1
|
Sacchini S. Neurodegenerative Diseases: What Can Be Learned from Toothed Whales? Neurosci Bull 2025; 41:326-338. [PMID: 39485652 PMCID: PMC11794736 DOI: 10.1007/s12264-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.
Collapse
Affiliation(s)
- Simona Sacchini
- Department of Morphology, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de San Cristóbal, c/ Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Sedak M, Đokić M, Bilandžić N, Gomerčić T, Benić M, Zadravec M, Đuras M. Cetacean species found stranded along Croatian coast of the Adriatic Sea as bioindicators of non-essential trace elements in the environment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107206. [PMID: 39718295 DOI: 10.1016/j.aquatox.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
In tissues of toothed whales from the Adriatic Sea (muscle, liver, kidney, lung, spleen, adipose tissue and skin) the concentrations of cadmium (Cd), lead (Pb) and arsenic (As) were analysed. In total, 186 dolphins were analysed; 155 bottlenose (Tursiops truncatus), 25 striped (Stenella coeruleoalba) and 6 Risso's dolphins (Grampus griseus). Cadmium concentrations in tissue samples ranged from 0.001 mg/kg in muscle to 16.8 mg/kg wet weight in kidney. Arsenic concentrations in dolphin samples ranged from 0.010 to 12.9 mg/kg ww. The lowest As concentration was found in spleen and highest in liver of bottlenose dolphin. Cadmium and As levels in Risso's dolphins showed higher concentrations in all tissues in comparison to bottlenose and striped dolphins. >50 % of the measured Pb values for all three species of dolphins and examined tissues were lower than 0.1 mg/kg. The accumulation of Cd and As during the lifetime was confirmed. None of the dolphins analysed in this study were exposed to concentrations of Cd in the liver higher than 20 mg/kg wet weight, which can cause renal failure in marine mammals. Numerous species of marine mammals inhabit coastal environments alongside humans and utilize similar food sources, such as fish and cephalopods. Consequently, these mammals can function as valuable indicators of public health concerns.
Collapse
Affiliation(s)
- Marija Sedak
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Maja Đokić
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia.
| | - Nina Bilandžić
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Tomislav Gomerčić
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb 10000, Croatia
| | - Miroslav Benić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Manuela Zadravec
- Department of Veterinary Public Health, Laboratory for feed mycrobiology, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Martina Đuras
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb 10000, Croatia
| |
Collapse
|
3
|
Landrau-Giovannetti N, Rogers J, Murray R, Reichley SR, Moore DP, Madrigal T, Brown A, Meredith A, Childers C, Sparks D, Solangi M, Peterman B, Lawrence M, Kaplan BLF. Determination of PCB and PAH tissue levels in bottlenose dolphins that stranded in the Mississippi sound before and after the unusual mortality event in 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176747. [PMID: 39378936 DOI: 10.1016/j.scitotenv.2024.176747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Cetaceans are regarded as a sentinel species because their health and population changes can serve as indicators of effects on marine ecosystems. We characterized levels of 24 polycyclic aromatic hydrocarbons (PAHs) and 7 polychlorinated biphenyls (PCBs) in blubber, kidney, liver, and muscle of 138 bottlenose dolphins (Tursiops truncatus) that stranded in the Mississippi Sound (MSS) between 2010 and 2021. The samples were divided into four time periods: 2010-2018, 2019, 2020, and 2021, to assess whether there was a significant association between chemical levels in dolphin tissues and the 2019 unusual mortality event (UME) in the MSS resulting from the unprecedented freshwater incursion from 2 openings of the Bonnet Carré Spillway (BCS). We found 7 PCBs were readily detected in all tissues across time, and the major PAH was naphthalene, with detection of biphenyl and acenaphthene at lower levels and frequency. There was little change in tissue PCB levels over time; only naphthalene in the blubber was higher in tissues from dolphins that stranded before 2019. However, there were not significant changes in chemical levels in tissues from stranded bottlenose dolphins in the MSS before or after the UME in 2019.
Collapse
Affiliation(s)
- Nelmarie Landrau-Giovannetti
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS, USA; Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Jordan Rogers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ryanne Murray
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS, USA; Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Stephen R Reichley
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS, USA; Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Debra P Moore
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS, USA; Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | | | - Ashli Brown
- Mississippi State Chemical Laboratory, Mississippi State, MS, USA
| | - Ashley Meredith
- Mississippi State Chemical Laboratory, Mississippi State, MS, USA
| | | | - Darrell Sparks
- Mississippi State Chemical Laboratory, Mississippi State, MS, USA
| | - Moby Solangi
- Institute for Marine Mammal Studies, Gulfport, MS, USA
| | - Beth Peterman
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS, USA; Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Mark Lawrence
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
4
|
Salcedo S, Di Marzio A, Martínez-López E. Biomonitoring of persistent pollutants in grey seal (Halichoerus seagrypus) pups from the Gulf of Riga, Baltic Sea. MARINE POLLUTION BULLETIN 2024; 209:117198. [PMID: 39486196 DOI: 10.1016/j.marpolbul.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
We analyzed for the first time the concentration of potentially toxic trace elements Hg, As, Pb, Cr and Se and POPs (PCBs and OCPs) in tissues of 41 grey seal pups (Halichoerus grypus) stranded on the shores of the Gulf of Riga. Lanugo was the sample with the highest concentrations of all trace elements except Hg. The concentrations found in this biological matrix appeared as follows: Hg (2.50 ± 1.43 μg/g); Se (1.22 ± 0.82 μg/g); Cr (0.96 ± 1.51 μg/g); As (0.95 ± 1.03 μg/g); Pb (0.50 ± 0.60 μg/g). POPs were∑PCB (0.566 ± 0.520 μg/g), ∑DDT (0.522 ± 0.454 μg/g), ∑HCH (0.043 ± 0.045 μg/g) and Chlordane (0.041 μg/g). We detected brain Hg levels above the threshold described for neurobehavioural changes and some individuals also exceeded the toxic threshold described for PCBs. Thus, the health of grey seal pups could be affected by both groups of pollutants.
Collapse
Affiliation(s)
- S Salcedo
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - A Di Marzio
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Department of Science and Education, Rigas Nacionalais zoologiskais darzs (Riga Zoo), Meza prospekts 1, LV-1014 Riga, Latvia
| | - E Martínez-López
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
5
|
Pereira ADS, da Silva J, Taniguchi S, Montone RC, Lourenço RA. Persistent organic pollutants and polycyclic aromatic hydrocarbons in livers of stranded Arctocephalus australis in southern Brazilian beaches. MARINE POLLUTION BULLETIN 2024; 200:116129. [PMID: 38340375 DOI: 10.1016/j.marpolbul.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
23 livers of South American fur seal (Arctocephalus australis) found stranded in southern Brazilian beaches were evaluated for Persistent Organic Pollutants (POPs) and Polycyclic Aromatic Hydrocarbons (PAHs). POPs (DDTs, mirex, eldrin, dieldrin, aldrin, isodrin, HCHs, chlordanes and PCBs) and PAHs in livers were Soxhlet extracted, analyzed and quantified using Gas Chromatography Tandem Mass Spectrometry (GC-TQMS). The main POPs found were PCBs and DDTs, totaling 81 %. Among pesticides, mirex followed DDTs, possibly due to usage in Uruguay, followed by Σdrins, ΣCHLs and ΣHCHs. Naphthalene was the major PAH found, while heavier compounds did not significantly bioaccumulate. Concentrations of POPs resembled previous findings for A. australis. Considering only juveniles, no POPs showed significant differences between sexes. Lipidic content, weight and length did not show any correlation with POP concentration. This was the first record of PAHs and PBDEs in South American fur seals, and the levels of these pollutants were relatively low.
Collapse
Affiliation(s)
- Antonio Derley S Pereira
- Marine Emerging Micropollutants Research Laboratory, Oceanographic Institute, São Paulo 05508-120, São Paulo, Brazil; Laboratory of Marine Organic Chemistry, Oceanographic Institute, São Paulo 05508-120, São Paulo, Brazil.
| | - Josilene da Silva
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, São Paulo 05508-120, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, São Paulo 05508-120, São Paulo, Brazil
| | - Rosalinda C Montone
- Marine Emerging Micropollutants Research Laboratory, Oceanographic Institute, São Paulo 05508-120, São Paulo, Brazil; Laboratory of Marine Organic Chemistry, Oceanographic Institute, São Paulo 05508-120, São Paulo, Brazil
| | - Rafael A Lourenço
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, São Paulo 05508-120, São Paulo, Brazil
| |
Collapse
|
6
|
Reiter EB, Escher BI, Rojo-Nieto E, Nolte H, Siebert U, Jahnke A. Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1802-1816. [PMID: 37132588 PMCID: PMC10647987 DOI: 10.1039/d3em00033h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
The present study complements work on mixture effects measured with in vitro bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise (Phocoena phocoena), harbor seal (Phoca vitulina), ringed seal (Phoca hispida) and orca (Orcinus orca) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.
