1
|
Bogdanov I, Mironova D, Sultanova E, Burilov V, Solovieva S, Antipin I. New Asymmetric Gemini Triazole Surfactants with a Polar Triethylene Glycol Fragment: Synthesis and Physico-Chemical Properties. Molecules 2024; 29:5420. [PMID: 39598809 PMCID: PMC11597725 DOI: 10.3390/molecules29225420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The present work is devoted to the synthesis and analysis of the physicochemical properties of new functionalized asymmetric Gemini surfactants. Herein, alkyl- and azide-substituted surfactants with symmetric and asymmetric substituents were synthesized by using the click-reaction method. The critical aggregation concentration values of Gemini surfactants were determined. The binding processes of functionalized Gemini surfactants with bovine serum albumin were evaluated by fluorescence spectroscopy. Also, using the temperature dependences of the binding constants, the mechanism of Gemini surfactants binding with bovine serum albumin was studied. The hydrodynamic diameters of the formed bovine serum albumin/surfactant aggregates were analyzed. Based on electrophoretic light scattering, the ability of the synthesized Gemini surfactants to form associates was analyzed. The possibility of changing the mechanism of interaction in the 15c/bovine serum albumin system was shown. Based on the results obtained using different light scattering techniques and fluorescence spectroscopy, the mechanisms of interaction between bovine serum albumin and surfactants were determined.
Collapse
Affiliation(s)
- Ilshat Bogdanov
- Department of Organic and Medicinal Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Diana Mironova
- Department of Organic and Medicinal Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Elza Sultanova
- Department of Organic and Medicinal Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Vladimir Burilov
- Department of Organic and Medicinal Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Igor Antipin
- Department of Organic and Medicinal Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| |
Collapse
|
2
|
Liu J, Li X, Wu Y, Zhang X, Wang X, Yuan L, Zhao Y, Liu M. A multifunctional DNA tetrahedron for imaging, gene therapy, and chemotherapy-phototherapy combination: Binding affinity and anticancer activity. Int J Biol Macromol 2024; 280:135713. [PMID: 39293631 DOI: 10.1016/j.ijbiomac.2024.135713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Imaging, silencing cancer-related microRNA, and chemotherapy-phototherapy (CTPT) combination therapy are crucial for cancer diagnosis and drug resistance overcoming. In this study, we designed a multifunctional DNA tetrahedron (MB-MUC1-TD) for the targeted delivery of combined daunorubicin (DAU) + toluidine blue O (TBO). The detection limit of miRNA-21 was determined to be 0.91 nM. The intercalation of DAU and TBO into MB-MUC1-TD was proved by spectroscopic and calorimetric methods. The thermodynamic parameters for the interactions of DAU and/or TBO with MB-MUC1-TD confirmed high drug loading. The first addition of TBO in the ternary system achieved a higher loading of both drugs and a more stable complex structure. Deoxyribonuclease I (DNase I) accelerated the release of DAU and/or TBO loaded in MB-MUC1-TD. Confocal laser scanning microscope demonstrated that MB-MUC1-TD exhibited good imaging ability for miRNA-21 to accurately identify cancer cells, and DAU/TBO was predominantly distributed within the nucleus of cancer cells. In vitro cytotoxicity showed better gene therapy efficacy of MB on MCF-7 cells, better biocompatibility of loaded DAU and TBO on LO2 cells, and stronger synergistic cytotoxicity of DAU + TBO on MCF-7/ADR cells. This study may establish a theoretical foundation for co-loading CTPT combination drugs based on multifunctional DNA nanostructures.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xiangtai Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
3
|
Kabir MZ, Tayyab H, Erkmen C, Mohamad SB, Uslu B. Comprehensive views toward the biomolecular recognition of an anticancer drug, leflunomide with human serum albumin. J Biomol Struct Dyn 2024; 42:7257-7271. [PMID: 37529911 DOI: 10.1080/07391102.2023.2239931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
Biomolecular association of an anticancer drug, leflunomide (LEF) with human serum albumin (HSA), the leading ligands carrier in human circulation was characterized using biophysical (i.e., fluorescence, absorption and voltammetric) methods and computational (i.e., molecular docking and molecular dynamics simulation) techniques. Evaluations of fluorescence, absorption and voltammetric findings endorsed the complex formation between LEF and HSA. An inverse relationship of Stern-Volmer constant-temperature and hyperchromic shift of the protein's absorption signal with addition of LEF confirmed the LEF quenched the HSA fluorescence through static process. Moderate nature of binding strength (binding constant = 2.76-4.77 × 104 M-1) was detected towards the LEF-HSA complexation, while the association process was naturally driven via hydrophobic interactions, van der Waals interactions and hydrogen bonds, as evident from changes in entropy (ΔS= + 19.91 J mol-1 K-1) and enthalpy (ΔH = - 20.09 kJ mol-1), and molecular docking assessments. Spectral analyses of synchronous and three-dimensional fluorescence validated microenvironmental fluctuations near Trp and Tyr residues upon LEF binding to the protein. LEF association with HSA significantly defended temperature-induced destabilization of the protein. Although LEF was found to attach to HSA at Sudlow's sites I and II, but exhibited greater preference toward its site I, as detected by the investigations of competitive site-marker displacement. Molecular dynamics simulation assessment revealed that the complex attained equilibrium throughout simulations, showing the LEF-HSA complex constancy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Zahirul Kabir
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Hafsa Tayyab
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cem Erkmen
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Yuan L, Liu T, Qi X, Zhang Y, Wang Q, Wang Q, Liu M. Multi-spectroscopic and molecular docking studies for the pH-dependent interaction of β-lactoglobulin with (-)-epicatechin gallate and/or piceatannol: Influence on antioxidant activity and stability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124090. [PMID: 38428163 DOI: 10.1016/j.saa.2024.124090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
