrata: An Immunoinformatics Approach. J Immunol Res 2021; 2021:8280925. [PMID: 34036109 PMCID: PMC8116159 DOI: 10.1155/2021/8280925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of clinical trials, none of them have yet been approved by the FDA. AIM Using immunoinformatics approach to predict the most conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata. Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and molecular docking were performed. RESULT The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK, while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL have the lowest binding energy to MHC molecules. CONCLUSION The epitope-based vaccines predicted by using immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness of the best candidate's epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based vaccine against C. glabrata.
Collapse
Affiliation(s)
- Lina Mohamed Elamin Elhasan
- Faculty of Science and Technology, Department of Biotechnology, Omdurman Islamic University, Khartoum, Sudan
| | - Mohamed B. Hassan
- Faculty of Medicine and Health Science, Omdurman Islamic University, Khartoum, Sudan
| | - Reham M. Elhassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sudan International University, Khartoum, Sudan
| | | | - Essam A. Salih
- Biology and Technology Department, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan
| | - Asma Ibrahim H
- Faculty of Pharmacy, National Ribat University, Khartoum, Sudan
| | - Amna A. Mohamed
- Al-Neelain Medical Research Center, Al-Neelain University, Khartoum, Sudan
| | - Hozaifa S. Osman
- Faculty of Medicine and Health Science, Omdurman Islamic University, Khartoum, Sudan
| | | | - Athar A. Alsafi
- Faculty of Science and Technology, Department of Biotechnology, Omdurman Islamic University, Khartoum, Sudan
| | - Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mohamed A. Hassan
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Translation Bioinformatics, Detavax Biotech, Kayseri, Turkey
| |
Collapse
|
15
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
16
|
Yin H, Zhang S, Shen M, Zhang Z, Huang H, Zhao Z, Guo X, Wu P. Integrative analysis of circRNA/miRNA/mRNA regulatory network reveals the potential immune function of circRNAs in the Bombyx mori fat body. J Invertebr Pathol 2021; 179:107537. [PMID: 33472087 DOI: 10.1016/j.jip.2021.107537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Bombyx mori nucleopolyhedrosis virus (BmNPV) is one of the greatest threats to sustainable development of the sericulture industry. Circular RNA (circRNA), a type of non-coding RNA, has been shown to play important roles in gene expression regulation, immune response, and diseases. The fat body is a tissue with both metabolic and immune functions. To explore the potential immune function of circRNAs, we analyzed differentially expressed (DE)circRNAs, microRNAs(miRNAs), and mRNAs in the B. mori fat body in response to BmNPV infection using high-throughput RNA sequencing. A total of 77 DEcircRNAs, 32 DEmiRNAs, and 730 DEmRNAs that are associated with BmNPV infection were identified. We constructed a DEcircRNA/DEmiRNA/DEmRNA and DEcircRNA/DEmiRNA/BmNPV gene regulatory network and validated the differential expression of circ_0001432 and its corresponding miRNA (miR-2774c and miR-3406-5p) and mRNA (778467 and 101745232) in the network. Tissue-specific expression of circ_0001432 and its expression at different time points were also examined. KEGG pathway analysis of DEmRNAs, target genes of DEmiRNAs, and host genes of DEcircRNAs in the network showed that these genes were enriched in several metabolic pathways and signaling pathways, which could play important roles in insect immune responses. Our results suggest that circRNA could be involved in immune responses of the B. mori fat body and help in understanding the molecular mechanisms underlying silkworm-pathogen interactions.
Collapse
Affiliation(s)
- Haotong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shaolun Zhang
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhengdong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Haoling Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Zhimeng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
17
|
Persistence in Livestock Mycoplasmas—a Key Role in Infection and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Purpose of Review
Mycoplasma, economically important pathogens in livestock, often establishes immunologically complex persistent infections that drive their pathogenesis and complicate prophylaxis and therapy of the caused diseases. In this review, we summarize some of the recent findings concerning cellular and molecular persistence mechanisms related to the pathogenesis of mycoplasma infections in livestock.
Recent Findings
Data from recent studies prove several mechanisms including intracellular lifestyle, immune dysregulation, and autoimmunity as well as microcolony and biofilm formation and apoptosis of different host cell types as important persistence mechanisms in several clinically significant Mycoplasma species, i.e., M. bovis, M. gallisepticum, M. hyopneumoniae, and M. suis.
