1
|
Gastellu T, Le Bizec B, Rivière G. Integrating the lifelong exposure dimension of a chemical mixture into the risk assessment process. Application to trace elements. Food Chem Toxicol 2025; 195:115111. [PMID: 39549998 DOI: 10.1016/j.fct.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Lifelong, the general population is exposed to mixtures of chemicals. Most often, risk assessment is performed to estimate the probability of adverse effects in the population using external exposures to a single chemical and considering one route of exposure. To estimate whole exposure to a chemical, human biomonitoring studies are used to measure chemical concentrations in biological matrices. The limitations of these studies are that it is not possible to distinguish the sources or the routes of exposure. Moreover, only the concentrations of a limited number of chemicals are usually determined due to the associated cost. In this study, a methodology has been developed to estimate the internal exposures of the population to a mixture of trace elements (inorganic As, Cd, Pb and Hg) throughout lifetime. This methodology uses realistic lifetime exposure trajectories coupled to physiological based kinetic modeling, considering several sources of exposure. Then, the estimated biomarkers of exposure were compared to human biomonitoring data to estimate the robustness of the methodology. Finally, risk characterization was performed based on the simulated biomarkers of exposure considering an additive effect of chemicals. This methodology allows to determine the contribution of chemicals to the overall risk of renal effect.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Risk Assessment Department - French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, 94700, France
| | | | - Gilles Rivière
- Risk Assessment Department - French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, 94700, France.
| |
Collapse
|
2
|
Pérez-Portilla P, Aránguiz-Acuña A, Pizarro H, Maldonado A, Herrera J, Tapia J. Assessing the effects of long-term mining exploitation on a lacustrine system from the arid region of the Atacama Desert, Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174771. [PMID: 39009154 DOI: 10.1016/j.scitotenv.2024.174771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Over the last century, the Atacama Desert has been exploited due to the mineral resources in this environment. These anthropogenic effects have primarily been linked to the development of the mining industry, the impact of which remains uncertain. Here, we use high-resolution geochemical characterization and magnetic properties analysis from the sedimentary core of Inka Coya Lake, located in the Atacama Desert, to assess the anthropogenic impact in this metallogenic region. The geochemistry and magnetic properties changed with core depth. Elements, such as Cu, Ni, and Zn, increased during the lake's most recent period. Additionally, an increase in mass magnetic susceptibility (χ) and a decrease in magnetic susceptibility depending on the frequency (χfd%) may be attributed to fine iron oxide grains originating from industrial and urban sources. Moreover, indices of pollution classified the sediment of Inka Coya Lake as slightly polluted and strongly polluted with Ni, and Cu, respectively. This could reflect a period of pollution caused by the increase in the production of copper sulfide. These results highlight the possible impact of mining activities in the hyper-arid core of the Atacama Desert, which affects surrounding areas through dispersive processes, even reaching high altitudes, and provides a scientific basis for the prevention of environmental pollution from mining and the protection of the sediment and water source in the Atacama Desert.
Collapse
Affiliation(s)
- P Pérez-Portilla
- Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile; Laboratorio de Ecología Acuática, Departamento de Recursos Ambientales, Universidad de Tarapacá, Arica, Chile; Milenium Nucleus in Andean Peatlands (AndesPeat), Universidad de Tarapacá, Arica, Chile.
| | - A Aránguiz-Acuña
- Laboratorio de Ecología Acuática, Departamento de Recursos Ambientales, Universidad de Tarapacá, Arica, Chile; Milenium Nucleus in Andean Peatlands (AndesPeat), Universidad de Tarapacá, Arica, Chile
| | - H Pizarro
- Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile; Departamento de Geología, FCFM, Universidad de Chile, Santiago, Chile
| | - A Maldonado
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitran 1305, La Serena, Chile; Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - J Herrera
- Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - J Tapia
- Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile; Milenium Nucleus in Andean Peatlands (AndesPeat), Universidad de Tarapacá, Arica, Chile; Instituto Milenio de Investigación en Riesgo Volcánico - CKELAR Volcanes, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
3
|
Khan S, Galstyan H, Abbas M, Wenjing X. Advanced biotechnology strategies for detoxification of persistent organic pollutants and toxic elements in soil. CHEMOSPHERE 2023; 345:140519. [PMID: 37871876 DOI: 10.1016/j.chemosphere.2023.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
This paper aims to comprehensively examine and present the current state of persistent organic pollutants (POPs) and toxic elements (TEs) in soil. Additionally, it seeks to assess the viability of employing advanced biotechnology, specifically phytoremediation with potent microbial formulations, as a means of detoxifying POPs and TEs. In the context of the "global treaty," which is known as the Stockholm Convention, we analyzed the 3D chemical structures of POPs and its prospects for living organisms which have not been reviewed up to date. The obstacles associated with the phytoremediation strategy in biotechnology, including issues like slow plant growth and limited efficiency in contaminant uptake, have also been discussed and demonstrated. While biotechnology is recognized as a promising method for detoxifying persistent organic pollutants (POPs) and facilitating the restoration of contaminated and degraded lands, its full potential in the field is constrained by various factors. Recent advances in biotechnology, such as microbial enzymes, designer plants, composting, and nanobiotechnology techniques, have opened up new avenues for mitigating persistent organic pollutants (POPs) and toxic elements (TEs). The insights gained from this review can contribute to the development of innovative, practical, and economically viable approaches for remediating and restoring soils contaminated with persistent organic pollutants (POPs) and toxic elements (TEs). The ultimate aim is to reduce the risks to both human and environmental health.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Hrachuhi Galstyan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China
