1
|
Gricius Z, Mroz L, Øye G. Dual-functional Au-TiO 2 nanoparticles: enhanced photocatalytic activity and Pickering emulsion stabilization for wastewater treatment. Phys Chem Chem Phys 2025; 27:6751-6765. [PMID: 40094926 DOI: 10.1039/d5cp00162e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This study explores the synthesis, characterization, and application of Au-TiO2 hybrid nanoparticles (NPs) as photocatalysts and Pickering emulsifiers for wastewater treatment. Two types of Au-TiO2 composites were prepared: core-shell Au-TiO2 and preformed Au-adsorbed on titania. The photocatalytic activity of these nanoparticles was evaluated under UV and visible light irradiation using 4-propylbenzoic acid as a model organic pollutant. The results demonstrated the prominent role of Au in enhancing the photocatalytic efficiency of TiO2 nanoparticles, with core-shell Au nanoparticles exhibiting excellent performance due to improved electron transfer and reduced band gap energy. In parallel, the potential of Au-TiO2 nanoparticles as Pickering emulsifiers was assessed. Freeze-dried particles achieved the highest emulsion stability, attributed to their optimal size and intermediate wettability. Similarly, the adsorption of gold nanoparticles on titania proved to be an effective strategy for modifying particle wettability without compromising the photodegradation rate. These findings highlight the dual functionality of Au-TiO2 nanoparticles, combining effective pollutant degradation with robust emulsion stabilization, advancing their applicability in environmental remediation.
Collapse
Affiliation(s)
- Zygimantas Gricius
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Laurine Mroz
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Gisle Øye
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| |
Collapse
|
2
|
Gricius Z, Øye G. Pickering Emulsions Stabilized by Hybrid TiO 2-pNIPAm Composites for the Photocatalytic Degradation of 4-Propylbenzoic Acid. ACS OMEGA 2025; 10:1988-2002. [PMID: 39866603 PMCID: PMC11755169 DOI: 10.1021/acsomega.4c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO2-poly(N-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles. By integrating TiO2 nanoparticles into pNIPAm gels, we aimed to achieve high emulsion stability and photocatalytic efficiency while suppressing the effects of pNIPAm's volume phase transition temperature (VPTT) to facilitate effective emulsion recovery. The study involves the synthesis of TiO2-pNIPAm composites with varying monomer-to-particle ratios, characterizing their VPTT behavior, morphology, and thermal stability. These composites were then evaluated for their emulsification properties, phase transition behavior, and photocatalytic activity in degrading 4-propylbenzoic acid, a model pollutant. The results highlight the effectiveness of the TiO2-pNIPAm Pickering emulsions in wastewater treatment, offering improved stability and reusability compared to traditional dispersion-based systems. This work provides new insights into the design of composite materials for enhanced photocatalytic applications and demonstrates the potential of Pickering emulsions in sustainable environmental remediation.
Collapse
Affiliation(s)
- Zygimantas Gricius
- Ugelstad Laboratory, Department
of Chemical Engineering, Norwegian University
of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Gisle Øye
- Ugelstad Laboratory, Department
of Chemical Engineering, Norwegian University
of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
3
|
Zheng M, Sánchez-Montes I, Li J, Duan X, Xu B, El-Din MG. Attenuation of phenylnaphthenic acids related to oil sands process water using solar activated calcium peroxide: Influence of experimental factors, mechanistic modeling, and toxicity evaluation. WATER RESEARCH 2024; 263:122188. [PMID: 39098152 DOI: 10.1016/j.watres.2024.122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Refractory naphthenic acids (NAs) are among the primary toxic compounds in oil sands process water (OSPW), a matrix with a complex chemical composition that poses challenges to its remediation. This study evaluated the effectiveness of calcium peroxide (CaO2) combined with solar radiation (solar/CaO2) as an advanced water treatment process for degrading model NAs (1,2,3,4-tetrahydronaphthalene-2-carboxylic acid, pentanoic acid, and diphenylacetic acid) in synthetic water (STW) and provide preliminary insights in treating real OSPW. Solar light and CaO2 acted synergistically to degrade target NAs in STW (>67 of synergistic factor) following a pseudo-first-order kinetic (R2 ≥ 0.95), with an optimal CaO2 dosage of 0.1 g L-1. Inorganic ions and dissolved organic matter were found to hinder the degradation of NAs by solar/CaO2 treatment; however, the complete degradation of NAs was reached in 6.7 h of treatment. The main degradation mechanism involved the generation of hydroxyl radicals (•OH), which contributed ∼90% to the apparent degradation rate constant (K), followed by H2O2 (4-5%) and 1O2 (0-5%). The tentative transformation pathways of three NAs were proposed, confirming an open-ring reaction and resulting in short-chain fatty acid ions as final products. Furthermore, a reduction in acute microbial toxicity and genotoxic effect was observed in the treated samples, suggesting that solar/CaO2 treatment exhibits high environmental compatibility. Furthermore, the solar/CaO2 system was successfully applied as a preliminary step for real-world applications to remove natural NAs, fluorophore organic compounds, and inorganic components from OSPW, demonstrating the potential use of this technology in the advanced treatment of oil-tailing-derived NAs.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Isaac Sánchez-Montes
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada
| | - Jia Li
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada
| | - Xiaodi Duan
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Huynh K, Feilberg KL, Sundberg J. Selective Profiling of Carboxylic Acid in Crude Oil by Halogen Labeling Combined with Liquid Chromatography and High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1680-1691. [PMID: 38984631 DOI: 10.1021/jasms.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Carboxylic acids are a small but essential compound class within petroleum chemistry, influencing crude oil behaviors in production and processing and causing environmental impacts. Detailed structural information is fundamental to understanding their influence on petroleum characteristics. However, characterizing acids in crude oil remains challenging due to matrix effects, structural diversity, and low abundance. In this work, we present a new methodology for profiling carboxylic acids by liquid-liquid extraction and selective derivatization using 4-bromo-N-methylbenzylamine (4-BNMA) followed by liquid chromatography and electrospray ionization Orbitrap mass spectrometry (LC-ESI-Orbitrap MS). The fragmentation of 4-BNMA derivatives produces a unique product ion pair, m/z 169/171, enabling the identification of chromatographic fractions containing carboxylic acids. The mass spectra of the corresponding fractions are extracted, and the acids are further computationally isolated based on the isotopic pattern. The method was optimized and validated using acid standards and systematic experimental designs, assuring robustness and sensitivity for nontarget screening purposes. This method detected up to 380 carboxylic acids in six Danish North Sea crude oils, with up to two carboxyl and other heteroatom functionalities (NSO). The results indicated that the most populated species are fatty acids (double bond equivalent (DBE) = 1) and small aromatic acids (DBE = 2-6). The predominance and diversities of compound classes in different samples are consistent with their corresponding bulk properties. Polyfunctional acids (Ox, NxOx, and SxOx) were observed due to exposure to oxidation and biodegradation. Also, the approach's applicability benefits high-resolution MS analysis by simplifying data processing for crude oil and potentially other high-organic and aqueous samples.
Collapse
Affiliation(s)
- Khoa Huynh
- DTU Offshore, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | - Jonas Sundberg
- DTU Engineering Technology, Technical University of Denmark, 2750 Ballerup Denmark
| |
Collapse
|
5
|
Podgorski DC, Bekins BA. Comment on "Complex mixture toxicology: Evaluation of toxicity to freshwater aquatic receptors from biodegradation metabolites in groundwater at a crude oil release site, recent analogous results from other authors, and implications for risk management". AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106744. [PMID: 37951746 DOI: 10.1016/j.aquatox.2023.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Chemical Analysis & Mass Spectrometry Facility, Department of Chemistry, University of New Orleans, New Orleans, LA, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK, USA.
| | | |
Collapse
|
6
|
Farnan J, Vanden Heuvel JP, Dorman FL, Warner NR, Burgos WD. Toxicity and chemical composition of commercial road palliatives versus oil and gas produced waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122184. [PMID: 37453689 DOI: 10.1016/j.envpol.2023.122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Across the United States, road palliatives are applied to roads for maintenance operations that improve road safety. In the winter, solid rock salts and brine solutions are used to reduce the accumulation of snow and ice, while in the summer, dust suppressants are used to minimize fugitive dust emissions. Many of these products are chloride-based salts that have been linked to freshwater salinization, toxicity to aquatic organisms, and damage to infrastructure. To minimize these impacts, organic products have been gaining attention, though their widespread adoption has been limited due to their higher cost. In some states, using produced water from conventionally drilled oil and gas wells (OGPWs) on roads is permitted as a cost-effective alternative to commercial products, despite its typically elevated concentrations of heavy metals, radioactivity, and organic micropollutants. In this study, 17 road palliatives used for winter and summer road maintenance were collected and their chemical composition and potential human toxicity were characterized. Results from this study demonstrated that liquid brine solutions had elevated levels of trace metals (Zn, Cu, Sr, Li) that could pose risks to human and environmental health. The radium activity of liquid calcium chloride products was comparable to the activity of OGPWs and could be a significant source of radium to the environment. The organic fractions of evaluated OGPWs and chloride-based products posed little risk to human health. However, organic-based dust suppressants regulated toxicity pathways related to xenobiotic metabolism, lipid metabolism, endocrine disruption, and oxidative stress, indicating their use could lead to environmental harm and health risks to operators handing these products and residents living near treated roads.