Collapse
Affiliation(s)
- Eva B Reiter
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Elisa Rojo-Nieto
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Hannah Nolte
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, Aachen, 52074, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761, Büsum, Germany
| | - Annika Jahnke
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
7
|
González-Bareiro E, Montesdeoca-Esponda S, De la Fuente J, Sosa-Ferrera Z, Arbelo M, Fernández A, Santana-Rodríguez JJ. Assessment of the presence of UV filters and UV stabilizers in stranded dolphin blubber. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165041. [PMID: 37356772 DOI: 10.1016/j.scitotenv.2023.165041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The presence of ultraviolet filters (UVFs) and stabilizers (UVSs) was evaluated for the first time in the common bottlenose dolphin (Tursiops truncatus). UVFs and UVSs are compounds of growing concern because their effects on the environment are not completely known. UVFs and UVSs are added to personal care products (PCPs), such as cosmetics and products related to sun care and once released to the aquatic ecosystem, marine organisms can bioaccumulate these substances. This work aimed to determine the presence of 12 UVFs and UVSs in cetacean blubber samples to assess the pollution to which these animals of the highest trophic chain levels are exposed due to human activity. Analytical determinations were carried out using a method based on microwave-assisted extraction combined with ultrahigh-performance liquid chromatography and tandem mass spectrometry detection. The developed method was successfully applied to determine the target compounds in the blubber tissues of five necropsied common bottlenose dolphins. Three of the 12 studied compounds, namely 2-ethylhexyl 2-cyano-3,3-diphenylprop-2-enoate (octocrilene, OC), 2-hydroxy-4-methoxybenzophenone (benzophenone 3, BP3) and 3-methylbutyl (E)-3-(4methoxyphenyl) prop-2-enoate (IMC), were detected in several samples. Of the identified compounds, OC was present in all the samples and at the highest concentration within the range from 52.61 ± 18.59 to 108.0 ± 11.32 ng·g-1.
Collapse
Affiliation(s)
- Emily González-Bareiro
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Jesús De la Fuente
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
8
|
López-Berenguer G, Acosta-Dacal A, Luzardo PO, Peñalver J, Martínez-López E. Assessment of polycyclic aromatic hydrocarbons (PAHs) in mediterranean top marine predators stranded in SE Spain. CHEMOSPHERE 2023; 336:139306. [PMID: 37354956 DOI: 10.1016/j.chemosphere.2023.139306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Although they are not bioaccumulated in vertebrates, chronic exposures might still derive on serious toxic effects. We studied concentrations of 16 reference PAHs on blubber of two dolphin species (striped dolphin, n = 34; and bottlenose dolphin, n = 8) and one marine turtle (loggerhead turtle, n = 23) from the Mediterranean waters of SE Spain, an important or potential breeding area for these and other related species. Σ16 PAHs concentrations were relatively similar between the three species, but they were in the lower range in comparison to worldwide data. Of the six PAHs detected, fluoranthene was the only high molecular weight (HMW) PAH, so low molecular weight (LMW) PAHs predominated. Naphthalene and phenanthrene were invariably those PAHs with higher detection rates as well as those with higher concentrations. In accordance with the literature, sex and length did not have significant influence on PAHs concentrations, probably due to high metabolization rates which prevent for observation of such patterns. Despite LMW PAHs are considered less toxic, we cannot dismiss toxic effects. This is the first work assessing PAHs concentrations in cetaceans and sea turtles from the SE Spain, which could serve as the baseline for future research.
Collapse
Affiliation(s)
| | - A Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - P O Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain; Study Group on Wild Animal Conservation Medicine (GEMAS), Spain
| | - J Peñalver
- Area of Toxicology, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - E Martínez-López
- Area of Toxicology, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
9
|
Minoia L, Consales G, Mazzariol S, Mancusi C, Terracciano G, Ceciarini I, Capanni F, Neri A, D'Agostino A, Marsili L. Preliminary assessment of persistent organic pollutants (POPs) in tissues of Risso's dolphin (Grampus griseus) specimens stranded along the Italian coasts. MARINE POLLUTION BULLETIN 2023; 186:114470. [PMID: 36528010 DOI: 10.1016/j.marpolbul.2022.114470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Ecotoxicological and pathological research on Grampus griseus (Cuvier, 1812) (Risso's dolphins) is scarce both globally and in the Mediterranean Sea. This species has been classified as "Vulnerable" by the International Union for Conservation of Nature (IUCN) in the Mediterranean Sea. To evaluate the presence of "persistent organic pollutants" (POPs), especially organochlorine compounds (OCs), in the animals, chemical analyses were performed on tissues and organs of Risso's dolphin stranded along the Italian coasts between 1998 and 2021. Toxic contaminants such as hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs) were examined in the blubber, liver, muscle, and brain of 20 animals, and data was correlated with sex, age, and stranding locations.
Collapse
Affiliation(s)
- L Minoia
- Department of Physical Sciences Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre, Villa del Principe, Via San Benedetto 2, 16126 Genoa, Italy
| | - G Consales
- Department of Physical Sciences Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre, Villa del Principe, Via San Benedetto 2, 16126 Genoa, Italy.
| | - S Mazzariol
- Department of Comparative Biomedicine and Food Science - BCA, University of Padua, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - C Mancusi
- Department of Physical Sciences Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Environmental Protection Agency Tuscany Region (ARPAT), Via Giovanni Marradi 114, 57126 Livorno, Italy
| | - G Terracciano
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana - Sezione di Pisa, Via SS Abetone Brennero 4, 56123 Pisa, Italy
| | - I Ceciarini
- Department of Physical Sciences Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - F Capanni
- Department of Physical Sciences Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - A Neri
- Department of Physical Sciences Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy; CIBM - Consortium for the Interuniversity Center of Marine Biology and Applied Ecology "G. Bacci", viale N. Sauro 4, 57128 Livorno, Italy
| | - A D'Agostino
- Department of Management Studies and Quantitative Methods (DISAQ), University of Naples Parthenope, Via Generale Parisi 13, 80132 Napoli, Italy
| | - L Marsili
- Department of Physical Sciences Earth and Environment, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Centro Interuniversitario per la Ricerca sui CEtacei (CIRCE), Department of Physical Sciences Earth and Environment, University of Siena, Strada Laterina 8, 53100 Siena, Italy
| |
Collapse
|
10
|
Bartalini A, Muñoz-Arnanz J, García-Álvarez N, Fernández A, Jiménez B. Global PBDE contamination in cetaceans. A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119670. [PMID: 35752394 DOI: 10.1016/j.envpol.2022.119670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This review summarizes the most relevant information on PBDEs' occurrence and their impacts in cetaceans at global scale, with special attention on the species with the highest reported levels and therefore the most potentially impacted by the current and continuous release of these substances. This review also emphasizes the anthropogenic and environmental factors that could increase concentrations and associated risks for these species in the next future. High PBDE concentrations above the toxicity threshold and stationary trends have been related to continuous import of PBDE-containing products in cetaceans of Brazil and Australia, where PBDEs have never been produced. Non-decreasing levels documented in cetaceans from the Northwest Pacific Ocean might be linked to the increased e-waste import and ongoing production and use of deca-BDE that is still allowed in China. Moreover, high levels of PBDEs in some endangered species such as beluga whales (Delphinapterus leucas) in St. Lawrence Estuary and Southern Resident killer whales (Orcinus Orca) are influenced by the discharge of contaminated waters deriving from wastewater treatment plants. Climate change related processes such as enhanced long-range transport, re-emissions from secondary sources and shifts in migration habits could lead to greater exposure and accumulation of PBDEs in cetaceans, above all in those species living in the Arctic. In addition, increased rainfall could carry greater amount of contaminants to the marine environment, thereby, enhancing the exposure and accumulation especially for coastal species. Synergic effects of all these factors and ongoing emissions of PBDEs, expected to continue at least until 2050, could increase the degree of exposure and menace for cetacean populations. In this regard, it is necessary to improve current regulations on PBDEs and broader the knowledge about their toxicological effects, in order to assess health risks and support regulatory protection for cetacean species.
Collapse
Affiliation(s)
- Alice Bartalini
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain; Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Natalia García-Álvarez
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Antonio Fernández
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas, 35413 Arucas, Las Palmas de Gran Canaria, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
11
|
Acosta-Dacal A, Hernández-Marrero ME, Rial-Berriel C, Díaz-Díaz R, Bernal-Suárez MDM, Zumbado M, Henríquez-Hernández LA, Boada LD, Luzardo OP. Comparative study of organic contaminants in agricultural soils at the archipelagos of the Macaronesia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118979. [PMID: 35150798 DOI: 10.1016/j.envpol.2022.118979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/28/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of organic pollutants in soil is a major environmental concern. These compounds can reach the soil in different ways. Point sources, related to pesticides that are used intentionally, can be applied directly to the soil, or reach the soil indirectly due to application to the aerial parts of crops. On the other hand, non-point sources, which reach soils collaterally during irrigation and/or fertilization, or due to the proximity of plots to industrialized urban centers. Long-range transport of global organic pollutants must also be taken into account. In this study, 218 pesticides, 49 persistent organic pollutants, 37 pharmaceutical active compounds and 6 anticoagulant rodenticides were analyzed in 139 agricultural soil samples collected between 2018 and 2020 in the Macaronesia. This region comprised four inhabited archipelagos (Azores, Canary Islands, Cape Verde, and Madeira) for which agriculture is an important and traditional economic activity. To our knowledge, this is the first study on the levels of organic compound contamination of agricultural soils of the Macaronesia. As expected, the most frequently detected compounds were pesticides, mainly fungicides and insecticides. The Canary Islands presented the highest number of residues, with particularly high concentrations of DDT metabolites (p,p' DDE: 149.5 ± 473.4 ng g-1; p,p' DDD: 16.6 ± 35.6 ng g-1) and of the recently used pesticide fenbutatin oxide (302.1 ± 589.7 ng g-1). Cape Verde was the archipelago with the least contaminated soils. Very few pharmaceutical active compounds have been detected in all archipelagos (eprinomectin, fenbendazole, oxfendazole and sulfadiazine). These results highlight the need to promote soil monitoring programs and to establish maximum residue limits in soils, which currently do not exist at either continental or local level.