(-)-Epicatechin gallate (ECG) and piceatannol (PIC) are commonly polyphenols with excellent biological activities. β-Lactoglobulin (BLG) is a food-grade globule protein and its morphologies are sensitive to pH. This study used experimental and computational methods to determine the interaction of single or combined ECG and PIC with BLG at different pHs. The static quenching process was determined through fluorescence and ultraviolet-visible spectroscopy. Compared with ECG, PIC could significantly bind to BLG with higher affinity. Their binding affinity for BLG with different morphologies followed the tendency of monomer > dimer > tetramer. The negative contribution of van der Waals forces, electrostatic interactions, and hydrogen bonds to ΔHo exceeded the positive contribution of hydrophobic interactions in the spontaneous and exothermic process. The reduced binding affinity in the ternary systems demonstrated the competitive binding between ECG and PIC on BLG, and the hinder effect of ECG or PIC was enhanced with increasing pH. Molecular docking studies revealed the same binding sites of ECG and PIC on various conformations of BLG and identical driven forces as thermodynamic results. Tryptophan and tyrosine were the main participators in the BLG + ECG and BLG + PIC systems, respectively. The conformational changes in the binary and ternary systems could be ascertained through synchronous fluorescence, circular dichroism, and dynamic light scattering. Furthermore, the effects of pH and BLG encapsulation on the antioxidant capacity and stability of ECG or PIC were also implemented. ECG or PIC was the most stable in the (BLG + PIC) + ECG system at pH 6.0. This study could clarify the interaction mechanism between ECG/PIC and BLG and elucidate the pH effect on their binding information. The results will provide basic support for their usage in food processing and applications.
Collapse
Affiliation(s)
- Lixia Yuan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Tingting Liu
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xin Qi
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yanqing Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Qiulu Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Qingpeng Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China.
| |
Collapse
|
5
|
Asngari NJM, Bakar KA, Feroz SR, Razak FA, Halim AAA. Interaction mechanism of a cysteine protease inhibitor, odanacatib, with human serum albumin: In vitro and bioinformatics studies. Biophys Chem 2024; 305:107140. [PMID: 38118338 DOI: 10.1016/j.bpc.2023.107140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/22/2023]
Abstract
Odanacatib (ODN) is a selective cathepsin K inhibitor that acts as an anti-resorptive agent to treat osteoporosis. ODN is also found effective in reducing the effect of severe periodontitis. The interaction between ODN and human serum albumin (HSA) was investigated using spectroscopic, microscopic, and in silico approaches to characterize their binding. The fluorescence intensity of HSA increased upon the addition of increasing concentrations of ODN accompanied by blueshift in the fluorescence spectrum, which suggested hydrophobic formation around the microenvironment of the fluorophores upon ODN binding. A moderate binding affinity was obtained for ODN-HSA binding, with binding constant (Ka) values of ∼104 M-1. Circular dichroism results suggested that the overall secondary and tertiary structures of HSA were both only slightly altered upon ODN binding. The surface morphology of HSA was also affected upon ODN binding, showing aggregate formation. Drug displacement and molecular docking results revealed that ODN preferably binds to site III in subdomain IB of HSA, while molecular dynamics simulations indicated formation of a stable protein complex when site III was occupied by ODN. The ODN-HSA complex was mainly stabilized by a combination of hydrogen bonding, hydrophobic interactions, and van der Waals forces. These findings provide additional information to understand the interaction mechanism of ODN in blood circulation and may help in future improvements on the adverse effects of ODN.
Collapse
Affiliation(s)
- Nurul Jannah Mohd Asngari
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khairul Azreena Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Fathilah Abdul Razak
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Adjunct Professor, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Adyani Azizah Abd Halim
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Li X, Wu Y, Zhang X, Liu J, Zhang Y, Yuan L, Liu M. Thermodynamic and cellular studies of doxorubicin/daunorubicin loaded by a DNA tetrahedron for diagnostic imaging, chemotherapy, and gene therapy. Int J Biol Macromol 2023; 251:126245. [PMID: 37562474 DOI: 10.1016/j.ijbiomac.2023.126245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The combined diagnostic imaging, chemotherapy, and gene therapy based on DNA nanocarriers can reduce the toxic side effects and overcome multidrug resistance (MDR). In this study, we designed an antisense oligonucleotides (ASOs)-linked DNA tetrahedron (ASOs-TD). The detection limit of ASOs-TD for MDR1 mRNA was 0.05 μM. By using fluorescence spectroscopy and isothermal titration calorimetry (ITC), the interactions between doxorubicin (DOX) /daunorubicin (DAU) and ASOs-TD were investigated. The number of binding sites (n), binding constant (Ka), entropy change (ΔSo), enthalpy change (ΔHo) and Gibbs free energy change (ΔGo) were obtained. The intercalation of DOX/DAU with ASOs-TD was demonstrated by differential scanning calorimetry (DSC) and quenching researches of potassium ferricyanide K4[Fe(CN)6]. The in vitro release rate of DOX/DAU loaded in ASOs-TD was accelerated by deoxyribonuclease I (DNase I). In vitro cytotoxicity proved the good gene therapy effect of ASOs-TD and the increased cytotoxicity of DOX/DAU to MCF-7/ADR cells. The results of confocal laser scanning microscope (CLSM) suggested that ASOs-TD could effectively identify drug-resistant cells due to its good imaging ability for MDR1 mRNA. This work offers theoretical significance for overcoming MDR using DNA nanostructures which combine diagnostic imaging, chemotherapy, and gene therapy.