Collapse
Affiliation(s)
- James Farnan
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - John P Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA ,16802, USA; INDIGO Biosciences, Inc., 3006 Research Drive, Suite A1, PA, 16801, USA.
| | - Frank L Dorman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA ,16802, USA.
| | - Nathaniel R Warner
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - William D Burgos
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Lillico DME, Hussain NAS, Choo-Yin YY, Qin R, How ZT, El-Din MG, Stafford JL. Using immune cell-based bioactivity assays to compare the inflammatory activities of oil sands process-affected waters from a pilot scale demonstration pit lake. J Environ Sci (China) 2023; 128:55-70. [PMID: 36801042 DOI: 10.1016/j.jes.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/18/2023]
Abstract
In this study, we provide evidence that oil sands process-affected waters (OSPW) contain factors that activate the antimicrobial and proinflammatory responses of immune cells. Specifically, using the murine macrophage RAW 264.7 cell line, we establish the bioactivity of two different OSPW samples and their isolated fractions. Here, we directly compared the bioactivity of two pilot scale demonstration pit lake (DPL) water samples, which included expressed water from treated tailings (termed the before water capping sample; BWC) as well as an after water capping (AWC) sample consisting of a mixture of expressed water, precipitation, upland runoff, coagulated OSPW and added freshwater. Significant inflammatory (i.e. macrophage activating) bioactivity was associated with the AWC sample and its organic fraction (OF), whereas the BWC sample had reduced bioactivity that was primarily associated with its inorganic fraction (IF). Overall, these results indicate that at non-toxic exposure doses, the RAW 264.7 cell line serves as an acute, sensitive and reliable biosensor for the screening of inflammatory constituents within and among discrete OSPW samples.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Yemaya Y Choo-Yin
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Rui Qin
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada.
| |
Collapse
|
8
|
Zan S, Wang J, Fan J, Jin Y, Li Z, Du M. Cyclohexanecarboxylic acid degradation with simultaneous nitrate removal by Marinobacter sp. SJ18. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34296-34305. [PMID: 36512278 DOI: 10.1007/s11356-022-24705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Naphthenic acid (NA) is a toxic pollutant with potential threat to human health. However, NA transformations in marine environments are still unclear. In this study, the characteristics and pathways of cyclohexanecarboxylic acid (CHCA) biodegradation were explored in the presence of nitrate. The results showed that CHCA was completely degraded with pseudo-first-order kinetic reaction under aerobic and anaerobic conditions, accompanied by nitrate removal rates exceeding 70%, which was positively correlated with CHCA degradation (P < 0.05). In the proposed CHCA degradation pathways, cyclohexane is dehydrogenated to form cyclohexene, followed by ring-opening by dioxygenase to generate fatty acid under aerobic conditions or cleavage of cyclohexene through β-oxidation under anaerobic conditions. Whole genome analysis indicated that nitrate was removed via assimilation and dissimilation pathways under aerobic conditions and via denitrification pathway under anaerobic conditions. These results provide a basis for alleviating combined pollution of NA and nitrate in marine environments with frequent anthropogenic activities.
Collapse
Affiliation(s)
- Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
9
|
Yavuz B, Januszewski B, Chen T, Delgado AG, Westerhoff P, Rittmann B. Using radish (Raphanus lativus L.) germination to establish a benchmark dose for the toxicity of ozonated-petroleum byproducts in soil. CHEMOSPHERE 2023; 313:137382. [PMID: 36442677 DOI: 10.1016/j.chemosphere.2022.137382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The concentration-response relationship between the germination outcome of radish (Raphanus lativus L.) and ozonated petroleum residuals was determined experimentally. The outcomes were used to produce an ecological risk assessment model to predict the extra risk of adverse outcomes based on the concentration of ozonated residuals. A test soil with low organic matter (0.5% w/w) was mixed with raw crude oil, artificially weathered, and treated at three doses of ozone (O3) gas (5 g, 10 g, and 40 g O3 per 600 g of soil). Total petroleum hydrocarbons (TPH) and produced dissolved organic carbon (DOC) were measured. TREATMENT categories (control, petroleum, petroleum + 5 g O3, petroleum + 10 g O3, and petroleum + 40 g O3) were then used to create a dilution series using different proportions of the test soil and a commercially available potting mix (∼75% w/w organic matter) to evaluate the effects of background organic matter (b-ORGANIC) in conjunction with TPH and DOC. Multivariable logistic regression was performed on the adverse germination outcome as a function of TPH, DOC, TREATMENT, and b-ORGANIC. The parameters controlling germination were the continuous variable DOC and the categorical variables TREATMENT and b-ORGANIC. Radish germination was strongly harmed by DOC from ozonation, but DOC's ecotoxicity decreased with increasing O3 dose and the presence of b-ORGANIC beyond 10% (w/w). We used the germination outcome of radish to produce a logistic regression model that computes margins of DOC (± std. error) that create 10%, 25%, and 50% extra risk of adverse germination effects.
Collapse
Affiliation(s)
- Burcu Yavuz
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA.
| | - Brielle Januszewski
- Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave (Room 501), New Haven, CT, 06511, USA
| | - Tengfei Chen
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; Geosyntec Consultants, Inc., 11811 N Tatum Blvd, Suite P186, Phoenix, AZ, 85028, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, 650 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, AZ, 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA
| |
Collapse
|
10
|
Robinson CE, Elvidge CK, Frank RA, Headley JV, Hewitt LM, Little AG, Robinson SA, Trudeau VL, Vander Meulen IJ, Orihel DM. Naphthenic acid fraction compounds reduce the reproductive success of wood frogs (Rana sylvatica) by affecting offspring viability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120455. [PMID: 36270565 DOI: 10.1016/j.envpol.2022.120455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Understanding the toxicity of organic compounds in oil sands process-affected water (OSPW) is necessary to inform the development of environmental guidelines related to wastewater management in Canada's oil sands region. In the present study, we investigated the effects of naphthenic acid fraction compounds (NAFCs), one of the most toxic components of OSPW, on mating behaviour, fertility, and offspring viability in the wood frog (Rana sylvatica). Wild adult wood frogs were exposed separately from the opposite sex to 0, 5, or 10 mg/L of OSPW-derived NAFCs for 24 h and then combined in outdoor lake water mesocosms containing the same NAFC concentrations (n = 2 males and 1 female per mesocosm, n = 3 mesocosms per treatment). Mating events were recorded for 48 h and egg masses were measured to determine adult fertility. NAFC exposure had no significant effect on mating behaviour (probability of amplexus and oviposition, amplexus and oviposition latency, total duration of amplexus and number of amplectic events) or fertility (fertilization success and clutch size). Tadpoles (50 individuals per mesocosm at hatching, and 15 individuals per mesocosm from 42 d post-hatch) were reared in the same mesocosms under chronic NAFC exposure until metamorphic climax (61-85 d after hatching). Offspring exposed to 10 mg/L NAFCs during development were less likely to survive and complete metamorphosis, grew at a reduced rate, and displayed more frequent morphological abnormalities. These abnormalities included limb anomalies at metamorphosis, described for the first time after NAFC exposure. The results of this study suggest that NAFCs reduce wood frog reproductive success through declines in offspring viability and therefore raise the concern that exposure to NAFCs during reproduction and development may affect the recruitment of native amphibian populations in the oil sands region.
Collapse
Affiliation(s)
- C E Robinson
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - C K Elvidge
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - R A Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - J V Headley
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - L M Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - A G Little
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada
| | - S A Robinson
- Ecotoxicoloy and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, K1A 0H3, Ontario, Canada
| | - V L Trudeau
- Department of Biology, University of Ottawa; Ottawa, Ontario, K1N 6N5, Canada
| | - I J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada
| | - D M Orihel
- Department of Biology, Queen's University; Kingston, Ontario, K7L 3N6, Canada; School of Environmental Studies, Queen's University; Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
11
|
Zan S, Wang J, Wang F, Li Z, Du M, Cai Y. A novel degradation mechanism of naphthenic acids by marine Pseudoalteromonas sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127534. [PMID: 34879524 DOI: 10.1016/j.jhazmat.2021.127534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Naphthenic acids (NAs) are a persistent toxic organic pollutant that occur in different environment worldwide and cause serious threat to the ecosystem and public health. However, knowledge on the behavior and fate of NAs in marine environments still remains unknown. In this study, the degradation mechanism of NAs (cyclohexylacetic acid, CHAA) was investigated using an common indigenous marine Pseudoalteromonas sp. The results showed that CHAA could be degraded completely under aerobic condition, but could not be utilized directly under anaerobic condition. Interestingly, transcriptome and key enzyme activity results showed the CHAA degradation pathway induced under aerobic condition could still work in anaerobic condition. The degradation was activated by acetyl-CoA transferase and sequentially formed the corresponding cyclohexene, alcohol, and ketone with the assistance of related enzymes, and finally cleaved by hydroxymethylglutarate-CoA lyase. Besides, there was a positive correlation between chemotaxis and aerobic degradation genes (r = 0.976, P < 0.05), the chemotaxis would enhance bacterium movement and NAs biodegradation. It is proposed that bacterium could translocate to NAs and accomplish biodegradation from aerobic to anaerobic environments, which was a new anaerobic degradation pathway of NAs. This study provides new insights into the fate of NAs and other organic contaminants in marine environment.
