1
|
Zhu X, Wang K, Zhang S, Liu Z, Nie B. Comment on "Neurotrophin-3 as a mediator in the link between PM2.5 exposure and psychiatric disorders: A Mendelian randomization study". ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118037. [PMID: 40086030 DOI: 10.1016/j.ecoenv.2025.118037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Affiliation(s)
- Xiaoyang Zhu
- Binzhou Medical University, Yantai, Shandong, China
| | - Kuo Wang
- Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, China
| | | | - Zhiyuan Liu
- Binzhou Medical University, Yantai, Shandong, China
| | - Ben Nie
- Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Mucci F, Arone A, Gurrieri R, Weiss F, Russomanno G, Marazziti D. Third-Generation Antipsychotics: The Quest for the Key to Neurotrophism. Life (Basel) 2025; 15:391. [PMID: 40141736 PMCID: PMC11944073 DOI: 10.3390/life15030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Antipsychotic drugs (APs) have profoundly changed the treatment landscape for psychiatric disorders, yet their impact on neuroplasticity and neurotrophism remains only partially understood. While second-generation antipsychotics (SGAs) are associated with a better side effect profile than their predecessors, the emergence of third-generation antipsychotics (TGAs)-such as brexpiprazole, cariprazine, lurasidone, iloperidone, lumateperone, pimavanserin, and roluperidone-has prompted renewed interest in their potential neuroprotective and pro-cognitive effects. This review attempts to carefully examine the evidence on the neurotrophic properties of TGAs and their role in modulating brain plasticity by analyzing studies published between 2010 and 2024. Although data remain limited and focused primarily on earlier SGAs, emerging findings suggest that some TGAs may exert positive effects on neuroplastic processes, including the modulation of brain-derived neurotrophic factors (BDNFs) and synaptic architecture. However, robust clinical data on their long-term effects and comparative efficacy are lacking; therefore, further research is necessary to validate their role in preventing neurodegenerative changes and improving cognitive outcomes in patients with psychiatric conditions.
Collapse
Affiliation(s)
- Federico Mucci
- Department of Psychiatry, Lucca Zone, Azienda USL Toscana Nord Ovest, 55100 Lucca, Italy;
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Francesco Weiss
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Gerardo Russomanno
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| |
Collapse
|
3
|
Zhang Y, Wang W, Zhang X, Jing R, Wen X, Xiao P, Liu X, Zhao Z, Chang T, Li Y, Liu W, Sun C, Yang X, Yang L, Lu M. Neurotrophin-3 as a mediator in the link between PM 2.5 exposure and psychiatric disorders: A Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117658. [PMID: 39765118 DOI: 10.1016/j.ecoenv.2024.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND The causal relationship between PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and common mental disorders, along with its neuropathological mechanisms, remains unclear. METHODS We used genome-wide association study datasets from the UK Biobank and Psychiatric Genomics Consortium to systematically investigate the causal relationship between PM2.5 and nine common psychiatric disorders using two-sample Mendelian randomization (TSMR) methods. Subsequently, we used two-step MR to investigate the mediating effect of 108 potential mediators in the association between PM2.5 and mental disorders. RESULTS Our findings indicated that PM2.5 was positively associated with major depressive disorder (odds ratio (OR): 1.33, 95 % confidence interval (CI): 1.11-1.55), anxiety disorder (OR: 2.96, 95 % CI: 2.13-3.79), schizophrenia (OR: 1.55, 95 % CI: 1.29-1.81), and attention deficit hyperactivity disorder (ADHD) (OR: 1.95, 95 % CI: 1.66-2.24). Unexpectedly, PM2.5 was inversely associated with bipolar disorder (OR: 0.65, 95 % CI: 0.37-0.93). Additionally, PM2.5 was not significantly associated with autism spectrum disorders (OR: 1.24, 95 % CI: 0.83-1.65), post-traumatic stress disorder (OR: 1.51, 95 % CI: 1.11-1.91), obsessive-compulsive disorder (OR: 0.81, 95 % CI: -0.07-1.69), or anorexia nervosa (OR: 1.42, 95 % CI: 0.86-1.98). Further analysis using two-step MR revealed that Neurotrophin-3 mediated 9.86 % of the PM2.5-ADHD association and 5.88 % of the PM2.5-schizophrenia association. Sensitivity analyses supported these findings. CONCLUSIONS This TSMR analysis provides a comprehensive examination of the causal relationship between PM2.5 exposure and nine common psychiatric disorders, with mediation analysis offering insight into the underlying mechanisms. This study aims to raise public awareness of how air quality affects mental health through empirical evidence.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Wang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuening Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran Jing
- Psychology department, Mount Holyoke College, South Hadley, MA, USA
| | - Xin Wen
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, China
| | - Xinjie Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengle Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tongmin Chang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufei Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Liu
- The First Clinical School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenxi Sun
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lejin Yang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China.
| | - Ming Lu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Zhang T, Liu C, Zhong N, Wang Y, Huang Y, Zhang X. Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways. Int J Mol Sci 2024; 25:10668. [PMID: 39408997 PMCID: PMC11477438 DOI: 10.3390/ijms251910668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, playing a pivotal role in the pathogenesis and prognosis of this disorder. Cognitive impairment in schizophrenia encompasses a wide range of domains, including processing speed, episodic memory, working memory, and executive function. These deficits persist throughout the course of the illness and significantly impact functional outcomes and quality of life. Therefore, it is imperative to identify the biological basis of cognitive deficits in schizophrenia and develop effective treatments. The role of N-methyl-D-aspartate (NMDA) receptors in synaptic transmission and plasticity has long been recognized, making them potential targets for schizophrenia treatment. This review will focus on emerging pharmacology targeting NMDA receptors, offering strategies for the prevention and treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (T.Z.); (C.L.); (N.Z.); (Y.W.); (Y.H.)
| |
Collapse
|
5
|
Rogóż Z, Kamińska K, Lorenc-Koci E, Wąsik A. Iron administered in the neonatal period changed memory, brain monoamine levels, and BDNF mRNA expression in adult Sprague-Dawley rats. Pharmacol Rep 2024; 76:1044-1054. [PMID: 39012420 PMCID: PMC11387440 DOI: 10.1007/s43440-024-00626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Iron is one of the key microelements in the mammalian body and is the most abundant metal in the brain. Iron, a very important chemical element in the body of mammals, is the most abundant metal in the brain. It participates in many chemical reactions taking place in the central nervous system acting as a cofactor in key enzymatic reactions involved in neurotransmitter synthesis and degradation, dendritic arborization, and myelination. Moreover, iron accumulation in the brain has been implicated in the pathogenesis of neurogenerative disorders. MATERIAL AND METHODS The aim of our study was to assess the influence of iron administered orally (30 mg/kg) to rats in the neonatal period (p12-p14) by testing the performance of rats in the open field and social interaction tests, and by evaluating the recognition memory, monoamine levels in some brain structures, and BDNF mRNA expression. The behavioral and biochemical tests were performed in adult p88-p92 rats. RESULTS Iron administered to rats in the neonatal period induced long-term deficits in behavioral tests in adult rats. It reduced the exploratory activity in the open field test. In the social interaction test, it induced deficits in the parameters studied, and decreased memory retention. Moreover, iron changed the brain monoamine levels in some studied brain structures and decreased the expression of BDNF mRNA in the hippocampus. CONCLUSIONS All earlier and our present results indicated that iron administered to rats in the neonatal period induced an increase in oxidative stress which resulted in a change in the brain monoamine levels and decreased BDNF mRNA expression which may play a role in iron-induced memory impairment in adult rats.
Collapse
Affiliation(s)
- Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Kinga Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
6
|
Auvergne A, Traut N, Henches L, Troubat L, Frouin A, Boetto C, Kazem S, Julienne H, Toro R, Aschard H. Multitrait Analysis to Decipher the Intertwined Genetic Architecture of Neuroanatomical Phenotypes and Psychiatric Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00266-0. [PMID: 39260564 DOI: 10.1016/j.bpsc.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND There is increasing evidence of shared genetic factors between psychiatric disorders and brain magnetic resonance imaging (MRI) phenotypes. However, deciphering the joint genetic architecture of these outcomes has proven to be challenging, and new approaches are needed to infer the genetic structures that may underlie those phenotypes. Multivariate analyses are a meaningful approach to reveal links between MRI phenotypes and psychiatric disorders missed by univariate approaches. METHODS First, we conducted univariate and multivariate genome-wide association studies for 9 MRI-derived brain volume phenotypes in 20,000 UK Biobank participants. Next, we performed various complementary enrichment analyses to assess whether and how univariate and multitrait approaches could distinguish disorder-associated and non-disorder-associated variants from 6 psychiatric disorders: bipolar disorder, attention-deficit/hyperactivity disorder, autism, schizophrenia, obsessive-compulsive disorder, and major depressive disorder. Finally, we conducted a clustering analysis of top associated variants based on their MRI multitrait association using an optimized k-medoids approach. RESULTS A univariate MRI genome-wide association study revealed only negligible genetic correlations with psychiatric disorders, while a multitrait genome-wide association study identified multiple new associations and showed significant enrichment for variants related to both attention-deficit/hyperactivity disorder and schizophrenia. Clustering analyses also detected 2 clusters that showed not only enrichment for association with attention-deficit/hyperactivity disorder and schizophrenia but also a consistent direction of effects. Functional annotation analyses of those clusters pointed to multiple potential mechanisms, suggesting in particular a role of neurotrophin pathways in both MRI phenotypes and schizophrenia. CONCLUSIONS Our results show that multitrait association signature can be used to infer genetically driven latent MRI variables associated with psychiatric disorders, thereby opening paths for future biomarker development.
Collapse
Affiliation(s)
- Antoine Auvergne
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France.
| | - Nicolas Traut
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Léo Henches
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lucie Troubat
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Arthur Frouin
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christophe Boetto
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sayeh Kazem
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hanna Julienne
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Roberto Toro
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hugues Aschard
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
7
|
Maćkowiak M. Psychedelics action and schizophrenia. Pharmacol Rep 2023; 75:1350-1361. [PMID: 37899392 PMCID: PMC10661800 DOI: 10.1007/s43440-023-00546-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Psychedelics are compounds acting by serotonin 5-hydroxytryptamine (5-HT)2A receptor activation and induce several behavioral responses. They are of special interest because of their positive effects on neuropsychiatric disorders (depression and posttraumatic stress disorder). However, several findings revealed that some psychedelic actions are similar to symptoms observed in schizophrenia (psychosis, sensorimotor gating impairments, attention, and working memory deficits) which might limit their clinical applications. Psychedelics activate some neurotransmitters, i.e., serotonergic, and glutamatergic, that are also impaired in schizophrenia. Therefore, the neurobiological background of psychedelics and schizophrenia is partially similar. Another important aspect to discuss is the perspective of using psychedelics in schizophrenia therapy. Postmortem studies showed a loss of synapses in schizophrenia, and the positive effects of psychedelics on neuroplasticity (synaptogenesis, neurogenesis, and neuritogenesis) might be essential in the context of schizophrenia therapy. However, because of psychedelics' psychotic action, the recommended doses of psychedelics in schizophrenia treatment are not established, and subpsychedelic dosing or microdosing are considered. Exploratory studies are needed to determine the tolerability of treatment and appropriate dosing regimen. Another therapeutic option is using non-hallucinogenic psychedelic analogs that also induce neuroplastic outcomes but do not have psychotogenic effects. Further preclinical and clinical studies are needed to recognize the potential effectiveness of 5-HT2A agonists in schizophrenia therapy.