Collapse
Affiliation(s)
- Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - María Eugenia Hernández-Marrero
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Ricardo Díaz-Díaz
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/ Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - María Del Mar Bernal-Suárez
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/ Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029, Madrid, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029, Madrid, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029, Madrid, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029, Madrid, Spain
| |
Collapse
|
12
|
Montoto-Martínez T, De la Fuente J, Puig-Lozano R, Marques N, Arbelo M, Hernández-Brito JJ, Fernández A, Gelado-Caballero MD. Microplastics, bisphenols, phthalates and pesticides in odontocete species in the Macaronesian Region (Eastern North Atlantic). MARINE POLLUTION BULLETIN 2021; 173:113105. [PMID: 34763181 DOI: 10.1016/j.marpolbul.2021.113105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The gastrointestinal contents of twelve individuals from six odontocete species that stranded between 2018 and 2019 in the Macaronesian Region (Eastern North Atlantic) were examined for the presence of marine debris. In addition, concentrations of eleven organic persistent contaminants (nonylphenols, bisphenols, phthalates and pesticides) were analysed in muscle samples by liquid chromatography. No particles larger than 5 mm were found, except for two plastic labels that were found on the same dolphin. On the contrary, all animals contained microplastics of diverse sizes, most of them being fibres (98.06%, n = 708). The predominant detected pollutants were bisphenols (4-984 ng/g) and DEHP (102-1533 ng/g). Also, except for two individuals, all animals had pesticide levels in their tissues. This work has allowed the establishment of a protocol for the study of microplastic ingestion in cetaceans, and tests the potential of microRaman to improve the understanding of microplastic alteration processes.
Collapse
Affiliation(s)
- Tania Montoto-Martínez
- Grupo de Investigación en Tecnologías, Gestión y Biogeoquímica Ambiental (TGBA), Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Edificio de Ciencias Básicas, Campus Universitario de Tafira, 35017, Las Palmas, Spain.
| | - Jesús De la Fuente
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Montaña de Cardones, 35415, Las Palmas, Spain.
| | - Raquel Puig-Lozano
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Montaña de Cardones, 35415, Las Palmas, Spain.
| | - Nuno Marques
- Museu da Baleia da Madeira, Canical, Madeira, Portugal.
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Montaña de Cardones, 35415, Las Palmas, Spain.
| | - José Joaquín Hernández-Brito
- Grupo de Investigación en Tecnologías, Gestión y Biogeoquímica Ambiental (TGBA), Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Edificio de Ciencias Básicas, Campus Universitario de Tafira, 35017, Las Palmas, Spain; Plataforma Oceánica de Canarias (PLOCAN), Carretera de Taliarte s/n, 35200, Telde, Gran Canaria, Spain.
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Centro Atlántico de Investigación de Cetáceos, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Montaña de Cardones, 35415, Las Palmas, Spain.
| | - María Dolores Gelado-Caballero
- Grupo de Investigación en Tecnologías, Gestión y Biogeoquímica Ambiental (TGBA), Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Edificio de Ciencias Básicas, Campus Universitario de Tafira, 35017, Las Palmas, Spain.
| |
Collapse
|
13
|
Lourenço RA, Taniguchi S, da Silva J, Gallotta FDC, Bícego MC. Polycyclic aromatic hydrocarbons in marine mammals: A review and synthesis. MARINE POLLUTION BULLETIN 2021; 171:112699. [PMID: 34271505 DOI: 10.1016/j.marpolbul.2021.112699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Most marine mammal species and populations are listed as endangered, threatened, or depleted under the Endangered Species Act and the Marine Mammal Protection Act. Organic contaminants such as polycyclic aromatic hydrocarbons from anthropogenic activities are part of the threat to marine mammals. The evaluation of the potential bioaccumulation of these compounds by marine mammals is a tool for adoption of policies to reduce polycyclic aromatic hydrocarbons discharges to the marine environment, where important players such as the oil and gas industries, maritime transport and sewage companies operate. This review seeks to present a bibliographic survey covering all published peer reviewed works of the contents of polycyclic aromatic hydrocarbons in biological tissues of marine mammals. It intended to compare the sampling protocols, procedures for preservation of the tissues, and the analytical method applied to quantify the polycyclic aromatic hydrocarbons, no to criticize any of them but to review the data and discuss how they can be compared.
Collapse
Affiliation(s)
- Rafael André Lourenço
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil.
| | - Satie Taniguchi
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| | - Josilene da Silva
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| | - Fabiana Dias Costa Gallotta
- Centro de Pesquisa e Desenvolvimento Leopoldo Miguez de Mello (CENPES - Petrobras), Av. Horácio de Macedo, 950, Rio de Janeiro, RJ 21941-915, Brazil
| | - Márcia Caruso Bícego
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| |
Collapse
|
14
|
Validation of a Method Scope Extension for the Analysis of POPs in Soil and Verification in Organic and Conventional Farms of the Canary Islands. TOXICS 2021; 9:toxics9050101. [PMID: 34063303 PMCID: PMC8147449 DOI: 10.3390/toxics9050101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Persistent organic pollutants (POPs) are among the most relevant and dangerous contaminants in soil, from where they can be transferred to crops. Additionally, livestock animals may inadvertently consume relatively high amounts of soil attached to the roots of the vegetables while grazing, leading to indirect exposure to humans. Therefore, periodic monitoring of soils is crucial; thus, simple, robust, and powerful methods are needed. In this study, we have tested and validated an easy QuEChERS-based method for the extraction of 49 POPs (8 PBDEs, 12 OCPs, 11 PAHs, and 18 PCBs) in soils and their analysis by GC-MS/MS. The method was validated in terms of linearity, precision, and accuracy, and a matrix effect study was performed. The limits of detection (LOD) were established between 0.048 and 3.125 ng g−1 and the limits of quantification (LOQ) were between 0.5 and 20 ng g−1, except for naphthalene (50 ng g−1). Then, to verify the applicability of the validated method, we applied it to a series of 81 soil samples from farms dedicated to mixed vegetable cultivation and vineyards in the Canary Islands, both from two modes of production (organic vs. conventional) where residues of OCPs, PCBs, and PAHs were found.
Collapse
|
15
|
López-Berenguer G, Bossi R, Eulaers I, Dietz R, Peñalver J, Schulz R, Zubrod J, Sonne C, Martínez-López E. Stranded cetaceans warn of high perfluoroalkyl substance pollution in the western Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115367. [PMID: 32866862 DOI: 10.1016/j.envpol.2020.115367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a class of organohalogenated compounds of environmental concern due to similar characteristics as the well-studied legacy persistent organic pollutants (POPs) that typically show environmental persistence, biomagnification and toxicity. Nevertheless, PFAS are still poorly regulated internationally and in many aspects poorly understood. Here, we studied liver and muscle concentrations in five cetacean species stranded at the southeastern coast of Spain during 2009-2018. Twelve of the fifteen targeted compounds were detected in >50% of the liver samples. Hepatic concentrations were significantly higher than those in muscle reflecting the particular toxicokinetics of these compounds. Bottlenose dolphins Tursiops truncatus showed the highest hepatic ΣPFAS (n = 5; 796.8 ± 709.0 ng g-1 ww) concentrations, followed by striped dolphin Stenella coeruleoalba (n = 29; 259.5 ± 136.2 ng g-1 ww), sperm whale Physeter macrocephalus (n = 1; 252.8 ng g-1 ww), short-beaked common dolphin Delphinus delphis (n = 2; 240.3 ± 218.6 ng g-1 ww) and Risso's dolphin Grampus griseus (n = 1; 78.7 ng g-1 ww). These interspecies differences could be partially explained by habitat preferences, although they could generally not be related to trophic position or food chain proxied by stable N (δ15N) and C (δ13C) isotope values, respectively. PFAS profiles in all species showed a similar pattern of concentration prevalence in the order PFOS>PFOSA>PFNA≈PFFUnA>PFDA. The higher number of samples available for striped dolphin allowed for evaluating their PFAS burden and profile in relation to the stranding year, stable isotope values, and biological variables including sex and length. However, we could only find links between δ15N and PFAS burdens in muscle tissue, and between stranding year and PFAS profile composition. Despite reductions in the manufacturing industry, these compounds still appear in high concentrations compared to more than two decades ago in the Mediterranean Sea and PFOS remains the dominating compound.