Collapse
Affiliation(s)
- Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Fengbo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
12
|
Pinzón-Espinosa A, Collins TJ, Kanda R. Detoxification of oil refining effluents by oxidation of naphthenic acids using TAML catalysts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147148. [PMID: 33905929 DOI: 10.1016/j.scitotenv.2021.147148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The environmental problem stemming from toxic and recalcitrant naphthenic acids (NAs) present in effluents from the oil industry is well characterized. However, despite the numerous technologies evaluated for their destruction, their up-scaling potential remains low due to high implementation and running costs. Catalysts can help cutting costs by achieving more efficient reactions with shorter operating times and lower reagent requirements. Therefore, we have performed a laboratory investigation to assess iron-TAML (tetra-amido macrocyclic ligand) activators to catalyze the oxidation of NAs by activating hydrogen peroxide - considered environmentally friendly because it releases only water as by-product - under ultra-dilute conditions. We tested Fe-TAML/H2O2 systems on (i) model NAs and (ii) a complex mixture of NAs in oil refining wastewater (RWW) obtained from a refining site in Colombia. Given the need for cost-effective solutions, this preliminary study explores sub-stoichiometric H2O2 concentrations for NA mineralization in batch mode and, remarkably, delivers substantial removal of the starting NAs. Additionally, a 72-h semi-batch process in which Fe-TAML activators and hydrogen peroxide were added every 8 h achieved 90-95% removal when applied to model NAs (50 mg L-1) and a 4-fold reduction in toxicity towards Aliivibrio fischeri when applied to RWW. Chemical characterization of treated RWW showed that Fe-TAML/H2O2 treatment (i) reduced the concentration of the highly toxic O2 NAs, (ii) decreased cyclized constituents in the mixture, and (iii) preferentially degraded higher molecular weight species that are typically resistant to biodegradation. The experimental findings, together with the recent development of new TAML catalysts that are far more effective than the TAML catalysts deployed herein, constitute a foundation for cost-effective treatment of NA-contaminated wastewater.
Collapse
Affiliation(s)
- Angela Pinzón-Espinosa
- Institute of Environment, Health and Societies, Brunel University London, Halsbury Building, Kingston Lane, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Terrence J Collins
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University London, Halsbury Building, Kingston Lane, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
13
|
Arslan M, Gamal El-Din M. Bacterial diversity in petroleum coke based biofilters treating oil sands process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146742. [PMID: 33839672 DOI: 10.1016/j.scitotenv.2021.146742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Adopting nature-based solutions for the bioremediation of oil sands process water (OSPW) is of significant interest, which requires a thorough understanding of how bacterial communities behave within treatment systems operated under natural conditions. This study investigates the OSPW remediation potential of delayed petroleum-coke (PC), which is a byproduct of bitumen upgrading process and is readily available at oil refining sites, in fixed-bed biofilters particularly for the degradation of naphthenic acids (NAs) and aromatics. The biofilters were operated continuously and total and active bacterial communities were studied by DNA and RNA-based amplicon sequencing in a metataxonomic fashion to extrapolate the underlying degradation mechanisms. The results of total community structure indicated a high abundance of aerobic bacteria at all depths of the biofilter, e.g., Porphyrobacter, Legionella, Pseudomonas, Planctomyces. However, redox conditions within the biofilters were anoxic (-153 to -182 mV) that selected anaerobic bacteria to actively participate in the remediation of OSPW, i.e., Ruminicoccus, Eubacterium, Faecalibacterium, Dorea. After 15 days of operation, the removal of classical NAs was recorded up to 20% whereas oxidized NAs species were poorly removed, i.e., O3-NAs: 4.8%, O4-NAs: 1.2%, O5-NAs: 1.7%, and O6-NAs: 0.5%. Accordingly, monoaromatics, diaromatics, and triaromatics were removed up to 16%, 22%, and 15%, respectively. The physiology of the identified genera suggested that the degradation in the PC-based biofilters was most likely proceeded in a scheme similar to beta-oxidation during anaerobic digestion process. The presence of hydrogenotrophic methanogens namely Methanobrevibacter and Methanomassiliicoccus and quantification of mcrA gene (2.4 × 102 to 8.7 × 102 copies/mg of PC) revealed that methane production was likely occurring in a syntrophic mechanism during the OSPW remediation. A slight reduction in toxicity was also observed. This study suggests that PC-based biofilters may offer some advantages in the remediation of OSPW; however, the production of methane could be of future concerns if operated at field-scale.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
14
|
Pomfret SM, Brua RB, Milani D, Yates AG. Metabolomic Analysis of Hexagenid Mayflies Exposed to Sublethal Concentrations of Naphthenic Acid. Front Mol Biosci 2021; 8:669082. [PMID: 34212003 PMCID: PMC8239125 DOI: 10.3389/fmolb.2021.669082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
The oil sands region in northeastern Alberta, Canada contain approximately 165 billion barrels of oil making it the third largest oil reserves in the world. However, processing of extracted bitumen generates vast amounts of toxic byproduct known as oil sands process waters. Naphthenic acids and associated sodium naphthenate salts are considered the primary toxic component of oil sands process waters. Although a significant body of work has been conducted on naphthenic acid toxicity at levels comparable to what is observed in current oil sands process waters, it is also important to understand any impacts of exposure to sublethal concentrations. We conducted a microcosm study using the mayfly Hexagenia spp. to identify sublethal impacts of naphthenic acid exposure on the survival, growth, and metabolome across a concentration gradient (0–100 μg L−1) of sodium naphthenate. Nuclear magnetic resonance-based metabolomic analyses were completed on both the polar and lipophilic extracted fractions of whole organism tissue. We observed a positive relationship between sodium naphthenate concentration and mean principal component score of the first axis of the polar metabolome indicating a shift in the metabolome with increasing naphthenic acid exposure. Eleven metabolites correlated with increased naphthenic acid concentration and included those involved in energy metabolism and apoptosis regulation. Survival and growth were both high and did not differ among concentrations, with the exception of a slight increase in mortality observed at the highest concentration. Although lethal concentrations of naphthenic acids in other studies are higher (150–56,200 μg L−1), our findings suggest that physiological changes in aquatic invertebrates may begin at substantially lower concentrations. These results have important implications for the release of naphthenic acids into surface waters in the Alberta oil sands region as an addition of even small volumes of oil sands process waters could initiate chronic effects in aquatic organisms. Results of this research will assist in the determination of appropriate discharge thresholds should oil sands process waters be considered for environmental release.
Collapse
Affiliation(s)
- Sarah M Pomfret
- StrEAMS Laboratory, Department of Geography and Canadian Rivers Institute, Western University, London, ON, Canada
| | - Robert B Brua
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Danielle Milani
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Adam G Yates
- StrEAMS Laboratory, Department of Geography and Canadian Rivers Institute, Western University, London, ON, Canada
| |
Collapse
|
15
|
McKenna AM, Chen H, Weisbrod CR, Blakney GT. Molecular Comparison of Solid-Phase Extraction and Liquid/Liquid Extraction of Water-Soluble Petroleum Compounds Produced through Photodegradation and Biodegradation by FT-ICR Mass Spectrometry. Anal Chem 2021; 93:4611-4618. [PMID: 33660499 DOI: 10.1021/acs.analchem.0c05230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We apply two widely used extraction techniques, liquid/liquid extraction and solid-phase extraction with styrene-divinylbenzene polymer with a proprietary nonpolar surface priority pollutant (PPL) to water-soluble compounds generated through photodegradation and biodegradation of petroleum. We compare the molecular composition of bio- and photodegraded water-soluble organic (WSO) acids by 21 T negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We highlight the compositional differences between the two extraction techniques for abiotic and biotic degradation processes and identify known toxic species (naphthenic acids) produced through hydrocarbon biodegradation identified by liquid/liquid extraction (LLE) that are not detected with solid-phase extraction (SPE) of the same sample. Photodegraded WSO compounds extracted by SPE-PPL correspond to species with higher O/C ratio and carbon number compared to LLE extracted compounds. Naphthenic acids, a recalcitrant class of nonaromatic carboxylic acids and known acute toxicants formed through biodegradation of oil, are detected in LLE extracts (up to C30 and double-bond equivalents, DBE < 3) but are not detected in SPE-PPL extracts. This suggests that LLE and SPE-PPL retain different water-soluble oil species based on the dominant type of oil weathering process.
