1
|
Soleimani M, Mirjani M, Ahmed A, Khalilimoghadam B, Cruz MD, Christensen JH. Long-term effects of petroleum mulch on concentration, health, and ecological risks of polycyclic aromatic hydrocarbons in sand dune soils of Khuzestan province, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1430-1446. [PMID: 39731667 DOI: 10.1007/s11356-024-35648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024]
Abstract
Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQBaP), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran. Soil samples were collected from two depths: surface soil (0-10 cm) and deep soil (10-50 cm) across four regions with varying durations of petroleum mulch application: less than 5 years (T5), 5-20 years (T20), 20-30 years (T30), and 30-40 years (T40), and a control sample without mulching. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the concentrations of 19 PAHs and 23 groups of alkylated PAHs (alkyl PAHs) in the soil. Petroleum mulching significantly impacted heavily contaminated soil samples (T5 and T20) with PAH levels ranging from 2.03 to 2.08 mg kg-1. Older samples (T30 and T40) showed lower contamination levels (0.29 and 0.41 mg kg-1), primarily due to the alkylated compounds. ILCR, HI, TEQBaP, TU, and RQ indices were highest in T5 and T20 surface samples, indicating high risk in T5 surface soil from RQ and moderate risk in the others, despite low cancer and non-carcinogenic risks. Although the risk from the compounds, particularly alkyl PAHs, has decreased over time, they could still adversely affect the ecosystem, emphasizing the use of environmentally friendly alternative mulches in such areas.
Collapse
Affiliation(s)
- Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Marzieh Mirjani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Abdulazeez Ahmed
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Department of Construction and Project, Environmental Engineering, University of Technology, Baghdad, Iraq
| | - Bijan Khalilimoghadam
- Department of Soil Science, Ramin Agriculture and Natural Resources University of Khuzestan, Ahvaz, Iran
| | - Majbrit Dela Cruz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Ying Z, Chen S, Zhang C, Liao Q, Yuan F, Feng D, Wang S, Liu Q, Hao Z. Vertical distribution and influencing factors of soil PAHs under different ecosystem habitats in the Liaohe River Estuary Wetlands, Northeastern China. MARINE POLLUTION BULLETIN 2025; 210:117289. [PMID: 39613515 DOI: 10.1016/j.marpolbul.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/01/2024]
Abstract
The vertical distribution, sources and influencing factors of polycyclic aromatic hydrocarbons (PAHs) in soil across ecosystem habitats were investigated around the Liaohe River Estuary (LRE) Wetland. The concentration of Ʃ16PAHs ranged from 41.0 to 435.4 ng g-1 dw, with a predominance of low molecular weight PAHs. Overall, PAHs and physicochemical properties of soil decreased with depth. Vegetation was found to increase soil PAHs. Additionally, soil physicochemical properties also regulated PAHs concentration, particularly for PAHs with high molecular weight. Among the habitats, total organic carbon was the key influencing factor for Suaeda heteroptera, while specific surface area was crucial for Phragmites australis. Results of characteristic ratio method and principal component analysis revealed that PAHs in LRE primarily originate petroleum, coal and biomass combustion. In summary, vegetation colonization significantly affected the distribution, sources, and controlling factors of PAHs. These findings are meaningful for management of soil PAHs across various ecosystem habitats.
Collapse
Affiliation(s)
- Zeguo Ying
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200441, China
| | - Shuyu Chen
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Feng Yuan
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Dawei Feng
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siwen Wang
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qing Liu
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Zhe Hao
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Ai Q, Gao L, Weng J, Cao X, Liu Y, Cheng X, Zhang Y, Yang Q, Li M, Yang J, Fu Q, Zheng X, Cao D, Zheng M. Overlooked emerging polycyclic aromatic hydrocarbons and benzofuran derivatives in soil from coking plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177422. [PMID: 39510274 DOI: 10.1016/j.scitotenv.2024.177422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Coking releases large quantities of multiple polycyclic aromatic hydrocarbons (PAHs), yet previous research has often focused on only a limited subset. This may not fully represent the overall risk posed by aromatic compounds. Here, a novel non-target analysis method was developed to identify more emerging PAHs and benzofuran derivatives. Beyond the 16 US Environmental Protection Agency priority PAHs (EPA PAHs), 56 emerging PAHs, 64 alkylated PAHs, and 32 furans were identified, with 69 compounds identified for the first time. The Σ16 EPA PAHs, Σ56 emerging PAHs, Σ64 alkylated PAHs, and Σ32 furans concentration ranges were 0.30-6910, 0.01-2187, 0.52-1649, and 0.06-588 μg/g, respectively. Emerging PAHs and furans had higher contributions in the plant area than the control area. Some PAHs and furans' concentrations were not significantly associated with the EPA PAHs; therefore, the EPA PAHs are insufficient to represent the totals PAHs concentration or risk. In the top 20 % of toxicological priority compounds, the emerging PAHs concentrations were 50 % of those of the EPA PAHs but posed 3.4 times the carcinogenic risk. Four of these compounds had higher carcinogenic risks than the EPA PAHs, while another nine had comparable risks. Thus, the risks of emerging PAHs cannot be ignored. Future monitoring and control of PAHs and furan emissions by the coking industry are highly recommended.
Collapse
Affiliation(s)
- Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianling Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijun Li
- State Key Laboratory of Petroleum Resources and Engineering, College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jing Yang
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Qiang Fu
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Xuan Zheng
- Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
4
|
Ghosh A, Stening J, Chakraborty R. Recovery of ecosystems pollution by contaminants of potential concern using phytoremediation techniques. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1987-2002. [PMID: 38924295 DOI: 10.1002/ieam.4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Phytoremediation is a technology that uses plants to break down, remove, and immobilize contaminants in surface water, shallow groundwater, and sediment to achieve cost savings compared with conventional treatments. This study describes a marshy land on an explosives manufacturing site in India that consistently reported elevated concentrations of nitrates, nitrites, ammonia, perchlorate, and lead (contaminants of potential concern-CoPC). The study also illustrates the potential for addressing the human health and environmental risks associated with the explosives manufacturing industrsy in India using innovative, sustainable, and carbon-neutral techniques. This work focuses on reconstructed marshy lands, desedimentation, microwatershed management, and phytoremediation using Phragmites and Vetiveria species (also known as vetiver) to reduce contaminants in surface water and groundwater, improve stormwater management and carbon capture, and increase natural capital like biodiversity. The results obtained during the trial indicate that the selected indigenous species are effective and can be used to remediate sediment and shallow groundwater for many CoPC in tropical climates. Integr Environ Assess Manag 2024;20:1987-2002. © 2024 SETAC.
Collapse
Affiliation(s)
- Arindam Ghosh
- Department of Environment and Sustainability, Orica Mining Services India, Indian Explosives Pvt. Ltd., Bokaro, Jharkhand, India
| | - James Stening
- Corporate Group Environment and Remediation, Orica Mining Services, Orica Australia Pty Ltd., Matraville, New South Wales, Australia
| | - Rahul Chakraborty
- Department of Environment and Sustainability, Orica Mining Services India, Indian Explosives Pvt. Ltd., Bokaro, Jharkhand, India
| |
Collapse
|
5
|
Ge Y, Cui J, Zhang L, Zhang S, Baqar M, Cheng Z. Informal E-waste dismantling activities accelerated the releasing of liquid crystal monomers (LCMs) in Pakistan: Occurrence, distribution, and exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172987. [PMID: 38734084 DOI: 10.1016/j.scitotenv.2024.172987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.
Collapse
Affiliation(s)
- Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jingren Cui
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Wu J, Li R, Su G. Investigation of the Role of Distances from Liquid Crystal Monomer (LCM) Factories on Distribution of LCMs in Surface Soil Samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124285. [PMID: 38823544 DOI: 10.1016/j.envpol.2024.124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Liquid crystal monomers (LCMs), which are commonly used in electronic device screens, have attracted attention as a potential class of emerging organic pollutants with persistent, bioaccumulative, and toxic (PBT) properties. This study involved the collection of 54 surface soil samples around one LC industrial park at increasing spatial distances within 1 km, 1-3 km, and 3-5 km from the center of the LC industrial park. Our observations revealed the presence of LCMs in 46 of 54 surface soil samples examined. Of the 39 target LCMs, 36 were identified, comprising 14 non-fluorinated and 22 fluorinated LCMs. Nine LCMs were detected at frequencies exceeding 50%, with 3bcHdFB exhibiting the highest detection frequency of 59% in the soil samples. The total LCM concentrations across the 46 sampling locations varied from 0.0072 to 17.24 ng/g dw, with the highest total concentrations at sampling sites within 1 km of the liquid crystal plant, suggesting that manufacturing processes may be a potential source for LCM release into the environment. Differences were observed in the LCM contamination patterns among the three sampling areas. Additionally, we observed a decrease in the median LCM concentration with increasing distance from the center of the LC industrial park. However, no statistically significant differences (p > 0.05) in LCM concentrations were observed across the three distances assessed in this study. This may be owing to the limited variety of target compounds analyzed and the limited number of soil samples. Our results emphasize that further studies on the emissions and pollution characteristics of LCMs during production are warranted.
Collapse
Affiliation(s)
- Jia Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rongrong Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
7
|
Li S, Zhang Q, Gao M, Li H, Yang Z, Wang Y, Sun H. Polycyclic aromatic hydrocarbons and their halogenated derivatives in soil from Yellow River Delta: Distribution, source apportionment, and risk assessment. MARINE POLLUTION BULLETIN 2024; 202:116308. [PMID: 38574503 DOI: 10.1016/j.marpolbul.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) in surface soils from the petroleum industrial area of the Yellow River Delta (YRD) in China were investigated. The total concentrations of 16 PAHs ranged from 19.6 to 1560 ng/g, while 22 HPAHs ranged from 2.44 to 14.9 ng/g. Moreover, a high degree of spatial distribution heterogeneity was observed for both PAHs and HPAHs, which is likely attributed to the distinct industrial activities in studied area. The combustion of biomass and petroleum were identified as primary sources of soil PAHs and HPAHs in the YRD. Furthermore, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[g,h,i]perylene exhibited high ecological risks (with risk quotients of 1.47, 1.44, and 1.02, respectively) in specific sites within the YRD. Considering the high toxicity of HPAHs and their potential joint environmental effects with PAHs, continuous attention should be directed towards the environmental risks associated with both PAHs and HPAHs.
