1
|
Li W, Wang Y, Liu C, Yu Y, Xu L, Dong B. Comparing Efficacy of Chiglitazar, Pioglitazone, and Semaglutide in Type 2 Diabetes: A Retrospective Study. Diabetes Ther 2025; 16:993-1017. [PMID: 40126828 PMCID: PMC12006573 DOI: 10.1007/s13300-025-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a complex chronic metabolic disease characterized by insulin resistance, dyslipidemia, inflammation, and visceral fat accumulation, leading to complications, such as cardiovascular disease and kidney damage. Emerging metabolic regulators, including chiglitazar, semaglutide, and pioglitazone, have gained prominence in managing T2D and associated metabolic disorders. However, their relative efficacy and optimal clinical applications remain unclear. This study's objective was to compare the effects of chiglitazar, semaglutide, and pioglitazone on glycemic control, lipid metabolism, insulin resistance, inflammatory response, liver function, kidney function, and dawn phenomenon intensity in T2D participants, and to explore their relative efficacy and clinical value. METHODS This retrospective study was conducted from October 2024 to November 2024 to compare the effects of chiglitazar, semaglutide, and pioglitazone in managing type 2 diabetes (T2D) and associated metabolic disorders.This retrospective cohort study included 175 participants with T2D divided into three groups: chiglitazar (n = 55), semaglutide (n = 57), and pioglitazone (n = 63). participants underwent a 4-week treatment period. Core metrics, including blood glucose, lipid metabolism indicators, urinary albumin-to-creatinine ratio (UACR), and metabolic insulin resistance score (METS-IR), were assessed before and after treatment to evaluate drug efficacy. RESULTS Dawn phenomenon: chiglitazar significantly improved dawn phenomenon intensity (Δ0.004 ± 0.80 to -0.77 ± 0.67, p < 0.01), outperforming other drugs. Lipid metabolism: semaglutide demonstrated superior efficacy in reducing total cholesterol (TC) and free fatty acids (FFA) (p < 0.05). Kidney function: both semaglutide and chiglitazar significantly lowered UACR (p < 0.01), with semaglutide showing greater efficacy (-0.13 ± 0.02 versus -0.08 ± 0.01, p < 0.05). Insulin resistance and cardiovascular protection: all three drugs significantly improved METS-IR, with no statistical differences between groups (p > 0.05). SAFETY all drugs exhibited good tolerability with no severe adverse events. CONCLUSIONS Chiglitazar is particularly effective for participants with pronounced dawn phenomenon, semaglutide excels in lipid metabolism improvement and kidney protection, while pioglitazone remains effective for insulin resistance and glycemic control. These findings provide evidence-based guidance for individualized T2D management.
Collapse
Affiliation(s)
- Wenxuan Li
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yangang Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanfeng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongzhuo Yu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingzi Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Li W, Wang Y, Liu C, Yu Y, Xu L, Dong B. Evaluation of the Regulatory Effect of the Pan-PPAR Agonist Chiglitazar on the Dawn Phenomenon. Diabetes Ther 2025; 16:731-748. [PMID: 40016574 PMCID: PMC11926308 DOI: 10.1007/s13300-025-01708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION The dawn phenomenon (DP), characterized by early morning hyperglycemia, poses a significant challenge in diabetes management and is associated with increased glycemic variability and long-term complications. Despite its clinical impact, effective therapeutic strategies remain limited. Chiglitazar, a novel pan-PPAR agonist, has demonstrated benefits in improving lipid metabolism and insulin sensitivity, but its potential role in mitigating DP remains unexplored. This study evaluates the regulatory effect of chiglitazar on DP and investigates its possible mechanisms beyond lipid modulation. METHODS This retrospective observational study included 22 hospitalized diabetic patients who received chiglitazar (20 mg). Blood glucose levels at 3:00 a.m. and fasting glucose levels over three consecutive days were measured pre- and post-treatment, and the dawn phenomenon intensity was calculated. Lipid profiles were assessed to explore potential correlations with glucose changes. RESULTS Following chiglitazar administration, significant reductions were observed in LDL-C (43.82 ± 18.27 vs. 36.97 ± 16.90, p < 0.05), FFA (6.00 ± 2.38 vs. 5.06 ± 1.77, p < 0.05), mean 3:00 a.m. blood glucose (Z = - 2.03, p < 0.05), and fasting blood glucose (Z = - 2.96, p < 0.05). DP intensity also significantly improved (Z = - 3.48, p < 0.01). However, no significant correlation was found between glucose improvements and lipid profile changes (p > 0.05), suggesting an alternative mechanism of action. CONCLUSIONS Chiglitazar effectively reduces DP intensity and improves glycemic control, independent of its effects on lipid metabolism. These findings suggest a potential link between chiglitazar's mechanism and circadian rhythm regulation, possibly through the modulation of REV-ERB nuclear receptors. Further research is needed to confirm this hypothesis and evaluate the long-term clinical benefits of chiglitazar in diabetes management.