Collapse
Affiliation(s)
- Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Gregory T Blakney
- National High Magnetic Field Laboratory, Florida State University,1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
16
|
Patterson TJ, Kristofco L, Tiwary AK, Magaw RI, Zemo DA, O'Reilly KT, Mohler RE, Ahn S, Sihota N, Devine CE. Human and Aquatic Toxicity Potential of Petroleum Biodegradation Metabolite Mixtures in Groundwater from Fuel Release Sites. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1634-1645. [PMID: 32418246 PMCID: PMC7496656 DOI: 10.1002/etc.4749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/18/2020] [Accepted: 05/10/2020] [Indexed: 05/29/2023]
Abstract
The potential toxicity to human and aquatic receptors of petroleum fuel biodegradation metabolites (oxygen-containing organic compounds [OCOCs]) in groundwater has been investigated as part of a multi-year research program. Whole mixtures collected from locations upgradient and downgradient of multiple fuel release sites were tested using: 1) in vitro screening assays for human genotoxicity (the gamma-H2AX assay) and estrogenic effects (estrogen receptor transcriptional activation assay), and 2) chronic aquatic toxicity tests in 3 species (Ceriodaphnia dubia, Raphidocelis subcapitata, and Pimephales promelas). In vitro screening assay results demonstrated that the mixtures did not cause genotoxic or estrogenic effects. No OCOC-related aquatic toxicity was observed and when aquatic toxicity did occur, upgradient samples typically had the same response as samples downgradient of the release, indicating that background water quality was impacting the results. This information provides additional support for previous work that focused on the individual compounds and, taken together, indicates that OCOCs from petroleum degradation at fuel release sites are unlikely to cause toxicity to human or freshwater receptors at the concentrations present. Environ Toxicol Chem 2020;39:1634-1645. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
17
|
Samanipour S, Reid MJ, Rundberget JT, Frost TK, Thomas KV. Concentration and Distribution of Naphthenic Acids in the Produced Water from Offshore Norwegian North Sea Oilfields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2707-2714. [PMID: 32019310 DOI: 10.1021/acs.est.9b05784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Naphthenic acids (NAs) constitute one of the toxic components of the produced water (PW) from offshore oil platforms discharged into the marine environment. We employed liquid chromatography (LC) coupled to high-resolution mass spectrometry with electrospray ionization (ESI) in negative mode for the comprehensive chemical characterization and quantification of NAs in PW samples from six different Norwegian offshore oil platforms. In total, we detected 55 unique NA isomer groups, out of the 181 screened homologous groups, across all tested samples. The frequency of detected NAs in the samples varied between 14 and 44 isomer groups. Principal component analysis (PCA) indicated a clear distinction of the PW from the tested platforms based on the distribution of NAs in these samples. The averaged total concentration of NAs varied between 6 and 56 mg L-1, among the tested platforms, whereas the concentrations of the individual NA isomer groups ranged between 0.2 and 44 mg L-1. Based on both the distribution and the concentration of NAs in the samples, the C8H14O2 isomer group appeared to be a reasonable indicator of the presence and the total concentration of NAs in the samples with a Pearson correlation coefficient of 0.89.
Collapse
Affiliation(s)
- Saer Samanipour
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| | - Malcolm J Reid
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| | | | - Tone K Frost
- Equinor, Arkitekt Ebbels veg 10, Rotvoll, Trondheim 7005, Norway
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
18
|
Raez-Villanueva S, Jamshed L, Ratnayake G, Cheng L, Thomas PJ, Holloway AC. Adverse effects of naphthenic acids on reproductive health: A focus on placental trophoblast cells. Reprod Toxicol 2019; 90:126-133. [DOI: 10.1016/j.reprotox.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
|
19
|
Folwell BD, McGenity TJ, Whitby C. Diamondoids are not forever: microbial biotransformation of diamondoid carboxylic acids. Microb Biotechnol 2019; 13:495-508. [PMID: 31714688 PMCID: PMC7017837 DOI: 10.1111/1751-7915.13500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/02/2023] Open
Abstract
Oil sands process‐affected waters (OSPW) contain persistent, toxic naphthenic acids (NAs), including the abundant yet little‐studied diamondoid carboxylic acids. Therefore, we investigated the aerobic microbial biotransformation of two of the most abundant, chronically toxic and environmentally relevant diamondoid carboxylic acids: adamantane‐1‐carboxylic acid (A1CA) and 3‐ethyl adamantane carboxylic acid (3EA). We inoculated into minimal salts media with diamondoid carboxylic acids as sole carbon and energy source two samples: (i) a surface water sample (designated TPW) collected from a test pit from the Mildred Lake Settling Basin and (ii) a water sample (designated 2 m) collected at a water depth of 2 m from a tailings pond. By day 33, in TPW enrichments, 71% of A1CA and 50% of 3EA was transformed, with 50% reduction in EC20 toxicity. Similar results were found for 2 m enrichments. Biotransformation of A1CA and 3EA resulted in the production of two metabolites, tentatively identified as 2‐hydroxyadamantane‐1‐carboxylic acid and 3‐ethyladamantane‐2‐ol respectively. Accumulation of both metabolites was less than the loss of the parent compound, indicating that they would have continued to be transformed beyond 33 days and not accumulate as dead‐end metabolites. There were shifts in bacterial community composition during biotransformation, with Pseudomonas species, especially P. stutzeri, dominating enrichments irrespective of the diamondoid carboxylic acid. In conclusion, we demonstrated the microbial biotransformation of two diamondoid carboxylic acids, which has potential application for their removal and detoxification from vast OSPW that are a major environmental threat.
Collapse
Affiliation(s)
- Benjamin D Folwell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Terry J McGenity
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
20
|
Samanipour S, Hooshyari M, Baz-Lomba JA, Reid MJ, Casale M, Thomas KV. The effect of extraction methodology on the recovery and distribution of naphthenic acids of oilfield produced water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1416-1423. [PMID: 30586826 DOI: 10.1016/j.scitotenv.2018.10.264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Comprehensive chemical characterization of naphthenic acids (NAs) in oilfield produced water is a challenging task due to sample complexity. The recovery of NAs from produced water, and the corresponding distribution of detectable NAs are strongly influenced by sample extraction methodologies. In this study, we evaluated the effect of the extraction method on chemical space (i.e. the total number of chemicals present in a sample), relative recovery, and the distribution of NAs in a produced water sample. Three generic and pre-established extraction methods (i.e. liquid-liquid extraction (Lq), and solid phase extraction using HLB cartridges (HLB), and the combination of ENV+ and C8 (ENV) cartridges) were employed for our evaluation. The ENV method produced the largest number of detected NAs (134 out of 181) whereas the HLB and Lq methods produced 108 and 91 positive detections, respectively, in the tested produced water sample. For the relative recoveries, the ENV performed better than the other two methods. The uni-variate and multi-variate statistical analysis of our results indicated that the ENV and Lq methods explained most of the variance observed in our data. When looking at the distribution of NAs in our sample the ENV method appeared to provide a more complete picture of the chemical diversity of NAs in that sample. Finally, the results are further discussed.
Collapse
Affiliation(s)
- Saer Samanipour
- Norwegian Institute for Water Research (NIVA), Oslo 0349, Norway.
| | - Maryam Hooshyari
- Department of Pharmacy, Genova University, Viale Cembrano 4, Genova 16147, Italy
| | - Jose A Baz-Lomba
- Norwegian Institute for Water Research (NIVA), Oslo 0349, Norway
| | - Malcolm J Reid
- Norwegian Institute for Water Research (NIVA), Oslo 0349, Norway
| | - Monica Casale
- Department of Pharmacy, Genova University, Viale Cembrano 4, Genova 16147, Italy
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), Oslo 0349, Norway; Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
21
|
Ajaero C, Peru KM, Simair M, Friesen V, O'Sullivan G, Hughes SA, McMartin DW, Headley JV. Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:829-839. [PMID: 29727993 DOI: 10.1016/j.scitotenv.2018.03.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 05/24/2023]
Abstract
Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity.