Collapse
Affiliation(s)
- Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Pharmacology Department, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
8
|
Loch AA, Pinto MTC, Andrade JC, de Jesus LP, de Medeiros MW, Haddad NM, Bilt MTVD, Talib LL, Gattaz WF. Plasma levels of neurotrophin 4/5, NGF and pro-BDNF influence transition to mental disorders in a sample of individuals at ultra-high risk for psychosis. Psychiatry Res 2023; 327:115402. [PMID: 37544089 DOI: 10.1016/j.psychres.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Neurotrophins (NTs) and their precursors (pro-NTs) are polypeptides with important roles in neuronal development, differentiation, growth, survival and plasticity, as well as apoptosis and neuronal death. Imbalance in NT levels were observed in schizophrenia spectrum disorders, but evidence in ultra-high risk for psychosis (UHR) samples is scarce. METHODS A naturalistic sample of 87 non-help-seeking UHR subjects and 55 healthy controls was drawn from the general population. Blood samples were collected and NT-3, NT-4/5, BDNF, pro-BDNF, NGF, pro-NGF were analyzed through enzyme linked immunosorbent assay (ELISA). Information on cannabis and tobacco use was also collected. Logistic regression models and path analysis were used to control for confounders (tobacco, age, cannabis use). RESULTS NT-4/5 was significantly decreased, and pro-BDNF was significantly increased in UHR individuals compared to controls. Cannabis use and higher NGF levels were significantly related to transition to psychiatric disorders among UHR subjects. Increased pro-BDNF and decreased NT-4/5 influenced transition by the mediation of perceptual abnormalities. CONCLUSIONS Our study shows for the first time that NTs are altered in UHR compared to healthy control individuals, and that they can be a predictor of transition to psychiatric illnesses in this population. Future studies should employ larger naturalistic samples to confirm the findings.
Collapse
Affiliation(s)
- Alexandre Andrade Loch
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil.
| | - Marcel Tavares Camilo Pinto
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Julio Cesar Andrade
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Leonardo Peroni de Jesus
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Matheus Wanderley de Medeiros
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Natalia Mansur Haddad
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Martinus Theodorus van de Bilt
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| | - Leda Leme Talib
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| | - Wagner Farid Gattaz
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| |
Collapse
|
9
|
Nieto RR, Silva H, Armijo A, Nachar R, González A, Castañeda CP, Montes C, Kukuljan M. BDNF and Cognitive Function in Chilean Schizophrenic Patients. Int J Mol Sci 2023; 24:10569. [PMID: 37445746 DOI: 10.3390/ijms241310569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Despite cognitive symptoms being very important in schizophrenia, not every schizophrenic patient has a significant cognitive deficit. The molecular mechanisms underlying the different degrees of cognitive functioning in schizophrenic patients are not sufficiently understood. We studied the relation between brain-derived neurotrophic factor (BDNF) and cognitive functioning in two groups of schizophrenic patients with different cognitive statuses. According to the Montreal Cognitive Assessment (MoCA) results, the schizophrenic patients were classified into two subgroups: normal cognition (26 or more) and cognitive deficit (25 or less). We measured their plasma BDNF levels using ELISAs. The statistical analyses were performed using Spearman's Rho and Kruskal-Wallis tests. We found a statistically significant positive correlation between the plasma BDNF levels and MoCA score (p = 0.04) in the subgroup of schizophrenic patients with a cognitive deficit (n = 29). However, this correlation was not observed in the patients with normal cognition (n = 11) and was not observed in the total patient group (n = 40). These results support a significant role for BDNF in the cognitive functioning of schizophrenics with some degree of cognitive deficit, but suggest that BDNF may not be crucial in patients with a normal cognitive status. These findings provide information about the molecular basis underlying cognitive deficits in this illness.
Collapse
Affiliation(s)
- Rodrigo R Nieto
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Laboratorio de Neurobiología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Hernán Silva
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Alejandra Armijo
- Hospital Dr. José Horwitz Barak, Servicio de Salud Metropolitano Norte, Santiago 8431621, Chile
| | - Rubén Nachar
- Hospital Dr. José Horwitz Barak, Servicio de Salud Metropolitano Norte, Santiago 8431621, Chile
| | - Alfonso González
- Hospital Dr. José Horwitz Barak, Servicio de Salud Metropolitano Norte, Santiago 8431621, Chile
- Escuela de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Carmen Paz Castañeda
- Hospital Dr. José Horwitz Barak, Servicio de Salud Metropolitano Norte, Santiago 8431621, Chile
| | - Cristián Montes
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Manuel Kukuljan
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Laboratorio de Neurobiología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
10
|
Kirkpatrick RH, Munoz DP, Khalid-Khan S, Booij L. Methodological and clinical challenges associated with biomarkers for psychiatric disease: A scoping review. J Psychiatr Res 2021; 143:572-579. [PMID: 33221025 DOI: 10.1016/j.jpsychires.2020.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Over the past decade, psychiatric research has been on an important hunt for biomarkers of psychiatric disease. In psychiatry, the term "biomarker" is a broad umbrella term used to identify any biological variable that can be objectively measured and applied to a diagnosis; this includes genetic and epigenetic assessments, hormone levels, measures of neuro-anatomy and many other scientific modalities. However, despite hundreds of studies on the topic being published yearly and other medical specialties having success in discovering biomarkers, clinical psychiatric practice has not had the same success. This paper aims to consolidate the many opinions on the search for psychiatric biomarkers to suggest key methodological and clinical challenges that psychiatric biomarker research faces. Psychiatry as a specialty has many fundamental differences compared to other medical specialties in methods of diagnosing, underlying etiology and disease pathologies that may be limiting the success of biomarker research in itself and puts strict requirements on the research being conducted. The academic and clinical environment in which the research is being conducted also heavily influences the translation of the findings. Finally, once biomarkers are identified, more often than not they are inapplicable to clinical settings, unable to integrate into clinical practice and fail to outperform current diagnostic practices and guidelines. We also make six recommendations for more promising future research in psychiatric biomarkers.
Collapse
Affiliation(s)
- Ryan H Kirkpatrick
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; School of Medicine, Queen's University, Kingston, Canada.
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; School of Medicine, Queen's University, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Psychology, Queen's University, Kingston, Canada
| | - Sarosh Khalid-Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; School of Medicine, Queen's University, Kingston, Canada; Department of Psychology, Queen's University, Kingston, Canada; Department of Psychiatry, Queen's University, Kingston, Canada
| | - Linda Booij
- Department of Psychology, Queen's University, Kingston, Canada; Department of Psychology, Concordia University, Montréal, Canada; CHU Sainte-Justine Hospital, University of Montréal, Montréal, Canada; Department of Psychiatry, McGill University, Montréal, Canada.
| |
Collapse
|
11
|
Gassó P, Rodríguez N, Martínez-Pinteño A, Mezquida G, Ribeiro M, González-Peñas J, Zorrilla I, Martínez-Sadurni L, Rodriguez-Jimenez R, Corripio I, Sarró S, Ibáñez A, Usall J, Lobo A, Moren C, Cuesta MJ, Parellada M, González-Pinto A, Berrocoso E, Bernardo M, Mas S. A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood. Transl Psychiatry 2021; 11:539. [PMID: 34667144 PMCID: PMC8526619 DOI: 10.1038/s41398-021-01645-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse.
Collapse
Affiliation(s)
- P. Gassó
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - N. Rodríguez
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - A. Martínez-Pinteño
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - G. Mezquida
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - M. Ribeiro
- grid.497559.3Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain ,grid.508840.10000 0004 7662 6114IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - J. González-Peñas
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - I. Zorrilla
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,Department of Psychiatry, Hospital Universitario de Alava, Vitoria, Spain ,BIOARABA Health Research Institute, Vitoria, Spain ,grid.11480.3c0000000121671098University of the Basque Country, Vitoria, Spain
| | - L. Martínez-Sadurni
- grid.411142.30000 0004 1767 8811Hospital del Mar Medicar Research Institute (IMIM), Barcelona, Spain
| | - R. Rodriguez-Jimenez
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.144756.50000 0001 1945 5329Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain ,grid.4795.f0000 0001 2157 7667CogPsy Group, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - I. Corripio
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.413396.a0000 0004 1768 8905Psychiatry Department, Institut d’Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - S. Sarró
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.466668.cFIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain ,grid.410675.10000 0001 2325 3084School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - A. Ibáñez
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.411347.40000 0000 9248 5770Department of Psychiatry, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, Spain
| | - J. Usall
- grid.466982.70000 0004 1771 0789Etiopatogènia i tractament dels trastorns mentals greus (MERITT) Institut de Recerca Sant Joan de Déu Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - A. Lobo
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.11205.370000 0001 2152 8769Department of Medicine and Psychiatry, Universidad de Zaragoza, Zaragoza, Spain ,grid.488737.70000000463436020Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - C. Moren
- grid.10403.36Cellex, IDIBAPS, University of Barcelona-Hospital Clínic of Barcelona, Barcelona, 08036 Spain ,grid.512890.7Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, 28029 Spain
| | - M. J. Cuesta
- grid.497559.3Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain ,grid.508840.10000 0004 7662 6114IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - M. Parellada
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - A. González-Pinto
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,Department of Psychiatry, Hospital Universitario de Alava, Vitoria, Spain ,BIOARABA Health Research Institute, Vitoria, Spain ,grid.11480.3c0000000121671098University of the Basque Country, Vitoria, Spain
| | - E. Berrocoso
- grid.7759.c0000000103580096Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain ,grid.411342.10000 0004 1771 1175Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - M. Bernardo
- grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Medicine, University of Barcelona, Barcelona, Spain
| | - S. Mas
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | | |
Collapse
|
12
|
Ahmed AO, Kramer S, Hofman N, Flynn J, Hansen M, Martin V, Pillai A, Buckley PF. A Meta-Analysis of Brain-Derived Neurotrophic Factor Effects on Brain Volume in Schizophrenia: Genotype and Serum Levels. Neuropsychobiology 2021; 80:411-424. [PMID: 33706323 PMCID: PMC8619762 DOI: 10.1159/000514126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
AIM The Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene has established pleiotropic effects on schizophrenia incidence and morphologic alterations in the illness. The effects of brain-derived neurotrophic factor (BDNF) on brain volume measurements are however mixed seeming to be less established for most brain regions. The current meta-analytic review examined (1) the association of the Val66Met SNP and brain volume alterations in schizophrenia by comparing Met allele carriers to Val/Val homozygotes and (2) the association of serum BDNF with brain volume measurements. METHOD Studies included in the meta-analyses were identified through an electronic search of PubMed and PsycInfo (via EBSCO) for English language publications from January 2000 through December 2017. Included studies had conducted a genotyping procedure of Val66Met or obtained assays of serum BDNF and obtained brain volume data in patients with psychotic disorders. Nonhuman studies were excluded. RESULTS Study 1 which included 52 comparisons of Met carriers and Val/Val homozygotes found evidence of lower right and left hippocampal volumes among Met allele carriers with schizophrenia. Frontal measurements, while also lower among Met carriers, did not achieve statistical significance. Study 2 which included 7 examinations of the correlation between serum BDNF and brain volume found significant associations between serum BDNF levels and right and left hippocampal volume with lower BDNF corresponding to lower volumes. DISCUSSION The meta-analyses provided evidence of associations between brain volume alterations in schizophrenia and variations on the Val66Met SNP and serum BDNF. Given the limited number of studies, it remains unclear if BDNF effects are global or regionally specific.