Collapse
Affiliation(s)
| | - R Bossi
- Department of Environmental Science, Aarhus University, Denmark
| | - I Eulaers
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - R Dietz
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - J Peñalver
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - R Schulz
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - J Zubrod
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - C Sonne
- Section of Marine Mammals, Department of Bioscience, Aarhus University, Denmark
| | - E Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
16
|
Sun X, Zhan F, Yu RQ, Chen L, Wu Y. Bio-accumulation of organic contaminants in Indo-Pacific humpback dolphins: Preliminary unique features of the brain and testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115511. [PMID: 32892017 DOI: 10.1016/j.envpol.2020.115511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
There is little information about the residue levels and congener composition of organic contaminants (OCs) in cetaceans. In the present study, we investigated the polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the blubber, blood, brain and testes of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE), China. The lowest blubber/tissue partition coefficients were found for sum hexachlorocyclohexanes (ΣHCHs) and ΣPAHs, while the highest were in ΣPCBs and sum dichlorodiphenyltrichloroethanes (ΣDDTs), likely attributing to the octanol-water partition features. The low levels of OCs in brain and testes theoretically resulted from the blood-brain barrier, blood-testes barrier, contaminant molecule dimensions and unique lipid compositions in the brain and testes. Compared with other contaminants, the higher mean brain/blood and testes/blood partition coefficients found for mirex, heptachlor, dieldrin and endrin would increase the risks associated with exposure-related toxicity and the bioavailability of contaminants within these tissues. Observations also suggest that as lipid mobilizes from blubber, contaminants may redistribute, leading to elevated tissue (such as brain) concentrations. Therefore, dolphins with less blubber may be more susceptible to health risks. The Indo-Pacific humpback dolphins living in PRE are at great risk due to variety of OCs in indirect contact with non-target organisms, affecting the health of animals (toxic effects and accumulation). Our findings contribute to the knowledge of the potential effects of OCs exposure on developmental neurotoxicity and reproductive damage in marine mammals.
Collapse
Affiliation(s)
- Xian Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fengping Zhan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yuping Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
17
|
López-Berenguer G, Peñalver J, Martínez-López E. A critical review about neurotoxic effects in marine mammals of mercury and other trace elements. CHEMOSPHERE 2020; 246:125688. [PMID: 31896013 DOI: 10.1016/j.chemosphere.2019.125688] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/26/2023]
Abstract
Marine mammals are more exposed to mercury (Hg) than any others animals in the world. As many trace elements, Hg it is able to impair the brain function, which could be a cause of population decline. Nevertheless, these issues have been scarcely studied because of the technical and ethical difficulties. We conducted a systematic review about marine mammals' brain exposition to Hg and other trace elements, and their neurotoxic effects. Information was scarce and the lack of standardization of nomenclature of brain structures, sample collecting and results presentation made it difficult to obtain conclusions. Hg was the most studied metal and toothed whales the most studied group. Despite being its target organ, brain accumulates lesser concentrations of Hg than other tissues as liver. We found a significant positive correlation between both organs' burden (rho = 0.956 for cetaceans; rho = 0.756 for pinnipeds). Reported Hg values in brain of cetaceans (median 3.00 ppm ww) surpassed by one or two orders of magnitude those values found in other species as pinnipeds (median 0.33 ppm ww) or polar bears (median 0.07 ppm ww). Such values exceeded neurotoxicity thresholds. Although marine mammals ingest mostly the organic and more toxic form MeHg, different fractions of inorganic mercury can appear in brain, which could suggest some detoxification mechanisms. Other suggested mechanisms include Se-Hg interaction and liver sequestration. Although other elements are subjected to a rigid homeostatic control, appear in low concentrations or do not exert an important neurotoxic effect, they should be more studied to elucidate their neurotoxicity potential.
Collapse
Affiliation(s)
- G López-Berenguer
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - J Peñalver
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain; Fisheries and Aquaculture Service (CARM), 30100, Murcia, Spain
| | - E Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
18
|
Camacho M, Herrera A, Gómez M, Acosta-Dacal A, Martínez I, Henríquez-Hernández LA, Luzardo OP. Organic pollutants in marine plastic debris from Canary Islands beaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:22-31. [PMID: 30684899 DOI: 10.1016/j.scitotenv.2018.12.422] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 05/22/2023]
Abstract
Given their capacity to adsorb chemical pollutants, microplastics represent a growing environmental concern in the oceans. The levels of 81 chemical compounds in two types of beached microplastic (pellets and fragments) were monitored across the Canary Islands (Spain). The highest concentrations were found for polycyclic aromatic hydrocarbons (PAH) (52.1-17,023.6ng/g and 35.1-8725.8ng/g for pooled pellets and fragments, respectively). The polychlorinated biphenyl (PCB) concentrations were 0.9-2285.8 and 1.6-772.5ng/g for pooled pellets and fragments, respectively, whereas organochlorine pesticides (OCP) ranged from 0.4-13,488.7 and 0.4-3778.8ng/g, respectively. The sum of polychlorinated biphenyls and diphenyl-dichloro-ethane (DDT) metabolites was significantly higher in beaches on Gran Canaria, which is the most populated and industrialized island. The sum of ultraviolet filters (UV-filters) was higher in those beaches more frequented by tourists (Famara and Las Canteras), than in occasionally or very rarely visited beaches (Cuervitos and Lambra), with values ranging from 0 to 37,740.3ng/g and 3.7-2169.3ng/g for pellets and fragments, respectively. Furthermore, the sum of brominated diphenyl ethers (BDE) (0-180.58ng/g for pooled pellets and 0.06-3923.9ng/g for pooled fragments) and organophosphorus flame retardants (OPFR) (20.0-378.0ng/g for pooled pellets, and 22.6-7013.9ng/g for pooled fragments) was significantly higher in an urban beach (Las Canteras) than in the rest of the studied beaches. Finally, the concentrations of the pesticide chlorpyrifos were much higher on Gran Canaria beaches than in the rest. In this research we provide further evidence of the important role of plastic debris in the adsorption of a wide range of marine pollutants. The regional pattern of chemical contamination of plastics reveals that the sorption of many compounds probably occurs in coastal waters. Further investigation is necessary to understand the relationship between plastic types and adsorption of different pollutants, especially for emerging pollutants.
Collapse
Affiliation(s)
- María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain.
| |
Collapse
|
19
|
Díaz-Delgado J, Groch KR, Sierra E, Sacchini S, Zucca D, Quesada-Canales Ó, Arbelo M, Fernández A, Santos E, Ikeda J, Carvalho R, Azevedo AF, Lailson-Brito J, Flach L, Ressio R, Kanamura CT, Sansone M, Favero C, Porter BF, Centelleghe C, Mazzariol S, Di Renzo L, Di Francesco G, Di Guardo G, Catão-Dias JL. Comparative histopathologic and viral immunohistochemical studies on CeMV infection among Western Mediterranean, Northeast-Central, and Southwestern Atlantic cetaceans. PLoS One 2019; 14:e0213363. [PMID: 30893365 PMCID: PMC6426187 DOI: 10.1371/journal.pone.0213363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cetacean morbillivirus (CeMV) is a major natural cause of morbidity and mortality in cetaceans worldwide and results in epidemic and endemic fatalities. The pathogenesis of CeMV has not been fully elucidated, and questions remain regarding tissue tropism and the mechanisms of immunosuppression. We compared the histopathologic and viral immunohistochemical features in molecularly confirmed CeMV-infected Guiana dolphins (Sotalia guianensis) from the Southwestern Atlantic (Brazil) and striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) from the Northeast-Central Atlantic (Canary Islands, Spain) and the Western Mediterranean Sea (Italy). Major emphasis was placed on the central nervous system (CNS), including neuroanatomical distribution of lesions, and the lymphoid system and lung were also examined. Eleven Guiana dolphins, 13 striped dolphins, and 3 bottlenose dolphins were selected by defined criteria. CeMV infections showed a remarkable neurotropism in striped dolphins and bottlenose dolphins, while this was a rare feature in CeMV-infected Guiana dolphins. Neuroanatomical distribution of lesions in dolphins stranded in the Canary Islands revealed a consistent involvement of the cerebrum, thalamus, and cerebellum, followed by caudal brainstem and spinal cord. In most cases, Guiana dolphins had more severe lung lesions. The lymphoid system was involved in all three species, with consistent lymphoid depletion. Multinucleate giant cells/syncytia and characteristic viral inclusion bodies were variably observed in these organs. Overall, there was widespread lymphohistiocytic, epithelial, and neuronal/neuroglial viral antigen immunolabeling with some individual, host species, and CeMV strain differences. Preexisting and opportunistic infections were common, particularly endoparasitism, followed by bacterial, fungal, and viral infections. These results contribute to understanding CeMV infections in susceptible cetacean hosts in relation to factors such as CeMV strains and geographic locations, thereby establishing the basis for future neuro- and immunopathological comparative investigations.
Collapse
Affiliation(s)
- Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Kátia R. Groch
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Eva Sierra
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Simona Sacchini
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Daniele Zucca
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Óscar Quesada-Canales
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Manuel Arbelo
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Antonio Fernández
- Institute for Animal Health and Food Safety, School of Veterinary Medicine, University of Las Palmas of Gran Canaria, Arucas, Gran Canaria, Spain
| | - Elitieri Santos
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Joana Ikeda
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Rafael Carvalho
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Alexandre F. Azevedo
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Jose Lailson-Brito
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel’(MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Leonardo Flach
- Projeto Boto cinza, Mangaratiba, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Ressio
- Adolfo Lutz Institute (IAL)–Pathology Center, Pacaembú, São Paulo, SP, Brazil
| | | | - Marcelo Sansone
- Adolfo Lutz Institute (IAL)–Pathology Center, Pacaembú, São Paulo, SP, Brazil
| | - Cíntia Favero
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Brian F. Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Agripolis, Legnaro, Padova, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Agripolis, Legnaro, Padova, Italy
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, Teramo, Italy
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G.Caporale”, Teramo, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, Località Piano d'Accio, University of Teramo, Teramo, Italy
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Muñoz-Arnanz J, Chirife AD, Galletti Vernazzani B, Cabrera E, Sironi M, Millán J, Attard CRM, Jiménez B. First assessment of persistent organic pollutant contamination in blubber of Chilean blue whales from Isla de Chiloé, southern Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1521-1528. [PMID: 30308837 DOI: 10.1016/j.scitotenv.2018.09.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Persistent organic pollutants (POPs) were assessed for the first time in blue whales from the South Pacific Ocean. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane and its main metabolites (DDTs), were determined in 40 blubber samples from 36 free-ranging individuals and one stranded, dead animal along the coast of southern Chile between 2011 and 2013. PCBs were the most abundant pollutants (2.97-975 ng/g l.w.), followed by DDTs (3.50-537 ng/g l.w.), HCB (nd-77.5 ng/g l.w.) and PBDEs (nd-33.4 ng/g l.w). There was evidence of differences between sexes, with lower loads in females potentially due to pollutants passing to calves. POP concentrations were higher in specimens sampled in 2013; yet, between-year differences were only statistically significant for HCB and PBDEs. Lower chlorinated (penta > tetra > tri) and brominated (tetra > tri) congeners were the most prevalent among PCBs and PBDEs, respectively, mostly in agreement with findings previously reported in blue and other baleen whales. The present study provides evidence of lower levels of contamination by POPs in eastern South Pacific blue whales in comparison to those reported for the Northern Hemisphere.