Collapse
Affiliation(s)
- Wenxuan Li
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yangang Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanfeng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongzhuo Yu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingzi Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Xie Z, Xin J, Huang C, Liao C. Drugs targeting peroxisome proliferator-activated receptors. Drug Discov Today 2025; 30:104318. [PMID: 39986646 DOI: 10.1016/j.drudis.2025.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
The year 2024 witnessed the accelerated approvals of two peroxisome proliferator-activated receptor (PPAR) agonists for the treatment of primary biliary cholangitis (PBC). PPARs, including three isoforms (PPARα, PPARγ, and PPARδ), are therapeutic targets generating considerable debate yet also seeing significant advances in their successful targeting. Currently, selective PPAR agonists are used to manage hyperlipidemia, type 2 diabetes mellitus (T2DM), and PBC, and dual/pan-PPAR agonists have been developed to address various disorders. In this review, we summarize the PPAR agonists approved globally, and their pros and cons as therapeutic agents for various diseases, with a particular focus on those agonists marketed since 2010.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiwei Xin
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chuping Huang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
4
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2025; 69:225-244. [PMID: 38555000 PMCID: PMC11954843 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
5
|
Geng Z, Zheng Y, Li Q, Pan D, Lu X, Chen F, Zhang Y, Li K, Zhou K, Shi L, Wang Y. PPARA variant rs1800234 had a dose dependent pharmacogenetics impact on the therapeutic response to chiglitazar. Pharmacogenomics 2024; 25:605-610. [PMID: 39555806 DOI: 10.1080/14622416.2024.2430163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Our objective was to explore the pharmacogenetic impact of three known functional variants in drug target genes and determine whether they can explain the inter-individual variation in therapeutic response. METHODS In a post hoc analysis of data from randomized controlled clinical trials of chiglitazar, we genotyped 481 Chinese patients with T2DM and investigated the association of variants in PPAR genes with the therapeutic outcome separated by dose using linear regression. RESULTS rs1800234, a gain-of-function variant of PPARA, had a dose-dependent pharmacogenetic impact on the therapeutic response to chiglitazar. The C allele was significantly associated with reduced therapeutic response in the 48 mg group, while no significant association was observed in the 32 mg group. In addition, in patients without the C allele, patients treated with 48 mg chiglitazar had a better therapeutic response than those treated with 32 mg chiglitazar. To the contrary, in patients with the C allele, patients treated with 48 mg chiglitazar had a worse therapeutic response than those treated with 32 mg of chiglitazar. CONCLUSION The PPARA variant rs1800234 had a dose-dependent pharmacogenetic impact on the therapeutic response to chiglitazar. It could help explain the absence of a dose effect of chiglitazar and serve as a potential biomarker for the chosen dose of chiglitazar in the future. In addition, our study provided important reference for the design and clinical application of multi-target drugs.
Collapse
Affiliation(s)
- Zhaoxu Geng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co. Ltd, Shenzhen, Guangdong, China
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences Co. Ltd, Shenzhen, Guangdong, China
| | - Fei Chen
- China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Keying Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - You Wang
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Liu L, Sun W, Tang X, Zhen D, Guan C, Fu S, Liu J. Chiglitazar attenuates high-fat diet-induced nonalcoholic fatty liver disease by modulating multiple pathways in mice. Mol Cell Endocrinol 2024; 593:112337. [PMID: 39098464 DOI: 10.1016/j.mce.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide; however, effective intervention strategies for NAFLD are still unavailable. The present study sought to investigate the efficacy of chiglitazar, a pan-PPAR agonist, in protecting against NAFLD in mice and its underlying molecular mechanism. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks to generate NAFLD and the HFD was continued for an additional 10 weeks in the absence or presence of 5 mg/kg/d or 10 mg/kg/d chiglitazar by gavage. Chiglitazar significantly improved dyslipidemia and insulin resistance, ameliorated hepatic steatosis and reduced liver inflammation and oxidative stress in NAFLD mice. RNA-seq revealed that chiglitazar alleviated HFD-induced NAFLD in mice through multiple pathways, including fatty acid metabolism regulation, insulin signaling pathway, and AMPK signaling pathway. This study demonstrated the potential therapeutic effect of chiglitazar on NAFLD. Chiglitazar ameliorated NAFLD by modulating multiple pathways.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Conghui Guan
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
7
|
Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther 2024; 18:3337-3360. [PMID: 39100221 PMCID: PMC11298177 DOI: 10.2147/dddt.s468147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.
Collapse
Affiliation(s)
- Rani Yulifah Elkanawati
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, West Java, 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
8
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
9
|
Peng Q, Liu X, Li W, Jing H, Li J, Gao X, Luo Q, Breeze CE, Pan S, Zheng Q, Li G, Qian J, Yuan L, Yuan N, You C, Du S, Zheng Y, Yuan Z, Tan J, Jia P, Wang J, Zhang G, Lu X, Shi L, Guo S, Liu Y, Ni T, Wen B, Zeng C, Jin L, Teschendorff AE, Liu F, Wang S. Analysis of blood methylation quantitative trait loci in East Asians reveals ancestry-specific impacts on complex traits. Nat Genet 2024; 56:846-860. [PMID: 38641644 DOI: 10.1038/s41588-023-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/02/2023] [Indexed: 04/21/2024]
Abstract
Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.