Collapse
Affiliation(s)
- Anthony O. Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, New York, USA,*Anthony O. Ahmed, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY 10605 (USA),
| | - Samantha Kramer
- Department of Psychology, Long Island University Post, New York, New York, USA
| | - Naama Hofman
- Department of Psychology, St. John's University, New York, New York, USA
| | - John Flynn
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Marie Hansen
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Victoria Martin
- Department of Psychology, City University of New York, New York, New York, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, Georgia, USA
| | - Peter F. Buckley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
13
|
Lech MA, Kamińska K, Leśkiewicz M, Lorenc-Koci E, Rogóż Z. Impact of repeated co-treatment with escitalopram and aripiprazole on the schizophrenia-like behaviors and BDNF mRNA expression in the adult Sprague-Dawley rats exposed to glutathione deficit during early postnatal development of the brain. Pharmacol Rep 2021; 73:1712-1723. [PMID: 34398437 PMCID: PMC8599398 DOI: 10.1007/s43440-021-00318-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND Preclinical and clinical studies have indicated that impaired endogenous synthesis of glutathione during early postnatal development plays a significant role in the pathophysiology of schizophrenia. Moreover, some studies have suggested that antidepressants are able to increase the activity of atypical antipsychotics which may efficiently improve the treatment of negative and cognitive symptoms of schizophrenia. METHODS In the present study, we investigated the influence of repeated co-treatment with escitalopram and aripiprazole on the schizophrenia-like behavior and BDNF mRNA expression in adult rats exposed to glutathione deficit during early postnatal development. Male pups between the postnatal days p5-p16 were treated with the inhibitor of glutathione synthesis, BSO (L-buthionine-(S,R)-sulfoximine) and the dopamine uptake inhibitor, GBR 12,909 alone or in combination. Escitalopram and aripiprazole were given repeatedly for 21 days before the tests. On p90-92 rats were evaluated in the behavioral and biochemical tests. RESULTS BSO given alone and together with GBR 12,909 induced deficits in the studied behavioral tests and decreased the expression of BDNF mRNA. Repeated aripiprazole administration at a higher dose reversed these behavioral deficits. Co-treatment with aripiprazole and an ineffective dose of escitalopram also abolished the behavioral deficits in the studied tests. CONCLUSION The obtained data indicated that the inhibition of glutathione synthesis in early postnatal development induced long-term deficits corresponding to schizophrenia-like behavior and decreased the BDNF mRNA expression in adult rats, and these behavioral deficits were reversed by repeated treatment with a higher dose of aripiprazole and also by co-treatment with aripiprazole and ineffective dose of escitalopram.
Collapse
Affiliation(s)
- Marta A Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Kinga Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences,, 12 Smętna Street, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland. .,The Podhale State Higher Vocational School, Faculty of Cosmetology, Institute of Health, 71 Kokoszków, Nowy Targ, Poland.
| |
Collapse
|
14
|
Rodrigues-Amorim D, Iglesias-Martínez-Almeida M, Rivera-Baltanás T, Fernández-Palleiro P, Freiría-Martínez L, Rodríguez-Jamardo C, Comís-Tuche M, Vallejo-Curto MDC, Álvarez-Ariza M, López-García M, de las Heras E, García-Caballero A, Olivares JM, Spuch C. The Role of the Second Extracellular Loop of Norepinephrine Transporter, Neurotrophin-3 and Tropomyosin Receptor Kinase C in T Cells: A Peripheral Biomarker in the Etiology of Schizophrenia. Int J Mol Sci 2021; 22:ijms22168499. [PMID: 34445205 PMCID: PMC8395201 DOI: 10.3390/ijms22168499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022] Open
Abstract
The neurobiology of schizophrenia is multifactorial, comprising the dysregulation of several biochemical pathways and molecules. This research proposes a peripheral biomarker for schizophrenia that involves the second extracellular loop of norepinephrine transporter (NEText), the tropomyosin receptor kinase C (TrkC), and the neurotrophin-3 (NT-3) in T cells. The study of NEText, NT-3, and TrkC was performed in T cells and plasma extracted from peripheral blood of 54 patients with schizophrenia and 54 healthy controls. Levels of NT-3, TrkC, and NET were significantly lower in plasma and T cells of patients compared to healthy controls. Co-immunoprecipitation (co-IPs) showed protein interactions with Co-IP NEText–NT-3 and Co-IP NEText–TrkC. Computational modelling of protein–peptide docking by CABS-dock provided a medium–high accuracy model for NT-3–NEText (4.6935 Å) and TrkC–NEText (2.1365 Å). In summary, immunocomplexes reached statistical relevance in the T cells of the control group contrary to the results obtained with schizophrenia. The reduced expression of NT-3, TrkC, and NET, and the lack of molecular complexes in T cells of patients with schizophrenia may lead to a peripheral dysregulation of intracellular signaling pathways and an abnormal reuptake of norepinephrine (NE) by NET. This peripheral molecular biomarker underlying schizophrenia reinforces the role of neurotrophins, and noradrenergic and immune systems in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Luis Freiría-Martínez
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - María Comís-Tuche
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - María del Carmen Vallejo-Curto
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - María Álvarez-Ariza
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Marta López-García
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Elena de las Heras
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Alejandro García-Caballero
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Jose Manuel Olivares
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Department of Psychiatry, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
- Correspondence: (J.M.O.); (C.S.)
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Correspondence: (J.M.O.); (C.S.)
| |
Collapse
|
15
|
Lizano P, Lutz O, Xu Y, Rubin LH, Paskowitz L, Lee AM, Eum S, Keedy SK, Hill SK, Reilly JL, Wu B, Tamminga CA, Clementz BA, Pearlson GD, Gershon ES, Keshavan MS, Sweeney JA, Bishop JR. Multivariate relationships between peripheral inflammatory marker subtypes and cognitive and brain structural measures in psychosis. Mol Psychiatry 2021; 26:3430-3443. [PMID: 33060818 PMCID: PMC8046847 DOI: 10.1038/s41380-020-00914-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Elevations in peripheral inflammatory markers have been reported in patients with psychosis. Whether this represents an inflammatory process defined by individual or subgroups of markers is unclear. Further, relationships between peripheral inflammatory marker elevations and brain structure, cognition, and clinical features of psychosis remain unclear. We hypothesized that a pattern of plasma inflammatory markers, and an inflammatory subtype established from this pattern, would be elevated across the psychosis spectrum and associated with cognition and brain structural alterations. Clinically stable psychosis probands (Schizophrenia spectrum, n = 79; Psychotic Bipolar disorder, n = 61) and matched healthy controls (HC, n = 60) were assessed for 15 peripheral inflammatory markers, cortical thickness, subcortical volume, cognition, and symptoms. A combination of unsupervised exploratory factor analysis and hierarchical clustering was used to identify inflammation subtypes. Levels of IL6, TNFα, VEGF, and CRP were significantly higher in psychosis probands compared to HCs, and there were marker-specific differences when comparing diagnostic groups. Individual and/or inflammatory marker patterns were associated with neuroimaging, cognition, and symptom measures. A higher inflammation subgroup was defined by elevations in a group of 7 markers in 36% of Probands and 20% of HCs. Probands in the elevated inflammatory marker group performed significantly worse on cognitive measures of visuo-spatial working memory and response inhibition, displayed elevated hippocampal, amygdala, putamen and thalamus volumes, and evidence of gray matter thickening compared to the proband group with low inflammatory marker levels. These findings specify the nature of peripheral inflammatory marker alterations in psychotic disorders and establish clinical, neurocognitive and neuroanatomic associations with increased inflammatory activation in psychosis. The identification of a specific subgroup of patients with inflammatory alteration provides a potential means for targeting treatment with anti-inflammatory medications.
Collapse
Affiliation(s)
- Paulo Lizano
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Olivia Lutz
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Leah H Rubin
- Department of Neurology, Psychiatry, and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Lyle Paskowitz
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Adam M Lee
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Seenae Eum
- School of Pharmacy, Shenandoah University, Winchester, Virginia, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Baolin Wu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | | | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John A Sweeney
- Deptartment of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Lech MA, Leśkiewicz M, Kamińska K, Rogóż Z, Lorenc-Koci E. Glutathione Deficiency during Early Postnatal Development Causes Schizophrenia-Like Symptoms and a Reduction in BDNF Levels in the Cortex and Hippocampus of Adult Sprague-Dawley Rats. Int J Mol Sci 2021; 22:ijms22126171. [PMID: 34201038 PMCID: PMC8229148 DOI: 10.3390/ijms22126171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Growing body of evidence points to dysregulation of redox status in the brain as an important factor in the pathogenesis of schizophrenia. The aim of our study was to evaluate the effects of l-buthionine-(S,R)-sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, and 1-[2-Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909), a dopamine reuptake inhibitor, given alone or in combination, to Sprague–Dawley pups during early postnatal development (p5–p16), on the time course of the onset of schizophrenia-like behaviors, and on the expression of brain-derived neurotrophic factor (BDNF) mRNA and its protein in the prefrontal cortex (PFC) and hippocampus (HIP) during adulthood. BSO administered alone decreased the levels of BDNF mRNA and its protein both in the PFC and HIP. Treatment with the combination of BSO + GBR 12909 also decreased BDNF mRNA and its protein in the PFC, but in the HIP, only the level of BDNF protein was decreased. Schizophrenia-like behaviors in rats were assessed at three time points of adolescence (p30, p42–p44, p60–p62) and in early adulthood (p90–p92) using the social interaction test, novel object recognition test, and open field test. Social and cognitive deficits first appeared in the middle adolescence stage and continued to occur into adulthood, both in rats treated with BSO alone or with the BSO + GBR 12909 combination. Behavior corresponding to positive symptoms in humans occurred in the middle adolescence period, only in rats treated with BSO + GBR 12909. Only in the latter group, amphetamine exacerbated the existing positive symptoms in adulthood. Our data show that rats receiving the BSO + GBR 12909 combination in the early postnatal life reproduced virtually all symptoms observed in patients with schizophrenia and, therefore, can be considered a valuable neurodevelopmental model of this disease.
Collapse
Affiliation(s)
- Marta Anna Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (M.A.L.); (K.K.); (Z.R.)
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| | - Kinga Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (M.A.L.); (K.K.); (Z.R.)
| | - Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (M.A.L.); (K.K.); (Z.R.)
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: ; Tel.: +48-126-623-272
| |
Collapse
|
17
|
Paredes DA, Jalloh A, Catlow BJ, Jaishankar A, Seo S, Jimenez DV, Martinowich K, Diaz-Bustamante M, Hoeppner DJ, McKay RDG. Bdnf deficiency in the neonatal hippocampus contributes to global dna hypomethylation and adult behavioral changes. Brain Res 2021; 1754:147254. [PMID: 33422542 DOI: 10.1016/j.brainres.2020.147254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Schizophrenia is a neurodevelopmental psychiatric disorder, encompassing genetic and environmental risk factors. For several decades, investigators have been implementing the use of lesions of the neonatal rodent hippocampus to model schizophrenia, resulting in a broad spectrum of adult schizophrenia-related behavioral changes. Despite the extensive use of these proposed animal models of schizophrenia, the mechanisms by which these lesions result in schizophrenia-like behavioral alterations remain unclear. Here we provide in vivo evidence that transient pharmacological inactivation of the hippocampus via tetrodotoxin microinjections or a genetic reduction in brain derived neurotrophic factor (BDNF) protein levels (BDNF+/- rats) lead to global DNA hypomethylation, disrupted maturation of the neuronal nucleus and aberrant acoustic startle response in the adult rat. The similarity between the effects of the two treatments strongly indicate that BDNF signaling is involved in effects obtained after the TTX microinjections. These findings may shed light on the cellular mechanisms underlying the phenotypical features of neonatal transient inhibition of the hippocampus as a preclinical model of schizophrenia and suggest that BDNF signaling represents a target pathway for development of novel treatment therapies.