| | - Mohsin Abbas
- College of Engineering, University of Technology Bahrain, Salmabad, Kingdom of Bahrain
| | - Xiang Wenjing
- Department of International Exchange and Cooperation, Neijiang Normal University, Neijiang, 641100, China
| |
Collapse
|
4
|
Zheng X, Zhang Z, Chen J, Liang H, Chen X, Qin Y, Shohag MJI, Wei Y, Gu M. Comparative evaluation of in vivo relative bioavailability and in vitro bioaccessibility of arsenic in leafy vegetables and its implication in human exposure assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126909. [PMID: 34454790 DOI: 10.1016/j.jhazmat.2021.126909] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination in vegetables is a severe threat to human health. However, the evaluation of As relative bioavailability (As-RBA) or bioaccessibility in vegetables is still unexplored. The study sought to evaluate the As-RBA in commonly consumed ten leaf vegetables collected from As-polluted farmlands. Additionally, the As-RBA was determined using rat bioassay and compared with As bioaccessibility through five commonly used in vitro methods, including UBM (Unified BARGE Method), SBRC (Solubility Bioavailability Research Consortium), DIN (Deutsches Institut für Normung e.V.), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test). Results showed that the As-RBA values were 14.3-54.0% among different vegetables. Notably, significant in vivo-in vitro correlations (IVIVC) were observed between the As-RBA and the As bioaccessibility determined by the PBET assay (r2 = 0.763-0.847). However, the other assays (r2 = 0.417-0.788) showed a comparatively weaker relationship. The estimation of As-RBA using derived IVIVC to assess As exposure risk via vegetable consumption confirmed that As exposure risk based on As-RBA was lower than that the total As concentrations. Therefore, it was concluded that PBET could better predict the As-RBA in vegetables than other in vitro assays. Furthermore, As-RBA values should be considered for accurate health risk assessment of As in vegetables.
Collapse
Affiliation(s)
- Xiaoman Zheng
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zengyu Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiancheng Chen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Huanting Liang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xue Chen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yan Qin
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - M J I Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Minghua Gu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Mineral Composition of Dietary Supplements-Analytical and Chemometric Approach. Nutrients 2021; 14:nu14010106. [PMID: 35010980 PMCID: PMC8746997 DOI: 10.3390/nu14010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is a lack of data on the actual composition and effectiveness of beetroot-based dietary supplements. The research aimed to determine the profile of 22 elements (Na, K, Ca, Mg, P, Fe, As, Se, Zn, Cu, Ag, Co, Ni, Mo, Al, Mn, Sr, Cr, Ba, Li, Pb, Cd) in beetroot and its supplements by the microwave plasma atomic emission spectrometry (MP-AES) method. The analytical procedure was optimised and validated. The composition of both groups was compared, assessing compliance with the recommended daily doses for the chosen elements, and the health risk was estimated. Furthermore, chemometric analysis was applied. Beetroots constituted a significant source of elements, especially K, Na, Mg, Ca, P, in contrast to supplements which contained their negligible amounts except from iron-enriched products which provided notable amounts of Fe (38.3–88% of the Recommended Dietary Allowance for an adult male from 19 to 75 years old). Some products were significantly contaminated with toxic elements (As, Cd). Factor and cluster analyses were helpful in the differentiation of beetroot and its supplements in view of their type (vegetable, supplement, iron-enriched supplement), origin, type of cultivation (conventional, organic), and form (capsule, tablet) based on their mineral composition. The obtained results indicate the need for more stringent control of supplements, as they may pose a significant health risk to consumers.
Collapse
|
6
|
Barimah AO, Guo Z, Agyekum AA, Guo C, Chen P, El-Seedi HR, Zou X, Chen Q. Sensitive label-free Cu2O/Ag fused chemometrics SERS sensor for rapid detection of total arsenic in tea. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Román-Ochoa Y, Choque Delgado GT, Tejada TR, Yucra HR, Durand AE, Hamaker BR. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. CHEMOSPHERE 2021; 274:129792. [PMID: 33556663 DOI: 10.1016/j.chemosphere.2021.129792] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals (HMs) in crops and processed foods are a concern and pose a potential serious health hazard. This study investigated possible presence of HMs in grains and processed products in the Region of Arequipa in Peru. Concentrations of Cd, As, Sn, Pb, and Hg were determined for commonly consumed grains in 18 districts of the region and processed products from 3 popular markets of Arequipa city, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Cold Vapor Atomic Absorption Spectroscopy (CVAAS). HM concentrations above the Codex General Standard limits were found for As (0.17 mg kg-1) and Cd (0.11 mg kg-1) in cereal grains. Elevated Pb concentrations of 0.55, 0.75, and 5.08 mg kg-1 were found for quinoa, maize, and rice products, respectively; and attributed to processing conditions. The Total Hazard Index (HI) for polished rice and rice products had values between 1 and 10, showing non-carcinogenic adverse effects. Total Target Cancer Risk (TRT) and uncertainty analysis of percentile P90% for polished rice and quinoa products gave values above permissible limit of 10-4, indicating an unacceptable cancer risk. The Nemerow Composite Pollution Index method (NCPI) showed that processed products had a significant pollution level due to the presence of Pb. While most crops grains had acceptable low HM levels, this is the first report of concerning HM concentrations in some consumed grains and processed products in southern Peru and indicates the necessity to find ways to decrease certain toxic metals in foods.