Collapse
Affiliation(s)
- Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Jing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjian Gao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Qiwen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Guochao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiaqiang Qian
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liyun Yuan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Yuan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Chenglong You
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Guoqing Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences Co. Ltd., Shenzhen, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Wen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- The Fifth People's Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
France SP, Lindsey EA, McInturff EL, Berritt S, Carney DW, DeForest JC, Fink SJ, Flick AC, Gibson TS, Gray K, Johnson AM, Leverett CA, Liu Y, Mahapatra S, Watson RB. Synthetic Approaches to the New Drugs Approved During 2022. J Med Chem 2024; 67:4376-4418. [PMID: 38488755 DOI: 10.1021/acs.jmedchem.3c02374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In 2022, 23 new small molecule chemical entities were approved as drugs by the United States FDA, European Union EMA, Japan PMDA, and China NMPA. This review describes the synthetic approach demonstrated on largest scale for each new drug based on patent or primary literature. The synthetic routes highlight practical methods to construct molecules, sometimes on the manufacturing scale, to access the new drugs. Ten additional drugs approved in 2021 and one approved in 2020 are included that were not covered in the previous year's review.
Collapse
Affiliation(s)
- Scott P France
- Process Research and Development, Merck & Co., Rahway, NJ 07065, United States
| | - Erick A Lindsey
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Emma L McInturff
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Simon Berritt
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Daniel W Carney
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Jacob C DeForest
- Pfizer, Inc., 10770 Science Center Drive, San Diego, CA 92130, United States
| | - Sarah J Fink
- Crosswalk Therapeutics, 790 Memorial Drive, Cambridge, MA 02139, United States
| | - Andrew C Flick
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Tony S Gibson
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Kaitlyn Gray
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Amber M Johnson
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | | | - Yiyang Liu
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Subham Mahapatra
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Rebecca B Watson
- Pfizer, Inc., 10770 Science Center Drive, San Diego, CA 92130, United States
| |
Collapse
|
11
|
Sheng R, Li Y, Wu Y, Liu C, Wang W, Han X, Li Y, Lei L, Jiang X, Zhang Y, Zhang Y, Li S, Hong B, Liu C, Xu Y, Si S. A pan-PPAR agonist E17241 ameliorates hyperglycemia and diabetic dyslipidemia in KKAy mice via up-regulating ABCA1 in islet, liver, and white adipose tissue. Biomed Pharmacother 2024; 172:116220. [PMID: 38308968 DOI: 10.1016/j.biopha.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved β-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.
Collapse
Affiliation(s)
- Ren Sheng
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yining Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chang Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xiaowan Han
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS & PUMC, Beijing 100050, China
| | - Yinghong Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, CAMS & PUMC, Beijing 100050, China.
| |
Collapse
|
12
|
Ning Z, Ai G, Chen B, Yao H, Cao H, Pan D, Lu X. Impact of chiglitazar on glycemic control in type 2 diabetic patients with metabolic syndrome and insulin resistance: A pooled data analysis from two phase III trials. J Diabetes 2024; 16:e13484. [PMID: 37853916 PMCID: PMC10859313 DOI: 10.1111/1753-0407.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/24/2023] [Accepted: 09/23/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND To evaluate the glycemic control effects of vhiglitazar (carfloglitazar), a novel peroxisome proliferator-activated receptor pan-agonist, in patients with type 2 diabetes mellitus (T2DM) with metabolic syndrome (MetS) or insulin resistance (IR) using pooled data analysis of two phase III clinical trials. METHODS Data were collected from two randomized phase III clinical trials in China, comparing chiglitazar to placebo or sitagliptin in T2DM patients. The MetS was defined by the Adult Treatment Panel III MetS criteria, and IR was defined by homeostatic model assessment for insulin resistance (HOMA-IR) ≥4.31 (male) or 4.51 (female). The main end point of this analysis was glycemic control in the different arms within each subgroup. RESULTS In the MetS subgroup, changes in glycated hemoglobin (HbA1c) from baseline at week 24 in the chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg arms were -1.44%, -1.68%, and -1.37%, respectively; p < .05 was obtained when chiglitazar 48 mg was compared with sitagliptin. In the IR subgroup, the changes in HbA1c were -1.58%, -1.56%, and -1.26% in chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg arms, respectively; p < .05 was obtained when chiglitazar 32 mg was compared with sitaligptin. The two doses of chiglitazar demonstrated a greater reduction in fasting plasma glucose and 2 h postprandial plasma glucose than sitagliptin in the pooled population and in the MetS and IR subgroups. CONCLUSIONS Chiglitazar shows promising efficacy for glycemic control in patients with T2DM associated with MetS or IR. Further prospective trials are required to validate these findings.