Collapse
Affiliation(s)
- Daniel A Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Ahmad Jalloh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Briony J Catlow
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Amritha Jaishankar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Pediatrics, Columbia University, New York, NY, USA
| | - Dennisse V Jimenez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Marcelo Diaz-Bustamante
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Ronald D G McKay
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
18
|
Liran M, Rahamim N, Ron D, Barak S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039271. [PMID: 31964648 DOI: 10.1101/cshperspect.a039271] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dorit Ron
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, California 94143-0663, USA
| | - Segev Barak
- Department of Neurobiology, Tel Aviv University, 69978 Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
19
|
Pothier W, Roy MA, Corbière M, Thibaudeau É, Achim AM, Wykes T, Reeder C, Chagnon Y, Cellard C. Personalized cognitive remediation therapy to facilitate return to work or to school in recent-onset psychosis. Neurocase 2020; 26:340-352. [PMID: 33119429 DOI: 10.1080/13554794.2020.1841797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cognitive deficits are barriers to job acquisition or return to school, and can be reduced through Cognitive remediation therapy (CRT). The main goal of this multiple case study was to investigate the effect of personalized CRT on occupational status in three participants with a recent-onset psychosis. Two cases improved their occupational status at post-treatment, and showed improvements in cognitive, psychological, and/or clinical variables. This study suggests that personalized CRT may facilitate job acquisition or return to school. However, the different pathways showed by our cases indicate that personalized CRT may influence occupational status through multiple mechanisms, underlining the relevance of treatment personalization.
Collapse
Affiliation(s)
- William Pothier
- École De Psychologie, Université Laval , Québec, QC, Canada.,Centre De Recherche CERVO , Québec, QC, Canada
| | - Marc-André Roy
- Centre De Recherche CERVO , Québec, QC, Canada.,Département De Psychiatrie Et Neurosciences, Université Laval , Québec, QC, Canada
| | - Marc Corbière
- Département d'éducation et pédagogie, Université Du Québec À Montréal (UQÀM) , Montréal, Qc, Canada.,Centre De Recherche De l'Institut Universitaire En Santé Mentale De Montréal , Montréal, QC, Canada
| | - Élisabeth Thibaudeau
- École De Psychologie, Université Laval , Québec, QC, Canada.,Centre De Recherche CERVO , Québec, QC, Canada
| | | | - Til Wykes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | - Clare Reeder
- Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | - Yvon Chagnon
- École De Psychologie, Université Laval , Québec, QC, Canada
| | - Caroline Cellard
- École De Psychologie, Université Laval , Québec, QC, Canada.,Centre De Recherche CERVO , Québec, QC, Canada
| |
Collapse
|
20
|
Massa N, Alrohaibani A, Mammino K, Bello M, Taylor N, Cuthbert B, Fargotstein M, Coulter MM, Boatright JH, Nocera J, Duncan E. The Effect of Aerobic Exercise on Physical and Cognitive Outcomes in a Small Cohort of Outpatients with Schizophrenia. Brain Plast 2020; 5:161-174. [PMID: 33282679 PMCID: PMC7685675 DOI: 10.3233/bpl-200105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Schizophrenia (SCZ) is a severe, chronic illness characterized by psychotic symptoms and impairments in many cognitive domains. Dysregulation of brain derived neurotrophic factor (BDNF) is associated with the cognitive impairments seen in patients with SCZ. Given the growing literature supporting a positive effect of aerobic exercise on cognition in other populations, we hypothesized that a structured aerobic exercise program would improve cognitive and functional outcomes in subjects with SCZ, potentially mediated by increases in BDNF. Methods: The study was a small randomized parallel group clinical trial of subjects with SCZ comparing 12 weeks of aerobic exercise (AE) against control (CON) stretching and balance training. At Baseline, Week 12, and Week 20 we collected serum samples for analysis of brain derived neurotrophic factor (BDNF), and assessed functional, physical, and cognitive outcomes. Linear regression models were used to compare change scores between timepoints. Results: We randomized 21 subjects to AE and 17 to CON; however, only 9 AE and 6 CON completed their programs. Subjects in both groups were slower at the 400 m walk in Week 12 compared to Baseline, but the AE group had significantly less slowing than the CON group (B = –28.32, p = 0.011). Between Week 12 and Week 20, the AE group had a significantly greater change score on the Composite and Visual Learning Domain of the MATRICS Consensus Cognitive Battery (B = 5.11, p = 0.03; B = 13.96, p = 0.006). Conclusion: These results indicate that participation in a structured aerobic exercise paradigm may modestly blunt physical function decline and enhance cognitive function in individuals with SCZ.
Collapse
Affiliation(s)
- Nicholas Massa
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | | | - Kevin Mammino
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Medina Bello
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Nicholas Taylor
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Bruce Cuthbert
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jeffery H Boatright
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Joe Nocera
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Neurology and Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Erica Duncan
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Abstract
The brain-derived neurotrophic factor (BDNF) is a secretory growth factor that promotes neuronal proliferation and survival, synaptic plasticity and long-term potentiation in the central nervous system. Brain-derived neurotrophic factor biosynthesis and secretion are chrono-topically regulated processes at the cellular level, accounting for specific localizations and functions. Given its role in regulating brain development and activity, BDNF represents a potentially relevant gene for schizophrenia, and indeed BDNF and its non-synonymous functional variant, rs6265 (C → T, Val → Met) have been widely studied in psychiatric genetics. Human and animal studies have indicated that brain-derived neurotrophic factor is relevant for schizophrenia-related phenotypes, and that: (1) fine-tuned regulation of brain-derived neurotrophic factor secretion and activity is necessary to guarantee brain optimal development and functioning; (2) the Val → Met substitution is associated with impaired activity-dependent secretion of brain-derived neurotrophic factor; (3) disruption of brain-derived neurotrophic factor signaling is associated with altered synaptic plasticity and neurodevelopment. However, genome-wide association studies failed to associate the BDNF locus with schizophrenia, even though a sub-threshold association exists. Here, we will review studies focused on the relationship between the genetic variation of BDNF and schizophrenia, trying to fill the gap between genetic risk per se and insights from molecular biology. A deeper understanding of brain-derived neurotrophic factor biology and of the epigenetic regulation of brain-derived neurotrophic factor and its interactome during development may help clarifying the potential role of this gene in schizophrenia, thus informing development of brain-derived neurotrophic factor-based strategies of prevention and treatment of this disorder.
Collapse
|
22
|
Wesołowska A, Jastrzębska-Więsek M, Cios A, Partyka A. The preclinical discovery and development of paliperidone for the treatment of schizophrenia. Expert Opin Drug Discov 2019; 15:279-292. [DOI: 10.1080/17460441.2020.1682994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Wesołowska
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| | | | - Agnieszka Cios
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| |
Collapse
|
23
|
Wang S, Shi X, Wu M, Ma S. Horizontal and vertical integrative analysis methods for mental disorders omics data. Sci Rep 2019; 9:13430. [PMID: 31530853 PMCID: PMC6748966 DOI: 10.1038/s41598-019-49718-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
In recent biomedical studies, omics profiling has been extensively conducted on various types of mental disorders. In most of the existing analyses, a single type of mental disorder and a single type of omics measurement are analyzed. In the study of other complex diseases, integrative analysis, both vertical and horizontal integration, has been conducted and shown to bring significantly new insights into disease etiology, progression, biomarkers, and treatment. In this article, we showcase the applicability of integrative analysis to mental disorders. In particular, the horizontal integration of bipolar disorder and schizophrenia and the vertical integration of gene expression and copy number variation data are conducted. The analysis is based on the sparse principal component analysis, penalization, and other advanced statistical techniques. In data analysis, integration leads to biologically sensible findings, including the disease-related gene expressions, copy number variations, and their associations, which differ from the "benchmark" analysis. Overall, this study suggests the potential of integrative analysis in mental disorder research.
Collapse
Affiliation(s)
- Shuaichao Wang
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingjie Shi
- School of Economics, Nanjing University of Finance and Economics, Nanjing, 210046, China
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, 200433, China.
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
24
|
Lizano P, Lutz O, Ling G, Lee AM, Eum S, Bishop JR, Kelly S, Pasternak O, Clementz B, Pearlson G, Sweeney JA, Gershon E, Tamminga C, Keshavan M. Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum. Am J Psychiatry 2019; 176:564-572. [PMID: 31164007 PMCID: PMC6676480 DOI: 10.1176/appi.ajp.2019.18070825] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The choroid plexus is an important physiological barrier and produces CSF and neurotrophic, angiogenic, and inflammatory factors involved in brain development. Choroid plexus abnormalities have been implicated in both schizophrenia and bipolar disorder. A previous choroid plexus transcriptomic analysis of schizophrenia identified an upregulation of immune and inflammatory genes that correlated with peripheral inflammatory markers. The purpose of this study was to examine choroid plexus volume in probands across the psychosis spectrum and in their first-degree and axis II cluster A relatives, as well as choroid plexus familiality and choroid plexus covariance with clinical, cognitive, brain, and peripheral marker measures. METHODS Choroid plexus volume was quantified (using FreeSurfer) in psychosis probands, their first-degree and axis II cluster A relatives, and healthy control subjects, organized by DSM-IV-TR diagnosis. Analyte, structural connectivity, and genotype data were collected from a subset of study subjects. RESULTS Choroid plexus volume was significantly larger in probands compared with first-degree relatives or healthy control subjects; first-degree relatives had intermediate enlargement compared with healthy control subjects; and total choroid plexus volume was significantly heritable. Larger volume was associated with worse cognition, smaller total gray matter and amygdala volume, larger lateral ventricle volume, and lower structural connectivity in probands. Associations between larger volume and higher levels of interleukin 6 in probands was also observed. CONCLUSIONS These findings suggest the involvement of the choroid plexus across the psychosis spectrum with a potential pathophysiological mechanism involving the neuroimmune axis, which functions in maintaining brain homeostasis and interacting with the peripheral immune and inflammatory system. The choroid plexus may be an important target in future research.
Collapse
Affiliation(s)
- Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia Lutz
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - George Ling
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Adam M. Lee
- The University of Minnesota Academic Health Center, Minneapolis, Minnesota, USA
| | - Seenae Eum
- The University of Minnesota Academic Health Center, Minneapolis, Minnesota, USA
| | - Jeffrey R. Bishop
- The University of Minnesota Academic Health Center, Minneapolis, Minnesota, USA
| | - Sinead Kelly
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Pasternak
- The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Brett Clementz
- The Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia, USA
| | - Godfrey Pearlson
- The Olin Neuropsychiatry Research Center/Institute of Living, Hartford Hospital, Hartford, Connecticut, USA
| | - John A. Sweeney
- The Department of Psychiatry, University of Cincinnati, Cincinnati, USA
| | - Elliot Gershon
- The Department of Psychiatry, University of Chicago, Illinois, USA
| | - Carol Tamminga
- The Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matcheri Keshavan
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Kirli U, Binbay T, Drukker M, Elbi H, Kayahan B, Gökçelli DK, Özkınay F, Onay H, Alptekin K, van Os J. Is BDNF-Val66Met polymorphism associated with psychotic experiences and psychotic disorder outcome? Evidence from a 6 years prospective population-based cohort study. Am J Med Genet B Neuropsychiatr Genet 2019; 180:113-121. [PMID: 29785763 DOI: 10.1002/ajmg.b.32641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
Abstract
There is little research on genetic risk for the extended psychosis phenotype ranging from psychotic experiences (PEs) to psychotic disorders (PDs). In this general population-based prospective cohort study, the longitudinal associations between BDNF-Val66Met polymorphism and the different levels of the extended psychosis phenotype were investigated. Addresses were contacted in a multistage clustered probability sampling frame covering 11 districts and 302 neighborhoods at baseline (n = 4011). A nested case-control study (n = 366) recruited individuals with PEs and PDs as well as individuals with no psychotic symptoms. In this subgroup, blood sampling for genetic analysis and assessment of environmental exposures were carried out, followed by clinical re-appraisal at follow-up 6 years later (n = 254). The BDNF-Val66Met polymorphism was significantly associated with the extended psychosis phenotype. The pattern of the association was that the BDNF-Val66Met polymorphism impacted in a dose-response but extra-linear fashion, with stronger impact at the PD end of the extended psychosis phenotype. Associations were still significant after adjusting for sociodemographic factors and environmental exposures including life events, childhood adversity, socioeconomic status, urbanicity, and cannabis use. The BDNF-Val66Met polymorphism may index susceptibility to expression of psychosis along a spectrum.
