1
|
Fakhar A, Galgo SJC, Canatoy RC, Rafique M, Sarfraz R, Farooque AA, Khan MI. Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. BIOCHAR 2025; 7:8. [PMID: 39758611 PMCID: PMC11698939 DOI: 10.1007/s42773-024-00397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
Biochar is a carbon-rich material produced through the pyrolysis of various feedstocks. It can be further modified to enhance its properties and is referred to as modified biochar (MB). The research interest in MB application in soil has been on the surge over the past decade. However, the potential benefits of MB are considerable, and its efficiency can be subject to various influencing factors. For instance, unknown physicochemical characteristics, outdated analytical techniques, and a limited understanding of soil factors that could impact its effectiveness after application. This paper reviewed the recent literature pertaining to MB and its evolved physicochemical characteristics to provide a comprehensive understanding beyond synthesis techniques. These include surface area, porosity, alkalinity, pH, elemental composition, and functional groups. Furthermore, it explored innovative analytical methods for characterizing these properties and evaluating their effectiveness in soil applications. In addition to exploring the potential benefits and limitations of utilizing MB as a soil amendment, this article delved into the soil factors that influence its efficacy, along with the latest research findings and advancements in MB technology. Overall, this study will facilitate the synthesis of current knowledge and the identification of gaps in our understanding of MB. Graphical Abstract
Collapse
Affiliation(s)
- Ali Fakhar
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Snowie Jane C. Galgo
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
- College of Agriculture, Sultan Kudarat State University, Lutayan Campus, 9803 Philippines
| | - Ronley C. Canatoy
- Department of Soil Science, College of Agriculture, Central Mindanao University, 8710 Maramag, Philippines
| | - Mazhar Rafique
- Department of Soil and Climate Sciences, The University of Haripur, Haripur, Khyber Pakhtunkhwa Pakistan
| | - Rubab Sarfraz
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Aitazaz Ahsan Farooque
- Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St Peters Bay, PE Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A4P3 Canada
| | - Muhammad Israr Khan
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
2
|
Li Q, Zhang J, Ye J, Liu Y, Lin Y, Yi Z, Wang Y. Biochar affects organic carbon composition and stability in highly acidic tea plantation soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122803. [PMID: 39378814 DOI: 10.1016/j.jenvman.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Biochar amendments are effective in stabilizing soil aggregates and improving soil organic carbon (SOC) content. However, the effects of biochar on highly acidic soil and their relation with soil SOC stability remain understudied. The study aimed to investigate the impact of biochar on changes of aggregate distribution and SOC stability in a highly acidic tea plantation soils over an eight-year period. Soil samples were collected from plots with varying biochar application amounts (0, 2.5 t ha-1, 5 t ha-1, 10 t ha-1, 20 t ha-1 and 40 t ha-1). The content of SOC, iron bound organic carbon (OC-Fe), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the functional group composition of SOC was analyzed. The results indicated that in the biochar application treatments, the value of soil pH, SOC, POC and MAOC contents were increased from 3.92 to 4.28, 6.68%-187.02%, 8.31%-66.78% and 13.07%-236.47% respectively, compared with CK, while the content of macro-aggregate (particle size>0.25 mm) and soil aggregates mean weight diameter (MWD) significantly increased with higher biochar application amounts. But dissolved organic carbon (DOC) and OC-Fe content exhibited downward trend, decreased from 2.43% to 6.97% and 4.18%-19.91%. Furthermore, aromatic-C levels increased, with increased biochar application amounts. The integration of biochar not only bolstered soil aggregate stability but also amplified the presence of aromatic-C, thereby enhancing the resilience of organic carbon in highly acidic tea garden soil (BC40 > BC20 > BC5>BC2.5 > BC10 > CK), with increases ranging from 6% to 47%. The principal component analysis and structural equation modeling identified soil pH, TN, SOC, POC, MAOC, R > 0.25 and MWD as key factors of soil organic carbon stability. These findings provide crucial insights into the mechanism underlying biochar's efficiency in fortifying organic carbon stability, particularly in the context of highly acidic soil.
Collapse
Affiliation(s)
- Qiang Li
- College of Resources and the Environment, Fujian Agriculture & Forestry UniversityFuzhou, 350002, China; Resources, Environment, and Soil Fertilizers Institute, Fujian Academy of Agricultural Sciences /Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou, 350013, China
| | - Junchuan Zhang
- College of Resources and the Environment, Fujian Agriculture & Forestry UniversityFuzhou, 350002, China
| | - Jing Ye
- Resources, Environment, and Soil Fertilizers Institute, Fujian Academy of Agricultural Sciences /Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou, 350013, China
| | - Yue Liu
- College of Resources and the Environment, Fujian Agriculture & Forestry UniversityFuzhou, 350002, China
| | - Yi Lin
- Resources, Environment, and Soil Fertilizers Institute, Fujian Academy of Agricultural Sciences /Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou, 350013, China
| | - Zhigang Yi
- College of Resources and the Environment, Fujian Agriculture & Forestry UniversityFuzhou, 350002, China.
| | - Yixiang Wang
- Resources, Environment, and Soil Fertilizers Institute, Fujian Academy of Agricultural Sciences /Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou, 350013, China.
| |
Collapse
|
3
|
Bhatt B, Gupta SK, Mukherjee S, Kumar R. A comprehensive review on biochar against plant pathogens: Current state-of-the-art and future research perspectives. Heliyon 2024; 10:e37204. [PMID: 39319142 PMCID: PMC11419905 DOI: 10.1016/j.heliyon.2024.e37204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Plant pathogens cause a serious menace to food production. The diseases caused by pathogens are estimated to cause a yield loss of about 14.1 %, whereas, in India, up to 26 %. Several plant pathogens like Pythium, Phytophthora, Rhizoctonia, Sclerotinia, Fusarium, and Verticillium can cause 50-75 % yield losses in cereals, cotton, and horticultural crops (fruits, vegetables, and flowers) 10-100 % in pulses, 30-60 % loses in oilseed crops and 40-50 % in plantation crops. Biochar as soil amendment is emerging as an effective environment friendly substitute for fungicides to counter plant pathogens. It has also been reported to induce resistance in plants to combat plant pathogens by activating the two important defense pathways such as salicylic acid, jasmonate/ethylene defense, and triggering the plant's antioxidant enzymatic activities. Biochar promotes soil health and consequently improves the plant health, resulting in reduced incidence of disease. This novel amendment also helps in the priming of expression of genes against foliar fungal pathogen infection. This review paper will summarize the effect of biochar incorporation in the plant disease management as well as on their growth parameters.
Collapse
Affiliation(s)
- Bhagyashree Bhatt
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Satish Kumar Gupta
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Ravinder Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Zentgraf I, Hoffmann M, Augustin J, Buchen-Tschiskale C, Hoferer S, Holz M. Effect of mineral and organic fertilizer on N dynamics upon erosion-induced topsoil dilution. Heliyon 2024; 10:e34822. [PMID: 39144998 PMCID: PMC11320320 DOI: 10.1016/j.heliyon.2024.e34822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Erosion-induced topsoil dilution strongly affects cropland biogeochemistry and is associated with a negative effect on soil health and crop productivity. While its impact on soil C cycling has been widely recognized, there is little information about its impact on soil N cycling and N fertilizer dynamics. Here, we studied three factors potentially influencing N cycling and N fertilizer dynamics in cropping systems, namely: 1.) soil type, 2.) erosion-induced topsoil dilution and 3.) N fertilizer form, in a full-factorial pot experiment using canola plants. We studied three erosion affected soil types (Luvisol, eroded Luvisol, calcaric Regosol) and performed topsoil dilution in all three soils by admixing 20 % of the respective subsoil into its topsoil. N fertilizer dynamics were investigated using either mineral (calcium ammonium nitrate) or organic (biogas digestate) fertilizer, labeled with 15N. The fertilizer 15N recovery and the distribution of the fertilizer N in different soil fractions was quantified after plant maturity. Fertilizer N dynamics and utilization were influenced by all three factors investigated. 15N recovery in the plant-soil system was higher and fertilizer N utilization was lower in the treatments with diluted topsoil than in the non-diluted controls. Similarly, plants of the organic fertilizer N treatments took up significantly less fertilizer N in comparison to mineral fertilizer treatments. Both topsoil dilution and organic fertilizer application promoted 15N recovery and N accumulation in the soil fractions, with strong differences between soil types. Our study reveals an innovative insight: topsoil dilution due to soil erosion has a negligible impact on N cycling and dynamics in the plant-soil system. The crucial factors influencing these processes are found to be the choice of fertilizer form and the specific soil type. Recognizing these aspects is essential for a precise and comprehensive assessment of the environmental continuum, emphasizing the novelty of our findings.
Collapse
Affiliation(s)
- Isabel Zentgraf
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
- Humboldt-Universität zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences, Invalidenstraße 42, 10099, Berlin, Germany
| | - Mathias Hoffmann
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Jürgen Augustin
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Caroline Buchen-Tschiskale
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 65, 38116, Braunschweig, Germany
| | - Sara Hoferer
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Maire Holz
- Leibniz Center for Agricultural Landscape Research (ZALF) e.V., Group of Isotope Biogeochemistry and Gas Fluxes, Eberswalder Str. 84, 15374, Müncheberg, Germany
| |
Collapse
|
5
|
Gao ZW, Ding J, Ali B, Nawaz M, Hassan MU, Ali A, Rasheed A, Khan MN, Ozdemir FA, Iqbal R, Çiğ A, Ercisli S, Sabagh AE. Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions. ACS OMEGA 2024; 9:31237-31253. [PMID: 39072056 PMCID: PMC11270719 DOI: 10.1021/acsomega.3c07921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 07/30/2024]
Abstract
Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.
Collapse
Affiliation(s)
- Zhan-Wu Gao
- Tourism
and Geographical Science Institute, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Jianjun Ding
- Jiaxiang
Vocational Secondary Technical School, Jiaxiang, Shandong 272400, China
| | - Basharat Ali
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Umair Hassan
- Research
Center of Ecological Sciences, Jiangxi Agricultural
University, Nanchang, Jiangxi 330029, China
| | - Abid Ali
- Department
of Agricultural and Food Sciences-DISTAL, University of Bologna, 40127 Bologna, Italy
| | - Adnan Rasheed
- College
of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Fethi Ahmet Ozdemir
- Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Arzu Çiğ
- Faculty
of Agriculture, Department of Horticulture, Siirt University, 56100 Siirt, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Ayman El Sabagh
- Faculty
of Agriculture, Department of Field Crops, Siirt University, 56100 Siirt, Turkey
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik 6860404, Egypt
| |
Collapse
|
6
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
7
|
Meng X, Zheng E, Hou D, Qin M, Meng F, Chen P, Qi Z. The effect of biochar types on carbon cycles in farmland soils: A meta analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172623. [PMID: 38653414 DOI: 10.1016/j.scitotenv.2024.172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Application of biochar has been demonstrated to be a successful strategy for boosting soil carbon sequestration and altering the agricultural soil carbon cycle. However, in the studies involving biochar worldwide, the effects of different types of biochar on the soil carbon component response direction and increase are not consistent. Therefore, to assess the effects of applying four types of biochar during the soil carbon cycle on carbon components on a farmland, we performed a meta-analysis of 1150 comparisons from 86 peer-reviewed publications. Generally speaking, the types of biochar raw materials have a significant impact on soil carbon cycle. The application of chaff biochar significantly inhibited (10.0 %) soil respiration, while the application of manure biochar (47.0 %), straw biochar (11.2 %) and wood biochar (8.7 %) showed a strong promotion effect on CO2 emission. In addition, although the soil organic C, microbial biomass C and dissolved organic C all had positive responses to the application of the four biochar types, the degree and increase in their response varied greatly due to the differences in biomass raw materials. Moreover, by increasing the biochar rates applied to coarse-textured soils with low average annual rainfall and an average temperature under controlled circumstances, the relative increase in SOC was encouraged. Meanwhile, applying low temperature pyrolytic biochar (≤400 °C) at a lower rate (<25 t/ha) in the long-term experiment (>3 years) is more beneficial to soil C sequestration and emission reduction. Hence, climatic conditions, agricultural management practices, and initial soil properties jointly constrained and influenced the ability of biochar to alter the soil C cycle. Based on this, our research offers a fresh viewpoint for making a profound study biochar-enhanced soil C cycle.