Collapse
Affiliation(s)
- Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Zhongkang Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Odali EW, Iwegbue CMA, Egobueze FE, Nwajei GE, Martincigh BS. Distribution, sources, and risk of polycyclic aromatic hydrocarbons in soils from rural communities around gas flaring points in the Niger Delta of Nigeria. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:721-733. [PMID: 38421246 DOI: 10.1039/d3em00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This study investigates the concentrations, sources, and ecological and human health risks resulting from exposure to polycyclic aromatic hydrocarbons (PAHs) in soils of rural communities around gas flaring points in Delta State, Nigeria. PAHs were extracted from these soil samples with hexane/dichloromethane by ultra-sonication and the extracts were cleaned on a silica gel/alumina-packed column. The PAH concentrations in the extracts were quantified by gas chromatography-mass spectrometry (GC-MS). The Σ16 PAH concentrations in soils from these communities varied from 2370-134 000, 461-389 000, and 2130-34 900 μg kg-1 for Emu-Ebendo (EME), Otu-Jeremi (OTJ) and Ebedei (EBD), respectively. The estimated lifetime carcinogenic risk values recorded in this study were above the acceptable limit of 10-6, indicating a high potential carcinogenic risk resulting from human exposure to PAHs in these soils. The isomeric ratio and principal component analysis results suggest that emissions from high-temperature combustion, potentially gas flaring, vehicular emissions, burning of wood/biomass, and fossil fuel combustion are responsible for the high concentrations of PAHs in soils of these rural communities. This study recommends implementing remediation and source control measures to minimise the impact of PAHs in the affected soils on humans and the environment.
Collapse
Affiliation(s)
- Eze W Odali
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Delta State, Nigeria.
| | | | - Francis E Egobueze
- Department of Environment and Quality Control, Nigerian Agip Oil Company, Rumueme, Port Harcourt, Nigeria
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Delta State, Nigeria.
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
9
|
He W, Cui Y, Li Y, Yang H, Liu Z, Zhang M, Li Y. Accumulation characteristics of liquid crystal monomers in plants: A multidimensional analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133848. [PMID: 38401218 DOI: 10.1016/j.jhazmat.2024.133848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Liquid crystal monomers (LCMs), identified as emerging contaminations, have been detected in soils and plants, but their accumulation characteristics in plants haven't been studied. Therefore, this study systematically investigated the accumulation characteristics of LCMs in plants from four dimensions (i.e., plant fruit species, soil types, plant growth stages, and LCMs categories) for the first time. The LCMs concentrations (9.96 × 10-4 to 114.608 ng/g) in 22 plant fruits were predicted by the partition-limited model. Grains with the highest lipid content showed the highest LCMs accumulation propensity. Plants grown in paddy soil showed a strong LCMs accumulation capacity. Results showed that the LCMs accumulation capacity in plants from soils decreased when the soil organic matter content increased. A preferential accumulation of LCMs in plant root systems during growth was found by the molecular dynamics simulations. Compared to polychlorinated biphenyls (as the reference contaminants of LCMs), LCMs exhibit higher accumulation in plant roots and lower translocation to shoots. For the fourth dimension, lipophilicity was found to be the main reason of LCMs accumulation by intergraded stepwise linear regression with sensitivity analysis. This is the inaugural research concentrating on LCMs accumulation in plants, providing insights and theoretical guidance for future LCMs management strategies multidimensionally.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuhan Cui
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yunxiang Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zeyang Liu
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Meng Zhang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
10
|
Mathur J, Panwar R. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21012-21027. [PMID: 38383928 DOI: 10.1007/s11356-024-32499-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The environment in India is contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the occurrence of large anthropogenic activities, i.e., fuel combustion, mineral roasting, and biomass burning. Hence, 13 toxic PAHs were detected: phenanthrene, anthracene, fluoranthene, pyrene, and benz(a) anthracene, ben-zo; (b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, benzo(ghi)perylene, dibenz (ah) anthracene, indeno1,2,3-(cd) pyrene, coronene and coronene in the environment (i.e., ambient particulate matter, road dust, sludge, and sewage) of the most industrialized area. Pollutants such as heavy metals and polycyclic aromatic hydrocarbons co-contaminate the soil and pose a significant hazard to the ecosystem because these pollutants are harmful to both humans and the environment. Phytoremediation is an economical plant-based natural approach for soil clean-up that has no negative impact on ecosystems. The aim of this study was to investigate the effects of pyrene (500 mg kg-1), Zn (150 mg kg-1), Pb (150 mg kg-1), and Cd (150 mg kg-1) alone and in combination on the phytoextraction efficiency of Medicago sativa growing in contaminated soil. Plant biomass, biochemical activities, translocation factors, accumulation of heavy metals, and pyrene removal were determined. After 60 days of planting, compared with those of the control plants, the growth parameters, biomass, and chlorophyll content of the M. sativa plants were significantly lower, and the reactive oxygen species activity, such as proline and polyphenol content and metallothionein protein content, was markedly greater in the pyrene and heavy metal-polluted soils. Furthermore, the combined toxicity of pyrene and all three metals on M. sativa growth and biochemical parameters was significantly greater than that of pyrene, Zn, Pb, or Cd alone, indicating the synergistic effect of pyrene and heavy metals on cytotoxicity. Pyrene stress increased Cd accumulation in M. sativa. After pyrene exposure alone or in combination with Zn-pyrene, a greater pyrene removal rate (85.5-81.44%) was observed than that in Pb-pyrene, Cd-pyrene, and Zn-Pb-Cd-pyrene polluted soils (62.78-71.27%), indicating that zinc can enhance the removal of pyrene from contaminated soil. The resulting hypotheses demonstrated that Medicago sativa can be used as a promising phytoremediation agent for co-contaminated soil.
Collapse
Affiliation(s)
- Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India.
| | - Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
11
|
Lv N, Wang B, Wang H, Xiao T, Dong B, Xu Z. The occurrence characteristics, removal efficiency, and risk assessment of polycyclic aromatic hydrocarbons in sewage sludges from across China. CHEMOSPHERE 2024; 351:141033. [PMID: 38160951 DOI: 10.1016/j.chemosphere.2023.141033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Sewage sludge is considered to be an important sink for polycyclic aromatic hydrocarbons (PAHs) in wastewater treatment plants and the potential risks from sludge contaminated with PAHs during land application has attracted attention. To identify the priority PAHs for control and enhance their removal from sludge, the occurrence characteristics, removal efficiency, and risk assessment of PAHs in sewage sludges from across China were analyzed. Data collection was from 2001 to 2023. Results showed that 16 PAHs were widely detected in Chinese sewage sludge with total amounts (∑16PAHs) between 0.06 and 34.93 mg kg dw-1. Fossil fuel, coal, and biomass combustion are main anthropogenic sources of PAHs in China. In general, phenanthrene (PHE), anthracene (ANT), fluorescein (FL), chrysene (CHR), pyrene (PYR), and benzo[b]fluoranthene (BbF) are regarded as the main components and PAHs with 3-5 rings dominate (84.01%-91.53%) sewage sludge in China. Although aerobic composting and anaerobic treatment significantly improve ∑16PAHs removal, sludge stabilization treatment only reduced the risk by a small amount, especially for high-molecular-weight (HMW) PAHs. The benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and dibenzo[a,h]anthracene (DahA) are proposed as the priority control contaminants for sewage sludge in China because they have consistently high-risk quotient (RQ) values of 2.42-7.47, 1.28-3.16, 1.06-1.83 before and after sludge stabilization, respectively. More attention should be paid to BaA, BbF, benzo[k]fluoranthene (BkF), BaP, DahA, and indeno[1,2,3-cd]pyrene (IcdP) in Beijing; ANT, BaA, and BaP in Shanghai; and BaA and BaP in Guanghzou. Although the toxic equivalent quotient (TEQ) for PAHs met the limit concentration requirements of the national standard, the potential health risks due to long-term exposure to HMW PAHs cannot be ignored because the incremental lifetime cancer risk (ILCR) was consistently in the risk threshold range (>1 × 10-6). Some suggestions on enhanced treatment approaches and land use standards are proposed to further alleviate the risk from HMW PAHs.
Collapse
Affiliation(s)
- Nan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bingqing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
12
|
Sruthi SN, Ramasamy EV, Shyleshchandran MN. Bioaccumulation of pesticide residue in earthworms collected from the agricultural soils of Kuttanad-a unique agroecosystem in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94940-94949. [PMID: 37542694 DOI: 10.1007/s11356-023-28944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Earthworms encompass significant soil faunal biomass and have tremendous potential to provide vital ecosystem services. Earthworms are considered bioindicators of chemical contaminants and can provide early warnings of ecosystem deterioration. Studies pertaining to the accumulation of pesticide residues in earthworm in biomass in agrarian ecosystems are scarce. The Kuttanad agroecosystem (KAE), situated on the southwest coast of India, is one of the few regions globally supporting farming on land below the mean sea level. This investigation was conducted to assess the bioaccumulation of pesticide residues in earthworms from the KAE. The earthworms species Glyphidrilus annandalei collected from agricultural soils of the study area were analyzed for the presence of pesticides residues such as α-BHC, γ-BHC, atrazine, heptachlor, α-chlordane, γ-chlordane, 4,4-DDE, 4,4-DDD, 4,4-DDT, β-endosulfan, and endrin ketone in their biomass. Analysis of the earthworm samples using a gas chromatograph revealed the presence of ten pesticide residues with notable concentrations (α-BHC, 0.36 ng/g; γ-BHC, 0.41 ng/g; heptachlor, 0.10 ng/g; atrazine, 0.89 ng/g; α-chlordane, 0.07 ng/g; γ-chlordane, 0.10 ng/g; 4,4-DDE, 0.05 ng/g; 4,4-DDD, 0.11 ng/g; 4,4-DDT, 0.31 ng/g; β-endosulfan, 0.19 ng/g; and endrin ketone, 0.13 ng/g). Six groups of pesticide residues are ΣBHC, ΣDDT, atrazine, Σchlordane, endrin ketone, and β-endosulfan were observed during bioaccumulation factor analysis, and the results show the following trend: atrazine > ΣBHC > ΣDDT > Σchlordane > Σendosulfan > Σendrin. As earthworms are a crucial component of this region's food chains, bioaccumulation of pesticide residues in earthworms can pause adverse consequences. Increasing trends in pesticide application in the KAE and bioaccumulation of pesticide residues in earthworm biomass can affect the entire food web.
