1
|
Tang W, Wu M, Li P, Zhong H. Demethylation by Reactive Oxygen Species Lowers Methylmercury Accumulation in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8775-8783. [PMID: 40181763 DOI: 10.1021/acs.jafc.5c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
It is a paradox that the accumulation of neurotoxic methylmercury (MeHg) in rice is generally low despite efficient MeHg production in paddies and absorption by rice plants. Because rice-paddy systems are conducive to reactive oxygen species (ROS) generation and ROS have recently been revealed to efficiently demethylate MeHg absorbed in autotrophs, we propose that ROS, generated in soils and plants, are significant yet overlooked drivers that lower MeHg accumulation in rice. ROS-mediated demethylation in both soils and rice plants is estimated to have reduced rice MeHg by 84%, highlighting the importance of these overlooked drivers in safeguarding global rice consumers.
Collapse
Affiliation(s)
- Wenli Tang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| |
Collapse
|
2
|
Tang W, Zhong H. Developing Methylmercury-Targeted Strategies to Safeguard Rice Consumers. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:213-217. [PMID: 40144321 PMCID: PMC11934198 DOI: 10.1021/envhealth.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 03/28/2025]
Abstract
Mitigating mercury (Hg) risk in the rice-paddy system is crucial for safeguarding food safety and human health, as rice is a main source of human exposure to neurotoxic methylmercury (MeHg). Current mitigation strategies predominantly focus on reducing the availability of inorganic Hg (IHg) for Hg methylation, achieved primarily through Hg emission control and in situ Hg immobilization. While these IHg-targeted approaches have effectively reduced MeHg bioaccumulation and subsequent human exposure, their efficacy is largely undermined by Hg transformations and fluctuating environmental conditions due to the complex and protracted pathway linking IHg from environmental sources to MeHg at the point of human exposure. In light of recent advancements in MeHg-related transformations, we emphasize the development of MeHg-targeted strategies to improve the overall efficiency of Hg risk management in rice-paddy systems. MeHg-targeted strategies include microbial regulation to diminish net MeHg production, facilitating MeHg demethylation in soils, and promoting the in vivo MeHg degradation within rice plants. Although these approaches are still in their nascent stages, they hold significant promise due to their potential high mitigation efficacy and reduced uncertainties, owing to the shorter pathway between MeHg production and human exposure. Integrating IHg- and MeHg-targeted strategies offers a comprehensive and synergistic approach, paving the way for more effective mitigation of human exposure to MeHg in rice-paddy systems.
Collapse
Affiliation(s)
- Wenli Tang
- School of Environment, Nanjing
University, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing, Jiangsu Province 210023, China
| | - Huan Zhong
- School of Environment, Nanjing
University, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
3
|
Li Y, Sun R, Lin G, Sun P, Shi X, Li Y, Gao Y, Zhao J. Mitigating Mercury Accumulation and Enhancing Methylmercury Degradation in Rice: Insights from Zinc-Mercury Antagonism at Molecular Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25895-25904. [PMID: 39508478 DOI: 10.1021/acs.jafc.4c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Zn as an essential element has the potential to protect against mercury (Hg) toxicity in rice. However, the antagonistic effects between Zn and Hg in rice and their mechanisms remain unknown. This study proposed a promising strategy for Zn application to mitigate Hg accumulation and toxicity in rice and revealed the underlying molecular mechanisms. The findings revealed that Zn supplementation significantly reduced the uptake and transportation of both IHg and MeHg in rice, thereby alleviating Hg phytotoxicity. In particular, Zn profoundly mitigated Hg-induced oxidative damage to rice, which was attributed to the redistribution of Hg and Zn in the root and Zn competing for binding sites on glutathione. The co-binding of Zn2+ and HgCH3+ within the same active sites of Zn transporters can promote the transfer of regions with a high charge density distribution at the highest occupied molecular orbital (HOMO) level. This process facilitates proton attack on the Hg-C bond, thereby enhancing MeHg demethylation in rice. By elucidating the molecular mechanisms of Zn, IHg, and MeHg interactions in rice, this study offers new insights for developing efficient strategies to mitigate Hg risks while boosting the Zn content in crops, thereby fortifying food safety.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Ruiyang Sun
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoming Lin
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Peipei Sun
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xueqian Shi
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yufeng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
4
|
Zhao Q, Liu H, Wu L, Christie P, Wang X, Rasool G, Peng G. Metal(loid) uptake and physiological response of Coix lacryma-jobi L. to soil potentially toxic elements in a polluted metal-mining area. Sci Rep 2024; 14:18833. [PMID: 39138343 PMCID: PMC11322300 DOI: 10.1038/s41598-024-69652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Coix lacryma-jobi L. is a traditional medicinal plant in east Asia and is an important crop in Guizhou province, southwest China, where there are elevated levels of soil mercury and arsenic (As). Exposure to multiple potentially toxic elements (PTEs) may affect plant accumulation of metal(loid)s and food safety in regions with high geological metal concentrations. Field experiments were conducted to study the effects of PTEs on metal(loid) accumulation and physiological response of C. lacryma in different plant parts at three pollution levels. Total root length, number of root tips, number of branches, and number of root crosses increased with increasing pollution level, with increases in highly polluted areas of 44.2, 57.0, 79.6, and 97.2%, respectively, compared to lightly polluted areas. Under multi-element stress the activity of C. lacryma antioxidant oxidase showed an increase at low and medium PTE concentrations and inhibition at high concentrations. The As contents were all below the maximum limit of cereal food contaminants in China (GB 2762-2022, As < 0.5 mg kg-1). The stems had high Tl bioconcentration factors but the translocation factors from stem to grain were very low, indicating that the stems may be a key plant part restricting Tl transport to the grains. C. lacryma increased root retention and reduced the transport effect, thus reducing metal accumulation in the grains. C. lacryma adapted to PTE stress through root remodeling and enhanced antioxidant enzyme activities.