Collapse
Affiliation(s)
- Xuanchen Meng
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China
| | - Ennan Zheng
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China
| | - Dingmu Hou
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China
| | - Mengting Qin
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China
| | - Fanxiang Meng
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China
| | - Peng Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Zhijuan Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Luo X, Chen W, Liu Q, Wang X, Miao J, Liu L, Zheng H, Liu R, Li F. Corn straw biochar addition elevated phosphorus availability in a coastal salt-affected soil under the conditions of different halophyte litter input and moisture contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168355. [PMID: 37952652 DOI: 10.1016/j.scitotenv.2023.168355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Improving salt-affected soil health using different strategies is of great significance for Sustainable Development Goals. The effects of biochar as a sustainable carbon negative soil amendment on phosphorous (P) pools in the degraded salt-affected soils of the of coastal wetlands (as one of the primary blue carbon ecosystems) with halophyte litter input under different water conditions (the two intrinsic characteristics of coastal wetlands) are poorly understood. Thus, a corn straw derived biochar (CBC) was added into a coastal salt-affected soil collected from the Yellow River Delta to investigate its effect on P fractions and availability under the input of three different local halophyte litters (i.e., Suaeda salsa, Imperata cylindrica and Phragmites australis) and under the unflooded and flooded water conditions. The results showed that the individual input of Suaeda salsa increased soil P availability by 28.2-40.9 %, but Imperata cylindrica and Phragmites australis had little effect on P availability. CBC individual amendment more efficiently enhanced P availability in the unflooded soil than the flooded soil. However, the co-amendment of CBC with litters showed little synergistic effect on P availability. CBC sharply increased the proportion of Ca-bound labile P fraction, but moderately lifted the proportion of Al/Fe-bound mediumly labile P fraction. CBC-enhanced P availability and altered inorganic P fractions were mainly resulted from the provision of labile inherent P by biochar, improved soil properties (i.e., increased CEC), and altered bacterial community composition (i.e., elevated abundance of P-solubilizing and phosphate-accumulating bacteria). These findings give new insights into understanding P biogeochemical cycling in the coastal salt-affected soils amended with biochars, and will be helpful to develop biochar-based technologies for enhancing P pools and improving soil health of the blue carbon ecosystems.
Collapse
Affiliation(s)
- Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Wenjie Chen
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technological Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| | - Jing Miao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Liuingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Ruhai Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
9
|
Li H, Ren R, Zhang H, Zhang G, He Q, Han Z, Meng S, Zhang Y, Zhang X. Factors regulating interaction among inorganic nitrogen and phosphorus species, plant uptake, and relevant cycling genes in a weakly alkaline soil treated with biochar and inorganic fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167280. [PMID: 37742950 DOI: 10.1016/j.scitotenv.2023.167280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
To highlight how biochar affects the interaction between inorganic nitrogen species (ammonium nitrogen, nitrate nitrogen, and nitrite nitrogen: NH4+-N, NO3¯-N, and NO2¯-N) and phosphorus species (calcium phosphate, iron phosphate, and aluminum phosphate: CaP, FeP and AlP) in soil and plant uptake of these nutrients, walnut shell (WS)- and corn cob (CC)-derived biochars (0.5 %, 1 %, 2 %, and 4 %, w/w) were added to a weakly alkaline soil, and then Chinese cabbages were planted. The results showed that the changes in soil inorganic nitrogen were related to biochar feedstock, pyrolysis temperature, and application rate. For soil under the active nitrification condition (dominant NO3¯-N), a significant decrease in the NH4+-N/NO3¯-N ratio after biochar addition indicates enhanced nitrification (excluding WS-derived biochars at 2 % and 4 %), which can be explained by the most positive response of ammonia-oxidizing archaeal amoA to biochar addition. The CC-derived biochar more effectively enhanced soil nitrification than WS-derived biochar did. The addition of 4 % of biochars significantly increased soil inorganic phosphorus, and the addition of CC-derived biochars more effectively increased Ca2P than WS-derived biochars. Biochars significantly decreased plant uptake of phosphorus, while generally had little influence on plant uptake of nitrogen. Interestingly, NO2¯-N in soil significantly positively correlated with total phosphorus in both soil and plant, and significantly negatively correlated with phoC, indicating that a certain degree of NO2¯-N accumulation in soil slightly facilitated plant uptake of phosphorus but inhibited phoC-harboring bacteria. The NO3¯-N in soil significantly positively correlated with Ca2P and Ca8P, while the NH4+-N/NO3¯-N ratio significantly negatively correlated with Ca10P and FeP, indicating that the enhanced nitrification seemed to facilitate the change in phosphorus to readly available ones. This study will help determine how to scientifically and rationally use biochar to regulate inorganic nitrogen and phosphorus species in soil and plant uptake of these nutrients.
Collapse
Affiliation(s)
- Hongyan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China.
| | - Qiusheng He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Zhiwang Han
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Shuhui Meng
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaohui Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, 037009, China
| |
Collapse
|
10
|
Yu P, Qin K, Niu G, Gu M. Alleviate environmental concerns with biochar as a container substrate: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1176646. [PMID: 37575924 PMCID: PMC10415017 DOI: 10.3389/fpls.2023.1176646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Peat moss has desirable properties as a container substrate, however, harvesting it from peatland for greenhouse/nursery production use has disturbed peatland ecosystem and caused numerous environmental concerns. More recently, many nations have taken actions to reduce or ban peat moss production to reach the carbon neutral goal and address the environmental concerns. Also, the overuse of fertilizers and pesticides with peat moss in greenhouse/nursery production adds extra environmental and economic issues. Thus, it is urgent to find a peat moss replacement as a container substrate for greenhouse/nursery production. Biochar, a carbon-rich material with porous structure produced by the thermo-chemical decomposition of biomass in an oxygen-limited or oxygen-depleted atmosphere, has drawn researchers' attention for the past two decades. Using biochar to replace peat moss as a container substrate for greenhouse/nursery production could provide environmental and economic benefits. Biochar could be derived from various feedstocks that are regenerated faster than peat moss, and biochar possesses price advantages over peat moss when local feedstock is available. Certain types of biochar can provide nutrients, accelerate nutrient adsorption, and suppress certain pathogens, which end up with reduced fertilizer and pesticide usage and leaching. However, among the 36,474 publications on biochar, 1,457 focused on using biochar as a container substrate, and only 68 were used to replace peat moss as a container substrate component. This study provides a review for the environmental and economic concerns associated with peat moss and discussed using biochar as a peat moss alternative to alleviate these concerns.
Collapse
Affiliation(s)
- Ping Yu
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Kuan Qin
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Genhua Niu
- AgriLife Research Center, Department of Horticultural Sciences, Texas A&M University, Dallas, TX, United States
| | - Mengmeng Gu
- Department of Horticulture and Architecture, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Wang J, Riaz M, Babar S, Xia H, Li Y, Xia X, Wang X, Jiang C. Iron-modified biochar reduces nitrogen loss and improves nitrogen retention in Luvisols by adsorption and microbial regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163196. [PMID: 37004773 DOI: 10.1016/j.scitotenv.2023.163196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) loss poses a great threat to global environmental sustainability. The application of modified biochar is a novel strategy to improve soil nitrogen retention and alleviate the negative effects caused by N fertilizers. Therefore, in this study iron modified biochar was used as a soil amendment to investigate the potential mechanisms of N retention in Luvisols. The experiment comprised five treatments i.e., CK (control), 0.5 % BC, 1 % BC, 0.5 % FBC and 1 % FBC. Our results showed that the intensity of functional groups and surface structure of FBC was improved. The 1 % FBC treatment showed a significant increment in soil NO3--N, dissolved organic nitrogen (DON), and total nitrogen (TN) content by 374.7 %, 51.9 %, and 14.4 %, respectively, compared with CK. The accumulation of N in cotton shoots and roots was increased by 28.6 % and 6.6 % with 1 % FBC addition. The application of FBC also stimulated the activities of soil enzymes related to C and N cycling i.e., β-glucosidase (βG), β-Cellobiohydrolase (CBH), and Leucine aminopeptidase (LAP). In the soil treated with FBC, a significant improvement in the structure and functions of the soil bacterial community was found. FBC addition altered the taxa involved in the N cycle by affecting soil chemical properties, especially for Achromobacte, Gemmatimonas, and Cyanobacteriales. In addition to direct adsorption, the regulation of FBC on organisms related to N-cycling also played an important role in soil nitrogen retention.
Collapse
Affiliation(s)
- Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
12
|
Xue P, Hou R, Fu Q, Li T, Wang J, Zhou W, Shen W, Su Z, Wang Y. Potentially migrating and residual components of biochar: Effects on phosphorus adsorption performance and storage capacity of black soil. CHEMOSPHERE 2023; 336:139250. [PMID: 37343640 DOI: 10.1016/j.chemosphere.2023.139250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Biochar has great potential to increase the soil nutrient storage capacity. However, with aging, biochar gradually disintegrates and releases fractions with migration potential, resulting in unknown effects on soil nutrient regulation. Based on this problem, we used ultrasound to separate original biochar (TB) into potentially migrating biochar (DB) and residual biochar (RB). The elemental composition and pore characteristics of TB, DB and RB were analyzed. Different fractions of biochar were applied to black soil, and the kinetic model and isothermal adsorption models were used to explore the adsorption characteristics of different treatments. Then, the effects of initial pH and coexisting ions on adsorption were compared. The adsorption mechanism and potential leaching process of phosphorus in soil were investigated. The results showed that RB had higher O and H contents and was less stable than TB, while RB was more aromatic. The phosphorus adsorption capacity of different treatments was SRB (1.3318 mg g-1) > STB (1.2873 mg g-1) > SDB (1.3025 mg g-1) > SCK (1.1905 mg g-1). SRB had optimal phosphorus adsorption performance and storage capacity, with a maximum adsorption capacity of 1.6741 mg g-1 for the Langmuir isotherm, and it also showed excellent applicability in a pH gradient and with coexisting ions. The main adsorption mode of phosphorus by different treatments was monolayer chemisorption, related to electrostatic repulsion and oxygen-containing functional groups. DB was less effective in inhibiting soil phosphorus migration, with the cumulative leaching of SDB reaching 8.99 mg and the percentage of phosphorus in the 0-6 cm soil layer reaching only 15.42%. Overall, the results can help elucidate potential trends in the adsorption performance and migration process of soil phosphorus by biochar, and improve the comprehensive utilization efficiency of biochar.