Summary
Evasion of the immune system and the establishment of persistent infections are key features in the pathogenesis of livestock mycoplasmas. In-depth knowledge of the underlying mechanisms will provide the basis for the development of therapy and prophylaxis strategies against mycoplasma infections.
Collapse
|
18
|
Zhu X, Dong Y, Baranowski E, Li X, Zhao G, Hao Z, Zhang H, Chen Y, Hu C, Chen H, Citti C, Guo A. Mbov_0503 Encodes a Novel Cytoadhesin that Facilitates Mycoplasma bovis Interaction with Tight Junctions. Microorganisms 2020; 8:microorganisms8020164. [PMID: 31979335 PMCID: PMC7074692 DOI: 10.3390/microorganisms8020164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023] Open
Abstract
Molecules contributing to microbial cytoadhesion are important virulence factors. In Mycoplasma bovis, a minimal bacterium but an important cattle pathogen, binding to host cells is emerging as a complex process involving a broad range of surface-exposed structures. Here, a new cytoadhesin of M. bovis was identified by producing a collection of individual knock-out mutants and evaluating their binding to embryonic bovine lung cells. The cytoadhesive-properties of this surface-exposed protein, which is encoded by Mbov_0503 in strain HB0801, were demonstrated at both the mycoplasma cell and protein levels using confocal microscopy and ELISA. Although Mbov_0503 disruption was only associated in M. bovis with a partial reduction of its binding capacity, this moderate effect was sufficient to affect M. bovis interaction with the host-cell tight junctions, and to reduce the translocation of this mycoplasma across epithelial cell monolayers. Besides demonstrating the capacity of M. bovis to disrupt tight junctions, these results identified novel properties associated with cytoadhesin that might contribute to virulence and host colonization. These findings provide new insights into the complex interplay taking place between wall-less mycoplasmas and the host-cell surface.
Collapse
Affiliation(s)
- Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Yaqi Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Eric Baranowski
- IHAP, ENVT, INRAE, Université de Toulouse, Toulouse 31300, France; (E.B.); (C.C.)
| | - Xixi Li
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Christine Citti
- IHAP, ENVT, INRAE, Université de Toulouse, Toulouse 31300, France; (E.B.); (C.C.)
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: ; Tel.: 86-131-0071-2906
| |
Collapse
|
19
|
Proteomic analysis of Sporothrix schenckii cell wall reveals proteins involved in oxidative stress response induced by menadione. Microb Pathog 2020; 141:103987. [PMID: 31962184 DOI: 10.1016/j.micpath.2020.103987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Sporotrichosis is an emergent subcutaneous mycosis that is a threat to both humans and other animals. Sporotrichosis is acquired by the traumatic implantation of species of the Sporothrix genus. Added to the detoxification systems, pathogenic fungi possess different mechanisms that allow them to survive within the phagocytic cells of their human host during the oxidative burst. These mechanisms greatly depend from the cell wall (CW) since phagocytic cells recognize pathogens through specific receptors associated to the structure. To date, there are no studies addressing the modulation of the expression of S. schenckii CW proteins (CWP) in response to reactive oxygen species (ROS). Therefore, in this work, a proteomic analysis of the CW of S. schenckii in response to the oxidative agent menadione (O2•-) was performed. Proteins that modulate their expression were identified which can be related to the fungal survival mechanisms within the phagocyte. Among the up-regulated CWP in response to the oxidative agent, 13 proteins that could be involved in the mechanisms of oxidative stress response in S. schenckii were identified. The proteins identified were thioredoxin1 (Trx1), superoxide dismutase (Sod), GPI-anchored cell wall protein, β-1,3-endoglucanase EglC, glycoside hydrolase (Gh), chitinase, CFEM domain protein, glycosidase crf1, covalently-linked cell wall protein (Ccw), 30 kDa heat shock protein (Hsp30), lipase, trehalase (Treh), fructose-bisphosphate aldolase (Fba1) and citrate synthase (Cs). The identification of CWP that modulates their expression in response to superoxide ion (O2•-) in S. schenckii is a useful approach to understand how the fungus defends itself against ROS, in order to evade the phagocytic cells from the host and cause the infection.
Collapse
|