Collapse
Affiliation(s)
- Qun Zhao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Geological Resources and Environment of Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Peter Christie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Xuewen Wang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ghulam Rasool
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Guilan Peng
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Sánchez-Fortún M, Carrasco JL, Díez S, Amouroux D, Tessier E, López-Carmona S, Sanpera C. Temporal mercury dynamics throughout the rice cultivation season in the Ebro Delta (NE Spain): An integrative approach. ENVIRONMENTAL RESEARCH 2024; 250:118555. [PMID: 38412914 DOI: 10.1016/j.envres.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
During the last few decades, inputs of mercury (Hg) to the environment from anthropogenic sources have increased. The Ebro Delta is an important area of rice production in the Iberian Peninsula. Given the industrial activity and its legacy pollution along the Ebro river, residues containing Hg have been transported throughout the Ebro Delta ecosystems. Rice paddies are regarded as propitious environments for Hg methylation and its subsequent incorporation to plants and rice paddies' food webs. We have analyzed how Hg dynamics change throughout the rice cultivation season in different compartments from the paddies' ecosystems: soil, water, rice plants and fauna. Furthermore, we assessed the effect of different agricultural practices (ecological vs. conventional) associated to various flooding patterns (wet vs. mild alternating wet and dry) to the Hg levels in rice fields. Finally, we have estimated the proportion of methylmercury (MeHg) to total mercury in a subset of samples, as MeHg is the most bioaccumulable toxic form for humans and wildlife. Overall, we observed varying degrees of mercury concentration over the rice cultivation season in the different compartments. We found that different agricultural practices and flooding patterns did not influence the THg levels observed in water, soil or plants. However, Hg concentrations in fauna samples seemed to be affected by hydroperiod and we also observed evidence of Hg biomagnification along the rice fields' aquatic food webs.
Collapse
Affiliation(s)
- Moisès Sánchez-Fortún
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| | - Josep Lluís Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Sophie López-Carmona
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; UFR Sciences et Techniques, Université de Nantes, Nantes, France.
| | - Carola Sanpera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Kitowski I, Łopucki R, Wiącek D, Pitucha G, Sujak A, Jakubas D. Concentration of metals and metalloids in livers of birds of various foraging guilds collected during the autumn migration period in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21913-21934. [PMID: 38400961 DOI: 10.1007/s11356-024-32502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
During migration, birds explore various habitats at stopover sites that differ in food resources and contamination levels. In this study, hepatic concentrations of 21 elements (metals and metalloids) in 11 species of birds, representing various foraging habitats (such as aquatic, aquatic/terrestrial, and terrestrial) and migration modes (migratory and sedentary) representing various foraging guilds (omnivores, piscivores, and molluscivores), were analyzed. The samples (N = 84) were collected during the autumn migration period in Poland. The concentrations of elements determined in this study exhibited high inter-species variability, reflecting the diversity in contamination levels depending on food resources used by specific bird groups. Many of the investigated individuals from different species showed exceeded levels of subclinical toxicity and moderate clinical poisoning due to Cd and Hg. Higher concentrations of As, Hg, and Ba and lower V concentrations were found in migratory birds as compared to sedentary birds. Species foraging in terrestrial habitat had different concentrations of some elements compared to aquatic and aquatic/terrestrial species. Some specific inter-species differences in hepatic elemental concentrations were found. Differences in elemental concentrations among various groups can primarily be attributed to their foraging guilds, with certain elements, particularly As, V, and Hg, playing a significant role in the dissimilarity of elemental concentrations between foraging habitat groups and migratory mode groups. The data collected confirmed the limited ability of As to enter ecosystem pathways. The results of this study contribute to understanding the year-round exposure of migratory birds to environmental contamination, which can have carry-over effects on their performance in wintering and breeding grounds.