Collapse
Affiliation(s)
- Yony Román-Ochoa
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| | | | - Teresa R Tejada
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Harry R Yucra
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Antonio E Durand
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Li M, Qin Y, Wang C, Wang K, Deng Z, Xu W, Xiang P, Ma LQ. Total and bioaccessible heavy metals in cabbage from major producing cities in Southwest China: health risk assessment and cytotoxicity. RSC Adv 2021; 11:12306-12314. [PMID: 35423743 PMCID: PMC8697116 DOI: 10.1039/d1ra01440d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Green leafy vegetables are economical and nutritious, but they may be contaminated with heavy metals. In this study, we assessed the total and bioaccessible concentrations of As, Cd, Pb and Cr in a popular vegetable cabbage (Brassica oleracea) from four major producing cities in Yunnan, Southwest China. With the mean concentrations of As, Cd, Pb and Cr being 0.24, 0.20, 0.32 and 1.28 mg kg-1, the As, Cd and Pb concentrations were within the limits of 0.2-0.5 mg kg-1 based on Chinese National Standards and the WHO/FAO, but Cr concentration was 2.6-times greater than the limit of 0.5 mg kg-1. Based on an in vitro bioaccessibility assay of the Solubility Bioaccessibility Research Consortium (SBRC), As bioaccessibility was the lowest at 11% while those of Cd, Pb and Cr were much greater at 68-87%. The estimated daily intake (EDI) of metals through cabbage ingestion was similar for children and adults. Among the four metals, only Cr's EDI at 2.29-1.87 exceeded 1 based on total and bioaccessible concentrations. The high Cr concentration at 1.28 mg kg-1 coupled with its high bioaccessibility at 67.5% makes Cr of concern in cabbage. However, human gastrointestinal cells exposed to the gastric digesta with high bioaccessible heavy metals and risky EDI, showed no obvious cytotoxicity, indicating that existing models based on total or bioaccessible heavy metals may overestimate their human health risk. Taken together, to accurately assess the human health risk of heavy metals in cabbage, both total/bioaccessible concentrations and the gastrointestinal cell responses should be considered.
Collapse
Affiliation(s)
- Mengying Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University Kunming 650224 China
| | - Yishu Qin
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University Kunming 650224 China
| | - Chengchen Wang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University Kunming 650224 China
| | - Kun Wang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University Kunming 650224 China
| | - Zhihua Deng
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University Kunming 650224 China
| | - Wumei Xu
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University Kunming 650500 China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University Kunming 650224 China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
9
|
Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Lam SS, Sonne C. A review on phytoremediation of contaminants in air, water and soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123658. [PMID: 33264867 DOI: 10.1016/j.jhazmat.2020.123658] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 05/19/2023]
Abstract
There is a global need to use plants to restore the ecological environment. There is no systematic review of phytoremediation mechanisms and the parameters for environmental pollution. Here, we review this situation and describe the purification rate of different plants for different pollutants, as well as methods to improve the purification rate of plants. This is needed to promote the use of plants to restore the ecosystems and the environment. We found that plants mainly use their own metabolism including the interaction with microorganisms to repair their ecological environment. In the process of remediation, the purification factors of plants are affected by many conditions such as light intensity, stomatal conductance, temperature and microbial species. In addition the efficiency of phytoremediation is depending on the plants species-specific metabolism including air absorption and photosynthesis, diversity of soil microorganisms and heavy metal uptake. Although the use of nanomaterials and compost promote the restoration of plants to the environment, a high dose may have negative impacts on the plants. In order to improve the practicability of the phytoremediation on environmental restoration, further research is needed to study the effects of different kinds of catalysts on the efficiency of phytoremediation. Thus, the present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.
Collapse
Affiliation(s)
- Zihan Wei
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Han Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
10
|
Pizarro C, Escudey M, Caroca E, Pavez C, Zúñiga GE. Evaluation of zeolite, nanomagnetite, and nanomagnetite-zeolite composite materials as arsenic (V) adsorbents in hydroponic tomato cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141623. [PMID: 32877793 DOI: 10.1016/j.scitotenv.2020.141623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
There is a growing interest in the use of adsorbent nanoparticles to mitigate the toxic effects of pollutants in natural matrices. However, due to their small size, nanoparticles have the potential to transport and disseminate contaminants adsorbed on their surfaces into environmental compartments with greater risk to human, animal, or plant health. This potential consequence of nanoparticle application remains largely unstudied. Here, we studied the application of three adsorbents, including zeolite (Z, micrometric size), nanomagnetite (Mt), and a nanomagnetite-zeolite composite (MtZ) intended to mediate arsenic toxicity in hydroponic tomato cultures. Adsorption studies showed an arsenate adsorption sequence of MtZ (6.2 mg g-1) ≥ Mt (4.7 mg g-1) ≫ Z (0.3 mg g-1). Tomatoes grown under the Mt condition demonstrated the lowest growth rate (4.2 cm), corresponding to a 45% decrease compared to the control (7.6 cm), as well as the highest oxidative stress level (0.024 μmol g-1) as indicated by malondialdehyde (MDA) concentration, almost twice the control (0.014 μg g-1). Tomatoes grown under MtZ conditions showed a 22% decreased growth (5.9 cm) but MDA levels (0.012 μmol g-1) were comparable to the control. Together, these results suggest that Mt at the nanometric size could obstruct channels in the plant and prevent absorption of water and nutrients. Anchoring nanomaterials in larger composites of micrometer size presents a promising alternative that would retain their super-adsorbent properties while avoiding toxicity due to nanometric size.