Collapse
|
13
|
Zhang Q, Gao M, Sun X, Wang Y, Yuan C, Sun H. Nationwide distribution of polycyclic aromatic hydrocarbons in soil of China and the association with bacterial community. J Environ Sci (China) 2023; 128:1-11. [PMID: 36801025 DOI: 10.1016/j.jes.2022.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/18/2023]
Abstract
Soil contamination by polycyclic aromatic hydrocarbons (PAHs) has raised great environmental concerns. However, the information on national wide distribution of PAHs in soil as well as their effect on soil bacterial community are limited. In this study, 16 PAHs were measured in 94 soil samples collected across China. The total concentration of 16 PAHs (∑PAHs) in soil ranged from 74.0 to 17,657 ng/g (dry weight basis), with a median value of 200 ng/g. Pyrene was the major soil PAH, with a median concentration of 71.3 ng/g. Soil samples from Northeast China had a higher median concentration of ∑PAHs (1,961 ng/g) than those from other regions. Petroleum emission and wood/grass/coal combustion were potential sources for soil PAHs based on diagnostic ratios and positive matrix factors analysis. A nonnegligible ecological risk (hazard quotients > 1) was found in over 20% of soil samples analyzed and the highest median total HQs value (8.53) was found in soils from Northeast China. The effect of PAHs on bacterial abundance, α-diversity, and β-diversity was limited in the soils surveyed. Nevertheless, the relative abundance of some members in genera Gaiella, Nocardioides, and Clostridium was significantly correlated with the concentrations of some PAHs. Especially, the bacterium Gaiella Occulta showed potential in indicating soil contamination by PAH, which is worth further exploration.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinhui Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chaolei Yuan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Iwegbue CMA, Ogbuta AA, Tesi GO, Ossai CJ, Olisah C, Nwajei GE, Martincigh BS. Spatial distribution of polycyclic aromatic hydrocarbons in dust and soils from informal trade sites in southern Nigeria: Implications for risk and source analysis. CHEMOSPHERE 2023; 315:137624. [PMID: 36566793 DOI: 10.1016/j.chemosphere.2022.137624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of semi-volatile and persistent organic compounds considered priority pollutants because of their pervasive nature and high toxicity to the ecosystem and humans. Therefore, this study aimed to evaluate the PAH concentrations in dust and soils around informal trade sites (ITS) in Nigeria to determine the level of risk, sources, and significance of these activities to the PAH load of the environment. The 16 US EPA PAHs in dust and soils from ITS were determined by gas chromatography-mass spectrometry (GC-MS). The PAH concentrations in dust from these informal trade sites varied from 120 to 8790, 56 to 4780, and 102-1090 μg kg-1 for automobile mechanic workshops (AMW), car dismantling (CDS), and material recovery sites (MRS), respectively, whereas those of soils ranged from 3000 to 95,500, 554 to 14,700, and 966-25,200 μg kg-1 for AMW, CDS, and MRS respectively. The PAH profiles indicated that 3- to 5-ring PAHs were prominent in dust and soils around the ITS. The concentrations of the US EPA 16 PAHs in dust and soils from these ITS showed no correlation with organic matter, while the concentrations of PAH homologues in soils of these ITS showed no correlation with those of dust. Incremental lifetime cancer risk (ILCR) values in the magnitude of 10-4 to 101 were obtained for adult and childhood exposure to PAHs in dust and soils from these ITS. Exposure to PAHs in dust from these ITS gives rise to less risk than for soils. The results indicated that automobile mechanic workshops contribute more PAHs to the environment than car dismantling and material recovery activities. The source analysis showed that the PAH contamination of these sites arises from burning of biomass, plastic materials, and oils, and emissions from vehicles.
Collapse
Affiliation(s)
| | - Anthony A Ogbuta
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Chijioke Olisah
- Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
15
|
Kicińska A, Dmytrowski P. Anthropogenic impact on soils of protected areas-example of PAHs. Sci Rep 2023; 13:1524. [PMID: 36707668 PMCID: PMC9883476 DOI: 10.1038/s41598-023-28726-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
The following study presents the concentrations of 10 individual polycyclic aromatic hydrocarbons (PAHs10) and the total concentration of PAHs (ΣPAHs) determined in soils of protected areas in Southern Poland (EU). The protected areas discussed here include 5 landscape parks and 5 nature reserves located in the Małopolska region. Surface soil samples were collected at 39 locations characterised by different natural conditions and different human pressure level. The samples were used to determine the contents of anthracene, benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, chrysene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene and naphthalene. These concentrations of individual PAHs ranged from < 0.005 to 6.34 mg/kg. When considering the legal regulations currently in force, this meant that permissible values were exceeded in 23% of the samples analysed, while increased concentrations were found in another 26% of the samples. The limit values were exceeded most in the case of benzo[b]fluoranthene and benzo[a]pyrene. This occurred with samples collected in the vicinity of transportation routes, mainly local roads. In the case of naphthalene and anthracene, the limit values were not exceeded. Increased or excessive PAHs concentrations do not occur in the vicinity of major industrial plants located near the boundaries of individual landscape parks, which indicates how these pollutants spread. The paper also points to the need to develop new legal solutions to improve the method for assessing PAHs concentrations and their impact on valuable natural areas.
Collapse
Affiliation(s)
- Alicja Kicińska
- Faculty of Geology, Geophysics and Environmental Protection, Department of Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av, 30-059, Kraków, Poland.
| | - Piotr Dmytrowski
- Faculty of Geology, Geophysics and Environmental Protection, Department of Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av, 30-059, Kraków, Poland
- Landscape Parks of the Małopolska Region, Vetulaniego 1A, 31-227, Kraków, Poland
| |
Collapse
|
16
|
Zhen Z, Yin Y, Zhang H, Li J, Hu J, Li L, Kuang X, Chen K, Wang H, Yu Q, Zhang X. Assessment of factors affecting the diurnal variations of atmospheric PAHs based on a numerical simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158975. [PMID: 36152850 DOI: 10.1016/j.scitotenv.2022.158975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollutants that seriously endanger human health. Obtaining the diurnal variations of PAHs and clarifying their impact mechanisms are significant for the government to formulate targeted prevention and control measures. However, the influencing factors that dominate the diurnal variations of common PAHs are currently unclear. In order to solve this problem, 16 PAHs selected by the United States Environmental Protection Agency (EPA) as priority-controlled pollutants were simulated with high resolution. The simulation results were validated based on diurnal observations in the vertical direction. Although the model underestimated the particle-phase concentrations of most components, it captured their diurnal variations fairly well. In addition, we assessed the factors affecting the diurnal variations of PAHs with sensitivity tests, including chemical reactions and atmospheric diffusion. The results showed that the transforming ratios of PAHs by oxidants were higher during the day than that at night due to the dominant reactions with OH radical. Atmospheric dispersion affected the vertical distribution of PAHs, which resulted in higher day/night ratios at high altitudes than near the ground. We also compared the strength of atmospheric diffusion and chemical reaction on the diurnal trends of PAHs. Near the ground, atmospheric diffusion was the most dominant factor in determining their diurnal trends. At high altitudes, their diurnal trends were determined by a combination of atmospheric diffusion and chemical reactions. These findings can provide a comprehensive understanding of the diurnal variations of common PAHs, which are informative for the prevention and control of PAHs pollution.
Collapse
Affiliation(s)
- Zhongxiu Zhen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Haowen Zhang
- Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingyi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiang Kuang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kui Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Honglei Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qingyuan Yu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Zhang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
17
|
Li R, Ren K, Su H, Wei Y, Su G. Target and suspect analysis of liquid crystal monomers in soil from different urban functional zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158408. [PMID: 36057313 DOI: 10.1016/j.scitotenv.2022.158408] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have reported the occurrence of liquid crystal monomers (LCMs) in sediment, indoor dust, hand wipes, and human serum samples; however, information regarding their contamination status in soil is currently unavailable. The concentrations of 39 target LCMs were determined in n = 96 surface soil samples collected from five different urban functional zones including agricultural, scenic, industrial, commercial, and residential zones. We observed that 76 of 96 surface soil samples contained at least 19, 13, 16, 19, and 14 of the 39 target LCMs that were detectable in samples from agricultural, scenic, industrial, commercial, and residential zones, respectively. The LCMs in the samples from the agricultural zone exhibited the highest mean concentrations of 12.9 ng/g dry weight (dw), followed by those from commercial (5.23 ng/g dw), residential (3.30 ng/g dw), industrial (2.48 ng/g dw), and scenic zones (0.774 ng/g dw). Furthermore, strong and statistically significant (p < 0.05) correlations were observed for several pairs of LCMs (3cH2B vs. 5bcHdFB in the agricultural zone; 5bcHdFB vs. 2bcHdFB, 5bcHdFB vs. 3cH2B in the commercial zone; 5bcHdFB vs. 2bcHdFB in the industrial zone), indicating that they might have similar commercial applications and sources. Based on a newly established database containing 1173 LCMs, suspect screening was applied to discover other LCMs in these 96 soil samples using gas chromatograph coupled with quadrupole-time-of-flight mass spectrometry (GC-QTOF/MS). We tentatively identified 51 LCM formulas with 69 chemical structures. Collectively, this study provides the first evidence for the occurrence of LCMs in soil samples, and suggests that LCMs could be widely distributed across all five urban functional zones.
Collapse
Affiliation(s)
- Rongrong Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yu Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
18
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
19
|
Chakravarty P, Chowdhury D, Deka H. Ecological risk assessment of priority PAHs pollutants in crude oil contaminated soil and its impacts on soil biological properties. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129325. [PMID: 35716561 DOI: 10.1016/j.jhazmat.2022.129325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the major toxic constituents of crude oil and therefore, an understanding on PAHs associated risks and their relationship with soil biological parameters are necessary for adopting effective risk-based and site specific remediation strategies in the contaminated soil. Here, risks evaluation of eight detected PAHs in terms of toxic equivalent concentration (TEQC), benzo(a)pyrene equivalent (BaPeq), contamination factor (CF), pollution load index (PLI), hazard quotient (HQ), hazard index (HI), toxic unit for individual PAHs (TU) and PAHs mixture (TUm) have been evaluated. Besides, the effect of PAHs contamination on soil biological properties has also been investigated and correlated with PAHs concentrations. The TEQc of eight PAHs was recorded in the range of 0.06-5.0 mg kg-1 soil, whereas the BaPeq value was 25.3 mg kg-1 soil which exceed the permissible limit. Similarly, CF (85.5-1668.2), PLI (322.8), HQ (311.7-8340.9), HI (26,443.8), TU (227.9-3821.6) and TUm(7916.2) also exceed the permissible values for non-toxic conditions indicating carcinogenic risk for humans. Besides, activities of soil dehydrogenase, urease, alkaline-phosphatase, catalase, amylase and cellulase were decreased by 1.5-2.3 folds in the contaminated soil than control. The results of Pearson's correlation matrix also established negative impact of PAHs on the soil's biological properties.
Collapse
Affiliation(s)
- Paramita Chakravarty
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Pachim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India.
| |
Collapse
|
20
|
Gbeddy G, Egodawatta P, Akortia E, Goonetilleke A. Inherent and external factors influencing the distribution of PAHs, hydroxy-PAHs, carbonyl-PAHs and nitro-PAHs in urban road dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119705. [PMID: 35798192 DOI: 10.1016/j.envpol.2022.119705] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The distribution and fate of hazardous polycyclic aromatic hydrocarbons (PAHs) and their associated transformed PAHs products (TPPs) notably carbonyl-PAHs (CPAHs), hydroxy-PAHs (HoPAHs), and nitro-PAHs (NPAHs) on urban road surfaces are influenced by diverse factors to varying extent. The pollutants are eventually transported to urban receiving waters via stormwater runoff posing risks to human and ecosystem health. In order to formulate an effective mitigation strategy, it is essential to comprehensively examine the role of both inherent and external factors in the distribution and fate of these hazardous pollutants, and thus, the need for this study. The research study showed that commercial land use has the highest cumulative concentration of PAHs and TPPs. Antecedent dry days (ADDs) has an inverse influence on the distribution of the total concentrations of low-molecular weight PAHs (LMW-PAHs), PAHs, and (PAHs + TPPs) irrespective of the type of land use, whilst there was no major influence on the total concentrations of high molecular weight PAHs (HMW-PAHs), and TPPs. The high volatility of LMW-PAHs compared to HMW-PAHs is considered to account for the decreasing concentration of LMW-PAH with increasing ADD. Particle size range has significant inverse influence on the cumulative concentration of pollutants across all land uses, since smaller particles are characteristically associated with larger surface area leading to the higher sorption of pollutants. Multivariate analysis of the influential factors indicated that two particle size ranges (0.45-150 μm and 150-425 μm) constitute the major influential factors on the distribution and fate of PAHs and TPPs in urban road dust. Greater quantum of pollutants are sorbed to the 0.45-150 μm particles due to the relatively higher specific surface area (SSA), concentration of total organic carbon (TOC) and total suspended solids (TSS) concentration. Therefore, it is critical to effectively remove finer particles from road surfaces in order to reduce exposure to hazardous pollutants.