Collapse
Affiliation(s)
- Zhiqiang Ning
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenChina
| | - Guoqiang Ai
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenChina
| | - Bo Chen
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenChina
| | - He Yao
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenChina
| | - Haixiang Cao
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenChina
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenChina
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenChina
| |
Collapse
|
13
|
Wang X, Wang Y, Hou J, Liu H, Zeng R, Li X, Han M, Li Q, Ji L, Pan D, Jia W, Zhong W, Xu T. Plasma proteome profiling reveals the therapeutic effects of the PPAR pan-agonist chiglitazar on insulin sensitivity, lipid metabolism, and inflammation in type 2 diabetes. Sci Rep 2024; 14:638. [PMID: 38182717 PMCID: PMC10770401 DOI: 10.1038/s41598-024-51210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Chiglitazar is a novel peroxisome proliferator-activated receptor (PPAR) pan-agonist, which passed phase III clinical trials and was newly approved in China for use as an adjunct to diet and exercise in glycemic control in adult patients with Type 2 Diabetes (T2D). To explore the circulating protein signatures associated with the administration of chiglitazar in T2D patients, we conducted a comparative longitudinal study using plasma proteome profiling. Of the 157 T2D patients included in the study, we administered chiglitazar to a specific group, while the controls were given either placebo or sitagliptin. The plasma proteomes were profiled at baseline and 12 and 24 weeks post-treatment using data-independent acquisition mass spectrometry (DIA-MS). Our study indicated that 13 proteins were associated with chiglitazar treatment in T2D patients, including 10 up-regulated proteins (SHBG, TF, APOA2, APOD, GSN, MBL2, CFD, PGLYRP2, A2M, and APOA1) and 3 down-regulated proteins (PRG4, FETUB, and C2) after treatment, which were implicated in the regulation of insulin sensitivity, lipid metabolism, and inflammation response. Our study provides insight into the response of chiglitazar treatment from a proteome perspective and demonstrates the multi-faceted effects of chiglitazar in T2D patients, which will help the clinical application of chiglitazar and further study of its action mechanism.
Collapse
Affiliation(s)
- Xingyue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - You Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junjie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyu Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Qingrun Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wen Zhong
- Guangzhou National Laboratory, Guangzhou, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
14
|
Huang Q, Zou X, Chen Y, Gao L, Cai X, Zhou L, Gao F, Zhou J, Jia W, Ji L. Personalized glucose-lowering effect of chiglitazar in type 2 diabetes. iScience 2023; 26:108195. [PMID: 37942014 PMCID: PMC10628820 DOI: 10.1016/j.isci.2023.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Chiglitazar (carfloglitazar) is a peroxisome proliferator-activated receptor pan-agonist presenting non-inferior glucose-lowering efficacy with sitagliptin in patients with type 2 diabetes. To delineate the subgroup of patients with greater benefit from chiglitazar, we conducted a machine learning-based post-hoc analysis in two randomized controlled trials. We established a character phenomap based on 13 variables and estimated HbA1c decline to the effects of chiglitazar in reference to sitagliptin. Out of 1,069 patients, 63.3% were found to have greater reduction in HbA1c levels with chiglitazar, while 36.7% showed greater reduction with sitagliptin. This distinction in treatment response was statistically significant between groups (pinteraction<0.001). To identify patients who would gain the most glycemic control benefit from chiglitazar, we developed a machine learning model, ML-PANPPAR, which demonstrated robust performance using sex, BMI, HbA1c, HDL, and fasting insulin. The phenomapping-derived tool successfully identified chiglitazar responders and enabled personalized drug allocation in patients with drug-naïve diabetes.
Collapse
Affiliation(s)
- Qi Huang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| | - Xiantong Zou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| | - Yingli Chen
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| | - Fei Gao
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
15
|
Lin C, Li ZL, Cai XL, Hu SY, Lv F, Yang WJ, Ji LN. Indirect comparison of efficacy and safety of chiglitazar and thiazolidinedione in patients with type 2 diabetes: A meta-analysis. World J Diabetes 2023; 14:1573-1584. [PMID: 37970134 PMCID: PMC10642417 DOI: 10.4239/wjd.v14.i10.1573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Chiglitazar is an emerging pan-agonist of all peroxisome proliferator activated receptors (PPAR)-α, δ and γ, and has therapeutic potential for type 2 diabetes (T2D). However, to date, no clinical studies or meta-analyses have compared the efficacy and safety of chiglitazar and traditional PPAR-γ agonist thiazolidinediones (TZDs). A meta-analysis concerning this topic is therefore required. AIM To compare the efficacy and safety of chiglitazar and TZD in patients with T2D. METHODS PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials, Reference Citation Analysis and Clinicaltrial.gov websites were searched from August 1994 to March 2022. Randomized controlled trials (RCTs) of chiglitazar or TZD vs placebo in patients with T2D were included. Indirect comparisons and sensitivity analyses were implemented to evaluate multiple efficacy and safety endpoints of interest. RESULTS We included 93 RCTs that compared TZD with placebo and one that compared chiglitazar with placebo. For efficacy endpoints, the augmented dose of chig-litazar resulted in greater reductions in hemoglobin (Hb)A1c [weighted mean difference (WMD) = -0.15%, 95% confidence interval (CI): -0.27 to -0.04%], triglycerides (WMD = -0.17 mmol/L, 95%CI: -0.24 to -0.11 mmol/L) and alanine aminotransferase (WMD = -5.25 U/L, 95%CI: -8.50 to -1.99 U/L), and a greater increase in homeostasis model assessment-β (HOMA-β) (WMD = 17.75, 95%CI: 10.73-24.77) when compared with TZD treatment. For safety endpoints, the risks of hypoglycemia, edema, bone fractures, upper respiratory tract infection, urinary tract infection, and weight gain were all comparable between the augmented dose of chiglitazar and TZD. In patients with baseline HbA1c ≥ 8.5%, body mass index ≥ 30 kg/m2 or diabetes duration < 10 years, the HbA1c reduction and HOMA-β increase were more conspicuous for the augmented dose of chiglitazar compared with TZD. CONCLUSION Augmented dose of chiglitazar, a pan-activator of PPARs, may serve as an antidiabetic agent with preferable glycemic and lipid control, better β-cell function preserving capacity, and does not increase the risk of safety concerns when compared with TZD.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Zong-Lin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Ling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Sui-Yuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Wen-Jia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Li-Nong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