Collapse
Affiliation(s)
- Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Jie Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yanqing Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
7
|
Zhang X, Li X, Wang D, Weng T, Wang L, Yuan L, Wang Q, Liu J, Wu Y, Liu M. Spectroscopic, calorimetric and cytotoxicity studies on the combined binding of daunorubicin and acridine orange to a DNA tetrahedron. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122583. [PMID: 36905740 DOI: 10.1016/j.saa.2023.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Chemotherapy-phototherapy (CTPT) combination drugs co-loaded by targeted DNA nanostructures can achieve controlled drug delivery, reduce toxic side effects and overcome multidrug resistance. Herein, we constructed and characterized a DNA tetrahedral nanostructure (MUC1-TD) linked with the targeting aptamer MUC1. The interaction of daunorubicin (DAU)/acridine orange (AO) alone and in combination with MUC1-TD and the influence of the interaction on the cytotoxicity of the drugs were evaluated. Potassium ferrocyanide quenching analysis and DNA melting temperature assays were used to demonstrate the intercalative binding of DAU/AO to MUC1-TD. The interactions of DAU and/or AO with MUC1-TD were analyzed by fluorescence spectroscopy and differential scanning calorimetry. The number of binding sites, binding constant, entropy and enthalpy changes of the binding process were obtained. The binding strength and binding sites of DAU were higher than those of AO. The presence of AO in the ternary system weakened the binding of DAU to MUC1-TD. In vitro cytotoxicity studies demonstrated that the loading of MUC1-TD augmented the inhibitory effects of DAU and AO and the synergistic cytotoxic effects of DAU + AO on MCF-7 cells and MCF-7/ADR cells. Cell uptake studies showed that the loading of MUC1-TD was beneficial in promoting the apoptosis of MCF-7/ADR cells due to its enhanced targeting to the nucleus. This study has important guiding significance for the combined application of DAU and AO co-loaded by DNA nanostructures to overcome multidrug resistance.
Collapse
Affiliation(s)
- Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Danfeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Tianxin Weng
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
8
|
Qi X, Liu H, Ren Y, Zhu Y, Wang Q, Zhang Y, Wu Y, Yuan L, Yan H, Liu M. Effects of combined binding of chlorogenic acid/caffeic acid and gallic acid to trypsin on their synergistic antioxidant activity, enzyme activity and stability. Food Chem X 2023; 18:100664. [PMID: 37025419 PMCID: PMC10070516 DOI: 10.1016/j.fochx.2023.100664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The combined application of multiple natural polyphenols in functional foods may provide better health benefits. The binding of polyphenols with different structures to proteins will affect their respective functions. Spectroscopy and molecular docking were used to investigate the competitive binding of chlorogenic acid (CGA)/caffeic acid (CA) and gallic acid (GA) to trypsin. The effects of different molecular structures and the order of adding the three phenolic acids on the binding were assessed. The stability of trypsin and its docked complexes with CGA/CA/GA was evaluated by molecular dynamics simulation. The effects of the binding process on the activity and thermal stability of trypsin, as well as on the antioxidant activity and stability of CGA/CA/GA were explored. The competitive binding of CGA/CA and GA to trypsin affected their synergistic antioxidant effects. The results may provide a reference for the combined application of CGA/CA and GA in food and pharmaceutical fields.
Collapse
|
9
|
Ren Y, Zhu Y, Qi X, Yan H, Zhao Y, Wu Y, Zhang N, Ding Z, Yuan L, Liu M. Noncovalent interaction of chlorogenic acid and/or gallocatechin gallate with β-lactoglobulin: Effect on stability and bioaccessibility of complexes and nanoparticles. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Weng T, Wang L, Zhang X, Wu Y, Zhao Y, Zhang Y, Han J, Liu M. A pH-sensitive DNA tetrahedron for targeted release of anthracyclines: Binding properties investigation and cytotoxicity evaluation. Int J Biol Macromol 2022; 223:766-778. [PMID: 36372106 DOI: 10.1016/j.ijbiomac.2022.11.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
The anticancer efficacy of chemotherapeutic agents can be enhanced by the loading of DNA nanostructures, which is closely related to their interactions. This study achieved pH-responsive and targeted anthracycline delivery using i-motif and MUC1 aptamer co-modified DNA tetrahedron (MUC1-TD). The thermodynamic parameters for the binding of doxorubicin (DOX) and epirubicin (EPI) to MUC1-TD at pHs 7.4 and 5.0 were obtained. The smaller binding constant and the number of binding sites at pH 5.0 than at pH 7.4 indicated that acidic conditions favored the release of DOX and EPI loaded by MUC1-TD. The binding affinity of DOX was stronger than that of EPI at the same pH value due to their different chemical stereostructures. The intercalative binding mechanism was verified. In vitro release experiments revealed that acid pH and deoxyribonuclease I accelerated the release of DOX and EPI. The faster release rate of EPI than DOX was related to their binding affinity. In vitro cytotoxicity and cell uptake experiments revealed that the cytotoxicity of DOX and EPI loaded by MUC1-TD to MCF-7 cells was significantly higher than that to L02 cells. This work will provide theoretical guidance for the application of pH-responsive MUC1-TD nanocarriers in the field of pharmaceutics.