Collapse
Affiliation(s)
- Gustav Gbeddy
- Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon, Accra, Ghana.
| | - Prasanna Egodawatta
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| | - Eric Akortia
- Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon, Accra, Ghana
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| |
Collapse
|
21
|
Xu Q, Hu L, Miao W, Fu Z, Jin Y. Parental exposure to 3-methylcholanthrene before gestation adversely affected the endocrine system and spermatogenesis in male F1 offspring. Reprod Toxicol 2022; 110:161-171. [PMID: 35487396 DOI: 10.1016/j.reprotox.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The compound 3-methylcholanthrene (3-MC) is an environmental pollutant belonging to the PAHs, which reportedly have the potential to disrupt the endocrine systems of animals. In the present study, 4-week-old male and female mice were given 3-MC through their diet at a dose of 0.5mg/kg of chow for 6 weeks before pregnancy. The first filial (F1) generation offspring of exposed or unexposed parental mice were sacrificed at the age of 5 or 10 weeks (F1-5W or F1-10W), and the potential effects on the F0 and F1 offspring were evaluated. The results showed that the serum and testicular testosterone (T) levels and the genes involved in T synthesis in F0 males and male F1-5W individuals born from female mice exposed to 3-MC were significantly decreased. In addition, histological analysis suggested that exposure to 3-MC significantly disrupted testicular morphology in F0 mice and in the offspring of female mice exposed to 3-MC. Further investigation revealed that genes involved in spermatogenesis, such as Phosphoglycerate kinase 2 (Pgk2), Glial cell derived neurotrophic factor (Gdnf), Myeloblastosis oncogene (Myb), DEAD box helicase 4 (Ddx4) and KIT proto-oncogene receptor tyrosine kinase (Kit), were suppressed in these mice. However, the adverse effects of parental 3-MC exposure on the adolescent mice were mitigated when they grew to adulthood, which was verified by studies on F1-10W mice. Our results suggest that female exposure to 3-MC has the potential to disrupt the endocrine system and spermatogenesis in male offspring; nevertheless, the adverse effects might be mitigated with age.
Collapse
Affiliation(s)
- Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| |
Collapse
|
22
|
Fernandes GM, Martins DA, Dos Santos RP, de Santiago IS, Nascimento LS, Oliveira AHB, Yamamoto FY, Cavalcante RM. Levels, source appointment, and ecological risk of petroleum hydrocarbons in tropical coastal ecosystems (northeast Brazil): Baseline for future monitoring programmes of an oil spill area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118709. [PMID: 34942290 DOI: 10.1016/j.envpol.2021.118709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
We reviewed 20 years of levels, sources, and environmental risks related to the main petroleum hydrocarbons in the northeast region of Brazil. The aim of this study was to conduct a systematic review to serve as a comprehensive baseline for future monitoring programmes related to the oil spill disaster in 2019/2020. Most contamination levels of both PAHs and AHs were classified as low, except those in specific areas influenced by human activities, such as ports, highly urbanised mangroves, or rivers of medium-sized cities with inadequate liquid and solid waste treatment. Most hydrocarbons were linked to natural sources and burning processes, except in regions of extraction activities and petrochemical facilities as well as highly urbanised areas, where degraded petroleum and oil hydrocarbons predominated. Only 2.5% of the samples exceeded threshold effect levels for ∑16-PAHs and no samples exceeded probable effect levels. When regional threshold levels were used, however, the probable effect for the ∑16-PAHs measured was high, ranging from 5.8 to 6.1%. The few studies reporting biological responses showed that hydrocarbons from anthropogenic sources can induce adverse effects on marine organisms even at low to moderate levels. As the region has recently received a considerable quantity of crude oil, studies should be prioritised for a more precise assessment of the impact of this oil spill.
Collapse
Affiliation(s)
- Gabrielle M Fernandes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Davi A Martins
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Rafael P Dos Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Ithala S de Santiago
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Lorena S Nascimento
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - André H B Oliveira
- Environmental Studies Laboratory (LEA), Federal University of Ceará - Analytical Chemistry and Physical Chemistry Dpto, Campus do Pici s/n, Bloco 938/939, Brazil
| | - Flávia Y Yamamoto
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil.
| |
Collapse
|
23
|
Ebrahimi P, Abbasi S, Pashaei R, Bogusz A, Oleszczuk P. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. CHEMOSPHERE 2022; 289:133146. [PMID: 34871607 DOI: 10.1016/j.chemosphere.2021.133146] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are contaminants of emerging concern that attracted the attention of researchers over the last decade. They can occur in saliva and stool, and on scalp hair together with skin. Further, MPs can end up in the human diet through seafood, honey, salt, and mineral water. They can be taken up into the plants' roots and lead to the occurrence of MPs in fruits and vegetables. Concentration of the airborne MPs was also reported in the environment. These pieces of evidence clarify that introduction of MPs to the human body through ingestion and inhalation routes should not be overlooked. Following oral exposure to MPs, hazardous chemicals can be released in the gastrointestinal tract leading to toxicity. Inhalation route deserves more attention due to the oxidative potential of the inhaled plastic particles. Although the major characteristics of MPs are being investigated, there are currently few regulations to control concentration of MPs in the environment and their human health impacts remained unclear indicating the need for further investigation. For instance, it is not clear if the present air quality limits for PM2.5 and PM10 can be used for the areas with high suspended plastic particles. Without comprehensive knowledge about the retention and egestion rates of field populations, it is difficult to deduce the ecological and human health consequences. In general, more information about MP contamination in various species and the consequences of MP uptake and retention is required to gain a better idea of MPs in the food web and their environmental fate. The finer details on the MP translocation between tissues and the fate of the small plastic particles might be obtained when considering the existing information about the application of MPs in the pharmaceutical industry. In this review article, we presented a short bibliometric analysis and investigated the link between physicochemical properties of MPs and human health.
Collapse
Affiliation(s)
- Pooria Ebrahimi
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland.
| | - Reza Pashaei
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, ul. Krucza 5/11D, 00-548, Warszawa, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| |
Collapse
|
24
|
Wu D, Kan H, Zhang Y, Wang T, Qu G, Zhang P, Jia H, Sun H. Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation. CHEMOSPHERE 2022; 286:131787. [PMID: 34365168 DOI: 10.1016/j.chemosphere.2021.131787] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are important mutagen prevalent in the contaminated sites, bringing potential risks to human health. Iron oxides are important natural components in soils. Pyrene removal in soil using persulfate (PS) oxidation activated by microwave (MW) and magnetite (Fe3O4) was investigated. Fe3O4 significantly promoted pyrene removal in the soil; 91.7 % of pyrene was degraded within 45 min treatment. Pyrene removal rate in the Fe3O4/MW/PS system was 5.18 and 3.00 times higher than that in the Fe3O4/PS and MW/PS systems. Increasing in Fe3O4 dosage, PS concentration, MW temperature, and soil moisture content in the selected range were conducive for pyrene degradation. SO4•-, •OH, O2•-, and 1O2 were responsible for pyrene degradation, and the conversion of Fe (Ⅱ) in the Fe3O4 to Fe (Ⅲ) contributed to the formation of O2•- and 1O2. Characteristic bands of pyrene were more obviously destroyed by the Fe3O4/MW/PS oxidation, in comparison with MW/PS oxidation. Ring hydroxylation and ring-opening reactions were the main degradation pathways of pyrene. The toxicities of the formed byproducts were significantly reduced after treatment. This study provided a promising option for pyrene contaminated soil remediation.
Collapse
Affiliation(s)
- Dan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Hongshuai Kan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
25
|
Benelli G, Ceccarelli C, Zeni V, Rizzo R, Lo Verde G, Sinacori M, Boukouvala MC, Kavallieratos NG, Ubaldi M, Tomassoni D, Benvenuti F, Roy P, Petrelli R, Cappellacci L, Spinozzi E, Maggi F, Canale A. Lethal and behavioural effects of a green insecticide against an invasive polyphagous fruit fly pest and its safety to mammals. CHEMOSPHERE 2022; 287:132089. [PMID: 34509765 DOI: 10.1016/j.chemosphere.2021.132089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Plant essential oil-based insecticides, with special reference to those that may be obtained from largely available biomasses, represent a valuable tool for Integrated Pest Management. However, the sublethal effects and the potential effects on aggressive insect traits of these green insecticides are understudied. Herein, the lethal and sub-lethal effects of the carlina oxide, constituting more than 97% of the whole Carlina acaulis (Asteraceae) root essential oil (EO), were determined against an invasive polyphagous tephritid pest, Ceratitis capitata (medfly). The carlina oxide was formulated in a mucilaginous solution containing carboxymethylcellulose sodium salt, sucrose, and hydrolysed proteins, showing high ingestion toxicity on medfly adults. The behavioural effects of carlina oxide at LC10 and LC30 were evaluated on the medfly aggressive traits, which are crucial for securing reproductive success in both sexes. Insecticide exposure affected the directionality of aggressive actions, but not the aggression escalation intensity and duration. The EO safety to mammals was investigated by studying its acute toxicity on the stomach, liver, and kidney of rats after oral administration. Only the highest dose (1000 mg/kg) of the EO caused modest neurological signs and moderate effects on the stomach, liver, and kidney. The other doses, which are closer to the practical use of the EO when formulated in protein baits, did not cause side effects. Overall, C. acaulis-based products are effective and safe to non-target mammals, deserving further consideration for eco-friendly pesticide formulations.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Camilla Ceccarelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Roberto Rizzo
- CREA Research Centre for Plant Protection and Certification, S.S. 113 - km 245.500, 90011, Bagheria, PA, Italy
| | - Gabriella Lo Verde
- Department of Agricultural, Food and Forest Sciences, University of Palermo, viale delle Scienze, Ed. 5, 90128, Palermo, Italy
| | - Milko Sinacori
- Department of Agricultural, Food and Forest Sciences, University of Palermo, viale delle Scienze, Ed. 5, 90128, Palermo, Italy
| | - Maria C Boukouvala
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Attica, Greece
| | - Nickolas G Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Attica, Greece
| | - Massimo Ubaldi
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, 62032, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, Italy
| | - Federica Benvenuti
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, 62032, Camerino, Italy
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, 62032, Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, 62032, Camerino, Italy
| | - Eleonora Spinozzi
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, 62032, Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant'Agostino 1, 62032, Camerino, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
26
|
KOÇAK TK. Determination of Polycyclic Aromatic Hydrocarbons in Batman River by Liquid-liquid and Solid-phase Extractions and the Statistical Comparison of the Two Extraction Techniques. INTERNATIONAL JOURNAL OF ENVIRONMENT AND GEOINFORMATICS 2021; 8:521-528. [DOI: 10.30897/ijegeo.957677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs), which have detrimental health effects such as cancer and mutation, abound in rivers. To employ effective mitigation strategies, accurate determination of PAHs in water bodies is essential. In this study, PAHs in the Batman River were investigated. Specifically, the study has two aims: (1) determining whether there are any statistical differences between the Liquid-liquid (LL) and Solid-phase (SP) extraction techniques of PAHs; and (2) investigation of PAH contamination and the potential sources of PAHs in the Batman River. Methodologically, four different samples were collected and one part of each sample was extracted with the LL and the other part with the SP. Later, each extract was analyzed using gas chromatography-mass spectrometry. Subsequently, the analysis results of the LL and SP extracts were statistically compared. PAH concentrations were 85.5 and 76.7 ng/L for the means of the LL and SP extracts, respectively. Based on the t-test, the differences between these two means were not significant (p-value=0.684 > 0.05). Similarly, no statistical differences were observed between the analysis results of the LL and SP extracts for any individual PAHs. As for the source analysis, the results indicated that road vehicles and coal combustion were the possible sources of PAH contamination in the river. This study provides the first data set for PAH contamination in the Batman River.