16
|
Zhang XH, Tian YF, Huang GL, Cui WY, Sun Q, He WJ, Liu XJ. Advances in Studies of Chiglitazar Sodium, a Novel PPAR Pan-Agonist, for the Treatment of Type 2 Diabetes Mellitus. Curr Med Sci 2023; 43:890-896. [PMID: 37326885 DOI: 10.1007/s11596-023-2760-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Chiglitazar sodium is a new peroxisome proliferator-activated receptor (PPAR) pan-agonist with independent intellectual property rights in China. It can treat type 2 diabetes mellitus and regulate metabolism by modestly activating PPARα, PPARγ, and PPARδ to improve insulin sensitivity, regulate blood glucose, and promote fatty acid oxidation and utilization. Chiglitazar sodium has a significant insulin-sensitizing effect and is advantageous in reducing fasting and postprandial blood glucose levels, particularly at the 48 mg dose in patients with concomitant high triglycerides in terms of blood glucose and triglyceride level control.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yun-Fei Tian
- The University of Hong Kong, Hong Kong, 999077, China
| | - Guang-Liang Huang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wen-Yan Cui
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Qian Sun
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wen-Juan He
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiu-Ju Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
17
|
Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci 2023; 24:13381. [PMID: 37686185 PMCID: PMC10487533 DOI: 10.3390/ijms241713381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus is a chronic multifaceted disease with multiple potential complications, the treatment of which can only delay and prolong the terminal stage of the disease, i.e., type 2 diabetes mellitus (T2DM). The World Health Organization predicts that diabetes will be the seventh leading cause of death by 2030. Although many antidiabetic medicines have been successfully developed in recent years, such as GLP-1 receptor agonists and SGLT-2 inhibitors, single-target drugs are gradually failing to meet the therapeutic requirements owing to the individual variability, diversity of pathogenesis, and organismal resistance. Therefore, there remains a need to investigate the pathogenesis of T2DM in more depth, identify multiple therapeutic targets, and provide improved glycemic control solutions. This review presents an overview of the mechanisms of action and the development of the latest therapeutic agents targeting T2DM in recent years. It also discusses emerging target-based therapies and new potential therapeutic targets that have emerged within the last three years. The aim of our review is to provide a theoretical basis for further advancement in targeted therapies for T2DM.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Yingsheng Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Lu Tang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
18
|
Zou H, Gong Y, Ye H, Yuan C, Li T, Zhang J, Ren L. Dietary regulation of peroxisome proliferator-activated receptors in metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154904. [PMID: 37267691 DOI: 10.1016/j.phymed.2023.154904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-activated nuclear transcription factors, members of the type nuclear receptor superfamily, with three subtypes, namely PPARα, PPARβ/δ, and PPARγ, which play a key role in the metabolic syndrome. In the past decades, a large number of studies have shown that natural products can act by regulating metabolic pathways mediated by PPARs. PURPOSE This work summarizes the physiological importance and clinical significance of PPARs and reviews the experimental evidence that natural products mediate metabolic syndrome via PPARs. METHODS This study reviews relevant literature on clinical trials, epidemiology, animals, and cell cultures published in NCBI PubMed, Scopus, Web of Science, Google Scholar, and other databases from 2001 to October 2022. Search keywords were "natural product" OR "botanical" OR "phytochemical" AND "PPAR" as well as free text words. RESULTS The modulatory involvement of PPARs in the metabolic syndrome has been supported by prior research. It has been observed that many natural products can treat metabolic syndrome by altering PPARs. The majority of currently described natural compounds are mild PPAR-selective agonists with therapeutic effects that are equivalent to synthetic medicines but less harmful adverse effects. CONCLUSION PPAR agonists can be combined with natural products to treat and prevent metabolic syndrome. Further human investigations are required because it is unknown how natural products cause harm and how they might have negative impacts.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
19
|
Zhu J, Han J, Liu L, Liu Y, Xu W, Li X, Yang L, Gu Y, Tang W, Shi Y, Ye S, Hua F, Xiang G, Liu M, Sun Z, Su Q, Li X, Li Y, Li Y, Li H, Li Y, Yang T, Yang J, Shi L, Yu X, Chen L, Shao J, Liang J, Han X, Xue Y, Ma J, Zhu D, Mu Y. Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110568. [PMID: 36738836 DOI: 10.1016/j.diabres.2023.110568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Islet β-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet β-cell function is beneficial to better management of T2DM. Protecting islet β-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet β-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet β-cell function in type 2 diabetes mellitus." This consensus suggests that β-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet β-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet β-cell function, independent of glycemic control.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Liehua Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- Endocrinology Department, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaomu Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Shandong Ye
- Department of Endocrinology, Anhui Provincial Hospital, Hefei, China
| | - Fei Hua
- Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command of Chinese People' s Liberation Army, Wuhan, China
| | - Ming Liu
- Department of Endocrinology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrine and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiu Li
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lixin Shi
- Department of Endocrinology, Guiqian International General Hospital, Guiyang 550018, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaqing Shao
- Department of Endocrinology, the Affiliated Jinling Hospital of Nanjing Medical University, General Hospital of Eastern Theater Command, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yaomin Xue
- The First Clinical Medical Institute, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China.