Collapse
Affiliation(s)
- Tianxin Weng
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yongfang Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; Liaocheng Hi-tech Biotechnology Co., Ltd., Liaocheng 252059, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
11
|
Šturm L, Prislan I, González-Ortega R, Mrak P, Snoj T, Anderluh G, Poklar Ulrih N. Interactions of (-)-epigallocatechin-3-gallate with model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183999. [PMID: 35820494 DOI: 10.1016/j.bbamem.2022.183999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.
Collapse
Affiliation(s)
- Luka Šturm
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Iztok Prislan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rodrigo González-Ortega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Polona Mrak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Tina Snoj
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Gregor Anderluh
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Xu H, Liang H. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance. Int J Biol Macromol 2022; 220:124-134. [PMID: 35961558 DOI: 10.1016/j.ijbiomac.2022.08.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
Organic-inorganic hybrid nano-materials have been considered to be promising immobilization matrixes for enzymes due to their significantly enhanced reusability and stability of enzymes. Herein, we constructed a novel organic-inorganic hybrid nanoflower via biomacromolecule-regulated biomimetic mineralization to immobilize sucrose phosphorylase (SPase). It was found that chitosan (CS) effectively regulated the biomimetic mineralization of calcium phosphate (CaP), leading to the formation of flower-like hybrid materials for the entrapment of SPase via self-assembly to establish a nano-biocatalyst (CS-CaP@SPase). Upon immobilization, the obtained CS-CaP@SPase exhibited excellent pH, by-product and organic solvents tolerance, and storage stability. Specifically, at acidic condition (pH 4), CS-CaP@SPase performed over 80 % of initial activity, which was 2.42-folds higher than that of free SPase. The catalytic activity of free SPase was severely inhibited about 30 % in the presence of fructose (1.2 M), but CS-CaP@SPase only lost 5 % relative activity. The CS-CaP@SPase retained over 80 % of its relative activity, while the free SPase maintained <20 % of its relative activity in acetonitrile. The relative activity of CS-CaP@SPase was still retained about 80 % after 10 cycles and maintained 75 % after 15 days. Based on Raman spectra analysis, it was also found that the increased β-folding component of SPase in the secondary structure after immobilization was the main factor for its enhanced stability. It is reasonable to believe that biomacromolecule-regulated biomimetic mineralization could be potentially used as a promising method to immobilize enzymes with excellent stability and recyclability, thereby facilitating the preparation of highly efficient catalysts for industrial biocatalysts, biosensing, and biomedicine.
Collapse
Affiliation(s)
- Haichang Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
13
|
Weng T, Wang L, Liu Y, Zhang X, Wu Y, Zhang Y, Han J, Liu M. Interaction of bisdemethoxycurcumin with sodium dodecyl sarcosine + Tween 20/Tween 60 mixed surfactants: Insights from multispectral analysis and solubilization effect. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Ren Y, Liu T, Liu H, Zhu Y, Qi X, Liu X, Zhao Y, Wu Y, Zhang N, Liu M. Functional improvement of (−)-epicatechin gallate and piceatannol through combined binding to β-lactoglobulin: Enhanced effect of heat treatment and nanoencapsulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Kumari M, Kamat S, Jayabaskaran C. Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: A flow cytometry, FTIR and DLS spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121098. [PMID: 35257985 DOI: 10.1016/j.saa.2022.121098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many natural products induce apoptotic cell death in cancer cells, though studies on their interactions with macromolecules are limited. For the first time, this study demonstrated the cytotoxic potential of usnic acid (UA) against squamous carcinoma (A-431) cells and the associated changes in cell surface proteins, lipids and DNA by attenuated total reflection- fourier transform infrared spectroscopy (ATR-FTIR) and dynamic light scattering (DLS) spectroscopic studies. The IC50 for UA was 98.9 µM after treatment of A-431 cells for 48 h, while the IC50 reduced to 39.2 µM after 72 h of incubation time. UA induced oxidative stress in treated cells as confirmed by DCFHDA flow cytometry assay, depletion in reduced glutathione and increase in lipid peroxidation. The oxidative stress resulted in conformation change in amide I, amide II protein bands and DNA as observed by ATR-FTIR in UA treated A-431 cells. Shift in secondary structures of proteins from α helix to β sheets and structural changes in DNA was observed in UA treated A-431 cells. An increase in the band intensity of phospholipids, increased distribution of lipid and change in membrane potential was noted in UA treated cells, which was confirmed by externalization of phosphatidylserine to the outer membrane by annexin V-FITC/PI assay. Increase in mitochondrial membrane potential, cell cycle arrest at G0/G1 phase by flow cytometry and activation of caspase-3/7 dependent proteins confirmed the UA induced apoptosis in treated A-431 cells. FTIR and DLS spectroscopy confirmed the changes in biomolecules after UA treatment, which were associated with apoptosis, as observed by flow cytometry.