Collapse
Affiliation(s)
- Chukwuemeka Ajaero
- Environmental Systems Engineering, University of Regina, Regina, Saskatchewan, 3737 Wascana Parkway, S4S 0A2, Canada; Watershed Hydrology & Ecology Research Division, Water Science & Technology Directorate, Environment & Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Kerry M Peru
- Watershed Hydrology & Ecology Research Division, Water Science & Technology Directorate, Environment & Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Monique Simair
- Contango Strategies Limited, 15-410 Downey Road, Saskatoon, Saskatchewan S7N 4N1, Canada
| | - Vanessa Friesen
- Contango Strategies Limited, 15-410 Downey Road, Saskatoon, Saskatchewan S7N 4N1, Canada
| | - Gwen O'Sullivan
- Department of Earth & Environmental Science, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB T3E 6K6, Canada
| | - Sarah A Hughes
- Shell Health - Americas, One Shell Plaza, 910 Louisiana, Houston, TX 77002, USA
| | - Dena W McMartin
- Environmental Systems Engineering, University of Regina, Regina, Saskatchewan, 3737 Wascana Parkway, S4S 0A2, Canada; Department of Civil, Geological and Environmental Engineering, 57 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9, Canada.
| | - John V Headley
- Watershed Hydrology & Ecology Research Division, Water Science & Technology Directorate, Environment & Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
22
|
Dogra Y, Scarlett AG, Rowe D, Galloway TS, Rowland SJ. Predicted and measured acute toxicity and developmental abnormalities in zebrafish embryos produced by exposure to individual aromatic acids. CHEMOSPHERE 2018; 205:98-107. [PMID: 29689530 DOI: 10.1016/j.chemosphere.2018.04.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Petroleum acids, often called 'Naphthenic Acids' (NA), enter the environment in complex mixtures from numerous sources. These include from Produced and Process-Affected waters discharged from some oil industry activities, and from the environmental weathering of spilled crude oil hydrocarbons. Here, we test the hypothesis that individual NA within the complex mixtures can induce developmental abnormalities in fish, by screening a range of individual acids, with known chemical structures. Sixteen aromatic NA were tested using a Thamnocephalus platyrus (beavertail fairyshrimp) assay, to establish acute toxicity. Toxicities ranged from 568 to 8 μM, with the methylbiphenyl acid, 4-(p-tolyl)benzoic acid, most toxic. Next, five of the most toxic monoacids and for comparison, a diacid, were assayed using Danio rerio (zebrafish) embryos to test for lethality and developmental abnormalities. The toxicities were also predicted using Admet predictor™ software. Exposure to the five monoacids produced deformities in zebrafish embryos in a dose-dependent manner. Thus, exposure to 4-(p-tolyl)benzoic acid produced abnormalities in >90% of the embryos at concentrations of <1 μM; exposure to dehydroabietic acid caused pericardial edema and stunted growth in 100% of the embryos at 6 μM and exposure to pyrene-1-carboxylic acid caused 80% of embryos to be affected at 3 μM. The findings of this preliminary study therefore suggest that some aromatic acids are targets for more detailed mechanistic studies of mode of action. The results should help to focus on those NA which may be important for monitoring in oil industry wastewaters and polluted environmental samples.
Collapse
Affiliation(s)
- Yuktee Dogra
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Alan G Scarlett
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Darren Rowe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Tamara S Galloway
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Steven J Rowland
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
23
|
Islam MS, McPhedran KN, Messele SA, Liu Y, Gamal El-Din M. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. CHEMOSPHERE 2018; 202:716-725. [PMID: 29604558 DOI: 10.1016/j.chemosphere.2018.03.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The production of oil from oil sands in northern Alberta has led to the generation of large volumes of oil sands process-affected water (OSPW) that was reported to be toxic to aquatic and other living organisms. The toxicity of OSPW has been attributed to the complex nature of OSPW matrix including the inorganic and organic compounds primarily naphthenic acids (NAs: CnH2n+ZOx). In the present study, granular activated carbon (GAC) adsorption was investigated for its potential use to treat raw and ozonated OSPW. The results indicated that NA species removal increased with carbon number (n) for a fixed Z number; however, the NA species removal decreased with Z number for a fixed carbon number. The maximum adsorption capacities obtained from Langmuir adsorption isotherm based on acid-extractable fraction (AEF) and NAs were 98.5 mg and 60.9 mg AEF/g GAC and 60 mg and 37 mg NA/g GAC for raw and ozonated OSPW, respectively. It was found that the Freundlich isotherm model best fits the AEF and NA equilibrium data (r2 ≥ 0.88). The adsorption kinetics showed that the pseudo-second order and intraparticle diffusion models were both appropriate in modeling the adsorption kinetics of AEF and NAs to GAC (r2 ≥ 0.97). Although pore diffusion was the rate limiting step, film diffusion was still significant for assessing the rate of diffusion of NAs. This study could be helpful to model, design and optimize the adsorption treatment technologies of OSPW and to assess the performance of other adsorbents.
Collapse
Affiliation(s)
- Md Shahinoor Islam
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Selamawit A Messele
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
24
|
de Oliveira Livera D, Leshuk T, Peru KM, Headley JV, Gu F. Structure-reactivity relationship of naphthenic acids in the photocatalytic degradation process. CHEMOSPHERE 2018; 200:180-190. [PMID: 29482010 DOI: 10.1016/j.chemosphere.2018.02.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Bitumen extraction in Canada's oil sands generates oil sands process-affected water (OSPW) as a toxic by-product. Naphthenic acids (NAs) contribute to the water's toxicity, and treatment methods may need to be implemented to enable safe discharge. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, its successful implementation requires understanding of the complicated relationship between structure and reactivity of NAs. This work aimed to study the effect of various structural properties of model compounds on the photocatalytic degradation kinetics via high resolution mass spectrometry (HRMS), including diamondoid structures, heteroatomic species, and degree of unsaturation. The rate of photocatalytic treatment increased significantly with greater structural complexity, namely with carbon number, aromaticity and degree of cyclicity, properties that render particular NAs recalcitrant to biodegradation. It is hypothesized that a superoxide radical-mediated pathway explains these observations and offers additional benefits over traditional hydroxyl radical-based AOPs. Detailed structure-reactivity investigations of NAs in photocatalysis have not previously been undertaken, and the results described herein illustrate the potential benefit of combining photocatalysis and biodegradation as a complete OSPW remediation technology.
Collapse
Affiliation(s)
- Diogo de Oliveira Livera
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tim Leshuk
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kerry M Peru
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - John V Headley
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Frank Gu
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
25
|
Li C, Fu L, Stafford J, Belosevic M, Gamal El-Din M. The toxicity of oil sands process-affected water (OSPW): A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1785-1802. [PMID: 28618666 DOI: 10.1016/j.scitotenv.2017.06.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Large volumes of oil sands process-affected water (OSPW) are produced by the surface-mining oil sands industry in Alberta. Both laboratory and field studies have demonstrated that the exposure to OSPW leads to many physiological changes in a variety of organisms. Adverse effects include compromised immunological function, developmental delays, impaired reproduction, disrupted endocrine system, and higher prevalence of tissue-specific pathological manifestations. The composition of OSPW varies with several factors such as ore sources, mining process, and tailings management practices. Differences in water characteristics have confounded interpretation or comparison of OSPW toxicity across studies. Research on individual fractions extracted from OSPW has helped identify some target pollutants. Naphthenic acids (NAs) are considered as the major toxic components in OSPW, exhibiting toxic effects through multiple modes of action including narcosis and endocrine disruption. Other pollutants, like polycyclic aromatic hydrocarbons (PAHs), metals, and ions may also contribute to the overall OSPW toxicity. Studies have been conducted on OSPW as a whole complex effluent mixture, with consideration of the presence of unidentified components, and the interactions (potential synergistic or antagonistic reactions) among chemicals. This review summarizes the toxicological data derived from in vitro and in vivo exposure studies using different OSPW types, and different taxa of organisms. In general, toxicity of OSPW was found to be dependent on the OSPW type and concentration, duration of exposures (acute versus sub chronic), and organism studied.
Collapse
Affiliation(s)
- Chao Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Li Fu
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - James Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada.
| |
Collapse
|
26
|
Morandi GD, Wiseman SB, Guan M, Zhang XW, Martin JW, Giesy JP. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW). CHEMOSPHERE 2017; 186:893-900. [PMID: 28830063 DOI: 10.1016/j.chemosphere.2017.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/13/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Miao Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaowei W Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Stockholm, 114 18, Sweden
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; School of Biological Sciences, University of Hong Kong, 999077, Hong Kong Special Administrative Region.