Collapse
Affiliation(s)
- J Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain.
| | - A D Chirife
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - B Galletti Vernazzani
- Centro de Conservación Cetacea (CCC), Casilla 19178 Correo Alonso de Cordoba, Santiago, Chile
| | - E Cabrera
- Centro de Conservación Cetacea (CCC), Casilla 19178 Correo Alonso de Cordoba, Santiago, Chile
| | - M Sironi
- Instituto de Conservación de Ballenas, O'Higgins 4380, 1429 Buenos Aires, Argentina
| | - J Millán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - C R M Attard
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - B Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de la Cierva 3, Madrid, Spain
| |
Collapse
|
21
|
Ginés R, Camacho M, Henríquez-Hernández LA, Izquierdo M, Boada LD, Montero D, Robaina L, Zumbado M, Luzardo OP. Reduction of persistent and semi-persistent organic pollutants in fillets of farmed European seabass (Dicentrarchus labrax) fed low fish oil diets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1239-1247. [PMID: 30189540 DOI: 10.1016/j.scitotenv.2018.06.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Traditionally, a major part of aquaculture technology requires fish oil (FO) and fish meal (FM) to produce the aquafeed for farmed species. FO is the main source of persistent organic pollutants (POPs) in fish feed. In recent years, the use of vegetable-origin ingredients in fish feeds has been increasingly studied as an alternative to reduce the levels of these lipophilic pollutants in farmed species. The aim of this study was to evaluate the effect of the use of dietary vegetable oils in the farming of European sea bass (Dicentrarchus labrax) on the contents in persistent - polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) - and semi persistent pollutants - polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (BDEs) - of their edible parts. A total of 60 seabass muscle pools were obtained from fish farmed employing six experimental diets, which contained different percentages of FO (6 vs. 3%) and FM (20%, 10% and 5%). We did not observe differences in the contamination level of seabass muscle in relation to the percentage of FM in their diet. However, the fish farmed using feed which had lower levels of FO (3%) showed significantly lower muscle levels of ΣPCBs and carcinogenic PAHs (Σc-PAHs), with a reduction of 25.6% and 95.11% (respectively), as compared with those fished raised with feed with higher levels of FO (6%). Also much lower levels were found in OCPs such as sum of DDTs (30.88% of reduction), sum of chlordanes (42.85% of reduction), and sum of BDEs (48.16% of reduction) in those seabass fed with a lower percentage of FO. The results of this study indicate that the use of alternative feed ingredients that allow the employment of low percentage of FO in feeds help to reduce the load of several toxic pollutants in the fillets of European seabass.
Collapse
Affiliation(s)
- Rafael Ginés
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | | | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Parque Científico Tecnológico Marino de Taliarte, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain.
| |
Collapse
|
22
|
Gui D, Zhang L, Zhan F, Liu W, Yu X, Chen L, Wu Y. Levels and trends of polycyclic aromatic hydrocarbons in the Indo-Pacific humpback dolphins from the Pearl River Estuary (2012-2017). MARINE POLLUTION BULLETIN 2018; 131:693-700. [PMID: 29886996 DOI: 10.1016/j.marpolbul.2018.04.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
We investigated the levels and trends of the 16 USEPA priority PAHs in the blubber of 37 Indo-Pacific humpback dolphins sampled during the period 2012-2017 from the Pearl River Estuary (PRE), China. Σ16PAHs concentrations (17.6-6080 ng g-1 wet weight) were at median level compared to dolphin species worldwide. Humpback dolphins affiliated with the hotspots of PAHs, had significantly higher levels of Σ16PAHs than individuals from the other areas in the PRE. Moreover, dolphins stranded on the coast of Lingdingyang are significantly more contaminated by Σ16PAHs than those in the West-four region of the PRE, which appears to reflect the heterogeneous distribution of PAHs in the environment. A marked decline in blubber Σ16PAHs levels is observed over the studied period, with the control of a range of confounding factors. The trend is strongly and statistically significant (p < 0.0001), indicating that the loading of PAHs are gradually being reduced.
Collapse
Affiliation(s)
- Duan Gui
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Lingli Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Fengping Zhan
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Wen Liu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
23
|
Méndez-Fernandez P, Taniguchi S, Santos MCO, Cascão I, Quérouil S, Martín V, Tejedor M, Carrillo M, Rinaldi C, Rinaldi R, Montone RC. Contamination status by persistent organic pollutants of the Atlantic spotted dolphin (Stenella frontalis) at the metapopulation level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:785-794. [PMID: 29459333 DOI: 10.1016/j.envpol.2018.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 01/23/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
The Atlantic spotted dolphin (Stenella frontalis) is an endemic species of the tropical-temperate Atlantic Ocean with widespread distribution. Although this species has been the subject of a large number of studies throughout its range, it remains in the "data deficient" category of the International Union for Conservation of Nature (IUCN). Chemical pollution by persistent organic pollutants (POPs) has been listed as one of the major threats to this species, however, there is no information on a wide scale. Thus, the aim of the present study was to investigate the contamination status of spotted dolphins on the metapopulation level as well as determine spatial and temporal variations in POP concentrations and bio-accumulation. A total of 115 blubber samples collected from a large part of the Atlantic basin were analysed for PCBs, DDTs, PBDEs, chlordanes, HCB and mirex. Although PCBs and DDTs were the predominant compounds in all areas, inter-location differences in POP concentrations were observed. Dolphins found at São Paulo, southeastern coast of Brazil, had the highest PCB concentrations (median: 10.5 μg/g lw) and Canary Islands dolphins had the highest DDT concentrations (median: 5.13 μg/g lw). Differences in PCB patterns among locations were also observed. Dolphins from the Azores and São Paulo demonstrated a similar pattern, with relatively highly contributions of tetra- (6.8 and 5.2%, respectively) and penta-CBs (25.6 and 23.8%, respectively) and lower contributions of hepta-CBs (20.8 and 23.5%, respectively) in comparison to other areas. Moreover, the sex of the animals and the year in which sampling or capture occurred exerted an important influence on the majority of the POPs analysed. Comparisons with toxicity thresholds available in the literature reveal that the São Paulo and Canary Island dolphins are the most vulnerable populations and should be considered in future conservation and management programs for the Atlantic spotted dolphin.
Collapse
Affiliation(s)
- Paula Méndez-Fernandez
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil.
| | - Satie Taniguchi
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| | - Marcos C O Santos
- Laboratório de Biologia da Conservação de Mamíferos Aquáticos, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| | - Irma Cascão
- Department of Oceanography and Fisheries & Okeanos Centre, University of the Azores, 9901-862 Horta, Portugal; Marine and Environmental Sciences Centre (MARE) & Institute of Marine Research (IMAR), University of the Azores, 9901-862 Horta, Portugal
| | - Sophie Quérouil
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), IRD-UMR226, Université de Montpellier, CCO65, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Vidal Martín
- Sociedad para el Estudio de Cetáceos del Archipiélago Canario (SECAC), Casa de los Arroyo, Avda. Coll n.6, 35500 Arrecife, Lanzarote, Spain
| | - Marisa Tejedor
- Sociedad para el Estudio de Cetáceos del Archipiélago Canario (SECAC), Casa de los Arroyo, Avda. Coll n.6, 35500 Arrecife, Lanzarote, Spain
| | - Manuel Carrillo
- Tenerife Conservación, C/Maya No. 8, La Laguna, Tenerife, Canary Islands, Spain
| | - Carolina Rinaldi
- Association Evasion Tropicale, 1 Rue des Palétuviers, Pigeon Bouillante, 97125, Guadeloupe, France
| | - Renato Rinaldi
- Association Evasion Tropicale, 1 Rue des Palétuviers, Pigeon Bouillante, 97125, Guadeloupe, France
| | - Rosalinda C Montone
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| |
Collapse
|
24
|
Suárez-Santana CM, Sierra E, Díaz-Delgado J, Zucca D, de Quirós YB, Puig-Lozano R, Câmara N, De la Fuente J, de los Monteros AE, Rivero M, Arbelo M, Fernández A. Prostatic Lesions in Odontocete Cetaceans. Vet Pathol 2018; 55:466-472. [DOI: 10.1177/0300985818755252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The prostate is the only accessory male genital gland described in cetaceans. Although few studies describe the gross and histologic anatomy of the prostate in cetaceans, there is no information on pathological findings involving this organ. The prostate glands of 45 cetaceans, including 8 different odontocete species ( n = 44) and 1 mysticete, were evaluated. The main pathologic diagnoses were verminous prostatitis, septic prostatitis, viral prostatitis, benign prostatic hyperplasia, and prostatitis of unknown etiology. Verminous prostatitis ( n = 12) was caused by nematodes of the genus Crassicauda, and different presentations were observed. Septic prostatitis, identified in 2 cases, both involved nematode infestation and Clostridium spp coinfection. One case of viral prostatitis was identified and was associated with morbillivirus infection. In prostatitis of unknown cause ( n = 7), varying degrees of prostatic lesions, mostly chronic inflammation, were identified. Impacts at individual levels (eg, localized disease, loss of reproductive capacity) and population levels (eg, decreased reproductive success) are plausible. Our results indicate a high occurrence of prostatic lesions in free-ranging odontocetes. For this reason, the prostate should be routinely inspected and sampled during necropsy of odontocete cetaceans.