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Liu H, Wang D, Ren Y, Wang L, Weng T, Liu J, Wu Y, Ding Z, Liu M. Multispectroscopic and synergistic antioxidant study on the combined binding of caffeic acid and (-)-epicatechin gallate to lysozyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120986. [PMID: 35151167 DOI: 10.1016/j.saa.2022.120986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The binding of caffeic acid (CA) and/or (-)-epicatechin gallate (ECG) to lysozyme was investigated by multispectroscopic methods and molecular docking. The effects of the single and combined binding on the structure, activity and stability of lysozyme and the synergistic antioxidant activity of CA and ECG were also studied. Fluorescence quenching spectra, time-resolved fluorescence spectra, and UV-vis absorption difference spectra all ascertained the static quenching mechanism of lysozyme by CA/ECG. Thermodynamic parameters indicated that CA and ECG competitively bound to lysozyme, and CA had a stronger binding affinity, which was consistent with the results of molecular docking. Hydrogen bonding, van der Waals' force and electrostatic interaction were the main driving forces for the binding process. Synchronous fluorescence spectra displayed that the interaction of CA/ECG exposed the tryptophan residues of lysozyme to a more hydrophilic environment. Circular dichroism spectroscopy, Fourier transform infrared spectroscopy and dynamic light scattering indicated that the binding of CA and/or ECG to lysozyme resulted in the change of the secondary structure and increased the particle size of lysozyme. The binding of CA and/or ECG to lysozyme inhibited the enzyme activity and enhanced the thermal stability of lysozyme. The combined application of CA and ECG showed antioxidant synergy which was influenced by the encapsulation of lysozyme and cellular uptake. In summary, this work provides theoretical guidance for lysozyme as a carrier for the combined application of CA and ECG.
Collapse
Affiliation(s)
- He Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Danfeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yongfang Ren
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tianxin Weng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
17
|
Zhao J, Liang Y, Zhu Z, Wang Y, Guan T, Zhang J, Zhang T. Complexation mechanism between 20(R, S)-ginsenoside Rh1 and serum albumin: Multi-spectroscopy, in vitro cytotoxicity, and in silico investigations. J Food Sci 2022; 87:929-938. [PMID: 35106766 DOI: 10.1111/1750-3841.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
As rare ginsenosides, 20(R, S)-ginsenoside Rh1 [20(R, S)-Rh1] are isomers and have been reported to exhibit multiple biological effects. However, the application of 20(R, S)-Rh1 is still limited due to their poor solubilities and low bioavailabilities. Here, the complexation mechanism between 20(R, S)-Rh1 and serum albumin (SA) was explored by a combination of multi-spectroscopy and in silico investigations. Results of spectra experiments showed that 20(R, S)-Rh1 could form complexes with bovine serum albumin (BSA) and quench its intrinsic fluorescence. In addition, the influence of BSA on the anti-cancer activity of 20(R, S)-Rh1 was also evaluated in A549 cells. The result of the MTT assay indicated that anti-cancer activity of 20(R, S)-Rh1 was enhanced when combined with BSA. The results of molecular docking and dynamics simulation demonstrated that the subtle structural differences of 20(R, S)-Rh1 at the 20-carbon atom may be responsible for their different binding capacities and binding stabilities with human serum albumin. The cytotoxicity assay for 20(R, S)-Rh1 alone and their complexes with BSA demonstrated the enhancement effect of BSA for inhibition of cell proliferation. In conclusion, this work provided insight into the complexation mechanism between 20(R, S)-Rh1 and SA. PRACTICAL APPLICATION: The complexation mechanism between 20(R, S)-ginsenoside Rh1 [20(R, S)-Rh1] and serum albumin (SA) was explored by a combination of multi-spectroscopy and in silico investigations in this work. The cytotoxicity assay for 20(R, S)-Rh1 alone and their complexes with bovine serum albumin (BSA) demonstrates the enhancement effect of BSA for inhibition of cell proliferation. Hence, this work provided insight into the complexation mechanism between 20(R, S)-Rh1 and SA.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ziyi Zhu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yingyi Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
18
|
Liu H, Liu M, Wang D, Wang L, Zhao Y, Liu J, Wu Y, Sun B, Zhang Y. Competitive binding of synergistic antioxidant chlorogenic acid and (−)-epigallocatechin gallate with lysozyme: Insights from multispectroscopic characterization, molecular docking and activity evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Singh IR, Yesylevskyy SO, Mitra S. Dietary polyphenols inhibit plasma protein arabinosylation: Biomolecular interaction of genistein and ellagic acid with serum albumins. Biophys Chem 2021; 277:106651. [PMID: 34217110 DOI: 10.1016/j.bpc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
The mode of interaction of polyphenolic compounds like genistein (GTN) and ellagic acid (EGA) with human and bovine serum albumin (HSA and BSA, respectively) was found to differ significantly. Stern-Volmer (SV) analysis of the fluorescence quenching data revealed that the binding strength of EGA (1.9 ± 0.09 × 105 M-1) to HSA is about one order of magnitude higher than GTN (2.24 ± 0.06 × 104 M-1). While the static quenching of HSA fluorescence was found to proceed through simple Stern-Volmer (SV) mechanism, a quenching sphere-of-action model was indispensable for BSA. Temperature dependent fluorescence along with a series of other biophysical experiments and ensemble docking calculation revealed that EGA and GTN bind to the serum proteins primarily through the entropy driven process. The α-helical content and the microenvironment near Trp residue of HSA and BSA did not show any appreciable change due to the binding of either GTN or EGA. Interestingly, both GTN and EGA were found to inhibit the formation of advanced glycated end (AGE) product of serum proteins up to the extent of 70-90% within 12-24 h. Relatively moderate binding propensity along with the anti-glycation ability of the polyphenols confirmed that GTN and EGA can be used either as an alternative or towards development of suitable drugs in the prevention of many diabetic-related complications.