Collapse
Affiliation(s)
- Ignacy Kitowski
- University College of Applied Sciences in Chełm, Pocztowa 54, 22-100, Chełm, Poland
| | - Rafał Łopucki
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| | - Dariusz Wiącek
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Grzegorz Pitucha
- Biodiversity Laboratory, Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszów, Ćwiklińskiej 1A, 35-601, Rzeszów, Poland
| | - Agnieszka Sujak
- Department of Biosystem Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627, Poznań, Poland.
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
7
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
8
|
Tang W, Bai X, Zhou Y, Sonne C, Wu M, Lam SS, Hintelmann H, Mitchell CPJ, Johs A, Gu B, Nunes L, Liu C, Feng N, Yang S, Rinklebe J, Lin Y, Chen L, Zhang Y, Yang Y, Wang J, Li S, Wu Q, Ok YS, Xu D, Li H, Zhang XX, Ren H, Jiang G, Chai Z, Gao Y, Zhao J, Zhong H. A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains. NATURE FOOD 2024; 5:72-82. [PMID: 38177223 DOI: 10.1038/s43016-023-00910-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.
Collapse
Affiliation(s)
- Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Xu Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark.
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Holger Hintelmann
- Department of Chemistry and School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luís Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Naixian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Wuppertal, Germany
| | - Yan Lin
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Jiaqi Wang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Diandou Xu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hong Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xu-Xiang Zhang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Hongqiang Ren
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China.
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China.
- Department of Environmental Science, Zhejiang University, Hangzhou, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China.
| |
Collapse
|
9
|
Hao Z, Zhao L, Liu J, Pu Q, Chen J, Meng B, Feng X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167601. [PMID: 37832685 DOI: 10.1016/j.scitotenv.2023.167601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The accumulation of methylmercury (MeHg) in paddy soil results from a subtle balance between inorganic mercury (e.g., HgII) methylation and MeHg demethylation. Methanogens not only act as Hg methylators but may also facilitate MeHg demethylation. However, the diverse methanogen flora (e.g., aceticlastic and hydrogenotrophic types) that exists under ambient conditions has not previously been considered. Accordingly, the roles of different types of methanogens in HgII methylation and MeHg degradation in paddy soils were studied using the Hg isotope tracing technique combined with the application of methanogen inhibitors/stimulants. It was found that the response of HgII methylation to methanogen inhibitors or stimulants was site-dependent. Specifically, aceticlastic methanogens were suggested as the potential HgII methylators at the low Hg level background site, whereas hydrogenotrophic methanogens were potentially involved in MeHg production as Hg levels increased. In contrast, both aceticlastic and hydrogenotrophic methanogens facilitated MeHg degradation across the sampling sites. Additionally, competition between hydrogenotrophic and aceticlastic methanogens was observed in Hg-polluted paddy soils, implying that net MeHg production could be alleviated by promoting aceticlastic methanogens or inhibiting hydrogenotrophic methanogens. The findings gained from this study improve the understanding of the role of methanogens in net MeHg formation and link carbon turnover to Hg biogeochemistry in rice paddy ecosystems.
Collapse
Affiliation(s)
- Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Du S, Wang X, Zhou Z, Zhang T, Kamran M, Ding C. Controlling Factors and Predictive Models of Total Mercury and Methylmercury Accumulation in Rice (Oryza sativa L.) from Mercury-Contaminated Paddy Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:5. [PMID: 37349509 DOI: 10.1007/s00128-023-03766-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
It is urgent to detect the major controlling factors and establish predictive models of mercury (Hg) accumulation in rice. A pot trial was conducted, exogenous Hg was added to 19 paddy soils at 4 concentration levels in this study. The major controlling factors of total Hg (THg) in brown rice were soil THg, pH and organic matter (OM) content, while those of methylmercury (MeHg) in brown rice were soil MeHg and OM. THg and MeHg in brown rice could be well predicted by soil THg, pH and clay content. The data from previous studies were collected to validate the predictive models of Hg in brown rice. The predicted values of Hg in brown rice were within the twofold prediction intervals of the observations, which demonstrated the predictive models in this study were reliable. The results could provide theoretical foundation for the risk assessment of Hg in paddy soils.