Collapse
Affiliation(s)
- Carmen Pizarro
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile.
| | - Mauricio Escudey
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Eliana Caroca
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| | - Carolina Pavez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile
| | - Gustavo E Zúñiga
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins, 3363, Santiago 7254758, Chile; Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9170124, Chile
| |
Collapse
|
11
|
Byers HL, McHenry LJ, Grundl TJ. Increased risk for lead exposure in children through consumption of produce grown in urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140414. [PMID: 32659566 PMCID: PMC7492482 DOI: 10.1016/j.scitotenv.2020.140414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Childhood Pb exposure is associated with a multitude of poor health outcomes. In food-insecure areas, growing fresh produce in backyard gardens or on vacant industrial properties is seen as an option for parents. The question arises, could Pb accumulate in consumable tissues of common produce when grown in metals-rich soils at concentrations that would pose a risk to children. This study investigated factors contributing to the accumulation of Pb in consumable tissues of nine common produce crops grown in metals-rich soils from backyard gardens and a former industrial property. Pb in consumable tissues was directly quantified at concentrations less than 1 μg g-1 via X-ray fluorescence (XRF) using protocols specifically developed for use in plant matrices. The accumulation of Pb in prepared raw consumable tissues in three Pb-rich soils was the greatest in modified taproot crops (mean Pb of 11.8 ± 14.6 μg g-1; turnip, beetroot, radish, carrot), with lesser concentrations in fruits (mean Pb of 2.0 ± 3.0 μg g-1; tomato, pepper), and potatoes (mean Pb of 0.7 ± 1.1 μg g-1). An exposure risk evaluation using the USFDA IRL for Pb indicates that consumption of less than 1 g of certain produce grown in this study, including produce grown in garden soils from residential properties, drastically increases the risk of Pb exposure in children. This study further indicates that the proportion of Pb contributed to the daily body burden in children from food is far greater than previously understood, and in all modeled cases, the contribution of Pb from food on a daily basis far outweighs the contribution of Pb from drinking water. For an average child, after addressing over-riding soil/dust impacts, addressing food quality is critical to minimizing Pb exposure.
Collapse
Affiliation(s)
- Harris L Byers
- University of Wisconsin Milwaukee, Department of Geosciences, 3209 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Lindsay J McHenry
- University of Wisconsin Milwaukee, Department of Geosciences, 3209 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Timothy J Grundl
- University of Wisconsin Milwaukee, Department of Geosciences, 3209 North Maryland Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
12
|
Xue L, Zhao Z, Zhang Y, Liao J, Wu M, Wang M, Sun J, Gong H, Guo M, Li S, Zheng Y. Dietary exposure to arsenic and human health risks in western Tibet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138840. [PMID: 32417471 DOI: 10.1016/j.scitotenv.2020.138840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The health effects of drinking water exposure to inorganic arsenic are well known but are less well defined for dietary exposure. The rising concerns of arsenic risks from diet motivated this study of arsenic concentrations in highland barley, vegetables, meat, and dairy products to evaluate arsenic exposure source and to assess health risks among rural residents of Ngari area, western Tibet. Total arsenic and arsenic speciation were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography combined with ICP-MS (HPLC-ICP-MS) respectively. Average total arsenic concentrations of 0.18 ± 0.21 (n = 45, median: 0.07 mg·kg-1), 0.40 ± 0.57 (n = 17, median: 0.15 mg·kg-1), 0.21 ± 0.16 (n = 12, median: 0.17 mg·kg-1), and 0.18 ± 0.08 (n = 11, median: 0.22 mg·kg-1) were observed in highland barley, vegetables, meat, and dairy products, respectively. Inorganic arsenic was determined to be the main species of arsenic in highland barley, accounting for about 64.4 to 99.3% (average 83.3%) of total arsenic. Nearly half (44.4%) of the local residents had ingested >3.0 × 10-4 mg·kg-1·d-1 daily dose of arsenic from highland barley alone, above the maximum oral reference dose recommended by the United States Environmental Protection Agency (USEPA). The inorganic arsenic daily intake from highland barley was 3.6 × 10-4 mg·kg-1·d-1. Dietary exposure to inorganic arsenic alone increased the cancer risk probability to 5.4 in 10,000, assuming that the inorganic arsenic in highland barley has the same carcinogenic effects as that in water.
Collapse
Affiliation(s)
- Lili Xue
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenjie Zhao
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinfeng Zhang
- National Plateau Wetlands Research Center, The College of Wetlands, Southwest Forestry University, Kunming 650000, China
| | - Jie Liao
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wu
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingguo Wang
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China
| | - Jing Sun
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hongqiang Gong
- Tibet Center for Disease Control and Prevention, Lhasa 850000, China
| | - Min Guo
- Tibet Center for Disease Control and Prevention, Lhasa 850000, China
| | - Shehong Li
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Treto-Suárez MA, Tapia J, Hidalgo-Rosa Y, Páez-Hernández D, Molins E, Zarate X, Schott E. New Sensitive and Selective Chemical Sensors for Ni 2+ and Cu 2+ Ions: Insights into the Sensing Mechanism through DFT Methods. J Phys Chem A 2020; 124:6493-6503. [PMID: 32635732 DOI: 10.1021/acs.jpca.0c03834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques. The interaction of sensors with these metal ions induced a new absorption band with a hypsochromic shift to the characteristic signal of the free sensors. A theoretical study via time-dependent density functional theory (TD-DFT) was performed. This method has enabled us to reproduce the hypsochromic shift in the maximum UV-vis absorption band and explain the selective sensing of the ions. For all of the systems studied, the absorption band is characterized by a π → π* transition centered in the ligand. Instead of Ni2+ and Cu2+ ions, the transition is set toward the σ* molecular orbital with a strong contribution of the 3dx2-y2 transition (π → 3dx2-y2). These absorptions imply a ligand-to-metal charge transfer (LMCT) mechanism that results in the hypsochromic shift in the absorption band of these systems.