Collapse
Affiliation(s)
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
20
|
Liu T, Liu M, Liu H, Ren Y, Zhao Y, Yan H, Wang Q, Zhang N, Ding Z, Wang Z. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Food Funct 2021; 12:7126-7144. [PMID: 34180492 DOI: 10.1039/d1fo00481f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The co-encapsulation of multiple bioactive components in a carrier may produce synergistic effects and improve health benefits. In this study, the interactions of β-lactoglobulin (β-LG) with epigallocatechin-3-gallate (EGCG) and/or piceatannol (PIC)/oxyresveratrol (OXY) were investigated by multispectroscopic techniques, isothermal titration calorimetry, and molecular docking. The static quenching mechanism of β-LG by EGCG, PIC and OXY was confirmed by fluorescence spectroscopy and UV-vis absorption difference spectroscopy. The binding sites of these three polyphenols in β-LG were identified by site marking fluorescence experiments and molecular docking. The thermodynamic parameters of the β-LG + EGCG/PIC/OXY binary complex and β-LG + EGCG + PIC/OXY ternary complex were obtained from fluorescence data and used to analyze the main driving force for complex formation. The exothermic binding process was further confirmed by isothermal titration calorimetry. The α-helical content, particle size and morphology of free and ligand-bound β-LG were determined by circular dichroism spectroscopy, dynamic light scattering and transmission electron microscopy, respectively. The effect of EGCG, PIC and OXY on the conformation of β-LG was studied by Fourier transform infrared spectroscopy. In addition, the maximum synergistic antioxidant activity between EGCG and PIC/OXY was obtained by response surface analysis. The effects of β-LG in the binary and ternary systems on the antioxidant activity, stability, solubility and cytotoxicity of the polyphenols were also studied. Finally, the different cytotoxicities of the complexes and nanoparticles of the binary and ternary systems were compared. The results of this study are expected to provide a theoretical basis for the development of β-LG-based carriers co-encapsulating a variety of bioactive components.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Diao M, Liang Y, Zhao J, Zhao C, Zhang J, Zhang T. Enhanced cytotoxicity and antioxidant capacity of kaempferol complexed with α-lactalbumin. Food Chem Toxicol 2021; 153:112265. [PMID: 34004225 DOI: 10.1016/j.fct.2021.112265] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/25/2023]
Abstract
As a dietary polyphenol, kaempferol exhibits numerous biological activities such as antioxidant and anticancer properties. However, its application is limited because of its poor solubility and low permeability. This work aims to investigate the interaction of kaempferol with α-lactalbumin. Multiple-spectroscopic techniques were used to prove the interaction between kaempferol and α-lactalbumin. UV-vis absorption spectra suggested that the conformation of α-lactalbumin could be changed via binding with kaempferol. The fluorescence quenching test showed that kaempferol significantly quenched the intrinsic fluorescence of α-lactalbumin. Circular dichroism spectroscopy showed that the percent helicity of α-lactalbumin secondary structure increased when combined with kaempferol. In addition, the α-lactalbumin-kaempferol complex showed stronger inhibition ability on the growth of HeLa cells compared with kaempferol alone. The complex also showed higher antioxidant capacity than kaempferol alone. Molecular docking provided three predicted binding sites of α-lactalbumin for kaempferol, as well as five predicted binding poses of kaempferol. The weak intermolecular interactions were the main forces to stabilize the α-lactalbumin-kaempferol complex. Besides, the binding stability between α-lactalbumin and kaempferol was explored by molecular dynamics simulation. In conclusion, this work provides a basis for the potential application of α-lactalbumin as a delivery carrier for kaempferol owing to its nontoxic and biocompatible properties.