Collapse
Affiliation(s)
- Cristian M. Suárez-Santana
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eva Sierra
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Josue Díaz-Delgado
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Daniele Zucca
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Yara Bernaldo de Quirós
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Raquel Puig-Lozano
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Nakita Câmara
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jesús De la Fuente
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Espinosa de los Monteros
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miguel Rivero
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Manuel Arbelo
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- Division of Histology and Animal Pathology, Institute for Animal Health and Food Security (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
25
|
Nicklisch SCT, Bonito LT, Sandin S, Hamdoun A. Geographic Differences in Persistent Organic Pollutant Levels of Yellowfin Tuna. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067014. [PMID: 28686554 PMCID: PMC5714290 DOI: 10.1289/ehp518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fish are a source of persistent organic pollutants (POPs) in the human diet. Although species, trophic level, and means of production are typically considered in predicting fish pollutant load, and thus recommendations of consumption, capture location is usually not accounted for. OBJECTIVES Yellowfin tuna (Thunnus albacares) are harvested from across the world's oceans and are widely consumed. Here, we determined geographic variation in the overall mass, concentration, and composition of POPs in yellowfin and examined the differences in levels of several POP congeners of potential relevance to human health. METHODS We sampled dorsal muscle of 117 yellowfin tuna from 12 locations worldwide, and measured POP levels using combined liquid or gas chromatography and mass spectrometry according to U.S. Environmental Protection Agency standard procedures. RESULTS POP levels varied significantly among sites, more than 36-fold on a mass basis. Individual fish levels ranged from 0.16 to 138.29 ng/g wet weight and lipid-normalized concentrations from 0.1 to 12.7 μM. Levels of 10 congeners that interfere with the cellular defense protein P-glycoprotein, termed transporter interfering compounds (TICs), ranged from 0.05 to 35.03 ng/g wet weight and from 0.03 to 3.32 μM in tuna lipid. Levels of TICs, and their individual congeners, were strongly associated with the overall POP load. Risk-based analysis of several carcinogenic POPs indicated that the fish with the highest levels of these potentially harmful compounds were clustered at specific geographic locations. CONCLUSIONS Capture location is an important consideration when assessing the level and risk of human exposure to POPs through ingestion of wild fish. https://doi.org/10.1289/EHP518.
Collapse
Affiliation(s)
- Sascha C T Nicklisch
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California, USA
| | - Lindsay T Bonito
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California, USA
| | - Stuart Sandin
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California, USA
| |
Collapse
|
26
|
Henríquez-Hernández LA, Carretón E, Camacho M, Montoya-Alonso JA, Boada LD, Bernal Martín V, Falcón Cordón Y, Falcón Cordón S, Zumbado M, Luzardo OP. Potential Role of Pet Cats As a Sentinel Species for Human Exposure to Flame Retardants. Front Vet Sci 2017; 4:79. [PMID: 28620612 PMCID: PMC5449440 DOI: 10.3389/fvets.2017.00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022] Open
Abstract
Flame retardants are a wide group of chemicals used by the industry to avoid combustion of materials. These substances are commonly found in plastics, electronic equipment, fabrics, and in many other everyday articles. Subsequently, ubiquitous environmental contamination by these common chemical is frequently reported. In the present study, we have evaluated the level of exposure to polychlorinated biphenyls (PCBs), brominated diphenyl ethers (BDEs), and organophosphorous flame retardants (OPFRs) in pet cats through the analysis of their serum. We also analyzed the level exposure to such chemicals in a series of 20 cat owners, trying to disclose the role of pet cats as sentinel species of human exposure to FRs. Our results showed that PCBs, banned 40 years ago, showed the lowest levels of exposure, followed by BDEs—banned recently. Congeners PCB-138 and PCB-180 were detected in ≥50% of the series, while BDE-47 was detected in near 90% of the pet cats. On the other hand, the highest levels were that of OPFRs, whose pattern of detection was similar to that observed in humans, thus suggesting a potential role of cats as a sentinel species for human exposure to these currently used FRs. Six out of 11 OPFRs determined [2-ethylhexyldiphenyl phosphate, tributylphosphate, triisobutylphosphate, triphenylphosphate, tris (2-chloroethyl) phosphate, and tris (2-chloroisopropyl) phosphate] were detected in 100% of the samples. It will be interesting to perform future studied aimed to elucidating the potential toxicological effects of these highly detected chemicals both, in cats and humans.
Collapse
Affiliation(s)
- Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Elena Carretón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - José Alberto Montoya-Alonso
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Las Palmas, Spain
| | - Verónica Bernal Martín
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Yaiza Falcón Cordón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Soraya Falcón Cordón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Las Palmas, Spain
| |
Collapse
|
27
|
Henríquez-Hernández LA, Montero D, Camacho M, Ginés R, Boada LD, Ramírez Bordón B, Valerón PF, Almeida-González M, Zumbado M, Haroun R, Luzardo OP. Comparative analysis of selected semi-persistent and emerging pollutants in wild-caught fish and aquaculture associated fish using Bogue (Boops boops) as sentinel species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:199-208. [PMID: 28043704 DOI: 10.1016/j.scitotenv.2016.12.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The marine environment acts as a sink for diverse anthropogenic pollutants, although the environmental contamination may be non-uniformly distributed. In recent decades, the aquaculture sector has experienced a steady growth postulating as a good alternative for seafood production. However, a social debate exits about the differential level of pollutants in wild and farmed species. This study was designed to evaluate the level of pollutants in a sentinel species: Bogue (Boops boops) associated and non-associated to fish-farm cages. A total of 82 chemical substances were determined by gas chromatography-mass spectrometry, including persistent (polychlorobiphenyls (PCBs) and organochlorine pesticides (OCPs)), semi-persistent (bromodiphenyl ethers (BDEs) and polycyclic aromatic hydrocarbons (PAHs)), and emerging pollutants (such as organophosphate flame retardants (OPFRs) and UV-filters). In general, aquaculture-associated bogues showed lower levels of semi-persistent and emerging pollutants than wild-caught fish, especially when sums were considered. Thus, sum of BDEs was significantly lower in the aquaculture group (p=0.01). A similar trend was also observed for benzo(a)anthracene, the UV-filter 2-ethylhexyl-p-methoxycinnamate and some OPFRs. In the case of persistent pollutants, the sum of dioxin-like PCBs and sum of DDTs were lower in the group of wild-caught bogues (p=0.034 and p=0.003, respectively) than in aquaculture-associated bogues, as previously described for some aquaculture species. Fish feed appear as an important factor in the uptake of such substances suggesting a diet intervention to reduce their levels in the aquaculture products. Another interesting result is that for almost all chemical substances analyzed, bogues captured near sewage outfalls showed the highest levels of pollutants, pointing out the need of stringent measures for wastewater treatment units discharging in coastal areas. On the light of these results, further research in specific farmed and wild fish species in relation to their dietary value and pollutant's levels seems to be mandatory.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Daniel Montero
- Aquaculture Research Group (GIA), ECOAQUA Institute, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n., 35214 Telde, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Rafael Ginés
- Aquaculture Research Group (GIA), ECOAQUA Institute, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n., 35214 Telde, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Besay Ramírez Bordón
- Biodiversity and Conservation Research Group (BIOCON), ECOAQUA Institute, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n., 35214 Telde, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Ricardo Haroun
- Biodiversity and Conservation Research Group (BIOCON), ECOAQUA Institute, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n., 35214 Telde, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain.
| |
Collapse
|
28
|
Gonzalvo J, Lauriano G, Hammond PS, Viaud-Martinez KA, Fossi MC, Natoli A, Marsili L. The Gulf of Ambracia's Common Bottlenose Dolphins, Tursiops truncatus: A Highly Dense and yet Threatened Population. ADVANCES IN MARINE BIOLOGY 2016; 75:259-296. [PMID: 27770987 DOI: 10.1016/bs.amb.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The common bottlenose dolphin (Tursiops truncatus) is the only cetacean present in the semiclosed waters of the Gulf of Ambracia, Western Greece. This increasingly degraded coastal ecosystem hosts one of the highest observed densities in the Mediterranean Sea for this species. Photo-identification data and tissue samples collected through skin-swabbing and remote biopsy sampling techniques during boat-based surveys conducted between 2006 and 2015 in the Gulf, were used to examine bottlenose dolphin abundance, population trends, site fidelity, genetic differentiation and toxicological status. Bottlenose dolphins showed high levels of year-round site fidelity throughout the 10-year study period. Dolphin population estimates mostly fell between 130 and 170 with CVs averaging about 10%; a trend in population size over the 10 years was a decline of 1.6% per year (but this was not significant). Genetic differentiation between the bottlenose dolphins of the Gulf and their conspecifics from neighbouring populations was detected, and low genetic diversity was found among individuals sampled. In addition, pesticides where identified as factors posing a real toxicological problem for local bottlenose dolphins. Therefore, in the Gulf of Ambracia, high dolphin density does not seem to be indicative of favourable conservation status or pristine habitat.