Collapse
Affiliation(s)
- Umut Kirli
- Department of Psychiatry, Van Education and Research Hospital, Van, Turkey.,School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tolga Binbay
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
| | - Marjan Drukker
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hayriye Elbi
- Faculty of Medicine, Department of Psychiatry, Ege University, Izmir, Turkey
| | - Bülent Kayahan
- Faculty of Medicine, Department of Psychiatry, Ege University, Izmir, Turkey
| | | | - Ferda Özkınay
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Hüseyin Onay
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Köksal Alptekin
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
| | - Jim van Os
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Psychosis Studies, Institute of Psychiatry, King's College, King's Health Partners, London, United Kingdom.,Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
26
|
Holmen TL, Egeland J, Andersen E, Mordal J, Andreassen OA, Ueland T, Bigseth TT, Bang-Kittilsen G, Engh JA. The Association Between Cardiorespiratory Fitness and Cognition Appears Neither Related to Current Physical Activity Nor Mediated by Brain-Derived Neurotrophic Factor in a Sample of Outpatients With Schizophrenia. Front Psychiatry 2019; 10:785. [PMID: 31708824 PMCID: PMC6823665 DOI: 10.3389/fpsyt.2019.00785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: We investigated whether levels of current physical activity (PA) contribute to the established relationship between cardiorespiratory fitness (CRF) and cognition in schizophrenia and whether brain-derived neurotrophic factor (BDNF) or its precursor proBDNF mediates this relationship. Method: Sixty-one outpatients with schizophrenia spectrum disorders participated. Neurocognition was assessed with the Wechsler Adult Intelligence Scale (WAIS) and nine subtests from the MATRICS battery comprising a neurocognitive composite score (NCS). CRF was assessed with peak oxygen uptake (VO2peak) measured directly during a maximum exercise test. Current PA levels were objectively assessed by an accelerometer worn for four consecutive days. BDNF and proBDNF were measured in fasting blood. Four serial parallel mediation analyses and two additional parallel mediation analyses were conducted, while controlling for age and sex at all levels. Results: No direct effects were found between PA measures and WAIS or NCS. No significant mediating effects of CRF or BDNF/proBDNF were detected. Conclusion: The results do not support the hypothesis that PA contributes to the naturally occurring relationship between CRF and cognition in schizophrenia or the hypothesis that BDNF or proBDNF mediates this relationship. The results arguably support the assumption that the association between CRF and cognition in schizophrenia is established developmentally early. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02205684.
Collapse
Affiliation(s)
- Tom Langerud Holmen
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jens Egeland
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Eivind Andersen
- Faculty of Humanities, Sports and Educational Science, University College of Southeast Norway, Notodden, Norway
| | - Jon Mordal
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ole Andreas Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,KG Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | | | - Gry Bang-Kittilsen
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway
| | - John Abel Engh
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
27
|
Neugebauer K, Hammans C, Wensing T, Kumar V, Grodd W, Mevissen L, Sternkopf MA, Novakovic A, Abel T, Habel U, Nickl-Jockschat T. Nerve Growth Factor Serum Levels Are Associated With Regional Gray Matter Volume Differences in Schizophrenia Patients. Front Psychiatry 2019; 10:275. [PMID: 31105606 PMCID: PMC6498747 DOI: 10.3389/fpsyt.2019.00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous neuroimaging studies have revealed structural brain abnormalities in schizophrenia patients. There is emerging evidence that dysfunctional nerve growth factor (NGF) signaling may contribute to structural brain alterations found in these patients. In this pilot study, we investigated whether there was a correlation between NGF serum levels and gray matter volume (GMV) in schizophrenia patients. Further, we investigated whether there was an overlap between the correlative findings and cross-sectional GMV differences between schizophrenia patients (n = 18) and healthy controls (n = 19). Serum NGF was significantly correlated to GMV in the left prefrontal lobe, the left midcingulate cortex, and the brainstem in schizophrenia patients. However, we did not find any correlations of NGF serum levels with GMV in healthy controls. Schizophrenia patients showed smaller GMV than healthy controls in brain regions located in the bilateral limbic system, bilateral parietal lobe, bilateral insula, bilateral primary auditory cortex, left frontal lobe, and bilateral occipital regions. In a conjunction analysis, GMV in the left midcingulate cortex (MCC) appears negatively correlated to NGF serum levels in the group of schizophrenia patients and also to be reduced compared to healthy controls. These results suggest an increased vulnerability of schizophrenia patients to changes in NGF levels compared to healthy controls and support a role for NGF signaling in the pathophysiology of schizophrenia. As our pilot study is exploratory in nature, further studies enrolling larger sample sizes will be needed to further corroborate our findings and to investigate the influence of additional covariates.
Collapse
Affiliation(s)
- Kristina Neugebauer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Christine Hammans
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Tobias Wensing
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vinod Kumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany.,Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Grodd
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Lea Mevissen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Melanie A Sternkopf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ana Novakovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Low brain-derived neurotrophic factor levels in post-mortem brains of older adults with depression and dementia in a large clinicopathological sample. J Affect Disord 2018; 241:176-181. [PMID: 30125821 DOI: 10.1016/j.jad.2018.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Disturbances in peripheral brain-derived neurotrophic factor (BDNF) have been reported in major depressive disorder (MDD). However, there are no studies measuring BDNF levels directly in post-mortem brains of older subjects with MDD and dementia. We aimed to verify if brain BDNF levels were lower in older adults with lifetime history of MDD with and without dementia. METHODS BDNF levels of post-mortem brains from 80 community-dwelling older individuals with lifetime MDD with and without dementia were compared with levels from 80 controls without lifetime MDD. Participants with no reliable close informant, or with prolonged agonal state were excluded. Lifetime MDD was defined as at least one previous episode according to the Structured Clinical Interview for DSM (SCID). RESULTS BDNF levels were lower in the MDD group with dementia than in participants with dementia and without MDD as confirmed by multivariate analysis adjusted for clinical and cardiovascular risk factors (ß = -0.106, 95%CI = -0.204; -0.009, p = 0.034). No difference was found in the group with MDD without dementia compared with their controls. LIMITATIONS The retrospective assessment of a lifetime history of depression may be subject to information bias and this study only establishes a cross-sectional association between lifetime history of MDD and lower levels of BDNF in patients with dementia. CONCLUSIONS In this community sample of older individuals, lower brain BDNF levels were found in cases with both lifetime MDD and dementia. Low BDNF levels could be a moderator to accelerated brain aging observed in MDD with dementia.
Collapse
|
29
|
Grech AM, Ratnayake U, Hannan AJ, van den Buuse M, Hill RA. Sex-Dependent Effects of Environmental Enrichment on Spatial Memory and Brain-Derived Neurotrophic Factor (BDNF) Signaling in a Developmental "Two-Hit" Mouse Model Combining BDNF Haploinsufficiency and Chronic Glucocorticoid Stimulation. Front Behav Neurosci 2018; 12:227. [PMID: 30356704 PMCID: PMC6189322 DOI: 10.3389/fnbeh.2018.00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/11/2018] [Indexed: 01/02/2023] Open
Abstract
Neurodevelopmental disorders are thought to be caused by a combination of adverse genetic and environmental insults. The "two-hit" hypothesis suggests that an early first "hit" primes the developing brain to be vulnerable to a second "hit" during adolescence which triggers behavioral dysfunction. We have previously modeled this scenario in mice and found that the combined effect of a genetic hapolinsuffuciency in the brain-derived neurotrophic factor (BDNF) gene (1st hit) and chronic corticosterone (CORT) treatment during adolescence (2nd hit), caused spatial memory impairments in adulthood. Environmental enrichment (EE) protocols are designed to stimulate experience-dependent plasticity and have shown therapeutic actions. This study investigated whether EE can reverse these spatial memory impairments. Wild-type (WT) and BDNF heterozygous (HET) mice were treated with corticosterone (CORT) in their drinking water (50 mg/L) from weeks 6 to 8 and exposed to EE from 7 to 9 weeks. Enriched housing included open top cages with additional toys, tunnels, housing, and platforms. Y-maze novel preference testing, to assess short-term spatial memory, was performed at 10 weeks of age. At week 16 dorsal hippocampus tissue was obtained for Western blot analysis of expression levels of BDNF, the BDNF receptor TrkB, and NMDA receptor subunits, GluNR1, 2A and 2B. As in our previous studies, spatial memory was impaired in our two-hit (BDNF HET + CORT) mice. Simultaneous EE prevented these impairments. However, EE appeared to worsen spatial memory performance in WT mice, particularly those exposed to CORT. While BDNF levels were lower in BDNF HET mice as expected, there were no further effects of CORT or EE in males but a close to significant female CORT × EE × genotype interaction which qualitatively corresponded with Y-maze performance. However, EE caused both sex- and genotype-specific effects on phosphorylated TrkB residues and GluNR expression within the dorsal hippocampus, with GluNR2B levels in males changing in parallel with spatial memory performance. In conclusion, beneficial effects of EE on spatial memory emerge only following two developmental disruptions. The mechanisms by which EE exerts its effects are likely via regulation of multiple activity-dependent pathways, including TrkB and NMDA receptor signaling.
Collapse
Affiliation(s)
- Adrienne M. Grech
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Udani Ratnayake
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J. Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Rachel A. Hill
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Interaction of Brain-Derived Neurotrophic Factor Val66Met genotype and history of stress in regulation of prepulse inhibition in mice. Schizophr Res 2018; 198:60-67. [PMID: 28864281 DOI: 10.1016/j.schres.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism results in reduced activity-dependent BDNF release and has been implicated in schizophrenia. However, effects of the polymorphism on functional dopaminergic and N-methyl-d-aspartate (NMDA) receptor-associated activity remain unclear. We used prepulse inhibition, a measure of sensorimotor gating which is disrupted in schizophrenia, and assessed the effects of acute treatment with the dopamine receptor agonist, apomorphine (APO), and the NMDA receptor antagonist, MK-801. We used adult humanized hBDNFVal66Met 'knockin' mice which express either the Val/Val, Val/Met or Met/Met genotype. An interaction of BDNF with stress was modelled by chronic young-adult treatment with corticosterone (CORT). At 1 or 3mg/kg, APO had no effect in Val/Val mice but significantly reduced PPI at the 100ms inter-stimulus interval (ISI) in Val/Met and Met/Met mice. However, after CORT pretreatment, APO significantly reduced PPI in all genotypes similarly. At 0.1 or 0.25mg/kg, MK-801 significantly disrupted PPI at the 100ms ISI independent of genotype or CORT pretreatment. There were differential effects of APO and MK-801 on PPI at the 30ms ISI and startle between the genotypes, irrespective of CORT pretreatment. These results show that the BDNF Val66Met Val/Met and Met/Met genotypes are more sensitive than the Val/Val genotype to the effect of APO on PPI. A history of stress, here modelled by chronic CORT administration, increases effects of APO in Val/Val mice.