Collapse
Affiliation(s)
- Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinwu Wang
- School of Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Wenqi Zhou
- School of Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Weizheng Shen
- School of Electrical and Information, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhongbin Su
- School of Electrical and Information, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yijia Wang
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
13
|
Wu Y, Wang X, Zhang L, Zheng Y, Liu X, Zhang Y. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1163451. [PMID: 37223815 PMCID: PMC10200947 DOI: 10.3389/fpls.2023.1163451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
Drought stress (DS) is a potential abiotic stress that is substantially reducing crop productivity across the globe. Likewise, salinity stress (SS) is another serious abiotic stress that is also a major threat to global crop productivity. The rapid climate change increased the intensity of both stresses which pose a serious threat to global food security; therefore, it is urgently needed to tackle both stresses to ensure better crop production. Globally, different measures are being used to improve crop productivity under stress conditions. Among these measures, biochar (BC) has been widely used to improve soil health and promote crop yield under stress conditions. The application of BC improves soil organic matter, soil structure, soil aggregate stability, water and nutrient holding capacity, and the activity of both beneficial microbes and fungi, which leads to an appreciable increase in tolerance to both damaging and abiotic stresses. BC biochar protects membrane stability, improves water uptake, maintains nutrient homeostasis, and reduces reactive oxygen species production (ROS) through enhanced antioxidant activities, thereby substantially improving tolerance to both stresses. Moreover, BC-mediated improvements in soil properties also substantially improve photosynthetic activity, chlorophyll synthesis, gene expression, the activity of stress-responsive proteins, and maintain the osmolytes and hormonal balance, which in turn improve tolerance against osmotic and ionic stresses. In conclusion, BC could be a promising amendment to bring tolerance against both drought and salinity stresses. Therefore, in the present review, we have discussed various mechanisms through which BC improves drought and salt tolerance. This review will help readers to learn more about the role of biochar in causing drought and salinity stress in plants, and it will also provide new suggestions on how this current knowledge about biochar can be used to develop drought and salinity tolerance.
Collapse
Affiliation(s)
- Yanfang Wu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaodong Wang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xinliang Liu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Yueting Zhang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| |
Collapse
|
14
|
Neina D, Agyarko-Mintah E. The Terra Preta Model soil for sustainable sedentary yam production in West Africa. Heliyon 2023; 9:e15896. [PMID: 37168885 PMCID: PMC10165410 DOI: 10.1016/j.heliyon.2023.e15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Current declines in yam yields amidst increasing cultivated areas, land scarcity, and population surges call for more sustainable sedentary yam production systems. This study explored the nature of Amazonian Dark Earths (ADEs) as a basis for the formation of a related soil type known as the Terra Preta Model (TPM) soil for future sedentary yam systems. It builds on the influence of human beings in soil management and the formation of Anthrosols. Previous studies on the ADEs and biochar were synthesized to establish the fundamental assumptions required to form the TPM soil. The practical approach to forming the TPM soils is based on the intentional, integrated and prolonged use of biochar, municipal solid wastes, agro-industry wastes and products of ecological sanitation. Tillage options such as mounding, ridging, trenching and sack farming could be used for yam production on the TPM soils. Unlike natural soils, the longevity of ADE fertility is subject to debate depending on crops grown and cropping cycles. Therefore, a crop rotation plan is recommended to maintain the fertility of the TPM soils. The TPM soils, if adopted, are considered worthwhile for the long-term benefit of biodiversity conservation, efficient waste management, enhanced ecosystem services provided by soils and extensive adoption of ecological sanitation.
Collapse
Affiliation(s)
- Dora Neina
- Department of Soil Science, P.O. Box LG 245, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Corresponding author.
| | - Eunice Agyarko-Mintah
- Biotechnology & Nuclear Agricultural Research Institute, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Accra, Ghana
| |
Collapse
|
15
|
Hamouda MM, Badr A, Ali SS, Adham AM, Ahmed HIS, Saad-Allah KM. Growth, physiological, and molecular responses of three phaeophyte extracts on salt-stressed pea (Pisum sativum L.) seedlings. J Genet Eng Biotechnol 2023; 21:32. [PMID: 36929363 PMCID: PMC10020410 DOI: 10.1186/s43141-023-00483-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/18/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Seaweeds are a viable bioresource for suffering plants against salt stress, as they abundant in nutrients, hormones, vitamins, secondary metabolites, and many other phytochemicals that sustain plants' growth under both typical and stressful situations. The alleviating capacity of extracts from three brown algae (Sargassum vulgare, Colpomenia sinuosa, and Pandia pavonica) in pea (Pisum sativum L.) was investigated in this study. METHODS Pea seeds were primed for 2 h either with seaweed extracts (SWEs) or distilled water. Seeds were then subjected to salinity levels of 0.0, 50, 100, and 150 mM NaCl. On the 21st day, seedlings were harvested for growth, physiological and molecular investigations. RESULTS SWEs helped reduce the adverse effects of salinity on pea, with S. vulgare extract being the most effective. Furthermore, SWEs diminished the effect of NaCl-salinity on germination, growth rate, and pigment content and raised the osmolytes proline and glycine betaine levels. On the molecular level, two low-molecular-weight proteins were newly synthesized by the NaCl treatments and three by priming pea seeds with SWEs. The number of inter-simple sequence repeats (ISSR) markers increased from 20 in the control to 36 in 150 mM NaCl-treated seedlings, including four unique markers. Priming with SWEs triggered more markers than the control, however about ten of the salinity-induced markers were not detected following seed priming before NaCl treatments. By priming with SWEs, seven unique markers were elicited. CONCLUSION All in all, priming with SWEs alleviated salinity stress on pea seedlings. Salinity-responsive proteins and ISSR markers are produced in response to salt stress and priming with SWEs.
Collapse
Affiliation(s)
- Marwa M Hamouda
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 117900, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Alia M Adham
- Plant Protection Department, Faculty of Agriculture, University of AL-Muthanna, Samawah, Iraq
| | - Hanan I Sayed Ahmed
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Khalil M Saad-Allah
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
16
|
Mavi MS, Singh G, Choudhary OP, Dey D. Moderation of nitrogen availability through the application of pyrolyzed and unpyrolyzed organic materials in saline water irrigated soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:467. [PMID: 36917357 DOI: 10.1007/s10661-023-11052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Soil application of pyrolyzed biomass (biochar) has been proposed as an effective strategy for managing degraded land, but its limitations as a sole nutrient supplier discourage its widespread application as a soil amendment. Excessive use of saline water for irrigation leads to buildup of salts and other toxic ions, which cause a decline in the availability of essential nutrients due to negative effects on the mineralization process. Therefore, a long-term incubation experiment was conducted for 52 weeks to study the individual or combined impact of pyrolyzed [biochar derived from rice residue (RB)] and unpyrolyzed organic materials [rice residue (RR) and animal manure (AM)] on nitrogen (N) dynamics in soil irrigated with water of varying electrical conductivity (EC) (EC0.3 [non-saline canal water), EC10, and EC15 dS m-1 (saline)]. Increasing salinity had an adverse effect on N mineralization, reducing it by 20-70% during the incubation period. Irrespective of the EC, soil amended with AM showed greater and faster N mineralization than unamended control, while individual application of RB or RR showed immobilization of N during the early period of incubation. However, conjoint application of pyrolyzed (RB) and unpyrolyzed organic materials (RR or AM) showed enhanced mineralized N content (26-96%) compared with the sole biochar-amended soil irrigated with water of different EC levels. It was most likely due to the synergic effect of unpyrolyzed materials on the mineralization rate of biochar. On the other hand, the high cation exchange capacity, large surface area, and greater total porosity of the biochar may cause stronger adsorption of free NH4+-N released from the labile organic amendments, thereby moderating the N mineralization process under saline conditions. Therefore, it is recommended that biochar be used in conjunction with AM or RR to ensure the prolonged availability of N in a saline environment.
Collapse
Affiliation(s)
- Manpreet Singh Mavi
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Gurpreet Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Om Parkash Choudhary
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Debomita Dey
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
17
|
Abhishek K, Shrivastava A, Vimal V, Gupta AK, Bhujbal SK, Biswas JK, Singh L, Ghosh P, Pandey A, Sharma P, Kumar M. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158562. [PMID: 36089037 DOI: 10.1016/j.scitotenv.2022.158562] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Rising global temperature, pollution load, and energy crises are serious problems, recently facing the world. Scientists around the world are ambitious to find eco-friendly and cost-effective routes for resolving these problems. Biochar has emerged as an agent for environmental remediation and has proven to be the effective sorbent to inorganic and organic pollutants in water and soil. Endowed with unique attributes such as porous structure, larger specific surface area (SSA), abundant surface functional groups, better cation exchange capacity (CEC), strong adsorption capacity, high environmental stability, embedded minerals, and micronutrients, biochar is presented as a promising material for environmental management, reduction in greenhouse gases (GHGs) emissions, soil management, and soil fertility enhancement. Therefore, the current review covers the influence of key factors (pyrolysis temperature, retention time, gas flow rate, and reactor design) on the production yield and property of biochar. Furthermore, this review emphasizes the diverse application of biochar such as waste management, construction material, adsorptive removal of petroleum and oil from aqueous media, immobilization of contaminants, carbon sequestration, and their role in climate change mitigation, soil conditioner, along with opportunities and challenges. Finally, this review discusses the evaluation of biochar standardization by different international agencies and their economic perspective.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | | | - Vineet Vimal
- Institute of Minerals and Materials Technology, Orissa, India
| | - Ajay Kumar Gupta
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | - Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India.
| |
Collapse
|
18
|
Xu Y, Wang B, Ding S, Zhao M, Ji Y, Xie W, Feng Z, Feng Y. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157953. [PMID: 35963404 DOI: 10.1016/j.scitotenv.2022.157953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal carbonization (HTC) technology can potentially be used to safely and sustainably utilize kitchen waste (KW). However, the characteristics of HTC solid products (hydrochar) and aqueous products (HAP) based on different types of KW have not yet been clarified. Here, four types of KW, cellulose-based (CL), skeleton-based (SK), protein-based (PT), and starch-based (ST) KW, were used for HTC at 180 °C, 220 °C, and 260 °C. The basic physicochemical properties and structures of hydrochars and HAP were analyzed, and the effects of different hydrochars on rice growth were characterized. HTC decreased the H/C and O/C of KW. All hydrochars were acidic (3.12 to 6.78) and the pH values increased with the HTC temperature, while high HTC temperature reduced the porosity of hydrochars. HTC promoted the enrichment of total carbon (up to 78.1 %), total nitrogen (up to 62.6 %), and total phosphorus (up to 171.6 %) in KW. More carbon (60.7-88.0 %) and nitrogen (up to 87.4 %) were present in the hydrochars than in the HAP. The relative content of C1s increased and O1s decreased in CL and ST hydrochars as the HTC temperature increased, while the opposite pattern was observed for SK and PT hydrochars. The dissolved organic matter (DOM) of different hydrochars and HAP were mainly humus-like substances. The biodegradability of the DOM in HAP was often higher than the corresponding hydrochar, and their DOM biodegradability increased with the HTC temperature. The content of heavy metals from different hydrochars did not exceed the relevant thresholds of fertilizer standards. Rice grain yield increased by 3.7-11.1 % in the hydrochar treatments without phosphate fertilizer addition compared with the control treatment. The results of this study provide new theoretical and empirical insights into the potential for HTC technology to be used for the recycling of KW and its products in the agricultural environment.