Collapse
Affiliation(s)
- Shuyang Du
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Hunan Ecological and Environmental Monitoring Center, Changsha, 410082, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Taolin Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Muhammad Kamran
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Liu J, Chen J, Poulain AJ, Pu Q, Hao Z, Meng B, Feng X. Mercury and Sulfur Redox Cycling Affect Methylmercury Levels in Rice Paddy Soils across a Contamination Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8149-8160. [PMID: 37194595 PMCID: PMC10234277 DOI: 10.1021/acs.est.3c02676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Methylmercury (MeHg) contamination in rice via paddy soils is an emerging global environmental issue. An understanding of mercury (Hg) transformation processes in paddy soils is urgently needed in order to control Hg contamination of human food and related health impacts. Sulfur (S)-regulated Hg transformation is one important process that controls Hg cycling in agricultural fields. In this study, Hg transformation processes, such as methylation, demethylation, oxidation, and reduction, and their responses to S input (sulfate and thiosulfate) in paddy soils with a Hg contamination gradient were elucidated simultaneously using a multi-compound-specific isotope labeling technique (200HgII, Me198Hg, and 202Hg0). In addition to HgII methylation and MeHg demethylation, this study revealed that microbially mediated reduction of HgII, methylation of Hg0, and oxidative demethylation-reduction of MeHg occurred under dark conditions; these processes served to transform Hg between different species (Hg0, HgII, and MeHg) in flooded paddy soils. Rapid redox recycling of Hg species contributed to Hg speciation resetting, which promoted the transformation between Hg0 and MeHg by generating bioavailable HgII for fuel methylation. Sulfur input also likely affected the microbial community structure and functional profile of HgII methylators and, therefore, influenced HgII methylation. The findings of this study contribute to our understanding of Hg transformation processes in paddy soils and provide much-needed knowledge for assessing Hg risks in hydrological fluctuation-regulated ecosystems.
Collapse
Affiliation(s)
- Jiang Liu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Ji Chen
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- College
of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Alexandre J. Poulain
- Biology
Department, University of Ottawa, 30 Marie Curie, Ottawa ON K1N 6N5, Canada
| | - Qiang Pu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhengdong Hao
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Meng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Xinbin Feng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
12
|
Li Y, Dai SS, Zhao J, Hu ZC, Liu Q, Feng J, Huang Q, Gao Y, Liu YR. Amendments of nitrogen and sulfur mitigate carbon-promoting effect on microbial mercury methylation in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130983. [PMID: 36860084 DOI: 10.1016/j.jhazmat.2023.130983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The imbalance of nutrient elements in paddy soil could affect biogeochemical processes; however, how the key elements input influence microbially-driven conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains virtually unknown. Herein, we conducted a series of microcosm experiments to explore the effects of certain species of carbon (C), nitrogen (N) and sulfur (S) on microbial MeHg production in two typical paddy soils (yellow and black soil). Results showed that the addition of C alone into the soils increased MeHg production approximately 2-13 times in the yellow and black soils; while the combined addition of N and C mitigated the C- promoting effect significantly. Added S also had a buffering effect on C-facilitated MeHg production in the yellow soil despite the extent being lower than that of N addition, whereas this effect was not obvious for the black soil. MeHg production was positively correlated with the abundance of Deltaproteobactera-hgcA in both soils, and the changes in MeHg production were related to the shifts of Hg methylating community resulting from C, N, and S imbalance. We further found that the changes in the proportions of dominant Hg methylators such as Geobacter and some unclassified groups could contribute to the variations in MeHg production under different treatments. Moreover, the enhanced microbial syntrophy with adding N and S might contribute to the reduced C-promoting effect on MeHg production. This study has important implications for better understanding of microbes-driven Hg conversion in paddies and wetlands with nutrient elements input.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Shu-Shen Dai
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhi-Cheng Hu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Zhang J, Li C, Tang W, Wu M, Chen M, He H, Lei P, Zhong H. Mercury in wetlands over 60 years: Research progress and emerging trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161862. [PMID: 36716881 DOI: 10.1016/j.scitotenv.2023.161862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Wetlands are considered the hotspots for mercury (Hg) biogeochemistry, garnering global attention. Therefore, it is important to review the research progress in this field and predict future frontiers. To achieve that, we conducted a literature analysis by collecting 15,813 publications about Hg in wetlands from the Web of Science Core Collection. The focus of wetland Hg research has changed dramatically over time: 1) In the initial stage (i.e., 1959-1990), research mainly focused on investigating the sources and contents of Hg in wetland environments and fish. 2) For the next 20 years (i.e., 1991-2010), Hg transformation (e.g., Hg reduction and methylation) and environmental factors that affect Hg bioaccumulation have attracted extensive attention. 