Collapse
|
31
|
Mehrabi S, Janahamdi M, Joghataie MT, Barati M, Marzban M, Hadjighassem M, Farahmandfar M. Blockade of p75 Neurotrophin Receptor Reverses Irritability and Anxiety-Related Behaviors in a Rat Model of Status Epilepticus. IRANIAN BIOMEDICAL JOURNAL 2018; 22:264-74. [PMID: 29108398 PMCID: PMC5949129 DOI: 10.22034/ibj.22.4.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022]
Abstract
Background Many recent epidemiological studies have shown that epileptic patients are more likely suffer from depression, anxiety, and irritability. However, the cellular mechanisms of epilepsy-induced psychotic behaviors are not fully elucidated. Neurotrophin receptors have been suggested to be involved in epilepsy and also in psychiatric disorders. Up-regulation of p75NTR expression and activation of p75NTR signalling cascades after the seizure have been shown, but the role of the p75 receptor in epilepsy-induced psychotic behaviors has not been documented so far. Therefore, the present work aimed to investigate the effect of p75 receptor blockade on seizure activity, irritability, and anxiety-like behaviors in a rat model of status epilepticus. Methods Rats were injected with pilocarpine (350 mg/ kg, i.p.) to induce status epilepticus. Then various behavioral tests were performed after the blockade of p75NTR alone or in combination with p75 antagonist and phenobarbital. Molecular analysis by PCR was performed to investigate the expression of p75 and pro-NGF. Results Molecular findings indicated a high level of mRNA expression for both p75 receptors and pro-NGF in the epileptic model group. Results also showed that the administration of p75 antagonist alone or in combination with phenobarbital was able to significantly influence the behavioral responses. Furthermore, 20-hours video monitoring showed a decrease in the frequency and duration of seizures in the rat group receiving p75 antagonist. Conclusion Taken together, the present study suggests that the blockade of the p75 receptor may affect the irritability and anxiety-related behavior in a rat model of status epilepticus.
Collapse
Affiliation(s)
- Soraya Mehrabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahamdi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataie
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of pharmaceutical biotechnology, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Marzban
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Predicting relapse in schizophrenia: Is BDNF a plausible biological marker? Schizophr Res 2018; 193:263-268. [PMID: 28734907 DOI: 10.1016/j.schres.2017.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023]
Abstract
Understanding the biological processes that underlie why patients relapse is an issue of fundamental importance to the detection and prevention of relapse in schizophrenia. Brain Derived Neurotrophic Factor (BDNF), a facilitator of brain plasticity, is reduced in patients with schizophrenia. In the present study, we examined whether decreases in plasma BDNF levels could be used as a biological predictor of relapse in schizophrenia. A total of 221 patients were prospectively evaluated for relapse over 30months in the Preventing Relapse in Schizophrenia: Oral Antipsychotics Compared to Injectables: eValuating Efficacy (PROACTIVE) study. Serial blood samples were collected at a maximum of 23 time points during the 30-month trial and BDNF levels were measured in plasma samples by ELISA. Receiver Operating Characteristic (ROC) curve analysis indicated that BDNF was not a significant predictor of relapse, hospitalization or exacerbation. Regardless of treatment group (oral second generation antipsychotic vs. long-acting injectable risperidone microspheres), baseline BDNF value did not differ significantly between those who experienced any of the adverse outcomes and those who did not. While contrary to the study hypothesis, these robust results offer little support for the use of plasma BDNF alone as a biomarker to predict relapse in schizophrenia.
Collapse
|
33
|
Kemse N, Kale A, Chavan-Gautam P, Joshi S. Increased intake of vitamin B12, folate, and omega-3 fatty acids to improve cognitive performance in offspring born to rats with induced hypertension during pregnancy. Food Funct 2018; 9:3872-3883. [DOI: 10.1039/c8fo00467f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin B12, folic acid, and docosahexaenoic acid levels are reported to be altered in women with preeclampsia.
Collapse
Affiliation(s)
- Nisha Kemse
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411043
- India
| | - Anvita Kale
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411043
- India
| | - Preeti Chavan-Gautam
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411043
- India
| | - Sadhana Joshi
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth (Deemed to be University)
- Pune 411043
- India
| |
Collapse
|
34
|
Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1727-1743. [PMID: 29654346 PMCID: PMC5949137 DOI: 10.1007/s00213-018-4882-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.
Collapse
|
35
|
Bakirhan A, Yalcin Sahiner S, Sahiner IV, Safak Y, Goka E. Association of serum brain derived neurotropic factor with duration of drug-naive period and positive-negative symptom scores in drug naive schizophrenia. PLoS One 2017; 12:e0189373. [PMID: 29287075 PMCID: PMC5747443 DOI: 10.1371/journal.pone.0189373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 10/31/2017] [Indexed: 01/19/2023] Open
Abstract
Introduction The aim of this study was to compare the serum brain derived neurotropic factor (BNDF) levels of patients with schizophrenia who had never received an antipsychotic treatment with those of a control group. Also, to analyze the relationship between the Positive and Negative Symptom Scale (PANSS) scores and BDNF levels of the patients during the period they were drug-naive. Materials and methods The sample of the study comprised patients who presentedto the Psychiatry Clinic and were admitted after a distinctive schizophrenia diagnosis was made in accordance with the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) diagnosis classification and who were not using and never had any antipsychotic medicine. A total of 160 participants were included in the study, 80 of whom had schizophrenia patients and 80 constituted the age- and sex-matched healthy control group. Before the start of the treatment, the serum samples to be checked for the BDNF levels were collected from the patients. Results The difference between the average BDNF levels of the groups were statistically significant (t = -5.25; p˂.001). An analysis as to whether there was a relation between the BDNF levels and the drug-naïve duration indicated no correlations. An examination of the relationship between PANSS scores and BDNF levels of the patients yielded no correlations. Discussion Serum BDNF levels seem to be one of the indicators of schizophrenia and its progress; nevertheless, we still do not have sufficient information about this neurotropic factor. In light of our study, the neurodevelopmental changes that occur at disease onset of the illness prominently affect the progress of the illness, which highlights the importance of the treatment in the early stages.
Collapse
Affiliation(s)
- Abdurrahim Bakirhan
- Department of Psychiatry, Elbistan State Hospital, Kahramanmaras, Turkey
- * E-mail:
| | | | | | - Yasir Safak
- Department of Psychiatry, Diskapi Yildirim Beyazit Research and Training Hospital, Ankara, Turkey
| | - Erol Goka
- Department of Psychiatry, Numune Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
36
|
Abstract
PURPOSE OF THE REVIEW The purpose of this review was to examine the recent literature on detecting cognitive impairment in patients with heart failure (HF) and the evidence indicating any ramifications of cognitive impairment on patient engagement in HF self-care. RECENT FINDINGS Mild cognitive impairment (MCI) is common in HF and impacts on patients' engagement in self-care, yet it is frequently not detected. The use of screening tools, even when brief, improves detection of MCI. However, the most sensitive, specific and feasible screening measure to use in practice is yet to be identified. A full neuropsychological assessment is required to determine a diagnosis of cognitive impairment and to identify the specific areas of cognitive deficit. In patients with HF, there appears to be differing clusters of cognitive deficits. Identification of these deficits may help inform the application of specific cognitive training strategies to ameliorating cognitive changes in HF patients and potentially enhance engagement in self-care. Screening for cognitive impairment is crucial in the management of HF patients to ensure that potential self-care deficits are prevented. The optimal screening tool is yet to be identified.
Collapse
|
37
|
Agrawal R, Kalmady SV, Venkatasubramanian G. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:115-125. [PMID: 28449558 PMCID: PMC5426484 DOI: 10.9758/cpn.2017.15.2.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023]
Abstract
Objective Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Methods Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Results Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. Conclusion The study presents in silicoquantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current understanding of the disorder.
Collapse
Affiliation(s)
- Rimjhim Agrawal
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sunil Vasu Kalmady
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| |
Collapse
|
38
|
Prats C, Arias B, Ortet G, Ibáñez MI, Moya J, Pomarol-Clotet E, Fañanás L, Fatjó-Vilas M. Neurotrophins role in depressive symptoms and executive function performance: Association analysis of NRN1 gene and its interaction with BDNF gene in a non-clinical sample. J Affect Disord 2017; 211:92-98. [PMID: 28107668 DOI: 10.1016/j.jad.2016.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuritin-1 is a neurotrophic factor involved in synaptic plasticity that has been associated with depressive disorders, schizophrenia and cognitive performance. The study of genotype-phenotype relationships in healthy individuals is a useful framework to investigate the etiology of brain dysfunctions. We therefore aimed to investigate in a non-clinical sample whether NRN1 gene contributes to the psychopathological profile, with a particular focus on the clinical dimensions previously related to the NRN1 gene (i.e. depressive and psychotic). Furthermore, we aimed to analyze: i) the role of NRN1 on executive functions, ii) whether the association between either NRN1-psychopathological profile or NRN1-cognitive performance is moderated by the BDNF gene. METHODS The sample comprised 410 non-clinical subjects who filled in the self-reported Brief Symptom Inventory (BSI) and were assessed for executive performance (Verbal Fluency, Wisconsin Card Sorting Test (WCST) and Letter-Number subscale (WAIS-III)). Genotyping included nine SNPs in NRN1 and one in BDNF. RESULTS i) GG homozygotes (rs1475157-NRN1) showed higher scores on BSI depressive dimension and on total scores compared to A carriers (corrected p-values: 0.0004 and 0.0003, respectively). ii) a linear trend was detected between GG genotype of rs1475157 and a worse cognitive performance in WCST total correct responses (uncorrected p-value: 0.029). iii) Interaction between rs1475157-NRN1 and Val66Met-BDNF was found to modulate depressive symptoms (p=0.001, significant after correction). LIMITATIONS Moderate sample size; replication in a larger sample is needed. CONCLUSIONS NRN1 is associated with depressive symptoms and executive function in a non-clinical sample. Our results also suggest that the role of NRN1 seems to be modulated by BDNF.
Collapse
Affiliation(s)
- C Prats
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation; Av Jordà 8, 08035 Barcelona, Spain
| | - B Arias
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation; Av Jordà 8, 08035 Barcelona, Spain
| | - G Ortet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Department of Basic and Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló, Spain
| | - M I Ibáñez
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Department of Basic and Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló, Spain
| | - J Moya
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Department of Psychology, Faculty of Education, Psychology and Social Work, University of Lleida, Spain
| | - E Pomarol-Clotet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - L Fañanás
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation; Av Jordà 8, 08035 Barcelona, Spain
| | - M Fatjó-Vilas
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; FIDMAG Germanes Hospitalàries Research Foundation; Av Jordà 8, 08035 Barcelona, Spain.
| |
Collapse
|
39
|
Kalayci F, Ozdemir A, Saribas S, Yuksel P, Ergin S, Kuskucu AM, Poyraz CA, Balcioglu I, Alpay N, Kurt A, Sezgin Z, Kocak BT, Icel RS, Can G, Tokman HB, Kocazeybek B. The relationship of Chlamydophila pneumoniae with schizophrenia: The role of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in this relationship. Rev Argent Microbiol 2017; 49:39-49. [PMID: 28256360 DOI: 10.1016/j.ram.2016.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Abstract
Several pathogens have been suspected of playing a role in the pathogenesis of schizophrenia. Chronic inflammation has been proposed to occur as a result of persistent infection caused by Chlamydophila pneumoniae cells that reside in brain endothelial cells for many years. It was recently hypothesized that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) may play prominent roles in the development of schizophrenia. NT-3 and BDNF levels have been suggested to change in response to various manifestations of infection. Therefore, we aimed to elucidate the roles of BDNF and NT3 in the schizophrenia-C. pneumoniae infection relationship. RT-PCR, immunofluorescence and ELISA methods were used. Fifty patients suffering from schizophrenia and 35 healthy individuals were included as the patient group (PG) and the healthy control group (HCG), respectively. We detected persistent infection in 14 of the 50 individuals in the PG and in 1 of the 35 individuals in the HCG. A significant difference was found between the two groups (p<0.05). Twenty-two individuals in the PG and 13 in the HCG showed seropositivity for past C. pneumoniae infection, and no difference was observed between the groups (p>0.05). C. pneumoniae DNA was not detected in any group. A significant difference in NT-3 levels was observed between the groups, with very low levels in the PG (p<0.001). A significant difference in BDNF levels was also found, with lower levels in the PG (p<0.05). The mean serum NT-3 level was higher in the PG cases with C. pneumoniae seropositivity than in seronegative cases; however, this difference was not statistically significant (p>0.05). In conclusion, we suggest that NT-3 levels during persistent C. pneumoniae infection may play a role in this relationship.