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
20
|
Lu R, Liu Y, Hong T. Epidemiological characteristics and management of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in China: A narrative review. Diabetes Obes Metab 2023; 25 Suppl 1:13-26. [PMID: 36775938 DOI: 10.1111/dom.15014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
AIM With industrialization and spread of the westernized lifestyle, the number of people affected by non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is growing rapidly in China; this has become a major public health concern. To better understand the burden and characteristics of NAFLD/NASH in China, we aim to perform a narrative review of the literature published in this field. MATERIALS AND METHODS We carried out a comprehensive electronic search of five English-language and three Chinese-language databases, to identify studies regarding NAFLD or NASH published from inception to November 30, 2022. Epidemiological studies of NAFLD/NASH in China were particularly noticed and summarized. We also searched the www. CLINICALTRIALS gov and www.chictr.org.cn websites for the registered trials on the treatment of the disease led by Chinese investigators or located in China. RESULTS The increasing rate of NAFLD prevalence in China is strikingly high, reaching more than twice that in western countries. The prevalence of NAFLD is nearly 30% of the general Chinese population, making it the leading cause of chronic liver diseases. The prevalence of NAFLD/NASH varies between provinces/regions, age groups, sexes, and individuals with different metabolic profiles. NAFLD co-exists in many Chinese patients with chronic hepatitis B. Since 2020, more Chinese studies have used the term metabolic-associated fatty liver disease (MAFLD), emphasizing the underlying metabolic disorders that occur concurrently with this disease. Several clinical trials involving lifestyle interventions, antidiabetic drugs, or traditional Chinese medicines, registered by Chinese investigators, have been completed or are ongoing. Moreover, several innovative targeted therapies developed in China are revolutionizing the treatment of NAFLD/NASH. CONCLUSIONS NAFLD has cast a heavy burden on the Chinese healthcare system. Chinese scholars are making efforts to achieve the optimal management of this disease.
Collapse
Affiliation(s)
- Ran Lu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Ye Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| |
Collapse
|
21
|
Yuan F, Li J, Li X, Li H, Chen W, Yang M, Chen H, Sheng L, Liu C, Wu Y, Xu H. Pharmacokinetic Interaction of Chiglitazar with CYP3A4 Inducer or Inhibitor: An Open-Label, Sequential Crossover, Self-Control, 3-Period Study in Healthy Chinese Volunteers. Clin Pharmacol Drug Dev 2023; 12:168-174. [PMID: 36583526 DOI: 10.1002/cpdd.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/09/2022] [Indexed: 12/31/2022]
Abstract
Chiglitazar, a pan agonist of non-thiazolidinedione peroxisome proliferator-activated receptor, has the potential to regulate blood sugar, improve lipid metabolism, and reduce cardiovascular complications. This study aimed to examine the effect of cytochrome P450 (CYP) 3A4 inhibitors/inducers on the in vivo metabolism of chiglitazar and provide a reference for the clinical combination use of chiglitazar. A single-center, open-label, sequential crossover, and self-control study was carried out in 24 healthy subjects to determine the pharmacokinetics of chiglitazar dosed with and without CYP3A4 inhibitors and inducers. The findings showed that the CYP3A4 inhibitor itraconazole had no apparent pharmacokinetic drug interaction with chiglitazar, whereas rifampicin did. When combined with rifampicin after continuous dosing, chiglitazar exposure was not theoretically reduced but increased compared to a single dose of chiglitazar. The possible explanation may be the transporters of bile salt export pump, but this needs to be confirmed. The safety of chiglitazar in single or combination doses was well tolerated. The findings of this study provide a basis for clinical combinations of chiglitazar with CYP3A4 inhibitors or inducers.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuening Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weili Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengjie Yang
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanjing Chen
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Sheng
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yujia Wu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongrong Xu
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Grande F, Ioele G, Caruso A, Occhiuzzi MA, El-Kashef H, Saturnino C, Sinicropi MS. Carbazoles: Role and Functions in Fighting Diabetes. APPLIED SCIENCES 2022; 13:349. [DOI: 10.3390/app13010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbazole derivatives have gained a lot of attention in medicinal chemistry over the last few decades due to their wide range of biological and pharmacological properties, including antibacterial, antitumor, antioxidant, and anti-inflammatory activities. The therapeutic potential of natural, semi-synthetic or synthetic carbazole-containing molecules has expanded considerably owing to their role in the pathogenesis and development of diabetes. Several studies have demonstrated the ability of carbazole derivatives to reduce oxidative stress, block adrenergic hyperactivation, prevent damage to pancreatic cells and modulate carbohydrate metabolism. In this survey, we summarize the latest advances in the synthetic and natural carbazole-containing compounds involved in diabetes pathways.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
23
|
Chandra A, Kaur P, Sahu SK, Mittal A. A new insight into the treatment of diabetes by means of pan PPAR agonists. Chem Biol Drug Des 2022; 100:947-967. [PMID: 34990085 DOI: 10.1111/cbdd.14020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/25/2023]
Abstract
PPARs stand for 'peroxisome proliferator-activated receptors' and are ligand-activated transcription factors of nuclear hormone receptor superfamily. A list of the most commonly used single receptor PPAR agonists, that is α (alpha) PPAR agonists, β/δ(beta/delta) PPAR agonists, γ(gamma) PPAR agonists, along with pan PPAR agents, that are being researched on, are marketed, are in clinical trials or are being studied for further derivative findings, has been listed. Type 2 diabetes constitutes about 90% of total diabetes cases. Pan PPAR ligands could very well pave the foundation for a new class of agents, that can act on all 3 PPAR receptors, and produce better effects in general, than the individual receptor-acting ligands or dual combination ligands (α/ γ). In this review paper, we have detailed various pan PPAR agonists that can be used to treat type 2 diabetes, which can generate potential derivatives as well.