| |
Collapse
|
27
|
Petersen K, Hultman MT, Rowland SJ, Tollefsen KE. Toxicity of organic compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:150-161. [PMID: 28711771 DOI: 10.1016/j.aquatox.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Many environmental matrices contaminated with organic pollutants derived from crude oil or degraded petroleum contain mixtures so complex that they are typically unresolved by conventional analytical techniques such as gas chromatography. The resulting chromatographic features have become known as 'humps' or unresolved complex mixtures (UCMs). These UCMs often dominate the organic contaminants of polluted environmental samples: for example, in oil sands produced water up to 150mgL-1 of 'naphthenic acids' appear as UCMs when examined by gas chromatography as the esters. In oil-contaminated mussels, aromatic hydrocarbon UCMs may comprise almost all of the total toxic hydrocarbons, with over 7000μgg-1 dry weight reported in some samples. Over the last 25 years, efforts to resolve and thus identify, or at least to produce average structures, for some UCM components, have proved fruitful. Numerous non-polar UCM hydrocarbons and more polar UCM acids have been identified, then synthesised or purchased from commercial suppliers. As UCMs have been proposed to represent a risk to aquatic organisms, the need for assessment of the ecotoxicological effects and characterisation of the mode of action (MoA) of these environmental pollutants has arisen. In the present study, several chemicals with structures typical of those found in some UCMs, were assessed for their potential to disrupt membrane integrity, inhibit metabolic activity, activate the aryl hydrocarbon receptor (AhR), and activate the estrogen receptor (ER) in primary rainbow trout hepatocytes (Oncorhynchus mykiss). These endpoints were determined in order to screen for common toxic modes of action (MoA) in this diverse group of chemicals. The results from the in vitro screening indicated that of the endpoints tested, the predominant toxic MoA was cytotoxicity. EC50 values for cytotoxicity were obtained for 16 compounds and ranged from 77μM-24mM, whereof aliphatic monocyclic acids, monoaromatic acids, polycyclic monoaromatic acids and alkylnaphthalenes were the most toxic. The observed cytotoxicity of the chemicals correlated well with the hydrophobicity (LogKOW) suggesting that the toxicity was predominantly due to a non-specific MoA. Interestingly, two compounds induced the ER-mediated production of vitellogenin (Vtg) and six compounds induced the AhR-mediated Ethoxyresorufin-O-deethylase (EROD) enzymatic activity to >20% of the positive control; by doing so suggesting that they may act as ER or AhR agonists in fish. The heterogeneous group of 'UCM compounds' tested exhibited multiple MoA that may potentially cause adverse effects in fish. Additional studies to determine if these compounds may cause adverse effects in vivo at environmentally relevant concentrations, are warranted to identify if such compounds are indeed of potential environmental concern.
Collapse
Affiliation(s)
- Karina Petersen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway
| | - Maria T Hultman
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Steven J Rowland
- Petroleum & Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
28
|
Yassine MM, Dabek-Zlotorzynska E. Application of ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry for the characterization of organic aerosol: Searching for naphthenic acids. J Chromatogr A 2017; 1512:22-33. [DOI: 10.1016/j.chroma.2017.06.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
|
29
|
Robson WJ, Sutton PA, McCormack P, Chilcott NP, Rowland SJ. Class Type Separation of the Polar and Apolar Components of Petroleum. Anal Chem 2017; 89:2919-2927. [DOI: 10.1021/acs.analchem.6b04202] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- William J. Robson
- Petroleum
and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth PL4 8AA, U.K
| | - Paul A. Sutton
- Petroleum
and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth PL4 8AA, U.K
| | - Paul McCormack
- Petroleum
and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth PL4 8AA, U.K
| | - Neil P. Chilcott
- Kernow Analytical Technology Limited, North Petherwin, Cornwall PL15 8TE, U.K
| | - Steven J. Rowland
- Petroleum
and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth PL4 8AA, U.K
| |
Collapse
|
30
|
Gerner NV, Koné M, Ross MS, Pereira A, Ulrich AC, Martin JW, Liess M. Stream invertebrate community structure at Canadian oil sands development is linked to concentration of bitumen-derived contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1005-1013. [PMID: 27707570 DOI: 10.1016/j.scitotenv.2016.09.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 05/05/2023]
Abstract
In Canada, the Athabasca oil sands deposits are a source of bitumen-derived contaminants, reaching the aquatic environment via various natural and anthropogenic pathways. The ecological effects of these contaminants are under debate. To quantify the effects of bitumen-derived contaminants we monitored the aquatic exposure of polycyclic aromatic hydrocarbons (PAHs), metals, and naphthenic acids as well as the invertebrate community in the Athabasca River and its tributaries. PAH concentrations over 3 consecutive years were related to discharge and were highest in the year with high autumn rainfall. In the year with the highest PAH concentrations, these were linked with adverse effects on the aquatic invertebrate communities. We observed relative effects of the composition and concentration of contaminants on the invertebrate fauna. This is reflected by the composition and abundance of invertebrate species via the use of the species' traits "physiological sensitivity" and "generation time". Applying the SPEAR approach we observed alterations of community structure in terms of an increased physiological sensitivity and a decrease of generation time for the average species. These effects were apparent at concentrations 100 times below the acute sensitivity of the standard test organism Daphnia magna. To rapidly identify oil sands related effects in the field we designed a biological indicator system, SPEARoil, applicable for future routine monitoring.
Collapse
Affiliation(s)
- Nadine V Gerner
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; Quantitative Landscape Ecology, Institute for Environmental Science, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Macoura Koné
- Department of Civil & Environmental Engineering, University of Alberta, 3-091 Markin/CNRL Natural Resources Engineering Facility, Edmonton, AB T6G 2W2, Canada.
| | - Matthew S Ross
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB T6G 2G3, Canada.
| | - Alberto Pereira
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB T6G 2G3, Canada.
| | - Ania C Ulrich
- Department of Civil & Environmental Engineering, University of Alberta, 3-091 Markin/CNRL Natural Resources Engineering Facility, Edmonton, AB T6G 2W2, Canada.
| | - Jonathan W Martin
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB T6G 2G3, Canada.
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringer Weg 1, 52074 Aachen, Germany.
| |
Collapse
|
31
|
Marentette JR, Sarty K, Cowie AM, Frank RA, Hewitt LM, Parrott JL, Martyniuk CJ. Molecular responses of Walleye (Sander vitreus) embryos to naphthenic acid fraction components extracted from fresh oil sands process-affected water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:11-19. [PMID: 27842271 DOI: 10.1016/j.aquatox.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Naphthenic acid fraction components (NAFCs) are constituents of oil sands process-affected water (OSPW), which is generated as a result of unconventional oil production via surface mining in the Athabasca oil sands region. NAFCs are often considered to be major drivers of OSPW toxicity to various taxa, including fishes. However, the molecular targets of these complex mixtures are not fully elucidated. Here we examined the effects in walleye (Sander vitreus) embryos after exposure to NAFCs extracted from fresh OSPW. Eleutheroembryos (exposed to 0, 4.2 or 8.3mg/L NAFCs from 1day post-fertilization to hatch) were subsampled, measured for growth and deformities, and molecular responses were assessed via real-time polymerase chain reaction (PCR). Fourteen genes were evaluated, with a focus on the aryl-hydrocarbon receptor (AhR) - cytochrome P450 pathway (arnt, cyp1a1), the oxidative stress axis (cat, gst, sod, gpx1b), apoptosis (e.g. casp3, bax and p53), growth factor signaling (e.g. insulin-like growth factors igf1, igf1b, and igf1bp), and tissue differentiation (vim). NAFC exposure was associated with an increase in the expression of cyp1a1, and a decrease in gpx1b and ribosomal protein rps40. These results indicate that NAFC effects on walleye early-life stages may be mediated through oxidative stress via pathways that include AhR.
Collapse
Affiliation(s)
- Julie R Marentette
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Kathleena Sarty
- Department of Biology, University of New Brunswick, Saint John, Canada
| | - Andrew M Cowie
- Department of Biology, University of New Brunswick, Saint John, Canada
| | - Richard A Frank
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - L Mark Hewitt
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | | |
Collapse
|
32
|
Yue S, Ramsay BA, Wang J, Ramsay JA. Biodegradation and detoxification of naphthenic acids in oil sands process affected waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:273-279. [PMID: 27501426 DOI: 10.1016/j.scitotenv.2016.07.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
After oil sands process affected water (OSPW) was treated in a continuous flow biofilm reactor, about 40% of the organic compounds in the acid extractable fraction (AEF) including naphthenic acids (NAs) were degraded resulting in a reduction of 73% in the Microtox acute toxicity and of 22% in the yeast estrogenic assay. Using effect directed analysis, treated and untreated OSPW were fractionated by solid phase extraction and the fractions with the largest decrease in toxicity and estrogenicity were selected for analysis by electrospray ionization combined with linear ion trap and a high-resolution Orbitrap mass spectrometer (negative ion mode). The aim of this study was to determine whether compositional changes between the untreated and treated fractions provide insight related to biodegradation and detoxification of NAs. The O2S, O3S and O4S compounds were either not major contributors of toxicity or estrogenicity or the more toxic or estrogenic ones were biodegraded. The O3- and O4-NAs seem to be more readily metabolized than O2NAs and their degradation would contribute to detoxification. The decrease in acute toxicity may be associated with the degradation of C12 and C13 bicyclic and C12-C14 tricyclic NAs while the decrease in estrogenicity may be linked to the degradation of C16 O2-NAs with double bond equivalents (DBE)=5 and 6, C16 and 17 O2-NAs with DBE=7, and C19-O2-NAs with DBE=8. The residual acute toxicity may be caused by recalcitrant components and/or degradation products such as the O2 bicyclic and tricyclic NAs, particularly the C14 and C15 bicyclic and C14-C16 tricyclic NAs as well as the polycyclic aromatic NAs (DBE≥5 compounds). The decrease in estrogenicity may be linked to the degradation of the O3 and O4 oxidized NAs while much of the residual estrogenicity may be due to the recalcitrant polycyclic aromatic O2-NAs. Hence, treatment to further detoxify OSPW should target these compounds.