Collapse
Affiliation(s)
- Fatma Kalayci
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Armagan Ozdemir
- T.C. Health Ministry Bakirkoy Mental Health and Neurology Training and Research Hospital Psychiatry Clinic, Istanbul, Turkey
| | - Suat Saribas
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Pelin Yuksel
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Sevgi Ergin
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Ali Mert Kuskucu
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Cana Aksoy Poyraz
- Istanbul University, Cerrahpasa Medical Faculty, Department of Psychiatry, Istanbul, Turkey
| | - Ibrahim Balcioglu
- Istanbul University, Cerrahpasa Medical Faculty, Department of Psychiatry, Istanbul, Turkey
| | - Nihat Alpay
- T.C. Health Ministry Bakirkoy Mental Health and Neurology Training and Research Hospital Psychiatry Clinic, Istanbul, Turkey
| | - Aykut Kurt
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Zeynep Sezgin
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Biochemistry, Istanbul, Turkey
| | - Banu Tufan Kocak
- T.C. Health Ministry Erenkoy Mental Health and Neurology Training and Research Hospital, Istanbul, Turkey
| | - Rana Sucu Icel
- T.C. Health Ministry, Sisli Etfal Education and Research Hospital, Department of Blood Center, Istanbul, Turkey
| | - Gunay Can
- Istanbul University, Cerrahpasa Medical Faculty, Department of Public Health, Istanbul, Turkey
| | - Hrisi Bahar Tokman
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Bekir Kocazeybek
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey.
| |
Collapse
|
40
|
Gumru S, Aricioglu F. Antipsychotics: Neurobiological Bases for a Therapeutic Approach. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20130320010604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Salih Gumru
- Marmara University, School of Pharmacy Department of Pharmacology and Psychopharmacology Research Unit, Istanbul-Turkey
| | - Feyza Aricioglu
- Marmara University, School of Pharmacy Department of Pharmacology and Psychopharmacology Research Unit, Istanbul-Turkey
| |
Collapse
|
41
|
Uys M, Shahid M, Sallinen J, Dreyer W, Cockeran M, Harvey BH. The α2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:108-16. [PMID: 27381554 DOI: 10.1016/j.pnpbp.2016.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Early studies suggest that selective α2C-adrenoceptor (AR)-antagonism has anti-psychotic-like and pro-cognitive properties. However, this has not been demonstrated in an animal model of schizophrenia with a neurodevelopmental construct. The beneficial effects of clozapine in refractory schizophrenia and associated cognitive deficits have, among others, been associated with its α2C-AR modulating activity. Altered brain-derived neurotrophic factor (BDNF) has been linked to schizophrenia and cognitive deficits. We investigated whether the α2C-AR antagonist, ORM-10921, could modulate sensorimotor gating and cognitive deficits, as well as alter striatal BDNF levels in the social isolation reared (SIR) model of schizophrenia, comparing its effects to clozapine and the typical antipsychotic, haloperidol, the latter being devoid of α2C-AR-activity. Moreover, the ability of ORM-10921 to augment the effects of haloperidol on the above parameters was also investigated. Animals received subcutaneous injection of either ORM-10921 (0.01mg/kg), clozapine (5mg/kg), haloperidol (0.2mg/kg), haloperidol (0.2mg/kg)+ORM-10921 (0.01mg/kg) or vehicle once daily for 14days, followed by assessment of novel object recognition (NOR), prepulse inhibition (PPI) of startle response and striatal BDNF levels. SIR significantly attenuated NOR memory as well as PPI, and reduced striatal BDNF levels vs. social controls. Clozapine, ORM-10921 and haloperidol+ORM-10921, but not haloperidol alone, significantly improved SIR-associated deficits in PPI and NOR, with ORM-10921 also significantly improving PPI deficits vs. haloperidol-treated SIR animals. Haloperidol+ORM-10921 significantly reversed reduced striatal BDNF levels in SIR rats. α2C-AR-antagonism improves deficits in cognition and sensorimotor gating in a neurodevelopmental animal model of schizophrenia and bolsters the effects of a typical antipsychotic, supporting a therapeutic role for α2C-AR-antagonism in schizophrenia.
Collapse
Affiliation(s)
- Madeleine Uys
- Division of Pharmacology, North-West University (Potchefstroom Campus), Potchefstroom 2520, South Africa.
| | | | | | - Walter Dreyer
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Marike Cockeran
- Medicines Usage in South Africa, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| |
Collapse
|
42
|
Fatjó-Vilas M, Prats C, Pomarol-Clotet E, Lázaro L, Moreno C, González-Ortega I, Lera-Miguel S, Miret S, Muñoz MJ, Ibáñez I, Campanera S, Giralt-López M, Cuesta MJ, Peralta V, Ortet G, Parellada M, González-Pinto A, McKenna PJ, Fañanás L. Involvement of NRN1 gene in schizophrenia-spectrum and bipolar disorders and its impact on age at onset and cognitive functioning. World J Biol Psychiatry 2016; 17:129-39. [PMID: 26700405 DOI: 10.3109/15622975.2015.1093658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Neuritin 1 gene (NRN1) is involved in neurodevelopment processes and synaptic plasticity and its expression is regulated by brain-derived neurotrophic factor (BDNF). We aimed to investigate the association of NRN1 with schizophrenia-spectrum disorders (SSD) and bipolar disorders (BPD), to explore its role in age at onset and cognitive functioning, and to test the epistasis between NRN1 and BDNF. METHODS The study was developed in a sample of 954 SSD/BPD patients and 668 healthy subjects. Genotyping analyses included 11 SNPs in NRN1 and one functional SNP in BDNF. RESULTS The frequency of the haplotype C-C (rs645649-rs582262) was significantly increased in patients compared to controls (P = 0.0043), while the haplotype T-C-C-T-C-A (rs3763180-rs10484320-rs4960155-rs9379002-rs9405890-rs1475157) was more frequent in controls (P = 3.1 × 10(-5)). The variability at NRN1 was nominally related to changes in age at onset and to differences in intelligence quotient, in SSD patients. Epistasis between NRN1 and BDNF was significantly associated with the risk for SSD/BPD (P = 0.005). CONCLUSIONS Results suggest that: (i) NRN1 variability is a shared risk factor for both SSD and BPD, (ii) NRN1 may have a selective impact on age at onset and intelligence in SSD, and (iii) the role of NRN1 seems to be not independent of BDNF.
Collapse
Affiliation(s)
- Mar Fatjó-Vilas
- a Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain;,b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain
| | - Claudia Prats
- a Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain;,b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain
| | - Edith Pomarol-Clotet
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,c FIDMAG Germanes Hospitalàries, Research Foundation , Barcelona , Spain
| | - Luisa Lázaro
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,d Servei de Psiquiatria i Psicologia Infantil i Juvenil, Hospital Clínic de Barcelona , Barcelona , Spain ;,e Institut d'investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Departament de Psiquiatria i Psicobiologia Clínica, Facultat de Medicina, Universitat de Barcelona , Barcelona , Spain
| | - Carmen Moreno
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,f Servicio de Psiquiatría del Niño y del Adolescente , Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM); Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense , Madrid , Spain
| | - Itxaso González-Ortega
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,g Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune , Vitoria , Spain
| | - Sara Lera-Miguel
- d Servei de Psiquiatria i Psicologia Infantil i Juvenil, Hospital Clínic de Barcelona , Barcelona , Spain
| | - Salvador Miret
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,h Centre de Salut Mental d'Adults de Lleida, Servei de Psiquiatria, Salut Mental i Addiccions, Hospital Universitari Santa Maria de Lleida , Lleida , Spain
| | - Ma José Muñoz
- i Àrea d'Adolescents, Complex Assistencial en Salut Mental Benito Menni, Sant Boi De Llobregat , Spain
| | - Ignacio Ibáñez
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,j Departament de Psicologia Bàsica , Clínica i Psicobiologia, Facultat de Ciències de la Salut, Universitat Jaume I , Castelló , Spain
| | - Sílvia Campanera
- h Centre de Salut Mental d'Adults de Lleida, Servei de Psiquiatria, Salut Mental i Addiccions, Hospital Universitari Santa Maria de Lleida , Lleida , Spain
| | - Maria Giralt-López
- i Àrea d'Adolescents, Complex Assistencial en Salut Mental Benito Menni, Sant Boi De Llobregat , Spain
| | - Manuel J Cuesta
- k Servicio de Psiquiatría, Complejo Hospitalario de Navarra, Pamplona Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Victor Peralta
- k Servicio de Psiquiatría, Complejo Hospitalario de Navarra, Pamplona Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Generós Ortet
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,j Departament de Psicologia Bàsica , Clínica i Psicobiologia, Facultat de Ciències de la Salut, Universitat Jaume I , Castelló , Spain
| | - Mara Parellada
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,f Servicio de Psiquiatría del Niño y del Adolescente , Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM); Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense , Madrid , Spain
| | - Ana González-Pinto
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,g Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune , Vitoria , Spain
| | - Peter J McKenna
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,c FIDMAG Germanes Hospitalàries, Research Foundation , Barcelona , Spain
| | - Lourdes Fañanás
- a Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain;,b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain
| |
Collapse
|
43
|
The Neurotrophic Factor Receptor p75 in the Rat Dorsolateral Striatum Drives Excessive Alcohol Drinking. J Neurosci 2016; 36:10116-27. [PMID: 27683907 DOI: 10.1523/jneurosci.4597-14.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Brain-derived neurotrophic factor (BDNF) signaling in the dorsolateral striatum (DLS) keeps alcohol intake in moderation. For example, activation of the BDNF receptor tropomyosin receptor kinase B (TrkB) in the DLS reduces intake in rats that consume moderate amounts of alcohol. Here, we tested whether long-term excessive consumption of alcohol produces neuroadaptations in BDNF signaling in the rat DLS. We found that BDNF was no longer able to gate alcohol self-administration after a history of repeated cycles of binge alcohol drinking and withdrawal. We then elucidated the possible neuroadaptations that could block the ability of BDNF to keep consumption of alcohol in moderation. We report that intermittent access to 20% alcohol in a two-bottle choice paradigm that models excessive alcohol drinking produces a mobilization of DLS p75 neurotrophin receptor (p75NTR), whose activities oppose those of the Trk receptors, including TrkB. These neuroadaptations were not observed in the DLS of rats exposed to continuous access to 10% alcohol or in rats consuming sucrose. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of the p75NTR gene in the DLS, as well as intra-DLS infusion or systemic administration of the p75NTR modulator, LM11A-31, significantly reduced binge drinking of alcohol. Together, our results suggest that excessive alcohol consumption produces a change in BDNF signaling in the DLS, which is mediated by the recruitment of p75NTR. Our data also imply that modulators of p75NTR signaling could be developed as medications for alcohol abuse disorders. SIGNIFICANCE STATEMENT Neuroadaptations gate or drive excessive, compulsive alcohol drinking. We previously showed that brain-derived neurotrophic factor and its receptor, TrkB, in the dorsolateral striatum (DLS), are part of an endogenous system that keeps alcohol drinking in moderation. Here, we show that a history of excessive alcohol intake produces neuroadaptations in the DLS that preclude BDNF's ability to gate alcohol self-administration in rats by the recruitment of the low-affinity neurotrophin receptor, p75NTR, whose activities opposes those of the Trk receptors. Finally, we show that the administration of the p75NTR modulator, LM11A-31, significantly reduces excessive alcohol intake suggesting that the drug may be developed as a new treatment for alcohol abuse disorders.