Collapse
Affiliation(s)
- Avik Chandra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Paranjeet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amit Mittal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
24
|
Virendra SA, Kumar A, Chawla PA, Mamidi N. Development of Heterocyclic PPAR Ligands for Potential Therapeutic Applications. Pharmaceutics 2022; 14:2139. [PMID: 36297575 PMCID: PMC9611956 DOI: 10.3390/pharmaceutics14102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The family of nuclear peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) is a set of ligand-activated transcription factors that regulate different functions in the body. Whereas activation of PPARα is known to reduce the levels of circulating triglycerides and regulate energy homeostasis, the activation of PPARγ brings about insulin sensitization and increases the metabolism of glucose. On the other hand, PPARβ when activated increases the metabolism of fatty acids. Further, these PPARs have been claimed to be utilized in various metabolic, neurological, and inflammatory diseases, neurodegenerative disorders, fertility or reproduction, pain, and obesity. A series of different heterocyclic scaffolds have been synthesized and evaluated for their ability to act as PPAR agonists. This review is a compilation of efforts on the part of medicinal chemists around the world to find novel compounds that may act as PPAR ligands along with patents in regards to PPAR ligands. The structure-activity relationship, as well as docking studies, have been documented to better understand the mechanistic investigations of various compounds, which will eventually aid in the design and development of new PPAR ligands. From the results of the structural activity relationship through the pharmacological and in silico evaluation the potency of heterocycles as PPAR ligands can be described in terms of their hydrogen bonding, hydrophobic interactions, and other interactions with PPAR.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
25
|
Ultra rapid lispro improves postprandial glucose control versus lispro in combination with insulin glargine/degludec in adults with type 2 diabetes: a prospective, randomized, double-blind, phase 3 trial. Sci Bull (Beijing) 2022; 67:1785-1791. [PMID: 36546064 DOI: 10.1016/j.scib.2022.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 01/07/2023]
Abstract
Ultra rapid lispro (URLi) is a novel formulation of insulin lispro designed to more closely match the physiological insulin response to a meal, with the aim of improving postprandial glucose (PPG) control. We conducted a multinational, multicenter, randomized, double-blind, treat-to-target, 26-week, phase 3 trial to evaluate the efficacy and safety of URLi in adults with type 2 diabetes (T2D). After an 8-week lead-in period during which basal insulin glargine or degludec was optimized, adults with T2D were randomized (2:1) to prandial URLi (n = 395) or lispro (n = 200). The primary endpoint was non-inferiority of URLi versus lispro in glycated hemoglobin A1c (HbA1c) change from baseline to week 26. Multiplicity-adjusted analyses were performed to assess the superiority of URLi in 1- and 2-h PPG excursions during a mixed-meal tolerance test (MMTT) and HbA1c change at week 26. URLi showed non-inferiority for HbA1c change at week 26 versus lispro (least-squares mean [LSM] difference, 0.07%; 95% confidence interval: -0.07, 0.21). HbA1c was reduced by 0.56% and 0.63% with URLi and lispro, respectively, with no significant treatment difference (P = 0.321). URLi provided superior PPG excursion control versus lispro at 1 h (LSM difference: -14.6 mg/dL, P < 0.001) and 2 h (LSM difference: -21.8 mg/dL, P < 0.001) as well as other time points (30-240 min) during the MMTT. Incremental area under the glucose curve during the MMTT was also significantly lower with URLi versus lispro. The safety profiles were generally similar between treatment groups. In conclusion, URLi was superior to lispro for PPG control, with non-inferiority in HbA1c improvement, in adults with T2D.
Collapse
|
26
|
Abstract
Chiglitazar (Bilessglu®) is an orally administered, non-thiazolidinedione small-molecule agonist of α, δ and γ peroxisome proliferator-activated receptors (PPARs) being developed by Chipscreen Biosciences for the treatment of type 2 diabetes (T2D) and non-alcoholic steatohepatitis. In October 2021, chiglitazar was approved in China for use as an adjunct to diet and exercise to improve glycaemic control in adult patients with T2D. The drug is also in phase 2 clinical development in China for the treatment of non-alcoholic steatohepatitis. This article summarizes the milestones in the development of chiglitazar leading to this first approval for the treatment of T2D.