Collapse
Affiliation(s)
- Yongji Xu
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Mengying Zhao
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yang Ji
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Zhaozhong Feng
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
19
|
Sun R, Zheng H, Yin S, Zhang X, You X, Wu H, Suo F, Han K, Cheng Y, Zhang C, Li Y. Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155183. [PMID: 35421479 DOI: 10.1016/j.scitotenv.2022.155183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 05/25/2023]
Abstract
Biochar (i.e., pyrochar and hydrochar) application is a promising strategy to improve soil quality and productivity. However, the comparison of biochars with different carbonization methods and feedstocks for the plant growth in the coastal salt-affected soil remains limited. In this study, a 30-day microcosmic experiment was conducted to compare the effects of pyrochars and hydrochars derived from reed straw (RPC and RHC) and cow manure (CPC and CHC) on the peanut (Arachis hypogaea L.) seedling growth in a coastal salt-affected soil of Yellow River Delta, China. The results showed that RPC, CHC and CPC significantly elevated fresh shoot weight by 67.77%-89.37%, whereas the RHC amendment showed little effect. The malondialdehyde contents in peanut seedling leaves were significantly declined by 25.28%-35.51% with pyrochar and hydrochar amendments, which might be associated with the enhanced proline contents and K/Na ratios. The stimulation of certain phytohormones (i.e., indole-3-acetic acid, zeatin riboside, gibberellic acid 3) in peanut seedlings with pyrochar and hydrochar amendments might be attributed to the growth enhancement. RPC, CPC and CHC improved the soil properties and fertility such as cation-exchange capacity (CEC), total nitrogen, and available potassium and water holding capacity (WHC) of the coastal salt-affected soil. However, RHC not only significantly decreased soil CEC and WHC, but also increased soil exchangeable sodium percentage. The abundances of soil beneficial bacteria, such as f_Gemmatimonadacea, Sphingomonas, Blastococcus and Lysobacter were enhanced by RPC, CHC and CPC amendments, which were mainly associated with the increased WHC and CEC. Fungal community was less sensitive to pyrochar and hydrochar amendments than bacterial community according to the relative abundance and diversity, and beneficial fungi, such as Oidiodendron and Sarocladium were enriched in the CHC soil. Overall, the application of RPC, CHC and CPC showed greater potentials for the enhancement of peanut growth in a coastal salt-affected soil.
Collapse
Affiliation(s)
- Ruixue Sun
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hao Zheng
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Shaojing Yin
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Haiyun Wu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Kunxu Han
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
20
|
Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14137924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diverse soil phosphorus (P)-leaching phenomena induced by environmental disturbance have gained increasing attention. Two kinds of typical organic materials, biochar and biogas slurry, (BS) are widely utilized to amend agricultural soil, but there is little research that gives insight into their co-effects on soil P-leaching and corresponding mechanisms. Herein, a total of six treatments (viz., control, 2% (w/w) biochar, low ratio BS with or without 2% (w/w) biochar, high ratio BS with or without 2% (w/w) biochar) were conducted to investigate the P-leaching and fraction transformation mechanisms. The column experiment results showed that compared to control, sole BS application or biochar both can slightly enhance the soil-P loss by 134.8% and 39.8%. High ratios of BS induced higher P loss than the low ratios of BS by 125.1%. In comparison with the sole BS treatment, combined BS and biochar application increase P loss but result in less soil leaching of basic cations. The incubation experiment results showed that the enhanced P-leaching in combined BS and biochar treatment is probably attributable to the enhanced soil pH, decreased DPS, soil P adsorption capacity, and transformation of moderately labile Fe–P into labile P. This research helps in understanding the abiotic process of biochar and BS in promoting soil P-leaching and soil-P management using biochar and biogas slurry.
Collapse
|
21
|
Iron-Doped Biochar Regulated Soil Nickel Adsorption, Wheat Growth, Its Physiology and Elemental Concentration under Contrasting Abiotic Stresses. SUSTAINABILITY 2022. [DOI: 10.3390/su14137852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The prevalence of abiotic stresses hampers soil health and plant growth in most ecosystems. In this study, rice husk iron-enriched biochar (BC) was prepared and its superiority in terms of nutrients enrichment, porosity and different acidic functional group (O-H, C=O) relative to simple biochar was confirmed through scanning electron microscopic, X-ray fluorescence and Fourier transform infrared analysis. To further evaluate its nickel (Ni), salt (NaCl) and carbonate (CaCO3) stress mitigating impact on wheat physiology and biochemical attributes, a pot experiment was conducted using; BC (1%), Ni (0.5 mM NiNO3), Na (100 mM NaCl) and CO3 (100 mM CaCO3) and with twelve treatments; T1; Control, T2; NiNO3, T3; CaCO3, T4; NaCl, T5; BC, T6; Ni + BC, T7; CaCO3 + BC, T8; NaCl + BC, T9; Ni + CaCO3 + BC, T10; Ni + NaCl + BC, T11; CaCO3 + NaCl + BC, T12; Ni + NaCl + CaCO3 + BC. The Langmuir isotherm model revealed the maximum Ni adsorption capacity (2433 mg g−1) in treatments where Ni was applied with BC soil. Maximum soil DTPA-extractable Ni was found in the T9 treatment; however, Ni concentration was not reported in wheat roots while only trace amounts of Ni were found in wheat shoots with the T9 treatment. It was suggested that BC has the capacity to induce the immunization effect in plant roots by providing additional Fe so their ionic homeostasis and redox metabolism worked properly. This argument was further paved by the enhanced adsorption of these toxic ions in the presence of BC-favored wheat growth as indicated by maximum increases in shoot iron and potassium concentrations under Ni + CaCO3 + BC, relative to control. Furthermore, the decrease in shoot hydrogen peroxide (H2O2) (20%) and malondialdehyde (32%) concentrations and increase in shoot ascorbate peroxidase (81%) and catalase (three-fold) activities under Ni + BC relative to Ni + NaCl + CaCO3 + BC controlled the cell membrane damage. In conclusion, BC proved to be an excellent amendment to reduce the toxic effects of Ni, NaCl and CaCO3 stresses and enhance wheat growth and nutrition.
Collapse
|
22
|
Li J, Zhang S, Ding X. Biochar combined with phosphate fertilizer application reduces soil cadmium availability and cadmium uptake of maize in Cd-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25925-25938. [PMID: 34854000 DOI: 10.1007/s11356-021-17833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has become the primary pollution factor in farmland, which seriously threatens crop growth and food safety. A pot experiment was conducted to investigate the effect of combined application with biochar and P fertilizer on soil Cd availability and translocation, in which biochar was 0 (C0) and 20 g kg-1 (C20), P fertilizer was 0 (P0), 20 (P20), and 40 mg P kg-1 (P40). Results showed that, compared with C0 level, the content of DTPA-Cd in soil was significantly decreased with biochar addition after 60 days of cultivation, under C20 level, soil DTPA-Cd in C20P40 treatment were significantly increased. Under both C levels, the percentage of exchangeable Cd fraction at P40 rate was significantly lower than that at P20 rate, because the excess P in soil could precipitate Cd. The percentage of residual-Cd fraction was significantly increased with the combined addition of biochar and P fertilizer, particularly in C20P40 treatment, which was 75.95%, while it was only 61.65% in C0P0 treatment. The Cd translocation factor (TF) and bioconcentration factor (BCF) were also significantly reduced in C20P20 and C20P40 treatments compared with C0P0 treatment. Therefore, the combined high P and biochar application was a good choice in inhibiting soil Cd availability and plant Cd uptake, which benefited to the safe utility of the Cd contaminated soil.
Collapse
Affiliation(s)
- Jifeng Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Shirong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Xiaodong Ding
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
23
|
Biochar and/or Compost to Enhance Nursery-Produced Seedling Performance: A Potential Tool for Forest Restoration Programs. FORESTS 2022. [DOI: 10.3390/f13040550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, the use of nursery-produced seedlings is the most widely adopted method in forest restoration processes. To ensure and enhance the performance of transplanting seedlings into a specific area, soil amendments are often used due to their ability to improve soil physicochemical properties and, in turn, plant growth and development. The aim of the present study was to evaluate Populus euramericana growth and development on a growing substrate added with biochar and compost, both alone and in combination. To accomplish this aim, a pot experiment was performed to test biochar and/or compost effects on growing substrate physicochemical characteristics, plant morpho-physiological traits, and plant phenology. The results showed that biochar and/or compost improved growing substrate properties by increasing electrical conductivity, cation exchange capacity, and nutrient concentrations. On the one hand, these ameliorations accelerated poplar growth and development. On the other hand, amendments did not have positive effects on some plant morphological traits, although compost alone increased plant height, and very fine and fine root length. The combined use of biochar and compost did not show any synergistic or cumulative beneficial effects and led to a reduction in plant growth and development. In conclusion, compost alone seems to be the best solution in both ameliorating substrate characteristics and increasing plant growth, highlighting the great potential for its proper and effective application in large-scale forest restoration strategies.
Collapse
|
24
|
Rajabi Dehnavi A, Zahedi M, Ludwiczak A, Piernik A. Foliar Application of Salicylic Acid Improves Salt Tolerance of Sorghum ( Sorghum bicolor (L.) Moench). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030368. [PMID: 35161349 PMCID: PMC8839348 DOI: 10.3390/plants11030368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/31/2023]
Abstract
It has been reported that around the world, approximately 19.5% of all irrigated land and 2.1% of dry land is affected by salt stress, and these percentages continue to increase. Sorghum is the fifth most important cereal in the world and therefore research on its salt tolerance is of global importance. In our research, we focused on foliar application of salicylic acid (SA) on salt-stressed sorghum. We performed a pot experiment with two salt levels (0 and 100 mM sodium chloride NaCl) and five SA concentrations (0, 50, 100, 150 and 200 mg/L). Our results suggest that in saline conditions foliar application of SA induced an adaptive response to salinity by inducing proline accumulation as well as antioxidant enzymes activities and enhanced the protection of the photosynthetic machinery, maintained photosynthesis activities, and improved the growth of sorghum plants. These alleviation effects were depended on applied SA concentration. Under saline condition 150 mg/L, SA was the most effective for relieving the adverse effect of salt stress. Under non-saline conditions 100 mg/L SA was the best for improving sorghum growth and dry matter production. Our results demonstrated that foliar SA application is effective in improving sorghum growth under salinity.