Collapse
Affiliation(s)
- Siqing Yue
- Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bruce A Ramsay
- Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jiaxi Wang
- Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Juliana A Ramsay
- Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
33
|
Arshad M, Khosa MA, Siddique T, Ullah A. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW). CHEMOSPHERE 2016; 163:334-341. [PMID: 27552693 DOI: 10.1016/j.chemosphere.2016.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW.
Collapse
Affiliation(s)
- Muhammad Arshad
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mark A Khosa
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
34
|
Hellmann-Blumberg U, Steenson RA, Brewer RC, Allen E. Toxicity of polar metabolites associated with petroleum hydrocarbon biodegradation in groundwater. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1900-1901. [PMID: 27442158 DOI: 10.1002/etc.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 12/22/2015] [Accepted: 01/15/2016] [Indexed: 06/06/2023]
|
35
|
Dissanayake A, Scarlett AG, Jha AN. Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7060-7066. [PMID: 26884235 DOI: 10.1007/s11356-016-6268-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L(-1)), significant (P < 0.05%) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine.
Collapse
Affiliation(s)
- Awantha Dissanayake
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| | - Alan G Scarlett
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
- WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Department of Chemistry, Curtin University, Building 500, Kent Street, G.P.O. Box U1987, Perth, WA, 6845, Australia.
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| |
Collapse
|
36
|
Islam MS, Zhang Y, McPhedran KN, Liu Y, Gamal El-Din M. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:238-246. [PMID: 26410699 DOI: 10.1016/j.scitotenv.2015.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors.
Collapse
Affiliation(s)
- Md Shahinoor Islam
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada; Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada; Department of Civil and Geological Engineering, College of Engineering, University of Saskatchewan, Saskatoon S7N 5A9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
37
|
Yue S, Ramsay BA, Wang J, Ramsay J. Toxicity and composition profiles of solid phase extracts of oil sands process-affected water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:573-582. [PMID: 26318810 DOI: 10.1016/j.scitotenv.2015.08.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
After fractionation using sequential solid phase extraction, the presence of toxic components in oil sands process-affected water (OSPW) was detected by the Microtox® acute toxicity assay using effect-directed analysis. The composition of each fraction was determined by high-resolution electrospray ionization-Orbitrap mass spectrometry. Partial least-squares discriminant analysis (PLS-DA) was used to determine which chemical constituents in all seven fractions co-varied most strongly with toxicity. Although O2 compounds with double bond equivalence (DBE) between 3 and 9 positively correlated with toxicity, C15-C18 O2-NAs with DBE=4 (tricyclic structure), as well as C14-C17 O2-NAs with DBE=3 (bicyclic structure), were found to be most likely associated with OSPW toxicity, consistent with published toxicity studies of surrogate NAs. O4, many O3 (i.e. possibly hydroxylated O2 c-NAs) and a few O2 compounds were found to negatively correlate with toxicity. The results demonstrate the utility of the fractionation and the PLS-DA approach for evaluating composition-response relationships in a complex mixture and also contribute to a better understanding of the toxic compounds in OSPW. These findings will help to focus study on the most environmentally significant components in OSPW.
Collapse
Affiliation(s)
- Siqing Yue
- Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bruce A Ramsay
- Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jiaxi Wang
- Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Juliana Ramsay
- Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
38
|
Wang J, Cao X, Sun J, Chai L, Huang Y, Tang X. Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 204:264-270. [PMID: 25984985 DOI: 10.1016/j.envpol.2015.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
In this study, earthworms (Eisenia fetida) were exposed to commercial NAs contaminated soil, and changes in the levels of reactive oxygen species (ROS) and gene expressions of their defense system were monitored. The effects on the gene expression involved in reproduction and carcinogenesis were also evaluated. Significant increases in ROS levels was observed in NAs exposure groups, and the superoxide dismutase (SOD) and catalase (CAT) genes were both up-regulated at low and medium exposure doses, which implied NAs might exert toxicity by oxidative stress. The transcription of CRT and HSP70 coincided with oxidative stress, which implied both chaperones perform important functions in the protection against oxidative toxicity. The upregulation of TCTP gene indicated a potential adverse effect of NAs to terrestrial organisms through induction of carcinogenesis, and the downregulation of ANN gene indicated that NAs might potentially result in deleterious reproduction effects.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinhua Sun
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwei Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Wang X, Chen M, Xiao J, Hao L, Crowley DE, Zhang Z, Yu J, Huang N, Huo M, Wu J. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3. PLoS One 2015; 10:e0132881. [PMID: 26301592 PMCID: PMC4547698 DOI: 10.1371/journal.pone.0132881] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/22/2015] [Indexed: 11/18/2022] Open
Abstract
Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Environment Sciences, Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Meili Chen
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jingfa Xiao
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lirui Hao
- School of Environment Sciences, Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - David E. Crowley
- Department of Environmental Sciences, University of California Riverside, Riverside, California, United States of America
| | - Zhewen Zhang
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ning Huang
- School of Environment Sciences, Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Mingxin Huo
- School of Environment Sciences, Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Jiayan Wu
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Zhang Y, McPhedran KN, Gamal El-Din M. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:59-67. [PMID: 25828413 DOI: 10.1016/j.scitotenv.2015.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
41
|
Biodegradation of naphthenic acid surrogates by axenic cultures. Biodegradation 2015; 26:313-25. [DOI: 10.1007/s10532-015-9736-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 06/08/2015] [Indexed: 02/02/2023]
|
42
|
Brown LD, Ulrich AC. Oil sands naphthenic acids: a review of properties, measurement, and treatment. CHEMOSPHERE 2015; 127:276-290. [PMID: 25753852 DOI: 10.1016/j.chemosphere.2015.02.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
The Alberta oil sands contain one of the world's largest reserves of oil - over 169 billion barrels of bitumen are economically recoverable with current extraction technologies. Surface mining and subsequent hot water extraction of bitumen from the ore generates about nine cubic meters of raw tailings per cubic meter of oil. Oil sands facilities are required to operate under a policy of zero water discharge, resulting in ponds containing more than one billion cubic meters of tailings, a mixture of sand, fines and process-affected water. Process-affected water contains numerous organic compounds, including naphthenic acids (NAs), which have been identified as the primary source of acute toxicity of process-affected water. Developments in analytical techniques, aerobic biodegradability, and treatment via chemical oxidation (ozone) of NAs are reviewed. The field continues to be challenged by the lack of a cost-effective, accurate analytical technique for NAs or an understanding of all the organic constituents in process-affected water that may be contributing to observed toxicity and thus requiring treatment.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ania C Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
43
|
Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water. Appl Environ Microbiol 2015; 81:4037-48. [PMID: 25841014 DOI: 10.1128/aem.04258-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds.
Collapse
|
44
|
Islam MS, Zhang Y, McPhedran KN, Liu Y, Gamal El-Din M. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 152:49-57. [PMID: 25617868 DOI: 10.1016/j.jenvman.2015.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs.
Collapse
Affiliation(s)
- Md Shahinoor Islam
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
45
|
Yue S, Ramsay BA, Brown RS, Wang J, Ramsay JA. Identification of estrogenic compounds in oil sands process waters by effect directed analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:570-577. [PMID: 25521156 DOI: 10.1021/es5039134] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using effect directed analysis, the presence of estrogenic components in untreated and biologically treated oil sands process water (OSPW) was detected with the yeast estrogenic screening assay after fractionation with solid phase extraction followed by reversed phase high performance liquid chromatography. Comparison of the composition, as determined by electrospray ionization combined with high-resolution linear trap quadropole (LTQ)-Orbitrap Velos Pro hybrid mass spectrometry (negative ion) of selected estrogenic and nonestrogenic fractions identified compounds that were uniquely present in the estrogenic samples, biologically treated and untreated. Of the 30 most abundant compounds, there were 14 possible nonaromatic structures and 16 possible aromatic structures. Based on the published literature, the latter are the most likely to cause estrogenicity and were O2, O3 and O4 C17 to C20 compounds with double bond equivalents between 6 and 10 and chemical formulas similar to estrone- and estradiol-like compounds. This study shows exact formulas and masses of possible estrogenic compounds in OSPW. These findings will help to focus study on the most environmentally significant components in OSPW.