Collapse
|
27
|
Ren K, Wei Y, Li J, Han C, Deng Y, Su G. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated PAHs, azaarenes, and sulfur / oxygen-containing heterocyclic PAHs) in surface soils from a typical city, south China. CHEMOSPHERE 2021; 283:131190. [PMID: 34157620 DOI: 10.1016/j.chemosphere.2021.131190] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons derivatives (dPAHs) were reported to be more mutagenic than parent analogues, however, studies that involving dPAHs in environmental samples are still limited. Thirty-six polycyclic aromatic compounds (PACs; 17 parent PAHs, 1 alkyl-PAH, 6 oxygenated PAHs, 6 azaarenes, 3 sulfur-containing heterocyclic PAHs, and 3 oxygen-containing heterocyclic PAHs) were analyzed in n = 100 surface soil samples collected from a prefecture-level city (hereafter referred to as D city) in South China, in the year 2019. Total concentrations of 36 PACs ranged from 3.61 to 4930 ng g-1 with a median concentration of 86.1 ng g-1. Regardless of functional zones, parent PAHs were the most abundant with the proportion of 78.9%, followed by oxygenated PAHs accounting for 16.8%, whereas contents of heterocyclic PAHs were far below the formers. Besides, PAHs with 4-6 rings were the most prevalent components. Among the five functional zones, industrial zone was contaminated most severely with a mean sum PAC concentration of 485 ng g-1, implying effects of long-term industrial emission. Total PAC concentrations in scenic and agricultural zones were significantly lower than those in industrial and residential zones. On the basis of PMF calculation, we proposed that traffic emission and biomass combustion could be responsible for PAC contamination. According to total lifetime cancer risk index, it suggested that there could be slightly health risks for children following exposure to PACs in some places.
Collapse
Affiliation(s)
- Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yu Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Cunliang Han
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou, 510045, PR China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou, 510045, PR China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
28
|
Škrbić BD, Antić I, Živančev J, Vágvölgyi C. Comprehensive characterization of PAHs profile in Serbian soils for conventional and organic production: potential sources and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4201-4218. [PMID: 33818683 DOI: 10.1007/s10653-021-00884-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
This study presents a comprehensive characterization of occurrence and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in arable soils used for conventional and organic production in northern and central part of Serbia as well as cross-border region with Hungary. Furthermore, this study includes a characterization of PAH sources and carcinogenic/non-carcinogenic human health risk for PAHs accumulated in analysed arable soils. The total concentration of 16 PAHs varied between 55 and 4584 µg kg-1 in agricultural soil used for conventional production and between 90 and 523 µg kg-1 in agricultural soil used for organic production. High molecular weight (HMW) PAHs were dominant compounds with similar contribution in both soil types (86% and 80% in conventional and in organic soil, respectively). Principal component analysis and diagnostic ratios of selected PAHs were used for identification of PAH sources in the analysed soils. Additionally, positive matrix factorization was applied for quantitative assessment. The results indicated that the major sources of PAHs were vehicle emissions, biomass and wood combustion, accounting for ~ 93% of PAHs. Exposure of farmers assessed through carcinogenic (TCR) and non-carcinogenic (THQ) risk did not exceed the acceptable threshold (TCR < 10-6 and THQ < 1). Oral ingestion was the main exposure route which accounted for 57% of TCR and 80% of THQ. It was followed by dermal contact. This investigation gives a valuable data insight into the PAHs presence in arable soils and reveals the absence of environmental and health risk. It also acknowledges the importance of comprehensive monitoring of these persistent pollutants.
Collapse
Affiliation(s)
- Biljana D Škrbić
- Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, University of Novi Sad, Novi Sad, Serbia.
| | - Igor Antić
- Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Živančev
- Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, University of Novi Sad, Novi Sad, Serbia
| | - Csaba Vágvölgyi
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
29
|
Ossai CJ, Iwegbue CMA, Tesi GO, Olisah C, Egobueze FE, Nwajei GE, Martincigh BS. Distribution, sources and exposure risk of polycyclic aromatic hydrocarbons in soils, and indoor and outdoor dust from Port Harcourt city, Nigeria. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1328-1350. [PMID: 34318837 DOI: 10.1039/d1em00094b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we evaluated the concentrations, composition, sources, and potential risks of polycyclic aromatic hydrocarbons (PAHs) in soils, and indoor and outdoor dust from Port Harcourt city in Nigeria. Gas chromatography-mass spectrometry (GC-MS) was used for the detection and quantification of PAH species in the samples. The concentrations of the US EPA 16 PAHs plus 2-methyl-naphthalene (∑17 PAHs) in soils, and indoor and outdoor dust from Port Harcourt city ranged from 240 to 38 400, 276 to 9130 and 44 to 13 200 μg kg-1 (dry weight, d.w.) respectively. The PAH concentrations in these matrices followed the sequence: soil > indoor dust > outdoor dust. The composition of PAHs in soils and dust (indoor and outdoor) showed remarkable differences with prominence of 3- and 5-ring PAHs. The estimated carcinogenic risk to the residents arising from exposure to these concentrations of PAHs in soils, and indoor and outdoor dust from Port Harcourt was above the acceptable target cancer risk value of 10-6. We concluded that these sites require clean-up, remedial actions and implementation of stringent pollution control measures with the intention of reducing the undesirable impacts of PAHs on both the ecosystem and humans.
Collapse
Affiliation(s)
- Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria.
| | | | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Francis E Egobueze
- Environment and Quality Control Department, Nigerian Agip Oil Company, Rumueme, Port Harcourt, Nigeria
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria.
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
30
|
Zhang X, Liao X, Gong Z, Li X, Jia C. Formation of fatty acid methyl ester based microemulsion and removal mechanism of PAHs from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125460. [PMID: 33930972 DOI: 10.1016/j.jhazmat.2021.125460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Microemulsion (ME) is considered as a stable solution for adsorbing organic matters. Aiming to remediate PAH contaminated soils from industrial sites in Shijiazhuang (Soil CPS) and Beijing (Soil CSG) in China, novel MEs were designed with different ratios of mixed surfactants (Surf, TX-100+Tween 80), n-butanol and fatty acid methyl esters (FAMEs). Particle size, transmittance, surface intension, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy of the MEs were analyzed. PAH removals by solubilization experiments were studied and regeneration of waste ME was evaluated. Results showed the novel MEs were obtained with particle sizes in a range of 18.53-122.77 nm. The lowest surface intension of MEs was 26.53 mN/m, which was prone to PAHs transferring to MEs. ‒OH (3350 cm-1), ‒C˭C (1740 cm-1) and ‒C‒O (1072 cm-1) functioned in forming MEs. Additionally, ‒OH, C‒H, ‒C˭C, ‒C‒O were considered as active binding sites when remediating PAH soils. PAH removals in soils CPS and CSG were up to 90.1% and 89.7% with surfactants and co-surfactant (Surf:Co-s), (Surf:Co-s) and FAME, soil and MEs (w:v) at ratios of 1:1, 8:2 and 1:4, respectively. About 85.6% of FAME and 41.9% of TX-100 in waste ME were recovered for recycle purpose.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xiaoyong Liao
- Land Contamination Assessment and Remediation Laboratory, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| |
Collapse
|
31
|
Kronik OM, Prothmann J, Troché G, Svensmark B, Nielsen NJ, Christensen JH. A study of the spatial distribution patterns of airborne polycyclic aromatic hydrocarbons in crowberry (Empetrum nigrum) in Ilulissat, Greenland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23133-23142. [PMID: 33442805 DOI: 10.1007/s11356-021-12365-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are produced by anthropogenic activities, such as traffic and domestic heating. Due to their adverse effects to humans and natural habitats, the presence of PAHs in the environment needs to be monitored. Plants are known as natural accumulators of persistent organic pollutants (POPs) and can therefore be used for the monitoring of PAHs emitted into the environment. Contamination by PAHs also occurs in the Arctic such as Greenland due to long-range transport through air. However, as anthropogenic activities in the Arctic are increasing, there is a need to investigate the distribution of PAHs due to local emission sources. In this study, we present a systematic sampling approach to identify the influence of PAH sources in an area next to the town of Ilulissat in Greenland. Composite crowberry samples have been collected north of Ilulissat, where the town itself, an incineration site and Ilulissat airport are possible emission sources for PAHs. Matrix solid-phase extraction was used for the extraction of PAHs and the chemical analysis was performed by gas chromatography with mass spectrometry detection (GC-MS). In total, 18 out of 19 investigated PAHs could be detected in Empetrum nigrum in a concentration range of 0.69 to 93.01 μg/kgdry weight. Higher concentrations for most of the targeted PAHs were found close to the suspected emission sources and also along the road connecting them. For pyrene, the correlation between the concentration and the distance from the emission sources could be modelled and visualized using a two-dimensional exponential variogram and ordinary kriging. The range in which the samples were spatially correlated was approximately 500 m. Our results show that local emission sources contribute to the spatial distribution patterns of PAHs. Monitoring of pollution by airborne PAHs is therefore needed even in areas far from major pollution sources such as Ilulissat, Greenland. E. nigrum showed to be a feasible species for biomonitoring of PAHs due to its large abundance in the sampling area and its widespread availability in the Artic region.