Collapse
Affiliation(s)
- Manuel A Treto-Suárez
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República #275, 8320000, Santiago de Chile, Chile
| | - Jorge Tapia
- Universidad Bernardo OHiggins, Facultad de Salud, Departamento de Ciencias Quı́micas y Biológicas, General Gana 1702, Santiago, Chile.,Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago, Chile
| | - Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República #275, 8320000, Santiago de Chile, Chile.,Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago, Chile
| | - Dayan Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República #275, 8320000, Santiago de Chile, Chile.,Center of Applied Nanosciences (CANS), Chile República #275, 8320000, Santiago de Chile, Chile
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, 7500912, Santiago, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Quı́mica y Farmacia, Centro de Energı́a UC, Centro de Investigación en Nanotecnologı́a y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, 7820244, Santiago, Chile.,Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago, Chile
| |
Collapse
|
14
|
Treto-Suárez MA, Prieto-García JO, Mollineda-Trujillo Á, Lamazares E, Hidalgo-Rosa Y, Mena-Ulecia K. Kinetic study of removal heavy metal from aqueous solution using the synthetic aluminum silicate. Sci Rep 2020; 10:10836. [PMID: 32616826 PMCID: PMC7331683 DOI: 10.1038/s41598-020-67720-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023] Open
Abstract
One of the problems that most affect humanity today is the wastewater discharge into different water bodies. It was estimated that more than 7 million tons of wastewater are generated worldwide and are discharged into rivers, lakes, and reservoirs. Among the most dangerous wastewaters are those from inorganic chemistry research laboratories, mainly due to heavy metals. These problems have become a highly relevant topic, and numerous researchers have tried to design wastewater treatment systems that will deal more efficiently with heavy metals elimination. In this work, the synthesis, characterization, and evaluation of hydrated aluminium silicate were performed as alternative wastewater treatment from chemistry research and teaching laboratories. The compound obtained was [Formula: see text], which was characterized by the determination of its physicochemical properties. These revealed a low density, very porous material, with low crystallinity, strong chemical resistance, a large surface area, and a high apparent ionic exchange capacity. Absorption kinetics studies of heavy metals in aqueous solutions, through more widespread models, have demonstrated that [Formula: see text] has excellent properties as absorbents of this material. The amorphous hydrated aluminium silicate achieves a decrease in the concentration of all the metal ions studied, reducing them to discharge levels permissible.
Collapse
Affiliation(s)
| | - Julio Omar Prieto-García
- Departamento de Química y Farmacia, Universidad Central "Marta Abreu" de las Villas, Carretera de Camajuani km 5, 50100, Villa Clara, Cuba
| | - Ángel Mollineda-Trujillo
- Departamento de Química y Farmacia, Universidad Central "Marta Abreu" de las Villas, Carretera de Camajuani km 5, 50100, Villa Clara, Cuba
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, 4030000, Concepción, Chile
| | - Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República 275, 8320000, Santiago, Chile
| | - Karel Mena-Ulecia
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4780000, Temuco, Chile.
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BIOMA), Facultad de Ingeniería, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4780000, Temuco, Chile.
| |
Collapse
|
15
|
Aránguiz-Acuña A, Luque JA, Pizarro H, Cerda M, Heine-Fuster I, Valdés J, Fernández-Galego E, Wennrich V. Aquatic community structure as sentinel of recent environmental changes unraveled from lake sedimentary records from the Atacama Desert, Chile. PLoS One 2020; 15:e0229453. [PMID: 32084252 PMCID: PMC7034912 DOI: 10.1371/journal.pone.0229453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/06/2020] [Indexed: 11/18/2022] Open
Abstract
The Atacama Desert (21-26°S) is currently one of the driest places on Earth and metal(loid)s are of special concern for this region, which hosts the largest-known porphyry copper deposits produced in Chile. Evidence of past environmental conditions is commonly preserved in natural archives, such as lacustrine sediments. Sediment records obtained from Inca Coya Lake (22°20'S-68°35'W, 2534 m.a.s.l.), a small lake located in the Atacama Desert, reflected the evolution of regional mining activity during the 20th century and sedimentation associated with decadal climate variability. We studied the aquatic community structure changes recorded in sediment records from Inca Coya Lake. By analysis of magnetic properties (susceptibility, hysteresis curves and Curie temperatures), grain size and geochemical composition of the sediments, we identified environmental periods and changes in the community of benthic and planktonic organisms (diatoms and diapausing egg bank). We identified three detrital episodes that we interpret as dry/wet phases during the last 90 years associated with the increase of flash flood events promoting hypoxia oscillations; anthropogenic (mining activity) signals were also identified. Invertebrate community structure (primary consumers) reflected the metal exposure, measured as changes in assemblage composition through species turnover. Diatom community composition was best associated with variables related to wetter/drier alternation and consequent changes in oxygen availability. Bioindicators analyzed (diatoms, diapausing egg bank and invertebrate community) demonstrated to be excellent indicators of the bioavailability of compounds in the aquatic ecosystem of Inca Coya Lake, allowing the environmental impact assessment of the water resources due to flash floods and mining activity in the driest desert of the world.