Collapse
Affiliation(s)
- Ahmad Rajabi Dehnavi
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Morteza Zahedi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Agnieszka Ludwiczak
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| |
Collapse
|
25
|
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2385-2485. [PMID: 35571983 PMCID: PMC9077033 DOI: 10.1007/s10311-022-01424-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/06/2023]
Abstract
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills. Biochar-based fertilisers, which combine traditional fertilisers with biochar as a nutrient carrier, are promising in agronomy. The use of biochar as a feed additive for animals shows benefits in terms of animal growth, gut microbiota, reduced enteric methane production, egg yield, and endo-toxicant mitigation. Biochar enhances anaerobic digestion operations, primarily for biogas generation and upgrading, performance and sustainability, and the mitigation of inhibitory impurities. In composts, biochar controls the release of greenhouse gases and enhances microbial activity. Co-composted biochar improves soil properties and enhances crop productivity. Pristine and engineered biochar can also be employed for water and soil remediation to remove pollutants. In construction, biochar can be added to cement or asphalt, thus conferring structural and functional advantages. Incorporating biochar in biocomposites improves insulation, electromagnetic radiation protection and moisture control. Finally, synthesising biochar-based materials for energy storage applications requires additional functionalisation.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Samer Fawzy
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Marwa El-Azazy
- Department of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Ramy Amer Fahim
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M. I. A. Abdel Maksoud
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Abbas Abdullah Ajlan
- Department of Chemistry -Faculty of Applied Science, Taiz University, P.O.Box 6803, Taiz, Yemen
| | - Mahmoud Yousry
- Faculty of Engineering, Al-Azhar University, Cairo, 11651 Egypt
- Cemart for Building Materials and Insulation, postcode 11765, Cairo, Egypt
| | - Yasmeen Saleem
- Institute of Food and Agricultural Sciences, Soil and Water Science, The University of Florida, Gainesville, FL 32611 USA
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
26
|
Sustainable Management of Peanut Shell through Biochar and Its Application as Soil Ameliorant. SUSTAINABILITY 2021. [DOI: 10.3390/su132413796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The current research encompasses utilization of peanut shells (PS) as feedstock for pyrolysis carried out at various temperatures (250, 400, and 550 °C) for deriving biochar, namely PS-BC250, PS-BC400, and PS-BC550. After analyzing the biochar types physicochemically, it was applied as a soil ameliorant for the growth of cucumber. The results showed that in prepared biochar type, bulk density, volatile contents, hydrogen, oxygen, and nitrogen content decreased, whereas pH, electrical conductivity, ash content, fixed carbon content, and surface area increased with the increasing temperature. Scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) presented high porosity, re-orientation of vessels, and a greater number of aromatic compounds, respectively, for PS-BC prepared at 550 °C. On applying PS-BC250, PS-BC400, and PS-BC550 as amendments in potted soil at 2, 4, and 6% (w/w), it improved soil quality (viz pH, ECe, BD, and soil water holding capacity) and increased the yield of cucumber. Because of improved soil properties and crop yield, PS-BC550 at the rate of 4% (w/w) demonstrated a great potential for agricultural application while provisioning dual circular economic indicators in the form of diverting PS waste to an effective alternative of chemical fertilizer having intensive carbon footprints in cucumber production.
Collapse
|
27
|
Zhou Z, Li Z, Zhang Z, You L, Xu L, Huang H, Wang X, Gao Y, Cui X. Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149190. [PMID: 34311371 DOI: 10.1016/j.scitotenv.2021.149190] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/24/2021] [Accepted: 07/18/2021] [Indexed: 05/24/2023]
Abstract
Due to biochar could improve the physical and chemical properties of soil and promote crop growth, it is widely used in soil remediation, especially in saline soil. However, it is rarely studied of the application of acidic biochar in saline-alkali land. A field experiment with acidic corn stalk biochar (ACSBC) as a soil amendment was carried out in the western Songnen Plain of China. ACSBC (0, 0.15, 0.3, 0.45, 0.6, 0.75, 1, 6 and 15 t ha-1) was added to the topsoil to evaluate the combined effects on soil and sorghum yield. During the seeding and harvest period, the content of soil water, nutrient elements, cation exchange capacity (CEC), organic matter (OM), soluble cations (K+, Ca2+, Mg2+) increased, Na+ content showed opposite trend. However, soil pH decreased averagely with 0.3 and 1.0 during the seeding and harvest period respectively, salinity decreased with 19.37% and 18.14%, exchange sodium percentage (ESP) decreased with 37.08% and 37.04%. The sorghum yield increased 32.98% averagely, significantly by 51.37% and 47.33% with the 0.6 and 1 t ha-1 of ACSBC treatments respectively. These experimental results show that proper application of ACSBC in saline-alkali soil can effectively improve soil properties and increase sorghum yield.
Collapse
Affiliation(s)
- Zhengxin Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiyong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenqian Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Liru You
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lifeng Xu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongyan Huang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xueping Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Weihai Institute for Bionics-Jilin University, Weihai 264400, China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, China; Weihai Institute for Bionics-Jilin University, Weihai 264400, China.
| |
Collapse
|
28
|
Brtnicky M, Datta R, Holatko J, Bielska L, Gusiatin ZM, Kucerik J, Hammerschmiedt T, Danish S, Radziemska M, Mravcova L, Fahad S, Kintl A, Sudoma M, Ahmed N, Pecina V. A critical review of the possible adverse effects of biochar in the soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148756. [PMID: 34273836 DOI: 10.1016/j.scitotenv.2021.148756] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/24/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Biochar has received extensive attention because of its multi-functionality for agricultural and environmental applications. Despite its many benefits, there are concerns related to the long-term safety and implications of its application, mainly because the mechanisms affecting soil and organism health are poorly quantified and understood. This work reviews 259 sources and summarises existing knowledge on biochar's adverse effects on soil from a multiangle perspective, including the physicochemical changes in soil, reduced efficiency of agrochemicals, potentially toxic substances in biochar, and effects on soil biota. Suggestions are made for mitigation measures. Mixed findings are often reported; however, the results suggest that high doses of biochar in clay soils are likely to decrease available water content, and surface application of biochar to sandy soils likely increases erosion and particulate matter emissions. Furthermore, biochar may increase the likelihood of excessive soil salinity and decreased soil fertility because of an increase in the pH of alkaline soils causing nutrient precipitation. Regarding the impact of biochar on (agro)chemicals and the role of biochar-borne toxic substances, these factors cannot be neglected because of their apparent undesirable effects on target and non-target organisms, respectively. Concerning non-target biota, adverse effects on reproduction, growth, and DNA integrity of earthworms have been reported along with effects on soil microbiome such as a shift in the fungi-to-bacteria ratio. Given the diversity of effects that biochar may induce in soil, guidelines for future biochar use should adopt a structured and holistic approach that considers all positive and negative effects of biochar.
Collapse
Affiliation(s)
- Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic; Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, Czech Republic
| | - Rahul Datta
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Lucie Bielska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| | - Zygmunt M Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10 719 Olsztyn, Poland
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic; Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, Czech Republic
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab 60800, Pakistan; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ludmila Mravcova
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China; Department of Agronomy, the University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic; Agricultural Research, Ltd., 664 41 Troubsko, Czech Republic
| | - Marek Sudoma
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Niaz Ahmed
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab 60800, Pakistan
| | - Vaclav Pecina
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic; Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
29
|
Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth. SUSTAINABILITY 2021. [DOI: 10.3390/su131911104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study is aimed at deriving biochar (BC) from rice straw (RS-BC) and waste bones (WB-BC), being wasted without adequate return at the expense of environmental degradation. The RS and WB feedstocks were pyrolyzed at 550 °C, and the potential of derived biochar as a slow nutrient releasing soil amendment was examined during the growth of ridge gourd. Proximate analysis of the prepared biochars showed significant improvement in ash content and fixed carbon as compared to their raw biomasses. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis of RS-BC and WB-BC displayed a diverse range of functional groups viz. derivatives of cellulose and hydroxylapatite (HA); macro and microporosity; multiple nutrients. Application of RS-BC and WB-BC in potted soil alone and as biochar composite (RS-BC+WB-BC) at 5, 10 and 15% (w/w) and chemical fertilizer (CF) resulted in a significant increase in soil pH, electrical conductivity (ECe), cation exchange capacity (CEC) and water holding capacity (WHC) in exchange for growth and yield of ridge gourd. However, there were insignificant differences in the growth of plants in response to RS-BC, WB-BC alone and CF with biochar composite at 15% amendment. For giving insignificantly different growth results than CF, the prepared biochar composite showed outstanding potential as an organic fertilizer applicable in agrarian soils to elevate soil properties and yield of agricultural commodities.
Collapse
|
30
|
Singh G, Mavi MS, Choudhary OP, Gupta N, Singh Y. Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113277. [PMID: 34348432 DOI: 10.1016/j.jenvman.2021.113277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Applications of biochar to degraded soils have attracted considerable interest because of its capacity to enhance nutrients availability to the plants, sequester C and immobilize organic and inorganic pollutants. A five-year field experiment was conducted in a cotton-wheat system to investigate the effect of different levels of irrigation water salinity (0.3, 5, 10, and 15 dS m-1) and rice straw biochar (0, 2, 4, and 8 t ha-1) on the crop yield and soil functions. Rice straw-derived biochar was applied every year to cotton and its residual effect was observed on wheat. Results of the study indicated that regular irrigation with saline water (5-15 dS m-1) reduced both seed cotton (12-44%) and wheat grain (7-27%) yield. However, application of biochar (2-8 t ha-1) to plots irrigated with saline water showed 6-23% and 13-27% greater seed cotton and wheat grain yield compared with unamended plots, respectively. Likewise, biochar application to soil irrigated with canal or saline water showed significant beneficial effects on soil pH, EC, nutrient metabolism and availability, bulk density, infiltration rate and microbial biomass carbon. Our results indicated that biochar amendment especially at the optimum rate of 4 t ha-1 effectively promoted crop performance by ameliorating soil physical, chemical, and biological properties. In the absence of any chemical amendment for alleviating salinity stress, the results of the present study established that the biochar holds promising potential as a soil amendment in ameliorating soil functions and promoting plant productivity under saline water irrigated conditions.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Manpreet Singh Mavi
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Om Parkash Choudhary
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Naveen Gupta
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Yadvinder Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, India; Borlaug Institute for South Asia (BISA), Ladhowal, Ludhiana, Punjab, India
| |
Collapse
|
31
|
Impact of Oil Palm Empty Fruit Bunch Biochar Enriched with Chicken Manure Extract on Phosphorus Retention in Sandy Soil. SUSTAINABILITY 2021. [DOI: 10.3390/su131910851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A 45-day incubation and leaching experiments was conducted to determine the effect of different rates (0, 1, 2, 3, and 5 t ha−1) of enriched empty fruit bunches biochar (EEFB) and inorganic fertilizer (91 kg ha−1 triple superphosphate—TSP) on the availability and leaching losses of phosphorus from sandy soil (tin tailing soil). The treatments rates for the study were designated as T1—without fertilizer (control), T2—inorganic fertilizer treatment using TSP and T3, T4, T5, and T6, which refers to EEFB rate of 1, 2, 3, and 5 t ha−1, respectively. The enriched biochar was prepared by shaking biochar with chicken manure extract for 24 h. The addition of EEFB to the soils was found to increase pH of the soil compared to control and inorganic fertilizer treatment. After 45 days of incubation, the percentage increase in available P recorded in EEFB treatments were 1.6, 2.9, 2.8, and 4.1%, whereas for control treatment and inorganic fertilizer treatment, the available phosphorus was found to reduce by 10% and 83%, respectively. Loss of phosphorus via leaching in the soil was higher in EEFB treatments compared to control. However, the highest phosphorus leaching among all treatments in this study was recorded in inorganic fertilizer treatments. From the study, it was observed that biochar can be used to recapture phosphorus from chicken manure extract for transport to the soil, thereby reducing problems associated with chicken manure application.