Collapse
Affiliation(s)
- Oskar Munk Kronik
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jens Prothmann
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Gaudry Troché
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Bo Svensmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nikoline Juul Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
32
|
Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141873. [PMID: 32911142 DOI: 10.1016/j.scitotenv.2020.141873] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals pollution of soil and widespread application of neonicotinoid insecticides have caused environmental problems worldwide. To evaluate ecological toxicity resulting from the combined pollution of neonicotinoids and heavy metals, typical representatives of neonicotinoid insecticides (imidacloprid, thiamethoxam, dinotefuran) and heavy metals (cadmium, copper, zinc) were selected as soil pollutants; earthworms were used as test organisms. Analysis of the main and interaction effects of a combined pollution process were performed using a uniform design method. Results showed that the reactive oxygen species (ROS) content of earthworms in most treatment groups was higher during exposure than that of the control group. The malondialdehyde (MDA) and ROS content of earthworms demonstrated relatively low values on the 21st day and increased by the 28th day. The interaction between dinotefuran and Cd had significant antagonistic effects on ROS and MDA. The combined pollution adversely affected both the growth and genes of earthworms and also caused damage to the epidermis, midgut, and DNA. The interaction between imidacloprid and Cd was synergistic to ROS, weight inhibition rate, and Olive tail moment (OTM), but was antagonistic to MDA. Of all the single and combined exposures, Zn as a single chemical affected ROS and DNA damage the most, and MDA was significantly enhanced by imidacloprid. Composite pollutants may create different primary effects and interactions causing potential harm to soil organisms.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuyan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
33
|
Abbasi S, Moore F, Keshavarzi B, Hopke PK, Naidu R, Rahman MM, Oleszczuk P, Karimi J. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140984. [PMID: 32707415 DOI: 10.1016/j.eti.2021.101370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 05/23/2023]
Abstract
Although microplastics (MPs) are ubiquitous contaminants in different ecosystems, their interactions with other pollutants including heavy metals remain relatively unknown. Wheat is an important grain that makes the basis of human food in many parts of the world. Thus, pollutants that affect its production are important subjects of study. This research focuses on the possible effects of the transport of the adsorbed heavy metals onto MPs to the roots of growing wheat. The adsorption of three heavy metals (Pb, Cd, and Zn) onto PET particles was examined. Pb and Cd were selected because they are known to be toxic, while Zn is an essential nutrient for plants. Adsorption experiments were performed using 1 g of PET-MP particles in 20 ml of five different concentrations of each individual element (Pb, Cd, and Zn) (denoted as S-elements). To investigate the antagonistic and synergistic effects of these elements on each other, they were studied collectively with all 3 elements present (denoted as C-elements). Desorption experiments were then performed for three scenarios in which the wheat rhizosphere zone was simulated. Generally, the concentration of the investigated heavy metals adsorption on polyethylene terephthalate (PET) decreased in the order: S-Cd > S-Zn > S-Pb and C-Zn > T-Cd > C-Pb. PET particles exposed to Zn, Cd, and Pb solution adsorbed from 7.2 to 8.5%, 5.3 to 9.8%, and 29.8 to 68.5% of the initial heavy metals concentration, respectively. 11.3 to 15.2%, 12.5 to 23.35%, and 5.5 to 33.6% of the initially adsorbed Zn, Cd, and Pb were desorbed in the wheat rhizosphere zone in the three defined scenarios, respectively. The results show that PET particles can act as a vector in transferring heavy metals to the rhizosphere zone.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, United States
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan Campus, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan Campus, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Javad Karimi
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
34
|
Abbasi S, Moore F, Keshavarzi B, Hopke PK, Naidu R, Rahman MM, Oleszczuk P, Karimi J. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140984. [PMID: 32707415 DOI: 10.1016/j.scitotenv.2020.140984] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 05/22/2023]
Abstract
Although microplastics (MPs) are ubiquitous contaminants in different ecosystems, their interactions with other pollutants including heavy metals remain relatively unknown. Wheat is an important grain that makes the basis of human food in many parts of the world. Thus, pollutants that affect its production are important subjects of study. This research focuses on the possible effects of the transport of the adsorbed heavy metals onto MPs to the roots of growing wheat. The adsorption of three heavy metals (Pb, Cd, and Zn) onto PET particles was examined. Pb and Cd were selected because they are known to be toxic, while Zn is an essential nutrient for plants. Adsorption experiments were performed using 1 g of PET-MP particles in 20 ml of five different concentrations of each individual element (Pb, Cd, and Zn) (denoted as S-elements). To investigate the antagonistic and synergistic effects of these elements on each other, they were studied collectively with all 3 elements present (denoted as C-elements). Desorption experiments were then performed for three scenarios in which the wheat rhizosphere zone was simulated. Generally, the concentration of the investigated heavy metals adsorption on polyethylene terephthalate (PET) decreased in the order: S-Cd > S-Zn > S-Pb and C-Zn > T-Cd > C-Pb. PET particles exposed to Zn, Cd, and Pb solution adsorbed from 7.2 to 8.5%, 5.3 to 9.8%, and 29.8 to 68.5% of the initial heavy metals concentration, respectively. 11.3 to 15.2%, 12.5 to 23.35%, and 5.5 to 33.6% of the initially adsorbed Zn, Cd, and Pb were desorbed in the wheat rhizosphere zone in the three defined scenarios, respectively. The results show that PET particles can act as a vector in transferring heavy metals to the rhizosphere zone.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, United States
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan Campus, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan Campus, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Javad Karimi
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
35
|
Ehigbor MJ, Iwegbue CMA, Eguavoen OI, Tesi GO, Martincigh BS. Occurrence, sources and ecological and human health risks of polycyclic aromatic hydrocarbons in soils from some functional areas of the Nigerian megacity, Lagos. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2895-2923. [PMID: 32424788 DOI: 10.1007/s10653-020-00528-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
The study investigated the levels of the USEPA 16 PAHs in soils collected from selected functional areas (cemetery, commercial, industrial and residential areas) of the Nigerian megacity, Lagos. The soil samples were subjected to ultrasonic-assisted extraction in a 1:1 (v/v) mixture of dichloromethane/hexane, and the PAHs in the resulting extracts were determined by gas chromatography-mass spectrometry. The Σ16 PAHs in soils of these functional areas varied between 890-4675, 485-4513, 111-15,577 and 509-2047 μg kg-1 for cemetery, industrial, commercial and residential areas, respectively. The benzo(a)pyrene carcinogenic (BaPTEQ) and mutagenic equivalency (BaPMEQ) values of PAHs in these soils spanned from 523 to 1046 and 446 to 1129 µg kg-1, respectively. The hazard index values suggested that there are adverse (non-carcinogenic) health effects for a child's exposure to PAHs in soils of commercial areas. The cancer risk values resulting from an adult's and a child's exposure to PAHs in these urban soils via dermal contact and oral ingestion surpassed the target value of 10-6 which suggested that there is a considerable cancer risk relating to human exposure to PAHs in these urban soils. An ecological risk assessment making use of soil quality guidelines and risk quotients suggested a low ecological risk to organisms in soils of these functional areas except for those from commercial areas. PAH isomeric ratios and principal component analysis indicated that PAHs in these soils arise from petrogenic inputs, such as occasional spills of liquid petroleum fuels and discharges from automobile workshops and generator houses, as well as pyrogenic processes including traffic emissions and combustion of fossil fuels and biomass.
Collapse
Affiliation(s)
- Monday J Ehigbor
- Department of Chemistry, Ambrose Alli University, P.M.B. 14, Ekpoma, Edo State, Nigeria
| | | | - Osayanmo I Eguavoen
- Department of Chemistry, Ambrose Alli University, P.M.B. 14, Ekpoma, Edo State, Nigeria
| | - Godswill O Tesi
- Department of Chemical Science, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
36
|
Benlaribi R, Djebbar S. Concentrations, distributions, sources, and risk assessment of polycyclic aromatic hydrocarbons in topsoils around a petrochemical industrial area in Algiers (Algeria). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29512-29529. [PMID: 32445139 DOI: 10.1007/s11356-020-09241-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Fifty-five samples were collected from topsoils around a petrochemical industrial area at the east of Algiers (Algeria) and analyzed for 16EPA priority PAHs in the aim to determine the concentrations, the distributions, and the possible sources of polycyclic aromatic hydrocarbons (PAHs). The results of the quantification are then devoted to the assessment of the potential risks as the toxicity, the risk for the ecosystem, and the risk for the human health. The sampling sites were classified into four categories: rural, suburban, urban, and industrial-urban. A new extraction method based on the insertion of a preliminary step, using hot water, was proposed to improve the extraction efficiency. Principal component analysis (PCA) and selected diagnostic ratio of PAHs were used to investigate the source apportionment of these PAHs. The potential toxicity, the ecological, and human health risk of PAHs in soil were estimated using the toxic equivalent quotient, the risk quotient, and the total lifetime cancer risk (TLCR) methods, respectively. The proposed new protocol gave improved recovery rates for the sixteen EPA PAHs particularly for low molecular weight PAHs, with satisfactory repeatability (RSD < 10%). The Σ16PAHs concentrations were varied from 143.73 to 4575.65 μg kg-1 with a mean value of 1209.56 μg kg-1. Σ16PAH concentrations found for the industrial areas would be 2 times higher than for urban soils and 3 times higher than for the rural soils. The biplots of PCA and the five diagnostic ratios suggested that the most sources of PAHs in the rural, the suburban, and the urban areas are traffic emissions, biomass burning, and coal combustion sources. Some points of the urban-industrial area are from the petroleum source. The found Σ16PAH concentrations and theirs calculated TEQs showed the following trend: industrial-urban > urban > suburban >rural. The potential cancer of human health risks calculated through TLCR results indicated that the exposure to the 7EPA PAH-contaminated soils produces negligible cancer risk to human health.
Collapse
Affiliation(s)
- Rabia Benlaribi
- Laboratoire d'Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP 32 El Alia, 16111, Bab Ezzouar, Algeria.
- Institut National de Criminalistique et de Criminologie de la Gendarmerie Nationale (INCC/GN), Cheraga, Algeria.
| | - Safia Djebbar
- Laboratoire d'Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP 32 El Alia, 16111, Bab Ezzouar, Algeria
| |
Collapse
|
37
|
Klimkowicz-Pawlas A, Debaene G. Screening Risk Assessment of Agricultural Areas under a High Level of Anthropopressure Based on Chemical Indexes and VIS-NIR Spectroscopy. Molecules 2020; 25:molecules25143151. [PMID: 32660157 PMCID: PMC7397210 DOI: 10.3390/molecules25143151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Intensive anthropogenic activity may result in uncontrolled release of various pollutants that ultimately accumulate in soils and may adversely affect ecosystems and human health. Hazard screening, prioritisation and subsequent risk assessment are usually performed on a chemical-by-chemical basis and need expensive and time-consuming methods. Therefore, there is a need to look for fast and reliable methods of risk assessment and contamination prediction in soils. One promising technique in this regard is visible and near infrared (VIS-NIR) spectroscopy. The aim of the study was to evaluate potential environmental risk in soils subjected to high level of anthropopressure using VIS-NIR spectroscopy and to calculate several risk indexes for both individual polycyclic aromatic hydrocarbons (PAHs) and their mixture. Results showed that regarding 16PAH concentration, 78% of soil samples were contaminated. Risk assessment using the most conservative approach based on hazard quotients (HQ) for 10 individual PAHs allowed to conclude that 62% of the study area needs further action. Application of concentration addition or response addition models for 16PAHs mixture gave a more realistic assessment and indicates unacceptable risk in 23% and 55% of soils according to toxic units (TUm) and toxic pressure (TPm) approach. Toxic equivalency quotients (TEQ) were below the safe limit for human health protection in 88% of samples from study region. We present here the first attempt at predicting risk indexes using VIS-NIR spectroscopy. The best results were obtained with binary models. The accuracy of binary model can be ordered as follows: TPm (71.6%) < HI (85.1%) < TUm (87.9%) and TEQ (94.6%). Both chemical indexes and VIS-NIR can be successfully applied for first-tier risk assessment.