Collapse
Affiliation(s)
- Adriana Aránguiz-Acuña
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA-UCN), Antofagasta, Chile
| | - José A. Luque
- Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Héctor Pizarro
- Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Mauricio Cerda
- Laboratório de Biogeoquimica de Ambientes Aquáticos Universidade Federal Fluminense (PPBMAC—UFF), Rio de Janeiro, Brazil
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), UST, Santiago, Chile
| | - Inger Heine-Fuster
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA-UCN), Antofagasta, Chile
| | - Jorge Valdés
- Instituto Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Volker Wennrich
- Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Zarate X, Rodriguez-Serrano A, Schott E, Tatchen J. DFT/MRCI assessment of the excited-state interplay in a coumarin-schiff Mg 2+ fluorescent sensor. J Comput Chem 2020; 41:136-146. [PMID: 31646679 DOI: 10.1002/jcc.26086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022]
Abstract
Fluorescent sensors with selectivity and sensitivity to metal ions are an active field in supramolecular chemistry for biochemical, analytical, and environmental problems. Mg2+ is one of the most abundant divalent ions in the cell, and it plays a critical role in many biological processes. Coumarin-based sensors are widely used as desirable fluorophore and binding moieties showing a remarkable sensitivity and fluorometric enhancement for Mg2+ . In this work, density functional theory/multireference configuration interaction (DFT/MRCI) calculations were performed in order to understand the sensing behavior of the organic fluorescent sensor 7-hydroxy-4-methyl-8-((2-(pyridin-2-yl)hydrazono)methyl)-2H-chromen-2-one (PyHC) in ethanol to solvated Mg2+ ions. The computed optical properties reproduce well-reported experimental data. Our results suggest that after photoexcitation of the free PyHC, a photo-induced electron transfer (PET) mechanism may compete with the fluorescence decay to the ground state. In contrast, this PET channel is no longer available in the complex with Mg2+ making the emissive decay more efficient. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | | | - Eduardo Schott
- Departamento de Química Inorgánica, UC Energy Research Center, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna, 4860, Santiago, Chile.,Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
| | - Jörg Tatchen
- Department of Computational Biochemistry, Universität Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
17
|
Can-Terzi B, Gunduz O, Sofuoglu SC. A deterministic and stochastic assessment for exposure and risk of arsenic via ingestion of edible crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26855-26868. [PMID: 31302888 DOI: 10.1007/s11356-019-05774-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Natural arsenic contamination is a critical problem for various places around the world. Simav Plain (Kutahya, Turkey) is one such area that was shown to have natural arsenic contamination in its waters and soils. Arsenic exposure through ingestion of edible crops cultivated in Simav Plain and associated health risks were assessed in this study. To achieve this objective, arsenic levels in 18 crop species were estimated based on measured soil arsenic concentrations. Individual and aggregate non-carcinogenic and carcinogenic risks associated with ingestion of arsenic-contaminated crops were then assessed with scenario-based deterministic point estimates and stochastic population estimates. Monte Carlo simulation was used for the estimation of population health risks. Accordingly, wheat was found as the highest-ranked crop specie for the both types of health risks, followed by tomato and potato, which are three of the most consumed crops in the region. The risk levels estimated in this study were relatively high, indicating consumption of crops grown in the plain may be posing significant health risks even at lower-bound estimates. Consuming wheat, tomato, potato, and their products from uncontaminated sources was found to reduce the aggregate risks up to 88% implicating the importance of proposing suitable management measures for similar risk-prone areas.
Collapse
Affiliation(s)
- Begum Can-Terzi
- Department of Environmental Engineering, Izmir Institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey
| | - Orhan Gunduz
- Department of Environmental Engineering, Dokuz Eylul University, Tınaztepe, 35160, Izmir, Turkey.
| | - Sait C Sofuoglu
- Department of Environmental Engineering, Izmir Institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey.
| |
Collapse
|
18
|
Tapia J, Murray J, Ormachea M, Tirado N, Nordstrom DK. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:309-325. [PMID: 31075598 DOI: 10.1016/j.scitotenv.2019.04.084] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/17/2019] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
Abstract
Elevated concentrations of arsenic in water supplies represent a worldwide health concern. In at least 14 countries of South America, high levels have been detected relative to international standards and guidelines. Within these countries, the high plateau referred to as the "Altiplano-Puna", encompassing areas of Argentina, Bolivia, Chile, and Perú, exhibits high arsenic concentrations that could be affecting 3 million inhabitants. The origins of arsenic in the Altiplano-Puna plateau are diverse and are mainly natural in origin. Of the natural sources, the most important correspond to mineral deposits, brines, hot springs, and volcanic rocks, whereas anthropogenic sources are related to mining activities and the release of acid mine drainage (AMD). Arsenic is found in all water types of the Altiplano-Puna plateau over a wide range of concentrations (0.01 mg·L-1 < As in water > 10 mg·L-1) which in decreasing order correspond to: AMD, brines, saline waters, hot springs, rivers affected by AMD, rivers and lakes, and groundwater. Despite the few studies which report As speciation, this metalloid appears mostly in its oxidized form (As[V]) and its mobility is highly susceptible to the influence of dry and wet seasons. Once arsenic is released from its natural sources, it also precipitates in secondary minerals where it is generally stable in the form of saline precipitates and Fe oxides. In relation to human health, arsenic adaptation has been detected in some aboriginal communities of the Puna together with an efficient metabolism of this metalloid. Also, the inefficient methylation of inorganic As in women of the Altiplano might lead to adverse health effects such as cancer. Despite the health risks of living in this arsenic-rich environment with limited water resources, not all of the Altiplano-Puna is properly characterized and there exists a lack of information regarding the basic geochemistry of arsenic in the region.