Collapse
Affiliation(s)
- Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
22
|
Wu Y, Liu M, Pei W, Zhao Y, Wang D, Liu T, Sun B, Wang Q, Han J. Thermodynamics, in vitro release and cytotoxity studies on doxorubicin–toluidine blue O combination drugs co-loaded in aptamer-tethered DNA nanostructures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Dong YS, Yu N, Li X, Zhang B, Xing Y, Zhuang C, Xiu ZL. Dietary 5,6,7-Trihydroxy-flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase-Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8774-8787. [PMID: 32806121 DOI: 10.1021/acs.jafc.0c01668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1-Deoxynojirimycin (1-DNJ) is the major effective component of mulberry leaves, exhibiting inhibitory activity against α-glucosidase. However, due to the low content of 1-DNJ in mulberry products, its level cannot meet the lowest dose to exhibit its activity. In this study, a combination of dietary 5,6,7-trihydroxy-flavonoid aglycones with 1-DNJ showed synergistic inhibitory activity against maltase of mice α-glucosidase and recombinant C- and N-termini of maltase-glucoamylase (MGAM) and baicalein with 1-DNJ exhibited the strongest synergistic effect. The synergistic effect of the combination was also confirmed by the maltose tolerance test in vivo. Enzyme kinetics, molecular docking, fluorescence spectrum, and circular dichroism spectrometry studies indicated that the major mechanism of the synergism is that baicalein was a positive allosteric inhibitor and bound to the noncompetitive site of MGAM, causing an increase of the binding affinity of 1-DNJ to MGAM. Our results might provide a theoretical basis for the design of dietary supplements containing mulberry products.
Collapse
Affiliation(s)
- Yue-Sheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Na Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xia Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yan Xing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
24
|
Liu T, Liu M, Guo Q, Liu Y, Zhao Y, Wu Y, Sun B, Wang Q, Liu J, Han J. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113364] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Zhao Y, Cai C, Liu M, Zhao Y, Wu Y, Fan Z, Ding Z, Zhang H, Wang Z, Han J. Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: In vitro/in vivo evaluation and binding properties investigation. Int J Biol Macromol 2020; 153:873-882. [DOI: 10.1016/j.ijbiomac.2020.03.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
|
26
|
Xie Y, Zhang S, Ge X, Ma W, He X, Zhao Y, Ye J, Zhang H, Wang A, Liu Z. Lysosomal‐targeted anticancer half‐sandwich iridium(III) complexes modified with lonidamine amide derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yongkang Xie
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Wenli Ma
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Xiaolin He
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Yao Zhao
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Juan Ye
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Hongmin Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Anwei Wang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| |
Collapse
|
27
|
Pei W, Liu M, Wu Y, Zhao Y, Liu T, Sun B, Liu Y, Wang Q, Han J. High payload and targeted release of anthracyclines by aptamer-tethered DNA nanotrains - Thermodynamic and release kinetic study. Eur J Pharm Sci 2020; 148:105319. [PMID: 32205231 DOI: 10.1016/j.ejps.2020.105319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
As one of the most promising drug delivery carriers, self-assembled DNA nanostructures are characterized of well-defined sizes, excellent biocompatibility, high drug loading and ability to control drug release. Studying the interactions between anticancer drugs and DNA nanostructures can help to associate microstructure-drug loading-release rate-therapeutic effect. Herein AS1411 aptamer-tethered DNA nanotrains (AS1411NTrs) were constructed and used as anthracyclines carrier with high payload for targeted delivery. The bindings of doxorubicin (DOX), epirubicin (EPI), and daunorubicin (DAU) to AS1411NTrs were investigated by isothermal titration calorimetry and fluorescence spectroscopy, and thermodynamic parameters were obtained. The high drug payload capacity of AS1411NTrs was verified by the large number of binding sites (~20). The binding mode was determined by differential scanning calorimetry and potassium iodide (KI) quenching experiments. The release experiment data showed that DNase I facilitated drug release and the release followed the first-order kinetic model. MTT cell viability assay demonstrated that the drug-loaded AS1411NTrs had significantly higher cytotoxicity against target HeLa cells than normal human liver L02 cells. These findings revealed that AS1411NTrs had high payload and targeted release capacity for DOX, EPI, and DAU. This result can provide a theoretical basis for constructing reasonable DNA nanostructures based on drug carriers.
Collapse
Affiliation(s)
- Wenxin Pei
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Tingting Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Bin Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yinglin Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| |
Collapse
|
28
|
Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies. J Biomol Struct Dyn 2020; 39:691-702. [PMID: 31913089 DOI: 10.1080/07391102.2020.1713215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, Ksv with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kabiru Abubakar Musa
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Farrah Wahidah Ridzwan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Saad Tayyab
- Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Zhao Y, Zhao Y, Ma Q, Zhang H, Liu Y, Hong J, Ding Z, Liu M, Han J. Novel carrier-free nanoparticles composed of 7-ethyl-10-hydroxycamptothecin and chlorin e6: Self-assembly mechanism investigation and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2019; 188:110722. [PMID: 31887649 DOI: 10.1016/j.colsurfb.2019.110722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 11/28/2022]
Abstract
The combination therapy strategy based on both chemotherapy and photodynamic therapy (PDT) exhibits great potential for advanced cancer treatment. Multimodal nanodrug delivery systems based on both chemotherapeutic drug and photodynamic agent have been proven to possess excellent synergistic efficacy. In this study, 7-ethyl-10-hydroxycamptothecin (SN38) and chlorin e6 (Ce6) were co-assembled into novel carrier-free nanoparticles (SN38/Ce6 NPs) via simple antisolvent precipitation method. As expected, SN38/Ce6 NPs exhibited uniform morphology with a particle size of around 150 nm and a zeta potential of about -30 mV, good stability in aqueous solution/at lyophilized state and high cellular uptake efficiency against murine mammary carcinoma (4T1) cell lines. Besides, enhanced singlet oxygen generation capacity of the nanoparticles was both observed in test-tube and in 4T1 cell lines in contrast with Ce6 injection. Moreover, a ∼85 % inhibition rate of SN38/Ce6 NPs with laser was detected, which was significantly higher (P < 0.05) than those without laser (∼65 %) and injections (less than 20 %), verified the excellent synergistic antitumor efficacy of the nanoparticles due to combined chemo-photodynamic therapy, enhanced tumor accumulation and higher cellular internalization. Notably, chemical thermodynamic method and molecular dynamics (MD) simulations supplied solid data and visual images to estimate the driving forces for the self-assembly process of the carrier-free nanoparticles as primary hydrophobic interactions (π-π stacking) and subordinate hydrogen bonds. Conclusively, the above self-assembled carrier-free nanoparticles represented a promising synergistic anticancer strategy capable of maximal therapeutic efficacy and minimal systemic toxicity. Moreover, the application of thermodynamic method together with MD simulations in the investigation of NPs self-assembly process also provided new ideas for the assembly mechanism exploration of more complicated nanodrug delivery system.