Collapse
|
38
|
Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110587. [PMID: 32325327 DOI: 10.1016/j.ecoenv.2020.110587] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia.
| |
Collapse
|
39
|
Iwegbue CMA, Ehigbor MJ, Tesi GO, Eguavoen OI, Martincigh BS. Occurrence, Sources and Exposure Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dusts from the Nigerian Megacity, Lagos. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1716027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Monday J. Ehigbor
- Department of Chemistry, Ambrose Alli University, Ekpoma, Edo State, Nigeria
| | - Godswill O. Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | | | - Bice S. Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
40
|
Gbeddy G, Goonetilleke A, Ayoko GA, Egodawatta P. Transformation and degradation of polycyclic aromatic hydrocarbons (PAHs) in urban road surfaces: Influential factors, implications and recommendations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113510. [PMID: 31708280 DOI: 10.1016/j.envpol.2019.113510] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are prone to post-emission transformation and degradation to yield transformed PAH products (TPPs) that are potentially more hazardous than parent PAHs. This review provides a comprehensive evaluation of the potential environmental processes of PAHs such as sorption, volatilisation, photo- and bio-transformation and degradation on road surfaces, a significant accumulation point of PAHs. The review primarily evaluates key influential factors, toxicity implications, PAHs and TPPs fate and viable options for mitigating environmental and human health impacts. Photolysis was identified as the most significant transformation and degradation process due to the light absorption capacity of most PAHs. Climate conditions, physicochemical properties of road dust (sorbent), PAHs and TPPs and the existence of heavy metals such as Fe (III) are notable underlying factors for photolysis. Available data points to the predominance of carbonyl TPPs than other products such as nitro and hydroxyl TPPs with decreasing concentration trend of 9-fluorenone > 9,10-anthraquinone > benzo[a]fluorenone on road surfaces. The review recommends conducting future investigations targeting the influential factors pertaining to the fate of road deposited PAHs and TPPs. Furthermore, development of cost and time effective modern analytical methods is needed to quantify PAHs and TPPs present in minute quantities of samples. The review also identified that the unavailability of toxicity equivalency factors (TEF) for the most critical TPPs can be addressed using quantitative structure-activity relationship (QSAR) models and bioassays simultaneously. The content of this review is significant to the future work of researchers across various fields including analytical and environmental chemistry, stormwater pollution and toxicology.
Collapse
Affiliation(s)
- Gustav Gbeddy
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Ashantha Goonetilleke
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Godwin A Ayoko
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Prasanna Egodawatta
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| |
Collapse
|
41
|
Umeh AC, Duan L, Naidu R, Esposito M, Semple KT. In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: Focus on PAH nonextractable residues. ENVIRONMENT INTERNATIONAL 2019; 133:105186. [PMID: 31639608 DOI: 10.1016/j.envint.2019.105186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The gastrointestinal mobilization and oral bioaccessibility of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) from soils remain unexplored, including associated incremental lifetime cancer risks. This study investigated the gastrointestinal mobilization of PAHs and their NERs from contrasting soils, using a physiologically based extraction test that incorporates a silicone-rod (Si-Org-PBET) as PAH sink. Associated cancer risks following soil ingestion were also evaluated. Four solvent-spiked and aged soils, and four long-term contaminated manufactured gas plant (MGP) soils, were utilized. Total-extractable PAH concentrations were measured after exhaustive solvent extractions of soils. We evaluated the PAH sorption efficiency of the silicone rods and associated sorption kinetics, using PAH-spiked silica sand as the contaminated matrix. We then assessed gastrointestinal mobilization of benzo[a]pyrene and benzo[a]pyrene NERs from the solvent-spiked soils, and mobilization of six PAHs and their NERs from the MGP soils. PAH oral bioaccessibility was determined. The incremental lifetime cancer risks (ILCRs), using Si-Org-PBET- and total-extractable PAH concentrations from the MGP soils, were calculated. Sorption kinetics modelling showed that 95% of mobilized PAHs sorbed to the silicone rods within 2-19 h, depending on PAH physico-chemical properties. Total-extractable and Si-Org-PBET extractable PAH concentrations exceeded health investigation levels (3 mg/kg based on benzo[a]pyrene toxic equivalent quotients) in soils. PAH oral bioaccessibility approached 100% for solvent-spiked soils, but only 24-36% for the MGP soils. Associated ILCRs exceeded target levels (10-5) for one MGP soil, particularly for 2-3 year olds, despite oral bioaccessibility considerations. In contrast, mobilized PAH NERs did not exceed health investigation and ILCR levels, as the NERs were highly sequestered, especially in the MGP soils. PAH nonextractable residues in long-term contaminated soils are unlikely to be mobilized in concentrations that pose cancer risks to humans following soil ingestion, and do not need to be considered in risk assessments.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Monica Esposito
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
42
|
Qi H, Chen X, Du YE, Niu X, Guo F, Li W. Cancer risk assessment of soils contaminated by polycyclic aromatic hydrocarbons in Shanxi, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109381. [PMID: 31260917 DOI: 10.1016/j.ecoenv.2019.109381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
To assess the human cancer risk exposed to soil contaminated by polycyclic aromatic hydrocarbons (PAHs) in Shanxi province, China, the total 33 samples in the surface soil were collected from 11 cities, and the priority 15 PAHs were analyzed using gas chromatography-mass spectrometry after the soxhlet extraction and silica-alumina column purification. As a result, the levels of ∑15PAH in soil varied from 66.2 to 2633 ng/g dry weight (dw) with a mean of 732 ng/g dw, and seven carcinogenic PAHs made up 42-69% of the total priority PAHs and had an average value of 367 (in the range of 33.2 to 1181) ng/g dw. Accordingly, the total concentrations of benzo[a]pyrene equivalents (BaPeq) for 15 PAHs ranged from 10.3 to 358 (average 98.3) ng/g dw, and the seven carcinogenic BaPeq accounted for above 90%. Subsequently, the possible sources of PAHs in soil were identified by isomer ratios, demonstrating that the combustion contributed to the main source. Finally, the incremental lifetime cancer risks (ILCR) of soil contaminated by 15 priority PAHs were estimated using the targeted chemical-specific approach. ILCR values were considered to be greater than 1 × 10-6 in 16 of 33 sites and followed a decreasing trend of adulthood > childhood > adolescence. Subsequently, the analysis of variance was performed by average ILCR value among the 11 cities (n = 3, p < 0.01), which indicated that the potential low cancer risk significantly increased for nearby residents in two areas, including Datong and Xinzhou, with the ILCR values of 4.61 ± 1.93 and 3.92 ± 2.54 per million, respectively. Therefore, the consumption of traditional coal should be controlled and partially replaced with the alternative energy sources. And the rigorous monitoring should be termly warranted to avoid the cancer risk for human being in agricultural area of Shanxi, China.
Collapse
Affiliation(s)
- Hongxue Qi
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Xiuling Chen
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Yi-En Du
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Xianjun Niu
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Wanxi Li
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
43
|
Minick DJ, Paulik LB, Smith BW, Scott RP, Kile ML, Rohlman D, Anderson KA. A passive sampling model to predict PAHs in butter clams (Saxidomus giganteus), a traditional food source for Native American tribes of the Salish Sea Region. MARINE POLLUTION BULLETIN 2019; 145:28-35. [PMID: 31590789 PMCID: PMC7094077 DOI: 10.1016/j.marpolbul.2019.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 05/12/2023]
Abstract
Native Americans face disproportionate exposures to environmental pollution through traditional subsistence practices including shellfish harvesting. In this study, the collection of butter clams (Saxidomus giganteus) was spatially and temporally paired with deployment of sediment pore water passive samplers at 20 locations in the Puget Sound region of the Salish Sea in the Pacific Northwest, USA, within adjudicated usual and accustomed tribal fishing grounds and stations. Clams and passive samplers were analyzed for 62 individual PAHs. A linear regression model was constructed to predict PAH concentrations in the edible fraction of butter clams from the freely dissolved fraction (Cfree) in porewater. PAH concentrations can be predicted within a factor of 1.9 ± 0.2 on average from the freely dissolved PAH concentration in porewater using the following equation: PAHClam=4.1±0.1×PAHporewater This model offers a simplified, cost effective, and low impact approach to assess contaminant levels in butter clams which are an important traditional food.
Collapse
Affiliation(s)
- D James Minick
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - L Blair Paulik
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brian W Smith
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Richard P Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Molly L Kile
- College of Public Health and Human Services, Oregon State University, Corvallis, OR, 97331, USA
| | - Diana Rohlman
- College of Public Health and Human Services, Oregon State University, Corvallis, OR, 97331, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
44
|
Li X, Zheng R, Bu Q, Cai Q, Liu Y, Lu Q, Cui J. Comparison of PAH content, potential risk in vegetation, and bare soil near Daqing oil well and evaluating the effects of soil properties on PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25071-25083. [PMID: 31250394 DOI: 10.1007/s11356-019-05720-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
As the largest oil field in China, Daqing oil field has been developed in the past six decades. The objectives of this study were to measure the levels of polycyclic aromatic hydrocarbons (PAHs) and assess their ecological risk of PAHs in vegetation soil and bare soil near oil well in Daqing and surrounding soil. Ten sites were selected from two types of soil in grassland: vegetation soil (VS, n = 5) and bare soil (BS, n = 5). The mean concentration of 16 PAHs (∑16 PAHs) was 2240.2 μg/kg. The mean concentrations of eight carcinogenic PAHs (∑8c PAHs) was 1312.3 μg/kg which accounts for 59% of ∑16 PAHs. The sampling sites had higher proportions of high weight molecular ringed PAHs with higher proportions of benzo (a) pyren (BaP) and benzo (k) fluoranthene (BkF). The main source of PAHs was petroleum, coal/biomass combustion, and vehicular emission in these sampling sites. According to Canadian soil quality guidelines, 60% sites had a significant risk to human health. Moreover, 50% sites had high ecological risk and 30% sites were close to this critical value. Notably, PAH levels were significantly higher in VS than BS; moreover, VS had higher organic matter (OM) content, soil dehydrogenase (sDHA) activity, and lower pH and salt content. A structural equation model was established to explore the effects of soil properties on PAH concentration in VS. The result revealed that OM and sDHA were meaningful to enhance the adsorption and biological fixation of PAHs. This study will provide basic information on PAH level and potential application for phytoremediation.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Rui Zheng
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Qinghua Bu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Qinghai Cai
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yufen Liu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China.