Collapse
|
27
|
Affiliation(s)
- Ralph A DeFronzo
- Diabetes Division, University of Texas Health at San Antonio, TX 78229, USA.
| |
Collapse
|
28
|
Jia W, Ma J, Miao H, Wang C, Wang X, Li Q, Lu W, Yang J, Zhang L, Yang J, Wang G, Zhang X, Zhang M, Sun L, Yu X, Du J, Shi B, Xiao C, Zhu D, Liu H, Zhong L, Xu C, Xu Q, Liang G, Zhang Y, Li G, Gu M, Liu J, Yuan G, Yan Z, Yan D, Ye S, Zhang F, Ning Z, Cao H, Pan D, Yao H, Lu X, Ji L. Chiglitazar monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomized, double-blind, phase 3 trial (CMAS). Sci Bull (Beijing) 2021; 66:1581-1590. [PMID: 36654287 DOI: 10.1016/j.scib.2021.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/13/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023]
Abstract
Chiglitazar (Carfloglitazar) is a novel peroxisome proliferator-activated receptor (PPAR) pan-agonist that has shown promising effects on glycemic control and lipid regulation in patients with type 2 diabetes. In this randomized phase 3 trial, we compared the efficacy and safety of chiglitazar with sitagliptin in patients with type 2 diabetes who had insufficient glycemic control despite a strict diet and exercise regimen. Eligible patients were randomized (1:1:1) to receive chiglitazar 32 mg (n = 245), chiglitazar 48 mg (n = 246), or sitagliptin 100 mg (n = 248) once daily for 24 weeks. The primary endpoint was the change in glycosylated hemoglobin A1C (HbA1c) from baseline at week 24 with the non-inferiority of chiglitazar over sitagliptin. Both chiglitazar and sitagliptin significantly reduced HbA1c at week 24 with values of -1.40%, -1.47%, and -1.39% for chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg, respectively. Chiglitazar 32 and 48 mg were both non-inferior to sitagliptin 100 mg, with mean differences of -0.04% (95% confidential interval (CI) -0.22 to 0.15) and -0.08% (95% CI -0.27 to 0.10), respectively. Compared with sitagliptin, greater reduction in fasting and 2-h postprandial plasma glucose and fasting insulin was observed with chiglitazar. Overall adverse event rates were similar between the groups. A small increase in mild edema in the chiglitazar 48 mg group and slight weight gain in both chiglitazar groups were reported. The overall results demonstrated that chiglitazar possesses good efficacy and safety profile in patients with type 2 diabetes inadequately controlled with lifestyle interventions, thereby providing adequate supporting evidence for using this PPAR pan-agonist as a treatment option for type 2 diabetes.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China.
| | - Jianhua Ma
- Nanjing First Hospital, Nanjing 210029, China
| | - Heng Miao
- The Second Hospital Affiliated to Nanjing Medical University, Nanjing 210011, China
| | - Changjiang Wang
- The First Hospital Affiliated to Anhui Medical University, Hefei 230031, China
| | - Xiaoyue Wang
- The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Quanmin Li
- PLA Rocket Force Characteristic Medical Center, Beijing 100085, China
| | - Weiping Lu
- Huai'an First People's Hospital, Huai'an 223300, China
| | - Jialin Yang
- The Central Hospital of Minhang District of Shanghai, Shanghai 201100, China
| | - Lihui Zhang
- The Second Hospital of Heibei Medical University, Shijiazhuang 050000, China
| | - Jinkui Yang
- Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing 100730, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Xiuzhen Zhang
- Tongji Hospital of Tongji University, Shanghai 200092, China
| | - Min Zhang
- The Qingpu Branch of Zhongshan Hospital Affiliate to Fudan University, Shanghai 201700, China
| | - Li Sun
- Siping Central People's Hospital, Siping 136000, China
| | - Xuefeng Yu
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianling Du
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bingyin Shi
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changqing Xiao
- The First Affiliated Hospital of Guangxi Medical University (The Western Hospital), Nanning 530021, China
| | - Dalong Zhu
- Gulou Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Hong Liu
- The First Affiliated Hospital of Guangxi Medical University (The Eastern Hospital), Nanning 530021, China
| | - Liyong Zhong
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chun Xu
- The General Hospital of the Chinese People's Armed Police Forces, Beijing 100022, China
| | - Qi Xu
- The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | | | - Ying Zhang
- The Third Hospital Affiliated to Guangzhou Medical College, Guangzhou 510150, China
| | | | - Mingyu Gu
- Shanghai First People's Hospital, Shanghai 200080, China
| | - Jun Liu
- Shanghai 5th People's Hospital, Shanghai 200040, China
| | - Guoyue Yuan
- The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhaoli Yan
- The Affiliated Hospital of Inner Mongolia, Hohhot 000306, China
| | - Dewen Yan
- Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Shandong Ye
- Anhui Provincial Hospital, Hefei 518035, China
| | - Fan Zhang
- Beijing University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhiqiang Ning
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Haixiang Cao
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - He Yao
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Linong Ji
- Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|