Collapse
Affiliation(s)
- J Gonzalvo
- Tethys Research Institute, Milan, Italy.
| | - G Lauriano
- Institute for Environmental Protection and Research (ISPRA), Roma, Italy
| | - P S Hammond
- Sea Mammal Research Unit, Gatty Marine Laboratory, University of St Andrews, Fife, Scotland, United Kingdom
| | | | | | - A Natoli
- UAE Dolphin Project, Dubai, United Arab Emirates
| | | |
Collapse
|
29
|
Rodríguez-Hernández Á, Camacho M, Henríquez-Hernández LA, Boada LD, Ruiz-Suárez N, Valerón PF, Almeida González M, Zaccaroni A, Zumbado M, Luzardo OP. Assessment of human health hazards associated with the dietary exposure to organic and inorganic contaminants through the consumption of fishery products in Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:808-818. [PMID: 27060748 DOI: 10.1016/j.scitotenv.2016.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/06/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
In this work we have evaluated the potential carcinogenic and acutely toxic risks associated to the exposure to highly prevalent organic and inorganic contaminants through the consumption of fishery products by the Spanish population. The concentrations of 8 organochlorine pesticides (OCPs), 18 polychlorinated biphenils (PCBs), 7 polycyclic aromatic hydrocarbons (expressed as benzo[a]pyrene toxic equivalents (B[a]Peq)), and three inorganic toxic elements [arsenic (As), cadmium (Cd), and mercury (Hg)] were determined in 93 samples of the most consumed species of white fish, blue fish, cephalopods and seafood species, which were acquired directly in markets and supermarkets in the Canary Islands, Spain. The chemical concentration data were combined with the pattern of consumption of these foodstuffs in order to calculate the daily intake of these contaminants, and on this basis the risk quotients for carcinogenicity and acute toxicity were determined for Spanish adults and children. Our results showed that the daily intake of OCPs, PCBs and B[a]Peq, which is associated to blue fish consumption was the highest within the fish group. The estimated intake of pollutants can be considered low or very low for the individual contaminants, when compared to reference values, except in the case of HCB and As. All the estimated intakes were below the reported Tolerable Daily Intakes. Considering the additive effects of multiple contaminants, the risk of acute toxic effects can also be considered as low or very low. However, our results reflect that the current consumption of white fish in adults and children, and also the blue fish in the case of adults, poses a moderate carcinogenic risk to Spanish consumers, mainly related to their concentrations of As. The conclusions of this research may be useful for the design of appropriate risk communication campaigns.
Collapse
Affiliation(s)
- Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Norberto Ruiz-Suárez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Maira Almeida González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Annalisa Zaccaroni
- Large Pelagic Vertebrate Group, Veterinary Faculty, University of Bologna, Viale Vespucci 2, Cesenatico (FC) 47042, Italy
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
30
|
Méndez-Fernandez P, Galluzzi Polesi P, Taniguchi S, de O Santos MC, Montone RC. Validating the use of biopsy sampling in contamination assessment studies of small cetaceans. MARINE POLLUTION BULLETIN 2016; 107:364-369. [PMID: 27113024 DOI: 10.1016/j.marpolbul.2016.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 05/11/2023]
Abstract
Remote biopsy sampling is the most common technique for acquiring samples from free-ranging marine mammals. However, such techniques may result in variable sampling being sometimes superficial skin and blubber biopsies. For decades, blubber has been used to monitor the exposure of marine mammals to persistent organic pollutants (POPs), but little is known regarding the variability of POPs as a function of blubber depth in small cetaceans and the available literature offers variable results. Thus, the aim of the present study was to validate biopsy sampling for monitoring contaminant concentrations in small, free-ranging cetaceans. Samples from the dorsal blubber of 10 incidentally captured Atlantic spotted dolphins (Stenella frontalis) were separated into two different layers (outer and inner) to investigate the influence of sampling depth on POP concentrations. POP concentrations were compared to those of the full blubber layer. The results revealed no significant differences in lipid content between males and females or among the inner, outer and full blubber layers (p>0.05). Moreover, the wet and lipid weight concentrations of all POP classes analysed [i.e. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), chlordanes (CHLs) and mirex] did not differ significantly with blubber depth (p>0.05). POP classes followed the same decreasing order of wet weight concentrations in blubber layers and full blubber: PCBs>DDTs>PBDEs>mirex>HCB>HCHs>CHLs. Moreover, there was a low degree of differentiation in the accumulation of POP congeners. The present findings indicated that the distribution of contaminants was homogenous with blubber depth, which validates the use of biopsy sampling for the assessment of contaminants in small cetaceans.
Collapse
Affiliation(s)
- Paula Méndez-Fernandez
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil.
| | - Paola Galluzzi Polesi
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| | - Satie Taniguchi
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| | - Marcos C de O Santos
- Laboratório de Biologia da Conservação de Mamíferos Aquáticos, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| | - Rosalinda C Montone
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
| |
Collapse
|
31
|
Dirtu AC, Malarvannan G, Das K, Dulau-Drouot V, Kiszka JJ, Lepoint G, Mongin P, Covaci A. Contrasted accumulation patterns of persistent organic pollutants and mercury in sympatric tropical dolphins from the south-western Indian Ocean. ENVIRONMENTAL RESEARCH 2016; 146:263-273. [PMID: 26775007 DOI: 10.1016/j.envres.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Due to their high trophic position and long life span, small cetaceans are considered as suitable bioindicators to monitor the presence of contaminants in marine ecosystems. Here, we document the contamination with persistent organic pollutants (POPs) and total mercury (T-Hg) of spinner (Stenella longirostris, n =21) and Indo-Pacific bottlenose dolphins (Tursiops aduncus, n=32) sampled from the coastal waters of La Réunion (south-western Indian Ocean). In addition, seven co-occurring teleost fish species were sampled and analyzed as well. Blubber samples from living dolphins and muscle from teleosts were analyzed for polychlorinated biphenyls (PCBs), DDT and metabolites (DDTs), chlordanes (CHLs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), and polybrominated diphenyl ethers (PBDEs). Methoxylated PBDEs (MeO-PBDEs), reported as having a natural origin, were also analyzed. T-Hg levels were measured in blubber and skin biopsies of the two dolphin species. Stable isotopes δ(13)C and δ(15)N values were determined in skin of the dolphins and in the muscle of teleosts. For PCBs, HCHs and T-Hg, concentrations were significantly higher in T. aduncus than in S. longirostris. For other POP levels, intra-species variability was high. MeO-PBDEs were the dominant compounds (55% of the total POPs) in S. longirostris, while PCBs dominated (50% contribution) in T. aduncus. Other contaminants showed similar profiles between the two species. Given the different patterns of POPs and T-Hg contamination and the δ(15)N values observed among analyzed teleosts, dietary and foraging habitat preferences most likely explain the contrasted contaminant profiles observed in the two dolphin species. Levels of each class of contaminants were significantly higher in males than females. Despite their spatial and temporal overlap in the waters of La Réunion, S. longirostris and T. aduncus are differently exposed to contaminant accumulation.
Collapse
Affiliation(s)
- Alin C Dirtu
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Chemistry, "Al. I. Cuza" University of Iasi, 700506 Iasi, Romania
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Krishna Das
- University of Liege, MARE Center, Laboratory for Oceanology, 4000 Liege, Belgium
| | - Violaine Dulau-Drouot
- Groupe Local d'Observation et d'Identification des Cétacés (GLOBICE), 30 Chemin Parc Cabris, Grand Bois, 97410 Saint Pierre, La Réunion, France
| | - Jeremy J Kiszka
- Marine Sciences Program, Department of Biological Sciences, Florida International University, 3000 NE 151st, North Miami, FL 33181, USA
| | - Gilles Lepoint
- University of Liege, MARE Center, Laboratory for Oceanology, 4000 Liege, Belgium
| | - Philippe Mongin
- Brigade Nature Océan Indien (BNOI)/ONCFS, 12 Allée de la Foret - Parc de la Providence, 97400 Saint Denis, La Réunion, France
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
32
|
Henríquez-Hernández LA, Luzardo OP, Arellano JLP, Carranza C, Sánchez NJ, Almeida-González M, Ruiz-Suárez N, Valerón PF, Camacho M, Zumbado M, Boada LD. Different pattern of contamination by legacy POPs in two populations from the same geographical area but with completely different lifestyles: Canary Islands (Spain) vs. Morocco. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:51-57. [PMID: 26398450 DOI: 10.1016/j.scitotenv.2015.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
The archipelago of the Canary Islands is one of the so-called ultra-peripheral territories of the European Union due to its geographical location away from the continent. Although the level of socioeconomic development and lifestyle of this region is comparable to that of any other of the European Union, it is just 100 km off the coast of Morocco, in the African continent. The population of the Canaries has been extensively studied with respect to their levels of POPs, and it has been described that their levels are relatively high compared to other European regions. It has been speculated with that the proximity to Africa may be associated with this level of contamination, but so far this theory has not been verified. This paper describes for the first time the levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in a sample of the population of Morocco (n = 131), which were compared with those of a similar sample of the population of permanent residents in the Canary Islands (n = 100) in order to check this hypothesis. Our results showed that Moroccans have higher median values of OCPs than the residents in the Canaries (∑ OCP = 150.2 ng/g lw vs. 83.4 ng/g lw, p = 0.0001). Regarding the PCBs, although recent studies have reported that new environmental sources of PCBs exist in several African countries (including Morocco), the plasma levels of most congeners were significantly higher in Canarians than in Moroccans, especially for the dioxin-like PCBs (median = 7.3 ng/g lw vs. 0.0 ng/g lw, p = 0.0001). The detailed analysis of our results suggests that the levels of these pollutants in the Canarian people are more influenced by their lifestyle and the previous use of these chemicals in the archipelago than by its geographical vicinity with Morocco.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Avda. Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Avda. Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain.