Collapse
|
32
|
Abstract
Agricultural activities face several challenges due to the intensive increase in population growth and environmental issues. It has been established that biochar can be assigned a useful role in agriculture. Its agronomic application has therefore received increasing attention recently. The literature shows different applications, e.g., biochar serves as a soil ameliorant to optimize soil structure and composition, and it increases the availability of nutrients and the water retention capacity in the soil. If the biochar is buried in the soil, it decomposes very slowly and thus serves as a long-term store of carbon. Limiting the availability of pesticides and heavy metals increases soil health. Biochar addition also affects soil microbiology and enzyme activity and contributes to the improvement of plant growth and crop production. Biochar can be used as a compost additive and animal feed and simultaneously provides a contribution to minimizing greenhouse gas emissions. Several parameters, including biochar origin, pyrolysis temperature, soil type when biochar is used as soil amendment, and application rate, control biochar’s efficiency in different agricultural applications. Thus, special care should be given when using a specific biochar for a specific application to prevent any negative effects on the agricultural environment.
Collapse
|
33
|
Mak-Mensah E, Sam FE, Safnat Kaito IOI, Zhao W, Zhang D, Zhou X, Wang X, Zhao X, Wang Q. Influence of tied-ridge with biochar amendment on runoff, sediment losses, and alfalfa yield in northwestern China. PeerJ 2021; 9:e11889. [PMID: 34527437 PMCID: PMC8401753 DOI: 10.7717/peerj.11889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background Loss of organic matter and mineral nutrients to soil erosion in rain-fed agriculture is a serious problem globally, especially in China’s Loess Plateau. As a result, increasing rainwater usage efficiency by tied-ridge-furrow rainwater harvesting with biochar is expected to improve agricultural productivity. Nonetheless, with limited knowledge on tied-ridge-furrow rainwater harvesting with biochar, small-scale farmers face the challenge of adoption, thus, the rationale for this study. Materials and methods A field experiment was conducted to determine the influence of open-ridging (OR) and tied-ridging (TR) with bio-degradable film on ridges and biochar in furrows on runoff, sediment losses, soil moisture, fodder yield, and water use efficiency (WUE) on sloped land, using flat planting (FP) without ridges and furrows as control, during alfalfa-growing year (2020). Results Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%) were decreased with biochar to the extent where sediment was decreased in flat planting (33%), open ridging (43%), and tied ridging (44%) as well. The mean runoff efficiency was lower in flat planting (31%), open ridging (45%), and tied ridging (50%) in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, soil temperature on ridges of TR was higher than that on OR, which was higher than FP during alfalfa growing season. Soil temperature in furrows during alfalfa growing season in biochar and no-biochar plots were in the order FP > OR > TR. Mean soil water storage for FP, OR, and TR, in biochar plots was higher than in no-biochar plots. This indicates biochar has a beneficial impact on open riding. Total annual net fodder yield (NFY) was significantly (p = 0.00) higher in treatments in the order TR > OR > FP. Tied ridging had a significant effect on actual fodder yield (AFY) in biochar plots, while open ridging significantly affected AFY in no-biochar plots. Annual total mean NFY and AFY increased by 8% and 11% in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, water use efficiency was in the order TR > OR > FP. Conclusively, water use efficiency was significantly higher (p = 0.01) in biochar plots compared to no-biochar plots. Conclusion When crop production is threatened by soil erosion and drought, mulched tied-ridge with biochar is beneficial to crop growth in rain-fed agriculture, according to this research. Smallholder farmers should be trained on applying this technique for water-saving to mitigate runoff, soil erosion, sediment losses, and improve food security in semiarid areas.
Collapse
Affiliation(s)
- Erastus Mak-Mensah
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Faisal Eudes Sam
- College of Food Science and Engineering, Gansu Agricultural University, Gansu Key Laboratory of Viticulture and Enology, Lanzhou, Gansu Province, China
| | | | - Wucheng Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Dengkui Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xujiao Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiaoyun Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiaole Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Qi Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
34
|
Javeed HMR, Ali M, Skalicky M, Nawaz F, Qamar R, Rehman AU, Faheem M, Mubeen M, Iqbal MM, Rahman MHU, Vachova P, Brestic M, Baazeem A, EL Sabagh A. Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings ( Brassica napus L.). Molecules 2021; 26:molecules26113147. [PMID: 34070241 PMCID: PMC8197368 DOI: 10.3390/molecules26113147] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 01/24/2023] Open
Abstract
Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.
Collapse
Affiliation(s)
- Hafiz Muhammad Rashad Javeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; (H.M.R.J.); (M.A.); (M.F.); (M.M.); (M.M.I.)
| | - Mazhar Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; (H.M.R.J.); (M.A.); (M.F.); (M.M.); (M.M.I.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.S.); (P.V.)
| | - Fahim Nawaz
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Rafi Qamar
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan;
| | - Atique ur Rehman
- Department of Agronomy, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Maooz Faheem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; (H.M.R.J.); (M.A.); (M.F.); (M.M.); (M.M.I.)
| | - Muhammad Mubeen
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; (H.M.R.J.); (M.A.); (M.F.); (M.M.); (M.M.I.)
| | - Muhammad Mohsin Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; (H.M.R.J.); (M.A.); (M.F.); (M.M.); (M.M.I.)
| | - Muhammad Habib ur Rahman
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, 53113 Bonn, Germany;
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.S.); (P.V.)
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, 94901 Nitra, Slovakia;
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr el-Sheikh 33516, Egypt
- Correspondence:
| |
Collapse
|
35
|
The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems. SUSTAINABILITY 2021. [DOI: 10.3390/su13105612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.
Collapse
|
36
|
Gao M, Xu Y, Chang X, Song Z. Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil. CHEMOSPHERE 2021; 270:129428. [PMID: 33388501 DOI: 10.1016/j.chemosphere.2020.129428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
We used a pot experiment to investigate the effectiveness of 0.5, 1.0, and 2.0% biochar (BC) or iron-manganese oxide modified biochar (FMBC) additions on the biomass, enzyme activity, and grain quality of wheat plants grown in dibutyl phthalate (DBP) and di-(2-ethylhcxyl) phthalate (DEHP) polluted fluvo-aquic soils, as well as the bioavailability of DBP and DEHP. BC and FMBC applications significantly reduced DBP and DEHP accumulation in grains, which enhanced the content of starch and protein-related enzyme, thereby improving yield, and starch and protein content in wheat grains and increasing the content of minerals including Fe, Mn, K and Ca. Molecular docking assays showed that DBP and DEHP could bind to starch synthase (GBSS) through hydrogen bonds and intermolecular forces, which may have hindered the entry of substrates or occupied the binding sites of the reactants, thus inhibiting the activity of GBSS. In addition, FMBC treatment had a better inhibitory effect on the phytotoxicity of DBP and DEHP on wheat grain than BC treatment. This result might be attributed to the fact that FMBC has more functional groups and porous structure, and larger specific surface area. In summary, these findings contribute to our understanding of the mechanism of phthalate phytotoxicity, which may help us prevent/reduce it in the future.
Collapse
Affiliation(s)
- Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China
| | - Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387, China
| | - Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China.
| |
Collapse
|
37
|
Zhang F, Zhang G, Liao X. Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112075. [PMID: 33636468 DOI: 10.1016/j.ecoenv.2021.112075] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 05/15/2023]
Abstract
Biochars were studied for their impacts on the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil. The health risks of PAHs taken up by vegetables were assessed by growing Chinese cabbage in both unamended soil and biochar-amended soils. In the unamended soil, the total 16 PAHs (Σ16PAHs) content decreased by 77.38% after planting the vegetable. The dissipation percentages of low-molecular-weight PAHs (LMW-PAHs), medium-molecular-weight PAHs (MMW-PAHs), and high-molecular-weight PAHs (HMW-PAHs) were 82.37%, 72.65%, and 68.63%, respectively. A significant negative correlation was determined between the dissipation percentages of PAHs in soil and the logKow of PAHs (p < 0.01), indicating that the affinity of PAHs for soil particles was one of an important limiting factors on the dissipation of PAHs. The uptake of PAHs by plant was significantly reduced with the increase in the molecular weight of the PAHs (76.55% for LWM-PAHs, 17.13% for MMW-PAHs, and 6.05% for HMW-PAHs). Addition of biochars to the soil decreased the dissipation of Σ16PAHs (73.59-77.01%), mostly due to a decrease in the dissipation of LMW-PAHs and MMW-PAHs. This finding was due to the immobilization of LMW-PAHs and MMW-PAHs within the biochar micropores. A marked reduction of Proteobacteria in biochar-amended soils also resulted in the decreased biodegradation of PAHs. Four of six biochars significantly increased the concentrations of Σ16PAHs in plant by 30.10-74.22%. Generally, biochars significantly increased the uptake of LMW-PAHs by plant but had little influence on the plant uptake of MMW-PAHs and HMW-PAHs. Three of six biochars notably increased the incremental lifetime cancer risk values based on the exposure of PAHs by vegetable consumption.
Collapse
Affiliation(s)
- Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Zhongke-Ji'an Institute for Eco-Environmental Sciences, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Ji'an 343000, China.
| | - Guixiang Zhang
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
38
|
Wei Y, Wang J, Chang R, Zhan Y, Wei D, Zhang L, Chen Q. Composting with biochar or woody peat addition reduces phosphorus bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142841. [PMID: 33077217 DOI: 10.1016/j.scitotenv.2020.142841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 05/22/2023]
Abstract
Biochar and woody peat have been recognized as an additive to reduce carbon and nitrogen loss during composting. Yet little is known about their influences on the transformation of phosphorus (P) fractions in composting. This study investigated the quantitative and qualitative changes in different P forms during composting with adding biochar or woody peat using sequential extraction and P K-edge X-ray absorption near-edge structure (XANES). The results showed that compost products from the treatment with adding woody peat had a higher HA/FA (the ratio of humic acid to fulvic acid) compared to biochar treatment and the control, suggesting that the addition of woody peat might benefit the humification process of composting. Sequential extraction and XANES illustrated that adding biochar or woody peat limited the P availability. Biochar increased the proportion of Pi and woody peat decreased the conversion from Po to Pi compared to the control. Structural equation modeling and redundancy analysis suggested that biochar improved the refractory P based on the indirect effects of NH4+-N by regulating microbial community, while woody peat was beneficial for Po accumulation by affecting humic acid. Taken together, this research provides basis for regulating the nutrient level of carbon, nitrogen, and phosphorus in composts and reducing environmental risks.