3) In the recent years of 2011-2022, hot topics in Hg study include microbial Hg methylators, Hg bioavailability, methylmercury (MeHg) demethylation, Hg stable isotope, and Hg cycling in paddy fields. Finally, we put forward future research priorities, i.e., 1) clarifying the primary factors controlling MeHg production, 2) uncovering the MeHg demethylation process, 3) elucidating MeHg bioaccumulation process to better predict its risk, and 4) recognizing the role of wetlands in Hg circulation. This research shows a comprehensive knowledge map for wetland Hg research and suggests avenues for future studies.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
14
|
Li X, Zhou M, Shi F, Meng B, Liu J, Mi Y, Dong C, Su H, Liu X, Wang F, Wei Y. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa L.): From enriched isotope tracing perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114776. [PMID: 36931088 DOI: 10.1016/j.ecoenv.2023.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The microorganisms that co-exist between soil and rice systems in heavy metal-contaminated soil environments play important roles in the heavy metal pollution states of rice, as well as in the growth of the rice itself. In this study, in order to further examine the effects of soil microorganisms on the mercury (Hg) uptake of rice plants and determine potential soil phytoremediation agents, an enriched 199Hg isotope was spiked in a series of pot experiments to trace the absorption and migration of Hg and rice growth in the presence of arbuscular mycorrhizal fungi (AMF). It was observed that the AMF inoculations significantly reduced the Hg concentration in the rice. The Hg concentration in rice in the AMF inoculation group was between 52.82% and 96.42% lower than that in the AMF non-inoculation group. It was also interesting to note that the presence of AMF tended to cause Hg (especially methyl-Hg (Me199Hg)) to migrate and accumulate in the non-edible parts of the rice, such as the stems and leaves. Under the experimental conditions selected in this study, the proportion of Me199Hg in rice grains decreased from 9.91% to 27.88%. For example, when the exogenous Hg concentration was 0.1 mg/kg, the accumulated methyl-Hg content in the grains of the rice in the AMF inoculation group accounted for only 20.19% of the Me199Hg content in the rice plants, which was significantly lower than that observed in the AMF non-inoculated group (48.07%). AMF also inhibited the absorption of Hg by rice plants, and the decrease in the Hg concentration levels in rice resulted in significant improvements in growth indices, including biomass and micro-indexes, such as antioxidant enzyme activities. The improvements occurred mainly because the AMF formed symbiotic structures with the roots of rice plants, which fixed Hg in the soil. AMF also reduce the bioavailability of Hg by secreting a series of substances and changing the physicochemical properties of the rhizosphere soil. These findings suggest the possibility of using typical co-existing microorganisms for the remediation of soil heavy metal contamination and provide valuable insights into reducing human Hg exposure through rice consumption.
Collapse
Affiliation(s)
- Xinru Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Feng Shi
- National Center for Science & Technology Evaluation, Beijing 100081, PR China
| | - Bo Meng
- Institute of Geochemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jiang Liu
- Institute of Geochemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Yidong Mi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Cuimin Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
15
|
Yao C, He T. Effect of peat and thiol-modified peat application on mercury (im)mobilization in mercury-polluted paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114743. [PMID: 36905846 DOI: 10.1016/j.ecoenv.2023.114743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) pollution in paddy soil has gained special attention because methylmercury (MeHg) can accumulate in rice grains. Therefore, there is an urgent need to explore the remediation materials of mercury-polluted paddy soil. In this study, herbaceous peat (HP), peat moss (PM), and thiol-modified HP/PM (MHP/MPM) were selected to investigate the effects and probable mechanism of their application on Hg (im)mobilization in mercury-polluted paddy soil through pot experiments. The results showed that HP, PM, MHP and MPM addition increased MeHg concentrations in the soil, indicating that the addition of peat and thiol-modified peat might increase the exposure risk of MeHg in soil. The addition of HP could significantly decrease the total mercury (THg) and MeHg concentrations in rice, with average reduction efficiencies of 27.44% and 45.97%, respectively, while adding PM slightly increased the THg and MeHg concentrations in rice. In addition, the addition of MHP and MPM significantly decreased the bioavailable Hg concentrations in the soil and THg and MeHg concentrations in rice, with reduction efficiencies of rice THg and MeHg of 79.14∼93.14% and 82.72∼93.87%, respectively, indicating that thiol-modified peat had good remediation potential. The possible mechanism is that Hg can bind with thiols in MHP/MPM and form steady compounds in the soil, reducing Hg mobility in the soil and inhibiting its uptake by rice. Our study showed the potential value of HP, MHP and MPM addition for Hg remediation. Additionally, we must weigh the pros and cons when adding organic materials as remediation agents to mercury-polluted paddy soil.