| | - José Luis Pérez Arellano
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Avda. Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; Department of Medical and Surgery Sciences, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristina Carranza
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Avda. Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; Department of Medical and Surgery Sciences, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Nieves Jaén Sánchez
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Norberto Ruiz-Suárez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Instituto Canario de Investigación del Cáncer (ICIC), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
33
|
García-Alvarez N, Fernández A, Boada LD, Zumbado M, Zaccaroni A, Arbelo M, Sierra E, Almunia J, Luzardo OP. Mercury and selenium status of bottlenose dolphins (Tursiops truncatus): A study in stranded animals on the Canary Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:489-498. [PMID: 26232758 DOI: 10.1016/j.scitotenv.2015.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
The mercury (Hg) level in the marine environment has tripled in recent decades, becoming a great concern because of its high toxic potential. This study reports Hg and selenium (Se) status, and the first Se/Hg molar ratio assessment in bottlenose dolphins (Tursiops truncatus) inhabiting the waters of the Canary Islands. Total Hg and Se concentrations were determined in the blubber and liver collected from 30 specimens stranded along the coasts of the archipelago from 1997 to 2013. The median values for total Hg in the blubber and liver were 80.83 and 223.77 μg g(-1) dry weight (dw), and the median levels for Se in both tissues were 7.29 and 68.63 μg g(-1) dw, respectively. Hg concentrations in the liver were lower than 100 μg g(-1) wet weight (ww), comparable to those obtained in bottlenose dolphins from the North Sea, the Western Atlantic Ocean and several locations in the Pacific Ocean. The Mediterranean Sea and South of Australia are the most contaminated areas for both elements in this cetacean species. In addition, it must be stressed that the levels of Hg and Se in the liver showed an increasing trend with the age of the animals. As expected, a strong positive correlation between Hg and Se was observed (rs=0.960). Surprisingly, both younger and older specimens had a Se/Hg molar ratio different from 1, suggesting that these individuals may be at greater toxicological risk for high concentrations of both elements or a deficiency of Se without a protective action against Hg toxicity.
Collapse
Affiliation(s)
- Natalia García-Alvarez
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain.
| | - Antonio Fernández
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Annalisa Zaccaroni
- Department of Veterinary Medical Sciences, University of Bologna, Research Group on Large Pelagic Vertebrates, Viale Vespucci 2, 47042 Cesenatico, FC, Italy
| | - Manuel Arbelo
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain
| | - Eva Sierra
- Unit of Histology and Pathology, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Las Palmas, Spain
| | - Javier Almunia
- Loro Parque Foundation, Camino Burgado, 38400 Puerto de la Cruz (Tenerife), Santa Cruz de Tenerife, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
34
|
Ruiz-Suárez N, Camacho M, Boada LD, Henríquez-Hernández LA, Rial C, Valerón PF, Zumbado M, González MA, Luzardo OP. The assessment of daily dietary intake reveals the existence of a different pattern of bioaccumulation of chlorinated pollutants between domestic dogs and cats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:45-52. [PMID: 26026408 DOI: 10.1016/j.scitotenv.2015.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Pet dogs and cats have been proposed as sentinel species to assess environmental contamination and human exposure to a variety of pollutants, including POPs. However, some authors have reported that dogs but not cats exhibit intriguingly low levels of some of the most commonly detected POPs, such as DDT and its metabolites. This research was designed to explore these differences between dogs and cats. Thus, we first determined the concentrations of 53 persistent and semi-persistent pollutants (16 polycyclic aromatic hydrocarbons (PAHs), 18 polychlorinated biphenyls (PCBs) and 19 organochlorine pesticides (OCPs)) in samples of the most consumed brands of commercial feed for dogs and cats, and we calculated the daily dietary intake of these pollutants in both species. Higher levels of pollutants were found in dog food and our results showed that the median values of intake were about twice higher in dogs than in cats for all the three groups of pollutants (ΣPAHs: 274.8 vs. 141.8; ΣOCPs: 233.1 vs. 83; ΣPCBs: 101.8 vs. 43.8 (ng/kg bw/day); respectively). Additionally, we determined the plasma levels of the same pollutants in 42 and 35 pet dogs and cats, respectively. All these animals lived indoors and were fed on the commercial brands of feed analyzed. As expected (considering the intake), the plasma levels of PAHs were higher in dogs than in cats. However, for organochlorines (OCPs and PCBs) the plasma levels were much higher in cats than in dogs (as much as 23 times higher for DDTs), in spite of the higher intake in dogs. This reveals a lower capacity of bioaccumulation of some pollutants in dogs, which is probably related with higher metabolizing capabilities in this species.
Collapse
Affiliation(s)
- Norberto Ruiz-Suárez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristian Rial
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Maira Almeida González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
35
|
Bucchia M, Camacho M, Santos MRD, Boada LD, Roncada P, Mateo R, Ortiz-Santaliestra ME, Rodríguez-Estival J, Zumbado M, Orós J, Henríquez-Hernández LA, García-Álvarez N, Luzardo OP. Plasma levels of pollutants are much higher in loggerhead turtle populations from the Adriatic Sea than in those from open waters (Eastern Atlantic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 523:161-169. [PMID: 25863507 DOI: 10.1016/j.scitotenv.2015.03.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
In this paper we determined the levels of 63 environmental contaminants, including organic (PCBs, organochlorine pesticides, and PAHs) and inorganic (As, Cd, Cu, Pb, Hg and Zn) compounds in the blood of loggerhead turtles (Caretta caretta) from two comparable populations that inhabit distinct geographic areas: the Adriatic Sea (Mediterranean basin) and the Canary Islands (Eastern Atlantic Ocean). All animals were sampled at the end of a period of rehabilitation in centers of wildlife recovery, before being released back into the wild, so they can be considered to be in good health condition. The dual purpose of this paper is to provide reliable data on the current levels of contamination of this species in these geographic areas, and secondly to compare the results of both populations, as it has been reported that marine biota inhabiting the Mediterranean basin is exposed to much higher pollution levels than that which inhabit in other areas of the planet. According to our results it is found that current levels of contamination by organic compounds are considerably higher in Adriatic turtles than in the Atlantic ones (∑PCBs, 28.45 vs. 1.12ng/ml; ∑OCPs, 1.63 vs. 0.19ng/ml; ∑PAHs, 13.39 vs. 4.91ng/ml; p<0.001 in all cases). This is the first time that levels of PAHs are reported in the Adriatic loggerheads. With respect to inorganic contaminants, although the differences were not as great, the Adriatic turtles appear to have higher levels of some of the most toxic elements such as mercury (5.74 vs. 7.59μg/ml, p<0.01). The results of this study confirm that the concentrations are larger in turtles from the Mediterranean, probably related to the high degree of anthropogenic pressure in this basin, and thus they are more likely to suffer adverse effects related to contaminants.
Collapse
Affiliation(s)
- Matteo Bucchia
- Wildlife Rehabilitation Center, Foundation Cetacea, Riccione, Italy; Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine-Alma Mater Studiorum, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - María Camacho
- Laboratory of Applied Chemical Analyses, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Marcelo R D Santos
- Laboratory of Immunobiology, Vila Velha University, Espirito Santo, Brazil
| | - Luis D Boada
- Laboratory of Applied Chemical Analyses, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Paola Roncada
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine-Alma Mater Studiorum, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - Rafael Mateo
- Spanish Institute of Game and Wildlife Research (IREC), University of Castilla La Mancha, CSIC, Spain
| | | | - Jaime Rodríguez-Estival
- Spanish Institute of Game and Wildlife Research (IREC), University of Castilla La Mancha, CSIC, Spain
| | - Manuel Zumbado
- Laboratory of Applied Chemical Analyses, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Jorge Orós
- Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontana s/n, 35416 Arucas, Las Palmas, Spain
| | - Luis A Henríquez-Hernández
- Laboratory of Applied Chemical Analyses, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Natalia García-Álvarez
- Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontana s/n, 35416 Arucas, Las Palmas, Spain
| | - Octavio P Luzardo
- Laboratory of Applied Chemical Analyses, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
36
|
Rodríguez-Hernández Á, Camacho M, Boada LD, Ruiz-Suarez N, Almeida-González M, Henríquez-Hernández LA, Zumbado M, Luzardo OP. Daily intake of anthropogenic pollutants through yogurt consumption in the Spanish population. JOURNAL OF APPLIED ANIMAL RESEARCH 2014. [DOI: 10.1080/09712119.2014.978777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|