| | - JiZhe Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
45
|
Yang J, Zhang Q, Fu X, Chen H, Hu P, Wang L. Natural attenuation mechanism and health risk assessment of 1,1,2-trichloroethane in contaminated groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:457-464. [PMID: 31071622 DOI: 10.1016/j.jenvman.2019.04.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
1,1,2-trichloroethane (TCA) is a contaminant in many pesticide and chemical fields. This study mainly described the potential effectiveness of the natural attenuation of 1,1,2-TCA in groundwater in a typical pesticide-contaminated field in east China. In this study, six typical 1,1,2-TCA-contaminated sites (MW14, MW21, MW25, MW31, MW36 and MW41) were selected, and the field investigation results indicated that there was an obvious decline in the concentrations of 1,1,2-TCA over time in all selected sites. Furthermore, the attenuation rate of 1,1,2-TCA concentration in sites MW14, MW21, MW25, MW31 and MW41 followed the first-order kinetic equation, and the first-order attenuation rate constants were calculated. The health risks of 1,1,2-TCA and its degradation product dichloroethane (DCA) were assessed and compared in site MW14. The result showed that the health risks of 1,1,2-TCA were much higher than those of DCA, and 1,1,2-TCA was the contamination source in this site. 16S rRNA sequencing was also conducted to investigate the diversity of the bacterial community in 1,1,2-trichloroethane (TCA)-contaminated groundwater, and Geobacter, Thauera, Pseudomonas, Diaphorobacter were the main species in the bacterial community.
Collapse
Affiliation(s)
- Jin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China; SEP Analytical Services Co., Ltd., China
| | | | | | - Haibo Chen
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou, 510655, China
| | - Peilei Hu
- SEP Analytical Services Co., Ltd., China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
46
|
Klimkowicz-Pawlas A, Maliszewska-Kordybach B, Smreczak B. Triad-based screening risk assessment of the agricultural area exposed to the long-term PAHs contamination. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1369-1385. [PMID: 30467649 PMCID: PMC6702193 DOI: 10.1007/s10653-018-0220-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The aim of the study was ecological risk assessment (ERA) of the agricultural soils located in the vicinity of the highly industrialized area and exposed to different emission sources of polycyclic aromatic hydrocarbons (PAHs). In this study, we demonstrated the combination of generic and site-specific ERA approach for screening assessment and delineation of the area of a high ecological risk. Generic approach was based on a hazard quotient and indicated that 62% of the research area needs further assessment. For site-specific evaluation, the Triad approach was utilized. Information from three lines of evidence (LoE): chemical, ecotoxicological and ecological, was integrated into one environmental risk (EnvRI) index. The chemical risk was derived from toxic pressure coefficients based on the total PAHs concentration. The ecotoxicological LoE included an acute toxicity testing: the luminescent bacteria Aliivibrio fischeri activity in both liquid- and solid-phase samples and the ability of crustacean Thamnocephalus platyurus to food uptake. The ecological LoE comprised microbial parameters related to soil respiration and enzymatic activity. Integrated EnvRI index ranged from 0.44 to 0.94 and was mainly influenced by high values of chemical LoE risk, while the ecotoxicological and ecological LoE indicated no or low risk. Due to the relatively high uncertainty associated with the contradictory information given by LoEs, there is the need to confirm potential risk in a tier 2 analysis.
Collapse
Affiliation(s)
- Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland.
| | - Barbara Maliszewska-Kordybach
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Bożena Smreczak
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
47
|
Multivariate Analysis for Assessing Sources, and Potential Risks of Polycyclic Aromatic Hydrocarbons in Lisbon Urban Soils. MINERALS 2019. [DOI: 10.3390/min9030139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban soils quality may be severely affected by polycyclic aromatic hydrocarbons (PAHs) contamination, as is the case of Lisbon (Portugal). However, to conduct a risk assessment analysis in an urban area can be a very difficult task due to the patchy nature and heterogeneity of these soils. Thus, the present study aims to provide an example on how to perform the first tier of a risk assessment plan in the case of urban soils using a simpler, cost effective, and reliable framework. Thus, a study was conducted in Lisbon to assess the levels of PAH, their potential risks to the environment and human health, and to identify their major sources. Source apportionment was performed by studying PAHs profiles, their relationship with potentially toxic elements, and general characteristics of soil using multivariate statistical methods. Results showed that geostatistical tools are useful for evaluating the spatial distribution and major inputs of PAHs in urban soils, as well as to identify areas of potential concern, showing their usefulness in risk assessment analysis and urban planning. Particularly, the prediction maps obtained allowed for a clear identification of areas with the highest levels of PAHs (close to the airport and in the city center). The high concentrations found in soils from the city center should be a result of long-term accumulation due to diffuse pollution mostly from traffic (through atmospheric emissions, tire debris and fuel exhaust, as well as pavement debris). Indeed, most of the sites sampled in the city center were historical gardens and parks. The calculation of potential risks based on different models showed that there is a high discrepancy among guidelines, and that risks will be extremely associated with the endpoint or parameters used in the different models. Nevertheless, this initial approach based on total levels was useful for identifying areas where a more detailed risk assessment is needed (close to the airport and in the city center). Therefore, the use of prediction maps can be very useful for urban planning, for example, by crossing information obtained with land uses, it is possible to define the most problematic areas (e.g., playgrounds and schools).
Collapse
|
48
|
Wu S, Zhou S, Bao H, Chen D, Wang C, Li B, Tong G, Yuan Y, Xu B. Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:108-116. [PMID: 30342290 DOI: 10.1016/j.jhazmat.2018.09.094] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 05/24/2023]
Abstract
Identifying combined pollution risk areas is difficult because of the complex pollutant sources and heterogeneous soil properties in urban systems. This study used bivariate local Moran's I to analyze the spatial interaction between heavy metals and PAHs, revealed the causes of spatial interaction patterns through PMF, and proposed a risk zoning approach for combined pollution in urban areas. The results showed that both heavy metals and PAHs had high spatial heterogeneity in urban soil. Bivariate LISA maps revealed the spatial interactions between heavy metals and PAHs. The historical area was the hotspot of combined pollution. The overlay of pollutant sources and sinks was responsible for the spatial interaction patterns of combined organic and inorganic pollution. Coal consumption was the main emission source for heavy metal and PAHs pollution, accounting for 31% and 21%, respectively. We used bivariate LISA as the auxiliary variable to reduce the uncertainty of identification combined pollution risk zones. More than 11% of the total area clustered significantly where concentration of both heavy metals and PAHs ware in excess of the risk threshold. This study indicates that we can provide better decision-making support for soil risk management based on the knowledge derived from spatial interaction analysis.
Collapse
Affiliation(s)
- Shaohua Wu
- Institute of land and urban-rural development, Zhejiang University of Finance & Economics, Hangzhou 310018, PR China.
| | - Shenglu Zhou
- School of Geographic and Oceanographic Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, PR China
| | - Haijun Bao
- Institute of land and urban-rural development, Zhejiang University of Finance & Economics, Hangzhou 310018, PR China.
| | - Dongxiang Chen
- Institute of land and urban-rural development, Zhejiang University of Finance & Economics, Hangzhou 310018, PR China
| | - Chunhui Wang
- School of Geographic and Oceanographic Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, PR China
| | - Baojie Li
- School of Geographic and Oceanographic Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, PR China
| | - Guijie Tong
- Institute of land and urban-rural development, Zhejiang University of Finance & Economics, Hangzhou 310018, PR China; School of Geographic and Oceanographic Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, PR China
| | - Yujie Yuan
- Institute of land and urban-rural development, Zhejiang University of Finance & Economics, Hangzhou 310018, PR China; School of Geographic and Oceanographic Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, PR China
| | - Baogen Xu
- Institute of land and urban-rural development, Zhejiang University of Finance & Economics, Hangzhou 310018, PR China
| |
Collapse
|
49
|
Cipullo S, Negrin I, Claveau L, Snapir B, Tardif S, Pulleyblank C, Prpich G, Campo P, Coulon F. Linking bioavailability and toxicity changes of complex chemicals mixture to support decision making for remediation endpoint of contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2150-2163. [PMID: 30290356 DOI: 10.1016/j.scitotenv.2018.09.339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
A six-month laboratory scale study was carried out to investigate the effect of biochar and compost amendments on complex chemical mixtures of tar, heavy metals and metalloids in two genuine contaminated soils. An integrated approach, where organic and inorganic contaminants bioavailability and distribution changes, along with a range of microbiological indicators and ecotoxicological bioassays, was used to provide multiple lines of evidence to support the risk characterisation and assess the remediation end-point. Both compost and biochar amendment (p = 0.005) as well as incubation time (p = 0.001) significantly affected the total and bioavailable concentrations of the total petroleum hydrocarbons (TPH) in the two soils. Specifically, TPH concentration decreased by 46% and 30% in Soil 1 and Soil 2 amended with compost. These decreases were accompanied by a reduction of 78% (Soil 1) and 6% (Soil 2) of the bioavailable hydrocarbons and the most significant decrease was observed for the medium to long chain aliphatic compounds (EC16-35) and medium molecular weight aromatic compounds (EC16-21). Compost amendment enhanced the degradation of both the aliphatic and aromatic fractions in the two soils, while biochar contributed to lock the hydrocarbons in the contaminated soils. Neither compost nor biochar affected the distribution and behaviour of the heavy metals (HM) and metalloids in the different soil phases, suggesting that the co-presence of heavy metals and metalloids posed a low risk. Strong negative correlations were observed between the bioavailable hydrocarbon fractions and the ecotoxicological assays suggesting that when bioavailable concentrations decreased, the toxicity also decreased. This study showed that adopting a combined diagnostic approach can significantly help to identify optimal remediation strategies and contribute to change the over-conservative nature of the current risk assessments thus reducing the costs associated with remediation endpoint.
Collapse
Affiliation(s)
- S Cipullo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - I Negrin
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - L Claveau
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - B Snapir
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - S Tardif
- University of Copenhagen, Department of Plant and Environmental Sciences Microbial Ecology and Biotechnology, Denmark
| | - C Pulleyblank
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK; Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9, Ireland
| | - G Prpich
- University of Virginia, Department of Chemical Engineering, United States of America
| | - P Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - F Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
50
|
Idowu I, Johnson W, Francisco O, Obal T, Marvin C, Thomas PJ, Sandau CD, Stetefeld J, Tomy GT. Comprehensive two-dimensional gas chromatography high-resolution mass spectrometry for the analysis of substituted and unsubstituted polycyclic aromatic compounds in environmental samples. J Chromatogr A 2018; 1579:106-114. [DOI: 10.1016/j.chroma.2018.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
|