Collapse
Affiliation(s)
- Cong Yao
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environment, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
16
|
Xie H, He L, Tian X, Zhang W, Cui L, Shang L, Zhao J, Li B, Li YF. Nano mercury selenide as a source of mercury for rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120918. [PMID: 36563986 DOI: 10.1016/j.envpol.2022.120918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) is a persistent and toxic metal while mercury selenide (HgSe) is generally considered as the environmental sink of Hg in its biogeochemical cycle. Recent studies found nano-sized HgSe (nano-HgSe) could be transformed by certain bacteria. This raises safety concerns about the application of selenium (Se) to curb Hg contamination in farmlands. Therefore, hydroponic experiments were performed in which rice plants were cultured with different concentrations of nano-HgSe and micro-sized HgSe (micro-HgSe) to explore their bioavailability and toxicity. It was found that both nano-HgSe and micro-HgSe did not affect the germination of rice seeds but affected the growth of rice seedlings. However, nano-HgSe could be more readily absorbed by roots and transferred to the aboveground parts compared to micro-HgSe. The highest Hg and Se levels were found to be 5255.67 ± 2496.14 μg/g and 1743.75 ± 61.87 μg/g, respectively in roots when exposed to 5000 mg/L nano-HgSe. Besides, small portion (1.2%) of methylmercury (MeHg) to total Hg was found accumulated in rice stem when exposed to 100 mg/L nano-HgSe, suggesting that nano-HgSe could be decomposed. Furthermore, nano-HgSe exposure brought oxidative damage to rice with decreased chlorophyll content and GSH-Px activity. In all, nano-HgSe was found to be more absorbable, transportable and methylated in rice plant compared to micro-HgSe. This suggests that although Se application in Hg contaminated farmland is an effective way to reduce the bioavailability of Hg, the risk of the possible remobilization of HgSe should not be neglected. Besides, the finding that nano-HgSe can act as an environmental source of Hg for plants deepens the understanding of biogeochemical cycle of Hg. More works are required to study the factors affecting the formation of nano-HgSe in the environment and the mechanisms of Hg methylation in rice plants after exposure to nano-HgSe.
Collapse
Affiliation(s)
- Hongxin Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Xue Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China; Shandong Police College, Jinan, 250200, Shandong, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Hu H, Gao Y, Yu H, Xiao H, Chen S, Tan W, Tang J, Xi B. Mechanisms and biological effects of organic amendments on mercury speciation in soil-rice systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114516. [PMID: 36628877 DOI: 10.1016/j.ecoenv.2023.114516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) pollution is a well-recognized global environmental and health issue and exhibits distinctive persistence, neurotoxicity, bioaccumulation, and biomagnification effects. As the largest global Hg reservoir, the Hg cumulatively stored in soils has reached as high as 250-1000 Gg. Even more concerning is that global soil-rice systems distributed in many countries have become central to the global Hg cycle because they are both a major food source for more than 3 billion people worldwide and the central bridge linking atmospheric and soil Hg circulation. In this review, we discuss the form distribution, transformation, and bioavailability of Hg in soil-rice systems by focusing on the Hg methylation and demethylation pathways and distribution, uptake, and accumulation in rice plants and the effects of Hg on the community structure and ecological functions of microorganisms in soil-rice systems. In addition, we clarify the mechanisms through which commonly used humus and biochar organic amendments influence Hg and its environmental effects in soil-rice systems. The review also elaborates on the advantages of sulfur-modified biochars and their critical role in controlling Hg migration and bioavailability in soils. Finally, we provide key information about Hg pollution in soil-rice systems, which is of great significance for developing appropriate strategies and mitigation planning to limit Hg bioconcentration in rice crops and achieving key global sustainable development goals, such as the guarantee of food security and the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Hualing Hu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Shuhe Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Wang Y, Shang S, Li X, Chen S, Li R, Jia W, Deng H. Effect of Iron Plaque on Gaseous Elemental Mercury Uptake, Translocation, and Volatilization by Paddy Rice. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1155-1161. [PMID: 36169677 DOI: 10.1007/s00128-022-03617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Paddy rice is a typical wetland plant species, and mercury (Hg) accumulation in this rice has received much attention over the last two decades. The role of root iron plaque on rice Hg accumulation is not well understood. The effects of iron plaque on Hg0 uptake, translocation, and volatilization in rice seedlings were investigated under hydroponic conditions using different rice genotypes. After induction of iron plaque on rice roots with pretreatment solutions containing 0, 15 and 30 mg Fe2+L-1, rice seedlings were transplanted into specially designed airtight culture chambers, where roots were separated from the aerial parts and exposed to saturated Hg0 vapor. The results showed the following: (1) There were significant differences in the amount of iron plaque formed on the rice roots among the three genotypes. (2) A significant correlation was observed between the concentrations of Hg and Fe in the iron plaque of the root surface for the three genotypes (R2 = 0.933, p < 0.01). (3) Iron plaque may act as a barrier for Hg0 behavior, i.e., inhibiting the process of Hg0 uptake and translocation from the rhizosphere.