Collapse
Affiliation(s)
- Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| | - Yuping Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qisan Ma
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huaizhen Zhang
- School of Environment and Planning, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Yinglin Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jingyi Hong
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| |
Collapse
|
30
|
Xu L, Li HL, Wang LP. PH-Sensitive, Polymer Functionalized, Nonporous Silica Nanoparticles for Quercetin Controlled Release. Polymers (Basel) 2019; 11:E2026. [PMID: 31817771 PMCID: PMC6960605 DOI: 10.3390/polym11122026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Some pH-sensitive, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) grafted silica nanoparticles (SNPs) (SNPs-g-PDEAEMA) were designed and synthesized via surface initiated, metal-free, photoinduced atom transfer radical polymerization (ATRP). The structures of the polymers formed in solution were determined by 1H NMR. The modified nanoparticles were characterized by FT-IR spectroscopy, XPS, GPC, TEM and TGA. The analytical results show that α-bromoisobutyryl bromide (BIBB) (ATRP initiator) had been successfully anchored onto SNPs' surfaces, and was followed by surface-initiated, metal-free ATRP of 2-(diethylamino)ethyl methacrylate (DEAEMA). The resultant SNPs-g-PDEAEMA were uniform spherical nanoparticles with the particles size of about 22-25 nm, and the graft density of PDEAEMA on SNPs' surfaces obtained by TGA was 19.98 μmol/m2. Owing to the covalent grafting of pH-sensitive PDEAEMA, SNPs-g-PDEAEMA can dispersed well in acidic aqueous solution, but poorly in neutral and alkaline aqueous solutions, which is conducive to being employed as drug carriers to construct a pH-sensitive controlled drug delivery system. In vitro cytotoxicity evaluation results showed that the cytotoxicity of SNPs-g-PDEAEMA to the L929 cells had completely disappeared on the 3rd day. The loading of quercetin on SNPs-g-PDEAEMA was performed using adsorption process from ethanol solutions, and the dialysis release rate increased sharply when the pH value of phosphate-buffered saline (PBS) decreased from 7.4 to 5.5. All these results indicated that the pH-responsive microcapsules could serve as potential anti-cancer drug carriers.
Collapse
Affiliation(s)
- Lin Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Hong-Liang Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Li-Ping Wang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
31
|
Khan S, Zafar A, Naseem I. Probing the interaction of a coumarin-di(2-picolyl)amine hybrid drug-like molecular entity with human serum albumin: Multiple spectroscopic and molecular modeling techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117330. [PMID: 31280128 DOI: 10.1016/j.saa.2019.117330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
HSA is an important plasma protein responsible for transport of drug molecules. Coumarin derivatives play critical role as anticancer, antidiabetic and antiparkinson agents. In our lab we have synthesized coumarin-based pharmacophore, di(2-picolyl)amine-3(bromoacetyl) coumarin (ligand-L) endowed with anticancer activity. Anticancer agents binding mode of HSA provides valuable pharmacological information and is a structural guidance in synthesizing new drugs with greater efficacy. Thus, binding mechanism of ligand-L with HSA was explored using spectroscopic and molecular docking techniques. UV-Vis spectroscopy demonstrates hyperchromism in the absorbance spectra of HSA on addition of ligand-L suggesting interaction of ligand-L with HSA. Fluorescence spectroscopy indicates quenching in the fluorescence of HSA in the presence of ligand-L confirming the complex formation and this binding follows static mechanism. Steady state fluorescence spectroscopy revealed high binding affinity between ligand-L and HSA with a 1:1 stoichiometry. Thermodynamic parameters obtained by ITC suggest that the interaction between ligand-L and HSA is mainly driven by van der Waals forces and hydrogen bonds, and the negative value of ΔG is an indication of spontaneous binding process. Competitive binding and molecular docking experiments showed that the binding site of ligand-L mainly resides in sub-domain IIA of HSA. CD experiments revealed no significant conformational changes in the secondary structure of HSA on binding of ligand-L. We also found that esterase-like activity of HSA was not affected by ligand-L. In conclusion, this study demonstrates binding mechanism of ligand-L with HSA, and the binding did not induce conformational changes in HSA. This study is likely to provide better understanding of transport and delivery of ligand-L via HSA. Overall, it will provide insights into pharmacokinetic properties of ligand-L and designing new ligand-L based derivatives with greater efficacy.
Collapse
Affiliation(s)
- Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|