Collapse
Affiliation(s)
- J Tapia
- Escuela de Geología, Facultad de Ingeniería, Universidad Santo Tomás, Santiago, Chile.
| | - J Murray
- Instituto de Bio y Geo Ciencias del NOA (IBIGEO), Universidad Nacional de Salta - CONICET, Av. 9 de Julio 14, Rosario de Lerma, Salta, Argentina; Laboratoire d'Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg/EOST-CNRS UMR 7517, 1 Rue Blessig, 67084 Strasbourg, France
| | - M Ormachea
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, Campus Universitario, Calle 27 Cota Cota, Casilla 303, La Paz, Bolivia
| | - N Tirado
- Instituto de Genética-Facultad de Medicina, Universidad Mayor de San Andrés, Av. Saavedra No 2246, La Paz, Bolivia
| | | |
Collapse
|
19
|
Jia X, Yang X, Zhao W, Hu Y, Cheng H. A method for rapid determination of arsenic species in vegetables using microwave‐assisted extraction followed by detection with HPLC hyphenated to inductively coupled plasma‐mass spectrometry. J Sep Sci 2019; 42:2957-2967. [DOI: 10.1002/jssc.201900282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xintong Jia
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Xiaoyue Yang
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Wei Zhao
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and EvolutionSchool of Water Resources and EnvironmentChina University of Geosciences (Beijing) Beijing P. R. China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| |
Collapse
|
20
|
Biswas A. A Systematic Review on Arsenic Bio-Availability in Human and Animals: Special Focus on the Rice-Human System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019. [PMID: 31032526 DOI: 10.1007/398_2019_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present systematic review synthesizes the diverse documentation of research on the occurrence of arsenic in soil-water systems and the human and animal bio-availability scenarios related to food chain contamination by arsenic. Humans and animals may drink arsenic-contaminated groundwater in addition to consuming foods that have been grown in arsenic-contaminated groundwater and soils. Rice grain is a potential arsenic carrier and the staple food in many parts of the world, particularly in Southeast Asian countries. Data have been summarized from 183 articles describing different aspects of arsenic flow in the food chain, that is, the soil-water-rice-human system and the water-crops-animals system and the bio-availability of arsenic to humans and animals. The phyto-availability of arsenic depends on the physicochemical and biological conditions of soil and water. In humans, the bio-accessibility of inorganic arsenic is 63-99%. Arsenic is more bio-available from rice than from other foods: different food materials differ in bio-accessible potential. Additionally, the review identifies trends in research on arsenic contamination and food chain flow considering arsenic species, toxicity assessment, and bio-accessibility studies. This systematic review provides a comprehensive assessment of the documented evidence to be used to guide future research on arsenic availability for the rice plant and subsequent availability to humans from cooked rice that can determine arsenic toxicity. The review also highlights how the focus of research on arsenic as a pollutant has changed in the past decades.
Collapse
Affiliation(s)
- Anirban Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
21
|
Hu L, Zhang B, Wu D, Fan H, Tu J, Liu W, Huang R, Huang X. Estimation of arsenic bioaccessibility in raw and cooked radish using simulated in vitro digestion. Food Funct 2019; 10:1426-1432. [DOI: 10.1039/c8fo02003e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boiled cooking should be recommended when we consume As-contaminated vegetables.
Collapse
Affiliation(s)
- Liang Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of the Ministry of Education
- School of Resource
- Environment and Chemical Engineering, Nanchang University
- Nanchang 330031
- China
| | - Baojun Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine
- Nanchang University
- Nanchang 330006
- China
- Key Laboratory of Land Surface Pattern and Simulation
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of the Ministry of Education
- School of Resource
- Environment and Chemical Engineering, Nanchang University
- Nanchang 330031
- China
| | - Houbao Fan
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology
- Nanchang Institute of Technology
- Nanchang 330099
- China
| | - Jie Tu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology
- Nanchang Institute of Technology
- Nanchang 330099
- China
| | - Wenfei Liu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology
- Nanchang Institute of Technology
- Nanchang 330099
- China
| | - Rongzhen Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology
- Nanchang Institute of Technology
- Nanchang 330099
- China
| | - Xueping Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology
- Nanchang Institute of Technology
- Nanchang 330099
- China
| |
Collapse
|
22
|
Zhou L, Wang S, Hao Q, Kang L, Kang C, Yang J, Yang W, Jiang J, Huang LQ, Guo L. Bioaccessibility and risk assessment of heavy metals, and analysis of arsenic speciation in Cordyceps sinensis. Chin Med 2018; 13:40. [PMID: 30083223 PMCID: PMC6069848 DOI: 10.1186/s13020-018-0196-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Cordyceps sinensis (C. sinensis) is a famous and precious Traditional Chinese Medicine (TCM), while frequent reports of heavy metals, especially arsenic, exceeding standards in C. sinensis in recent years have raised concerns of its safety. Therefore, it is urgent for a research on heavy metals (Cu, Pb, As, Cd, Hg) in C. sinensis, of its bioaccessibility, dietary exposure estimation, arsenic speciation analysis and health risks assessment to human body. Methods Three 30 g batches of mixed wild growth C. sinensis samples were collected from Qinghai Province and each batch were divided into three parts: the whole C. sinensis, the stroma and the caterpillar body. The in vitro gastrointestinal method was used to evaluate the bioaccessibility of the heavy metals in the samples. The arsenic speciation analysis in the in vitro gastrointestinal solutions and dilute nitric acid extracted solutions were conducted using high performance liquid chromatography–inductively coupled plasma mass (HPLC–ICP-MS) method. Finally, the target hazard quotient (THQ) developed by the US EPA (1989) was used to assess the health risks of heavy metals in C. sinensis. Results The contents of Cu, Pb, Cd and Hg in the stroma were higher than those in the caterpillar body. In contrast, As was mainly found in the caterpillar body. In the whole C. sinensis, the average