Collapse
|
44
|
Abstract
Recent meta-analyses of serum brain-derived neurotrophic factor (BDNF) have reported lower levels in patients with schizophrenia. However, most studies did not consider the potential confounding effects of time of collection, age, sex, smoking, and obesity. Here, we sought to examine differences in serum BDNF between medicated patients with schizophrenia compared with control subjects, taking into consideration the potential confounders of serum BDNF. Serum was obtained from a sample of fasted blood collected from all participants, and BDNF was assayed on a commercially available kit. After adjusting for potential confounders, there was no statistically significant difference between cases and control subjects (p = 0.261). In the model, body mass index emerged as the most significant predictor of serum BDNF (β = 0.22, p = 0.009). The present study did not support a role for serum BDNF as a biomarker in schizophrenia. This could be due to the nonspecific nature of serum BDNF and its association with both mental and physical conditions.
Collapse
|
45
|
Vakhrusheva J, Marino B, Stroup TS, Kimhy D. Aerobic Exercise in People with Schizophrenia: Neural and Neurocognitive Benefits. Curr Behav Neurosci Rep 2016; 3:165-175. [PMID: 27766192 DOI: 10.1007/s40473-016-0077-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia is characterized by extensive neurocognitive deficits, which are linked to greater disability, poorer functional outcome, and have been suggested to impact daily functioning more than clinical symptoms. Aerobic exercise (AE) has emerged as a potential intervention. This review examines the impact of AE on brain structure and function along with neurocognitive performance in individuals with schizophrenia. Preliminary evidence indicates that AE can increase hippocampal volume and cortical thickness, in addition to exerting a neuroprotective effect against hippocampal volume decrease and cortical thinning. There is also evidence that AE is able to significantly increase serum brain-derived neurotrophic factor (BDNF) levels, which are implicated in neurogenesis, neuroplasticity, and cognitive improvement. Finally, evidence suggests that AE plays a significant role in improving overall cognition, including improvements in processing speed, working memory, and visual learning. The authors discuss the implications of the findings and provide recommendations for future research and areas of inquiry.
Collapse
Affiliation(s)
- Julia Vakhrusheva
- Department of Psychiatry Westchester Division, Weill Cornell Medical College, Outpatient Department, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - Brielle Marino
- Department of Psychiatry Westchester Division, Weill Cornell Medical College, Outpatient Department, 21 Bloomingdale Road, White Plains, NY 10605, USA
| | - T Scott Stroup
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - David Kimhy
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
46
|
Fisher M, Mellon SH, Wolkowitz O, Vinogradov S. Neuroscience-informed Auditory Training in Schizophrenia: A Final Report of the Effects on Cognition and Serum Brain-Derived Neurotrophic Factor. SCHIZOPHRENIA RESEARCH-COGNITION 2016; 3:1-7. [PMID: 26705516 PMCID: PMC4685735 DOI: 10.1016/j.scog.2015.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective We previously reported the interim effects in a per protocol analysis of a randomized controlled trial of an innovative neuroscience-informed computerized cognitive training approach in schizophrenia. Here we report the effects of training on behavioral outcome measures in our final sample using an intent-to-treat analysis. We also report the effects on serum brain-derived neurotrophic factor (BDNF). Method Eighty-seven clinically stable participants with schizophrenia were randomly assigned to either targeted auditory training (AT, N=46) or a computer games control condition (CG, N=41). Participants were assessed on neurocognition, symptoms and functional outcome at baseline and after 50 hours of intervention delivered over 10 weeks. Serum BDNF was assessed at baseline, at 2 weeks, and at 10 weeks. Results After the intervention, AT participants showed significant gains in global cognition, speed of processing, verbal learning, and verbal memory, relative to CG participants, with no changes in symptoms or functioning. At baseline, schizophrenia participants had significantly lower-than-normal serum BDNF. AT participants showed a significant increase in serum BDNF compared to CG participants, and “normalized” levels by post training. Conclusions Participants with chronic schizophrenia made significant cognitive gains after 50 hours of intensive computerized training delivered as a stand-alone treatment, but no improvement in symptoms or functioning. Serum BDNF levels were significantly increased, and may serve as a peripheral biomarker for the effects of training. Future research must focus on: 1) Methods of integrating cognitive training with psychosocial treatments; 2) A deeper understanding of underlying neurophysiology in order to enhance critical mechanisms of action.
Collapse
Affiliation(s)
- Melissa Fisher
- Department of Psychiatry, University of California, San Francisco, CA, United States ; Department of Psychiatry, San Francisco VA Medical Center, San Francisco, CA, United States
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology, Reproductive Sciences, University of California, San Francisco, United States
| | - Owen Wolkowitz
- Department of Psychiatry, University of California, San Francisco, CA, United States
| | - Sophia Vinogradov
- Department of Psychiatry, University of California, San Francisco, CA, United States ; Department of Psychiatry, San Francisco VA Medical Center, San Francisco, CA, United States
| |
Collapse
|
47
|
Silberman DM, Acosta GB, Zorrilla Zubilete MA. Long-term effects of early life stress exposure: Role of epigenetic mechanisms. Pharmacol Res 2016; 109:64-73. [PMID: 26774789 DOI: 10.1016/j.phrs.2015.12.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022]
Abstract
Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders.
Collapse
Affiliation(s)
- Dafne M Silberman
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET), 1ª Cátedra de Farmacología, Facultad de Medicina, UBA, Paraguay 2155, Piso 15, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela B Acosta
- Instituto de Investigaciones Farmacológicas (ININFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, 5(to) piso, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María A Zorrilla Zubilete
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET), 1ª Cátedra de Farmacología, Facultad de Medicina, UBA, Paraguay 2155, Piso 15, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
48
|
Hoirisch-Clapauch S, Amaral OB, Mezzasalma MAU, Panizzutti R, Nardi AE. Dysfunction in the coagulation system and schizophrenia. Transl Psychiatry 2016; 6:e704. [PMID: 26731441 PMCID: PMC5068878 DOI: 10.1038/tp.2015.204] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Although different hypotheses have been formulated to explain schizophrenia pathogenesis, the links between them are weak. The observation that five psychotic patients on chronic warfarin therapy for deep-vein thrombosis showed long-term remission of psychotic symptoms made us suspect that abnormalities in the coagulation pathway, specifically low tissue plasminogen activator (tPA) activity, could be one of the missing links. Our hypothesis is supported by a high prevalence of conditions affecting tPA activity in drug-naive schizophrenia, such as antiphospholipid antibodies, elevated cytokine levels, hyperinsulinemia and hyperhomocysteinemia. We recently screened a group of schizophrenia patients and controls for conditions affecting tPA activity. Free-protein S deficiency was highly prevalent among patients, but not found in controls. Free-protein S and functional protein C are natural anticoagulants that form complexes that inhibit tPA inhibitors. All participants had normal protein C levels, suggesting that protein S could have a role in schizophrenia, independent of protein C. Chronic patients and those studied during acute episodes had between three and six conditions affecting tPA and/or protein S activity, while patients in remission had up to two, which led us to postulate that multiple conditions affecting tPA and/or protein S activity could contribute to the full expression of schizophrenia phenotype. This paper describes the physiological roles of tPA and protein S, reviewing how their activity influences pathogenesis and comorbidity of schizophrenia. Next, it analyzes how activity of tPA and protein S is influenced by biochemical abnormalities found in schizophrenia. Last, it suggests future directions for research, such as studies on animal models and on therapeutic approaches for schizophrenia aiming at increasing tPA and protein S activity.
Collapse
Affiliation(s)
- S Hoirisch-Clapauch
- Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro, Brazil
| | - O B Amaral
- Department of Medical Biochemistry, Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A U Mezzasalma
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| | - R Panizzutti
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Basic-Clinical Neuroscience Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A E Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Lizano PL, Keshavan MS, Tandon N, Mathew IT, Mothi SS, Montrose DM, Yao JK. Angiogenic and immune signatures in plasma of young relatives at familial high-risk for psychosis and first-episode patients: A preliminary study. Schizophr Res 2016; 170:115-22. [PMID: 26692348 PMCID: PMC4735038 DOI: 10.1016/j.schres.2015.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 01/12/2023]
Abstract
Schizophrenia (SZ) is a heterogeneous disorder that presents in adolescence, persists into adulthood, and has many clinical features. Recent evidence suggests that abnormalities in inflammatory, neurotrophic, and angiogenic processes may play a role in the etiology of SZ. The identification of molecular biomarkers early in the course of disease is crucial to transforming diagnostic and therapeutic avenues. We investigated 14 molecular analytes focusing on inflammatory, neurotrophic and angiogenic pathways from the plasma of antipsychotic-naïve familial high risk for SZ (FHR; n=35) and first-episode psychosis (FEP; n=45) subjects, in comparison to healthy controls (HC, n=39). We identified distinct alterations in molecular signatures in young relatives at FHR for SZ prior to psychosis onset and FEP subjects. Firstly, the expression of soluble fms-like tyrosine kinase (sFlt-1), an anti-angiogenic factor that binds vascular endothelial growth factor (VEGF), was significantly increased in the FHR group compared to HC, but not in FEP. Secondly, interferon gamma (IFNγ) was significantly reduced in the FEP group compared to HC. Thirdly, network analysis revealed a positive correlation between sFlt-1 and VEGF, suggesting an activation of the angiogenic cascade in the FHR group, which persists in FEP. Our results indicate an angiogenesis and immunological dysfunction early in the course of disease, shifting the balance towards anti-angiogenesis and inflammation.
Collapse
Affiliation(s)
- Paulo L Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States,Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States,Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States,Department of Psychiatry, Harvard Medical School, Boston, MA, United States,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States,Baylor College of Medicine, Houston, TX, United States
| | - Ian T Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Suraj Sarvode Mothi
- Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Debra M Montrose
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jeffrey K Yao
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; VA Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States.
| |
Collapse
|
50
|
Logrip ML, Barak S, Warnault V, Ron D. Corticostriatal BDNF and alcohol addiction. Brain Res 2015; 1628:60-7. [PMID: 25801118 PMCID: PMC4577309 DOI: 10.1016/j.brainres.2015.03.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022]
Abstract
Growth factors, long studied for their involvement in neuronal development and plasticity, also regulate responses to drugs of abuse, including alcohol. This review details the intricate interaction between the Brain-Derived Neurotrophic Factor (BDNF) and alcohol, and provides evidence to suggest that corticostriatal BDNF signaling acts to keep alcohol drinking in moderation. Specifically, we describe studies in rodent models suggesting that moderate consumption of alcohol increases BDNF levels in the dorsal striatum, which in turn act to suppress alcohol intake by activating a Mitogen-Activated Protein Kinase (MAPK)-dependent genomic mechanism. We further provide data to suggest that alcohol intake levels escalate when the endogenous corticostriatal BDNF pathway becomes dysregulated. Finally, we summarize recent studies suggesting that specific microRNAs targeting BDNF mRNA in the medial prefrontal cortex (mPFC) regulate the breakdown of the protective corticostriatal BDNF pathway.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Vincent Warnault
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|