Collapse
Affiliation(s)
- Yanlin Wang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Shuai Shang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xin Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Sinan Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ran Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiwei Jia
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Hong Deng
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China.
- Institute of Eco-Chongming (IEC), Shanghai, 2002162, China.
| |
Collapse
|
19
|
Punshon T, Jackson BP, Donohue A, Hong C, Rothenberg SE. Distribution and accumulation of mercury in pot-grown African rice cultivars (Oryza glaberrima Steud. and Oryza sativa L.) determined via LA-ICP-MS. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4077-4089. [PMID: 34981270 PMCID: PMC9376884 DOI: 10.1007/s10653-021-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
There is limited information concerning the distribution of mercury in rice, particularly in African rice. The objective was to compare the distribution of total mercury (THg) and methylmercury (MeHg) in African rice (Oryza glaberrima Steud.) and Asian rice (O. sativa L.). It is hypothesized that increased mineral accumulation and greater stress tolerance in O. glaberrima will affect the uptake and distribution of THg and MeHg, compared to O. sativa. Rice varieties from the Republic of Mali, including O. glaberrima (n =1) and O. sativa (n = 2), were cultivated in a greenhouse, in mercury-spiked soil (50 mg/kg) (n =3 replicates/variety). THg and MeHg concentrations were analyzed in the grain (brown rice), and the THg distribution was analyzed using laser ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS). THg and MeHg concentrations did not differ between O. glaberrima and O. sativa grain. However, in both O. sativa varieties, THg was highly concentrated in the scutellum, which surrounds the embryo and is removed during polishing. Conversely, in O. glaberrima grain, THg was widely distributed throughout the endosperm, the edible portion of the grain. Differences in the THg distribution in O. glaberrima grain, compared to O. sativa, may elevate the risk of mercury exposure through ingestion of polished rice. The novelty of this study includes the investigation of a less-studied rice species (O. glaberrima), the use of a highly sensitive elemental imaging technique (LA-ICP-MS), and its finding of a different grain THg distribution in O. glaberrima than has been observed in O. sativa.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Hanover, New Hampshire, 03755, USA
| | | | - Alexis Donohue
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA
| | - Chuan Hong
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA
| | - Sarah E Rothenberg
- University of South Carolina, Arnold School of Public Health, Columbia, South Carolina, 29208, USA.
- College of Public Health and Human Sciences, Oregon State University, 103 Milam Hall, Corvallis, Oregon, 97331, USA.
| |
Collapse
|
20
|
Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156558. [PMID: 35710002 DOI: 10.1016/j.scitotenv.2022.156558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, can be formed, migrated and transformed in environmental compartments, accompanying with unique mass-dependent and mass-independent fractionation of mercury (Hg). These Hg isotope fractionation signals have great potential to probe the transformation and transport of MeHg in aquatic environments. However, the majority of studies to date have focused on total Hg isotopic composition, with less attention to the isotopic fractionation of MeHg due to technical difficulties in analysis, which severely hinders the understanding of MeHg isotopic fractionation and its applications. This review a) evaluates the reported analytical methods for Hg isotopic composition of MeHg, including online and offline measurement techniques; b) summarizes the extent and characteristics of Hg isotopic fractionation during MeHg transport and transformation, focusing on methylation, demethylation, trophic transfer and internal metabolism; and c) briefly discusses several applications of MeHg isotopic fractionation signatures in estimating the extent of photodemethylation, tracing the source of Hg species, and diagnosing reaction mechanisms. Additionally, the existing problems and future directions in MeHg isotope fractionation are highlighted to improve the analytical protocol for Hg isotope fractionation and deepen our understanding of Hg isotope fractionation in the biogeochemical cycling of MeHg.