Collapse
Affiliation(s)
- Siqing Yue
- Department of Chemical Engineering and ‡Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
46
|
Choi J, Liu Y. Power generation and oil sands process-affected water treatment in microbial fuel cells. BIORESOURCE TECHNOLOGY 2014; 169:581-587. [PMID: 25103035 DOI: 10.1016/j.biortech.2014.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
Oil sands process-affected water (OSPW), a product of bitumen isolation in the oil sands industry, is a source of pollution if not properly treated. In present study, OSPW treatment and voltage generation were examined in a single chamber air-cathode microbial fuel cell (MFC) under the effect of inoculated carbon source and temperature. OSPW treatment with an anaerobic sludge-inoculated MFC (AS-MFC) generated 0.55 ± 0.025 V, whereas an MFC inoculated with mature-fine tailings (MFT-MFC) generated 0.41 ± 0.01 V. An additional carbon source (acetate) significantly improved generated voltage. The voltage detected increased to 20-23% in MFCs when the condition was switched from ambient to mesophilic. The mesophilic condition increased OSPW treatment efficiency in terms of lowering the chemical oxygen demand and acid-extractable organics. Pyrosequencing analysis of microbial consortia revealed that Proteobacteria were the most abundant in MFCs and microbial communities in the AS-MFC were more diverse than those in the MFT-MFC.
Collapse
Affiliation(s)
- Jeongdong Choi
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|
47
|
Lacaze E, Devaux A, Bruneau A, Bony S, Sherry J, Gagné F. Genotoxic potential of several naphthenic acids and a synthetic oil sands process-affected water in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:291-299. [PMID: 24799193 DOI: 10.1016/j.aquatox.2014.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
The exploitation of oil sands has raised major environmental concerns, particularly regarding the presence of high concentration in contaminants such as polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids (NAs) in oil sands process-affected water (OSPW). The purpose of this study was, first to evaluate the genotoxic impact of OSPW-related compounds such as NAs and PAHs in a salmonid species and secondly to assess if OSPW exposure leads to genotoxicity. For this purpose, rainbow trout hepatocytes were exposed in vitro to environmentally relevant concentrations of synthetic NAs, naphtalene, benzo(a)pyrene, and extracts of synthetic OSPW (generated by a laboratory bitumen extraction) and of oil sands leaching water (OSLW, mimicking leaching of oil sands in river water). Primary DNA damage was assessed by the formamidopyrimidine-DNA glycolyase (Fpg)-modified comet assay. Genotoxicity was observed in hepatocytes exposed to several NAs, mixture of them, OSPW and OSLW extracts. The chemical structure of NAs influences the genotoxicity potential: among the NAs tested, the most cyclic NA was the most genotoxic. It also appears that genotoxicity was more marked for OSPW than for OSLW. Because exposure to OSPW led to oxidative DNA damage, while after exposure to several NAs, these types of DNA damage were limited, the NAs tested in this study could not be qualified as the only major contaminants responsible for OSPW genotoxicity. Notwithstanding, it should be noteworthy that exposure to NAs resulted in genotoxic impact at concentrations lower than those documented by literature for fresh OSPW. Further research is needed to explore the relationships between the chemical structure of NAs and their genotoxicity in the light of the distribution of NAs in fresh OSPW samples as well as in surface waters.
Collapse
Affiliation(s)
- E Lacaze
- Emerging Methods Section, Environment Canada, 105 McGill St., Montreal, H2Y2E7 Quebec, Canada; INRA, USC IGH, LEHNA UMR 5023, Université de Lyon-ENTPE, F-69518, Vaulx en Velin, France.
| | - A Devaux
- INRA, USC IGH, LEHNA UMR 5023, Université de Lyon-ENTPE, F-69518, Vaulx en Velin, France
| | - A Bruneau
- Emerging Methods Section, Environment Canada, 105 McGill St., Montreal, H2Y2E7 Quebec, Canada
| | - S Bony
- INRA, USC IGH, LEHNA UMR 5023, Université de Lyon-ENTPE, F-69518, Vaulx en Velin, France
| | - J Sherry
- Emerging Methods Section, Environment Canada, 105 McGill St., Montreal, H2Y2E7 Quebec, Canada
| | - F Gagné
- Emerging Methods Section, Environment Canada, 105 McGill St., Montreal, H2Y2E7 Quebec, Canada
| |
Collapse
|
48
|
West CE, Scarlett AG, Tonkin A, O'Carroll-Fitzpatrick D, Pureveen J, Tegelaar E, Gieleciak R, Hager D, Petersen K, Tollefsen KE, Rowland SJ. Diaromatic sulphur-containing 'naphthenic' acids in process waters. WATER RESEARCH 2014; 51:206-215. [PMID: 24252453 DOI: 10.1016/j.watres.2013.10.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
Polar organic compounds found in industrial process waters, particularly those originating from biodegraded petroleum residues, include 'naphthenic acids' (NA). Some NA have been shown to have acute toxicity to fish and also to produce sub-lethal effects. Whilst some of these toxic effects are produced by identifiable carboxylic acids, acids such as sulphur-containing acids, which have been detected, but not yet identified, may produce others. Therefore, in the present study, the sulphur-containing acids in oil sands process water were studied. A fraction (ca 12% by weight of the total NA containing ca 1.5% weight sulphur) was obtained by elution of methylated NA through an argentation solid phase extraction column with diethyl ether. This was examined by multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) in both nominal and high resolution mass accuracy modes and by GCxGC-sulphur chemiluminescence detection (GCxGC-SCD). Interpretation of the mass spectra and retention behaviour of methyl esters of several synthesised sulphur acids and the unknowns allowed delimitation of the structures, but not complete identification. Diaromatic sulphur-containing alkanoic acids were suggested. Computer modelling of the toxicities of some of the possible acids suggested they would have similar toxicities to one another and to dehydroabietic acid. However, the sulphur-rich fraction was not toxic or estrogenic to trout hepatocytes, suggesting the concentrations of sulphur acids in this sample were too low to produce any such effects in vitro. Further samples should probably be examined for these compounds.
Collapse
Affiliation(s)
- Charles E West
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Alan G Scarlett
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Tonkin
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Devon O'Carroll-Fitzpatrick
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Jos Pureveen
- Shell Global Solutions International B V, Rock and Fluid Science, Kessler Park 1, 2288 GS Rijswijk, The Netherlands
| | - Erik Tegelaar
- Shell Global Solutions International B V, Rock and Fluid Science, Kessler Park 1, 2288 GS Rijswijk, The Netherlands
| | - Rafal Gieleciak
- Canmet ENERGY, Natural Resources Canada, Devon, Alberta, Canada T9G 1A8; Institute of Chemistry, The University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| | - Darcy Hager
- Canmet ENERGY, Natural Resources Canada, Devon, Alberta, Canada T9G 1A8
| | - Karina Petersen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway
| | - Knut-Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway
| | - Steven J Rowland
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
49
|
Bilton PA, da Campo R, Nikzad R, Hazelton M, Derrick PJ. Interactions between naphthenic acids; dependence on molecular structure revealed through statistical analysis of ultra-high-resolution electrospray mass spectra. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:221-231. [PMID: 24892293 DOI: 10.1255/ejms.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Negative-ion electrospray mass spectra of samples of naphthenic acids contain peaks due to monomeric species [M-H](-) and dimeric species [2M-H](-). Working with a model system, intensities of the dimers were related to the intensities of monomers through linear inverse modelling. The statistical approaches investigated and the details of their applications to naphthenic acids are described here. The statistical analysis gives estimates of the relative probabilities of association of all pairs of monomers, where the monomers are defined by their accurate masses. The trends observed in these calculated probabilities of association exhibit breakpoints in the vicinity of monomers with 16 carbon atoms. These findings are discussed in terms of hydrophobic effects influencing the probability of association of naphthenic acids.
Collapse
Affiliation(s)
- Penelope A Bilton
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Raffaello da Campo
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ramin Nikzad
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, Department of Physics and Department of Chemistry, The University of Auckland, Auckland, New Zealand.
| | - Martin Hazelton
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Derrick
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom, Department of Physics and Department of Chemistry, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Martin N, Burkus Z, McEachern P, Yu T. Naphthenic acids quantification in organic solvents using fluorescence spectroscopy. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:294-306. [PMID: 24279621 DOI: 10.1080/10934529.2014.846631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantification of naphthenic acids in water has been traditionally performed after extraction with organic solvents followed by analytic methods that are complex and costly for preliminary research or for continuous monitoring purposes. This study examines the application of fluorescence in organic solvents as an effective alternative, and the role of organic solvents on quantification results. Nine organic solvents were used: three polar protic alcohols (methanol, ethanol, and propanol), three polar aprotic (dichloromethane, acetone, and acetonitrile) and three non-polar (hexane, toluene, and diethyl ether). The calibration curves of the polar protic solvents performed the best; they had lower light scattering and higher method sensitivity than polar aprotic and non-polar. Methanol was selected for further experiments having a strong linearity for concentrations lower than 250 mg/L (R(2) > 0.99), and a low relative standard deviation (< 10%). The method sensitivity was improved by 70% using a methanol-deionized water mixture (50:50) as a solvent. The synchronous fluorescence mode with a reduced offset value of Δλ = 10 nm demonstrated potential for fingerprinting. The fluorescence technique for quantifying total naphthenic acids directly in organic solvents is a cost-effective analytical method compatible with the solid phase extraction of the sample.
Collapse
Affiliation(s)
- Nancy Martin
- a Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Canada
| | | | | | | |
Collapse
|