bio-accessibilities of Cu, Pb, As, Hg and Cd were 41.29, 40.11, 64.46, 18.91, and 81.14%, respectively. While in the caterpillar body, the corresponding bio-accessibilities values were 48.26, 42.92, 66.15, 12.86, 87.07%, respectively, and were 38.30, 30.53, 30.18, 7.46, and 82.30%, respectively in the stroma part. Different arsenic speciations of arsenite [As(III)], arsenate [As(V)] and trace amounts of methylarsonic acid [MMA] were detected. Of the total As, 8.69% was in inorganic form, which was also the major form of dissolved As. Among the extracted inorganic species, the concentrations of As(III) and As(V) were 0.56 ± 0.16 and 0.29 ± 0.06 mg kg−1, respectively. In the gastrointestinal solutions, only As(III) and As(V) could be detected; the sum content of the two species was 2.00–2.73%. The bioaccessibility target hazard quotient (BTHQ) values for Cu, Pb, As, Cd and Hg in C. sinensis were 0.0041, 0.0040, 0.5334, 0.0020 and 0.0005, respectively, all less than 1. Conclusion None of the five heavy metals in C. sinensis can be 100% absorbed by human body. The content of arsenic in C. sinensis is high, but the strong toxic inorganic arsenic accounted for only 8.69%. The heavy metals in C. sinensis presented no obvious risks to human health in a reasonable taking way.![]() Electronic supplementary material The online version of this article (10.1186/s13020-018-0196-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhou
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China.,2College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong, 510006 China
| | - Sheng Wang
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Qingxiu Hao
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Liping Kang
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Chuanzhi Kang
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Jian Yang
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Wanzhen Yang
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Jingyi Jiang
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Lu-Qi Huang
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| | - Lanping Guo
- 1National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China.,2College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong, 510006 China
| |
Collapse
|
23
|
Yang F, Xie S, Wei C, Liu J, Zhang H, Chen T, Zhang J. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:77-86. [PMID: 29335176 DOI: 10.1016/j.scitotenv.2018.01.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
In this study, multiple types of samples, including soils, plants, litter and soil invertebrates, were collected from a former arsenic (As) mine in China. The total As concentrations in the soils, earthworms, litter and the aboveground portions of grass from the contaminated area followed the decreasing order of 83-2224 mg/kg, 31-430 mg/kg, 1-62 mg/kg and 2-23 mg/kg, respectively. X-ray absorption near-edge structure (XANES) analysis revealed that the predominant form of As in the soils was arsenate (As(V)), while no arsenite (As(III)) was detected. In the grass and litter of the native plant community, inorganic As species (As(V) and As(III)) were the main species, while minor amounts of DMA, MMA, AsC, and an unknown As species were also detected in the extracts analyzed with high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The As speciation and As concentrations varied with the plant species, and very high As levels (197-584 mg/kg) and proportions of inorganic As (>99%) were found in two As-hyperaccumulating ferns, Pteris vittata and Pteris cretica. The major As species extracted from earthworms were inorganic, with proportions of 51-53% As(III) and 38-48% As(V). AsB was the only organic species present in the earthworm samples, although at low proportions (<8.99%). The internal bioconversion of other As species is hypothesized to contribute greatly to the formation and accumulation of AsB in earthworms, although the direct external absorption of organic As from soils might be another source. This study sheds light on the potential sources of complex organoarsenicals, such as AsB, in terrestrial organisms.
Collapse
Affiliation(s)
- Fen Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaowen Xie
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jinxin Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhi Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Paul S, Bhattacharjee P, Giri AK, Bhattacharjee P. Arsenic toxicity and epimutagenecity: the new LINEage. Biometals 2017; 30:505-515. [PMID: 28516305 DOI: 10.1007/s10534-017-0021-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Global methylation pattern regulates the normal functioning of a cell. Research have shown arsenic alter these methylation landscapes within the genome leading to aberrant gene expression and inducts various pathophysiological outcomes. Long interspersed nuclear elements (LINE-1) normally remains inert due to heavy methylation of it's promoters, time and various environmental insults, they lose these methylation signatures and begin retro-transposition that has been associated with genomic instability and cancerous outcomes. Of the various high throughput technologies available to detect global methylation profile, development of LINE-1 methylation index shall provide a cost effect-screening tool to detect epimutagenic events in the wake of toxic exposure in a large number of individuals. In the present review, we tried to discuss the state of research and whether LINE-1 methylation can be considered as a potent epigenetic signature for arsenic toxicity.
Collapse
Affiliation(s)
- Somnath Paul
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India. .,Department of Epigenetics & Molecular Carcinogenesis, The Virginia Harris Cockrell Cancer Center, The University of Texas, M.D. Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, TX, 78957, USA.
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
25
|
Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:209-220. [PMID: 28043702 PMCID: PMC5303541 DOI: 10.1016/j.scitotenv.2016.12.111] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 05/20/2023]
Abstract
This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and this must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| | - Brian P Jackson
- Dartmouth College, Department of Earth Sciences, Hanover, NH 03755, USA.
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5HN, United Kingdom.
| | - Todd Warczack
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| | - Kirk Scheckel
- USEPA Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224, USA.
| | - Mary Lou Guerinot
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|