Collapse
Affiliation(s)
- Yuquan Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jue Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yabin Zhan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lei Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
39
|
Elkhlifi Z, Kamran M, Maqbool A, El-Naggar A, Ifthikar J, Parveen A, Bashir S, Rizwan M, Mustafa A, Irshad S, Ali S, Chen Z. Phosphate-lanthanum coated sewage sludge biochar improved the soil properties and growth of ryegrass in an alkaline soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112173. [PMID: 33798866 DOI: 10.1016/j.ecoenv.2021.112173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The reclamation of alkaline soils remains challenging while the application of biochar has been proposed as a viable measure to rehabilitate soil fertility. The objective of the current pot study was to evaluate the efficacy of various P-La modified sewage sludge biochars (SSBC, La-SSBC, SSBC-P, La-SSBC-P) on soil phosphate-retention and ryegrass (Lolium perenne L.) growth in an alkaline soil (excess CaCO3). The results revealed that germination percentage, plant dry biomass, plant height, and the total amount of P in the ryegrass leaves were significantly (P < 0.05) improved under La-SSBC-P treatment as compared to other treatments. La-SSBC-P treatment significantly altered the chemical characteristics of post-harvest alkaline soil, such as pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (SOM), limestone (CaCO3), phosphate, and lanthanum contents. In comparison to the SSBC treatment, soil available phosphorous (AP) contents under La-SSBC-P were enhanced by 6.7 times after loading biochar with P and La (La-SSBC-P). After the plantation of ryegrass, concentration of lanthanum in the soil was negligible. The contents of CaCO3 reduced by 76.2% after La-SSBC-P biochar treatment, compared to the cultivated control. This phenomenon clearly indicated that lanthanum was reduced due to the precipitation with limestone, which was proposed based on the data of X-ray diffraction (XRD) analysis. Overall, results showed that the P-loaded lanthanum decorated biochar (La-SSBC-P) could be used as a potential substitute for P-fertilizer under the experimental conditions. However, field experiments are required to confer the efficiency of La-SSBC-P as P fertilizer in different soils.
Collapse
Affiliation(s)
- Zouhair Elkhlifi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Kamran
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ahsan Maqbool
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Aasma Parveen
- Faculty of Agriculture & Environmental Sciences, Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Saqib Bashir
- Department of Soil and Environmental Science, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Adnan Mustafa
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Sana Irshad
- School of Environmental Studies, China University of Geo Sciences, Wuhan 430074, Hubei, PR China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
40
|
Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize (Zea mays L.) Seedlings under Salinity Stress. SUSTAINABILITY 2021. [DOI: 10.3390/su13063150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The application of an acidic biochar can improve plant growth and soil properties in saline conditions. In this study, we investigated the effect of acidic biochar on plant growth and nutrients contents in saline soil. Seven treatments were arranged in a complete randomized design, including control (CK), 0, 30, and 45 g biochar added to a soil having 1% and 1.5% salts; these treatments were termed as B0S1, B30S1, B45S1 and B0S1.5, B30S1.5, B45S1.5 respectively. Experimental results showed that the plant height, leaves plant−1, leaf area, and shoot fresh and dry biomass, and root fresh and dry biomass were increased for the B45S1.5, respectively. Similarly, the highest total nitrogen (TN), total phosphorus (TP), total potassium (TK), and total sodium (Na) concentration in maize shoot were observed for B30S1, B0S1.5, CK, and B0S1.5, respectively. The highest concentrations of TN, TP, TK, and Na in root were obtained with the treatments B0S1, B0S1, B45S1, and B0S1, respectively. Soil pH, and EC decreased and nutrients concentration improved by the addition of acidic biochar. We conclude that the use of acidic biochar can be a potential source for the improvement of maize plant growth as well as mitigate the adverse effect of salt stress.
Collapse
|
41
|
Qayyum MF, Haider G, Iqbal M, Hameed S, Ahmad N, Rehman MZU, Majeed A, Rizwan M, Ali S. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize. CHEMOSPHERE 2021; 266:128980. [PMID: 33243575 DOI: 10.1016/j.chemosphere.2020.128980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorous (P) fixation in alkaline calcareous soils is a serious concern worldwide and acidified-biochar application has been proposed to improve the agronomic benefits of applied P. The present study aims to improve understanding of P transformation process in an alkaline soil following different biochar amendments (rice-husk biochar (RHB), sugarcane-bagasse biochar (SWB) and wheat-straw biochar (WSB)), chemically engineered (acidification with 1 N HCl or washing with distilled water (pristine biochar)) along with or without P at 60 mg kg-1. A pot experiment was conducted with three biochars (RHB, SWB, WSB) and control, two chemical modifications (acidic and pristine), and two P-levels (without or with P). A pot study by growing spring maize and a parallel incubation study were done to test the treatment effects on P transformation. Results demonstrated that acidified SBC and WSB increased the plant P uptake and dry-matter yield by 40% and 29.7%, respectively, with P-supply. Both pristine or acidified RHB produced 80.5% and 110.7%, more root dry-matter, respectively, compared to respective controls without P. Non-acidified WSB along with P showed significantly higher Olson's P in incubation study. While in case of acidification along with P addition, RHB exhibited greater P availability, but it was inconsistent at different times during incubation. It can be concluded that acidified biochar amendments have potential to improve P management with inconsistent results. It is difficult to rule out that acidification of biochars is a pre-requisite for alkaline soils for P improvement. Further research is needed to explore site-specific P management for sustainable crop production.
Collapse
Affiliation(s)
- Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Iqbal
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sajida Hameed
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Niaz Ahmad
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Abdul Majeed
- Sugarcane Research Institute, Ayub Agricultural Research Institute Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
42
|
Yang L, Wu Y, Wang Y, An W, Jin J, Sun K, Wang X. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143657. [PMID: 33250256 DOI: 10.1016/j.scitotenv.2020.143657] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 05/26/2023]
Abstract
As a promising soil amendment, biochar has demonstrated its potential for influencing soil nutrient transformations. The effects of biochar on soil phosphorus (P) transformations have received much less attention than its effects on carbon cycling. A review of the literature reveals that biochar applications to soils may have notable effects on the abundance, speciation, availability, and leaching loss of soil P. However, a comprehensive and systematic understanding of the biochar-induced environmental behavior of soil P has not been obtained so far. Therefore, in this review, we analyzed and identified the known and potential mechanisms through which biochar affects P behavior in soils: (1) biochar as a source of P provides soluble and exchangeable P to soil; (2) biochar enhances the availability of endogenic soil P by influencing P-related complexation and metabolism effects; and (3) biochar affects P leaching losses directly or indirectly by adsorbing P, improving P retention by soil, and facilitating P assimilation by plants. By presenting a broad and detailed illustration of P behaviors in biochar-amended soils, this paper suggests that the application of biochar to soils will help enlarge soil P pools, increase soil P availability, and decrease P leaching losses from soil. Additional studies are needed to further elucidate the long-term effects of biochar addition on soil P transformations, explore how biochar-derived dissolved organic matter (BDOM) affects the mobility and availability of soil mineral-associated P, and examine the transport of particulate P in biochar-amended soils.
Collapse
Affiliation(s)
- Lu Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yunchao Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yichu Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Weiqi An
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
43
|
Mukhopadhyay R, Sarkar B, Jat HS, Sharma PC, Bolan NS. Soil salinity under climate change: Challenges for sustainable agriculture and food security. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111736. [PMID: 33298389 DOI: 10.1016/j.jenvman.2020.111736] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 05/27/2023]
Abstract
Soil salinity is one of the major and widespread challenges in the recent era that hinders global food security and environmental sustainability. Worsening the situation, the harmful impacts of climate change accelerate the development of soil salinity, potentially spreading the problem in the near future to currently unaffected regions. This paper aims to synthesise information from published literature about the extent, development mechanisms, and current mitigation strategies for tackling soil salinity, highlighting the opportunities and challenges under climate change situations. Mitigation approaches such as application of amendments, cultivation of tolerant genotypes, suitable irrigation, drainage and land use strategies, conservation agriculture, phytoremediation, and bioremediation techniques have successfully tackled the soil salinity issue, and offered associated benefits of soil carbon sequestration, and conservation and recycling of natural resources. These management practices further improve the socio-economic conditions of the rural farming community in salt-affected areas. We also discuss emerging reclamation strategies such as saline aquaculture integrated with sub surface drainage, tolerant microorganisms integrated with tolerant plant genotypes, integrated agro-farming systems that warrant future research attention to restore the agricultural sustainability and global food security under climate change scenarios.
Collapse
Affiliation(s)
- Raj Mukhopadhyay
- ICAR- Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Hanuman Sahay Jat
- ICAR- Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | | | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, 2308, Australia
| |
Collapse
|
44
|
Xu Y, Song Z, Chang X, Guo Z, Gao M. Effects of Fe-Mn oxide-modified biochar composite applications on phthalate esters (PAEs) accumulation in wheat grains and grain quality under PAEs-polluted brown soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111624. [PMID: 33396144 DOI: 10.1016/j.ecoenv.2020.111624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Phthalate esters (PAEs), such as dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), are used extensively as additives and plasticizers, and have become ubiquitous in the environment. PAEs in the soil could have adverse effects on crop plants as well as humans via accumulations in food chain. Thus, it is important to explore strategies to reduce the bioavailability of phthalate esters. We investigated the effects of Fe-Mn oxide-modified biochar composite (FMBC) applications on the quality of wheat grown in DBP- and DEHP-polluted brown soil. The application of FMBC and biochar (BC) increased the wheat grain biomass by 9.71-223.01% and 5.40-120.15% in the DBP-polluted soil, and 10.52-186.21% and 4.50-99.53% in the DEHP-spiked soil in comparison to the controls. All FMBC treatments were better than the BC treatments, in terms of decreasing DBP and DEHP bioavailability for the wheat grains. The activities of the glutamine synthetase and glutamic-pyruvic transaminase in the flag leaves at the filling stage and of granule-bound starch synthase, soluble starch synthase, and adenosine diphosphate-glucose pyrophosphorylase in the grains at maturity increased significantly with increases in either the BC or FMBC applications. This, in turn, increased the starch, protein, and amino acid content in the wheat grains. Compared with the BC treatment, the FMBC amendment induced only slight increases in the aforementioned factors. This study offers novel insights into potential strategies for decreasing PAEs bioavailability in soil, with potential positive implications for crop quality and environmental health improvements.
Collapse
Affiliation(s)
- Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China
| | - Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zeyang Guo
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China.
| |
Collapse
|
45
|
Cai JF, Zhang L, Zhang Y, Zhang MX, Li HL, Xia HJ, Kong WJ, Yu FH. Remediation of cadmium-contaminated coastal saline-alkaline soil by Spartina alterniflora derived biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111172. [PMID: 32846300 DOI: 10.1016/j.ecoenv.2020.111172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Following oil extraction in the wetland of the Yellow River Delta, heavy metal contamination of coastal saline-alkaline soil, especially with cadmium (Cd), has become a serious environmental problem in some regions. Biochar application has been proposed to remedy Cd-contaminated soil, but the remediation effect is related to preparation conditions of biochar (e.g., pyrolysis temperature and raw material) and soil properties. The invasive plant, Spartina alterniflora, produces a high amount of biomass, making it suitable for biochar production in coastal China. We investigated the effect of S. alterniflora-derived biochar (SDB) pyrolyzed at four temperatures (350, 450, 550, and 650 °C) crossed with three addition ratios (1, 5, and 10%) and control on Cd contamination of coastal saline-alkaline soil. Pyrolysis temperature affected pH, surface area, and functional groups of SDB. SDB markedly improved soil pH and soil organic matter, but the degree of improvement was affected by pyrolysis temperature and addition ratio. SDB significantly altered available Cd content in soil, but reduced it only at low pyrolysis temperatures (350 and 450 °C). Available Cd content had a positive correlation with soil pH (R2 = 0.298, P < 0.01), but was not related to salinity and soil organic matter content. Thus, SDB pyrolyzed at 350 °C with 5% addition was optimal for passivating Cd in coastal saline-alkaline soil, since available Cd content in soil decreased mostly (by 26.9%). These findings act as a reference for the development of an application strategy for SDB to ameliorate Cd-contaminated coastal saline-alkaline soil.
Collapse
Affiliation(s)
- Jing-Fang Cai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Li Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yu Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ming-Xiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Li Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Hui-Juan Xia
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei-Jing Kong
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fei-Hai Yu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
46
|
Ibrahim MM, Tong C, Hu K, Zhou B, Xing S, Mao Y. Biochar-fertilizer interaction modifies N-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140065. [PMID: 32758953 DOI: 10.1016/j.scitotenv.2020.140065] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The impact of the excessive use of N fertilizer remains an environmental problem of global concern. The effect of biochar on soil N retention is still unclear, and knowledge on how a mixture of biochar and fertilizer (B-F) influence N-sorption, N-cycling enzymes activities, diversity and functional abundance of organisms regulating N-retention in rhizosphere soil is poorly understood. Therefore, biochars derived from bamboo, rice straw, cow and pig manure were characterized, and their interactions with NPK fertilizer were evaluated. Results showed that while the effect of biochar on N retention varied among biochar types, such variations increased after B-F. Unlike NH4+ retention, NO3- retention by biochar in fertilized soil was poor (<8 weeks), but were however increased after longer periods (15 weeks) in B-F due to plant uptake, sorption and stimulation of N-cycling enzymes activities. This stimulation proved that N-fertilizer provided substrates for N-cycling organisms which was confirmed by the dominance of Proteobacteria, Chloroflexi, Actinobacteria, and Gemmatimonadetes which are important in soil N-cycling, despite the reductions in total diversity, class, phyla and genera abundance of bacterial 16SrRNA genes by B-F. This suggested that B-F induced specific organisms involved in N-cycling, which out-competed other organisms not involved in N-cycling. The provision of substrates by N-fertilizer in B-F for bacterial groups involved in N-cycling modified the rhizosphere microbial structure. The abundance of N-cycling organisms was regulated by the persistence among dominant groups, soil pH, total N, and microbial colonization induced by different biochars interacting with fertilizer which led to enhanced N-retention.
Collapse
Affiliation(s)
- Muhammed Mustapha Ibrahim
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China; Department of Soil Science, University of Agriculture Makurdi, P.M.B, 2373, Makurdi, Nigeria
| | - Chenxiao Tong
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Kun Hu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Biqing Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Shihe Xing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Yanling Mao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
47
|
Cao D, Chen W, Yang P, Lan Y, Sun D. Spatio-temporal variabilities of soil phosphorus pool and phosphorus uptake with maize stover biochar amendment for 5 years of maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36350-36361. [PMID: 32556987 DOI: 10.1007/s11356-020-09716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus reuse by application of biochar is a recent concept that needs to be supported by long-term field data. To monitor biochar's long-term effects on P turnover, one-off biochar was applied in 2013 with mineral NPK fertilizers being applied every year since then. Biochar application rates included 0 t ha-1 (CK), 15.75 t ha-1 (BC1), 31.5 t ha-1 (BC2), and 47.25 t ha-1 (BC3). Over the 5 years' field experiment, P distribution in soil profile, inorganic and organic P fractions in bulk, and rhizosphere soil and maize P uptake were determined. The results showed that biochar reduced the inorganic P fractions (Ca2-P, Ca8-P, Al-P, Fe-P and O-P by 4.8-33.7%, 8.8-59.0%, 13.7-28.6%, 8.4-17.6%, and 3.3-25.5%, respectively), and increased organic P fractions (MLOP and HROP by 67.2-11.6% and 18.8-87.7%, respectively) in bulk soil, while in rhizosphere soil, Fe-P and MLOP were decreased by 13.4-34.5% and 67.2-111.6%, respectively, in 2017. After the application of biochar for 5 years, moderately labile organic phosphorus (MLOP), moderately resistant organic phosphorus (MROP), and highly resistant organic phosphorus (HROP) with different biochar treatments were enhanced by 12.8-42.7%, 20.1-48.0%, and 5.5-66.6%, respectively, but Ca8-P, Al-P, O-P, and Ca10-P were all decreased by 18.6-24.9%, 16.4-21.4%, and 3.3-23.48%, respectively. Total P storage in 0-100 cm was declined by biochar. Increases in maize P uptake in the stover (38.6-71.3%) and grain (20.9-25.5%) were occurred after 31.5 t ha-1 and 47.25 t ha-1 biochar addition. To sum up, biochar is found to regulate the distribution, storage, and transformation of soil P, which lead to increase in maize P uptake.
Collapse
Affiliation(s)
- Dianyun Cao
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Biochar Engineering & Technology Research Center, Shenyang, 110866, China
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Biochar Engineering & Technology Research Center, Shenyang, 110866, China
| | - Ping Yang
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China.
- Liaoning Agricultural Information Technology Center, Shenyang, 110866, China.
| | - Yu Lan
- Agronomy College, Shenyang Agricultural University, Shenyang, 110866, China.
- Liaoning Biochar Engineering & Technology Research Center, Shenyang, 110866, China.
| | - Daquan Sun
- College of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
- Biology Center, Institute of Soil Biology & SoWa Research Infrastructure, Czech Academy of Science, Na Sadkach 7, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
48
|
Liu M, Zhao Z, Chen L, Wang L, Ji L, Xiao Y. Influences of arbuscular mycorrhizae, phosphorus fertiliser and biochar on alfalfa growth, nutrient status and cadmium uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110537. [PMID: 32272346 DOI: 10.1016/j.ecoenv.2020.110537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
The objective of the study was to explore the influences of arbuscular mycorrhizae (AM), phosphorus (P) fertiliser, biochar application (BC) and their interactions on Medicago sativa growth, nutrient, Cd content and AM fungi-plant symbioses. Applications of both P fertiliser and BC significantly increased total biomass and P and potassium (K) uptake, regardless of AM. When no P fertiliser or BC was used, the shoot biomass and nitrogen (N), P, and K contents in the +AM treatments were 1.39, 1.54, 4.53 and 2.06 times higher than those in the -AM treatments, respectively. AM fungi only elevated the total P uptake by 44.03% when P fertiliser was applied at a rate of 30 mg P kg-1 in the absence of BC addition. With BC application or high-P fertiliser input (100 mg P kg-1), the soil available P was significantly higher than that in the other treatments, and AM fungi significantly reduced the shoot biomass. The minimum Cd concentration occurred in the shoots of alfalfas treated with BC and high-P fertiliser inputs; this concentration was lower than the maximum permitted concentration in China. Although the BC and high-P inputs could eliminate the positive mycorrhizal response, the results suggested that BC application in combination with high-P fertiliser input could not only increase forage yields but also lower Cd concentrations to meet the forage safety standards by the dilution effect.
Collapse
Affiliation(s)
- Mohan Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhuojun Zhao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lu Chen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Leqi Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lingzhen Ji
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Xiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
49
|
Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Sci Rep 2020; 10:8946. [PMID: 32488113 PMCID: PMC7265530 DOI: 10.1038/s41598-020-65730-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/06/2020] [Indexed: 11/15/2022] Open
Abstract
China with large area of land planted with crops are suffering secondary salinization in coastal area for the lack of fresh water and saltwater intrusion to the groundwater. The purpose of this study was to investigate the effects of biochar (BC) and fulvic acid (FA) on the amelioration of coastal saline soil and their impact on crop yields under maize-barley rotation system. A three year field experiment was conducted in a saline soil on a farm in coastal area of east Jiangsu Province, China. A maize-barley rotation system had been carried out for ten years with local conventional management before the experiment. The saline soil was amended with BC at rates of 0, 7.5 t ha−1 (BC1), 15 t ha−1 (BC2) and 30 t ha−1 (BC3) alone or combined with fulvic acid (1.5 t ha−1) compared with control. Fertilizers were applied under normal planting strategies. The BC was added only once during the four growing seasons, and the FA was applied before each sowing. Soil salinity changed significantly during the three year field experiment. This was mainly due to the great quantity of rain during the period of maize cultivation. Although Na+, Cl− and SO42− in BC and /or FA treatments significantly decreased, the pH value increased up to 9.0 as the CO32− + HCO3−content increased. Total organic carbon (TOC) and phosphorus (TP) responded positively to biochar addition rate. BC applied with appropriate rate at 15 t ha−1 (BC2) in combination with FA showed optimal effects on soil salinity amelioration, soil physics properties regulation, soil nutrition improvement and crop yields increase. The TOC and TP was 5.2 g kg−1 and 507 mg kg−1 in BC2 + FA treatment, which were lower than BC3 and BC3 + FA treatments. However, the highest total grain yield was obtained in the BC2 + FA treatment, and the total yield was increased by 62.9% over the CK. This study emphasizes that using combined organic amendment of BC with FA for profitable and sustainable use of salt-affected soils would be practicable.
Collapse
|
50
|
Wu L, Zhang S, Wang J, Ding X. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column and field tests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114223. [PMID: 32109821 DOI: 10.1016/j.envpol.2020.114223] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Iron oxide-biochar composites have been widely used in removal of phosphate from water, however, their effects on phosphorus retention and decrease leaching are unclear in saline-alkaline soils. We utilized rice straw-derived biochar modified with ferrous chloride (Fe(II)) and ferric chloride (Fe(III)) to study the potential mechanisms of phosphorus retention and leaching under field conditions. Results showed that the Fe(II) biochar exhibited superior phosphate adsorption capacity (39.2 mg g-1) over the unmodified. In addition, Fe(III) biochar was relatively insensitive to pH and competed anions. This might be due to iron in Fe(II) biochar that exists primarily in an amorphous state as FeOOH, which enhanced its ability to adsorb phosphate because it has high isoelectric points. Crystals of Fe2PO5 and (PO3)3 were formed in the Fe(II) and Fe(III) biochars, respectively. Electrostatic attraction and ligand exchange contributed to phosphate adsorption. In the column leaching experiments, all treatments were found to significantly increase the phosphorus content in 0-20 cm soil compared to Control, especially with Fe(II) biochar amendment. Fe(II) biochar decreased leaching by 86.4%. In the field experiments, Fe(II) and Fe(III) biochar increased the available phosphorus by 78.6% and 90.3%, respectively. Overall, application of iron modified biochar to saline-alkaline soils promoted phosphorus adsorption and decreased leaching.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shirong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaodong Ding
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|