Collapse
Affiliation(s)
- Lian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
21
|
Tang W, Tang C, Lei P. Sulfur-driven methylmercury production in paddies continues following soil oxidation. J Environ Sci (China) 2022; 119:166-174. [PMID: 35934461 DOI: 10.1016/j.jes.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg) production in paddy soils and its accumulation in rice raise global concerns since rice consumption has been identified as an important pathway of human exposure to MeHg. Sulfur (S) amendment via fertilization has been reported to facilitate Hg methylation in paddy soils under anaerobic conditions, while the dynamic of S-amendment induced MeHg production in soils with increasing redox potential remains unclear. This critical gap hinders a comprehensive understanding of Hg biogeochemistry in rice paddy system which is characterized by the fluctuation of redox potential. Here, we conducted soil incubation experiments to explore MeHg production in slow-oxidizing paddy soils amended with different species of S and doses of sulfate. Results show that the elevated redox potential (1) increased MeHg concentrations by 10.9%-35.2%, which were mainly attributed to the re-oxidation of other S species to sulfate and thus the elevated abundance of sulfate-reducing bacteria, and (2) increased MeHg phytoavailability by up to 75% due to the reductions in acid volatile sulfide (AVS) that strongly binds MeHg in soils. Results obtained from this study call for attention to the increased MeHg production and phytoavailability in paddy soils under elevated redox potentials due to water management, which might aggravate the MeHg production induced by S fertilization and thus enhance MeHg accumulation in rice.
Collapse
Affiliation(s)
- Wenli Tang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China.
| | - Chao Tang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
22
|
Gao Z, Zheng W, Li Y, Liu Y, Wu M, Li S, Li P, Liu G, Fu X, Wang S, Wang F, Cai Y, Feng X, Gu B, Zhong H, Yin Y. Mercury transformation processes in nature: Critical knowledge gaps and perspectives for moving forward. J Environ Sci (China) 2022; 119:152-165. [PMID: 35934460 DOI: 10.1016/j.jes.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The transformation of mercury (Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300192, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxiao Wang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada.
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
23
|
Yu Y, Li Z, Liu Y, Wang F, Liu Y, Zhao J, Li Y, Gao Y, Zhu N. Roles of plant-associated microorganisms in regulating the fate of Hg in croplands: A perspective on potential pathways in maintaining sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155204. [PMID: 35421489 DOI: 10.1016/j.scitotenv.2022.155204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In heavy metal-contaminated croplands, plant-associated microorganisms play important roles in the adaptation of crops to heavy metals. Plant-associated microbes can interact with Hg and stimulate plant resistance to Hg toxicity, which is crucial for impeding Hg accumulation along the food chain. The roles of rhizosphere microorganisms for the improvement of plant growth and Hg resistance have drawn great research attention. However, the interactions among plant-endophyte-Hg have been neglected although they might be important for in vivo Hg detoxification. In this study, we systematically summarized 1) the roles of plant-associated microorganisms in Hg detoxification and plant growth, 2) Hg methylation and demethylation driven by plant-associated microbes, 3) the relationships between plant-associated microbes and Hg biogeochemical cycling. The possible mechanisms underlying crop-endophyte-Hg interactions were discussed, although limited studies on this aspect are available to date. The challenges and perspectives of plant-endophytes in dampening Hg phytotoxicity and controlling Hg accumulation in croplands were proposed on the basis of the present knowledge. Taken together, this work provides evidence for further understanding the interactions between soil-plant-endophyte-Hg systems and as well as new interpretations and perspectives into regulating the fate of Hg in croplands.
Collapse
Affiliation(s)
- Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yonghua Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030000, Shanxi, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
24
|
Cui Y, Wu Q, Liu K, Wang S, Wang X, Jiang T, Meng B, Wu Y, Guo J. Source Apportionment of Speciated Mercury in Chinese Rice Grain Using a High-Resolution Model. ACS ENVIRONMENTAL AU 2022; 2:324-335. [PMID: 37101969 PMCID: PMC10125373 DOI: 10.1021/acsenvironau.1c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice grain consumption is a primary pathway of human mercury exposure. To trace the source of rice grain mercury in China, we developed a rice paddy mercury transport and transformation model with a grid resolution of 1 km × 1 km by using the unit cell mass conservation method. The simulated total mercury (THg) and methylmercury (MeHg) concentrations in Chinese rice grain ranged from 0.08 to 243.6 and 0.03 to 238.6 μg/kg, respectively, in 2017. Approximately, 81.3% of the national average rice grain THg concentration was due to atmospheric mercury deposition. However, soil heterogeneity, especially the variation in soil mercury, led to the wide rice grain THg distribution across grids. Approximately, 64.8% of the national average rice grain MeHg concentration was due to soil mercury. In situ methylation was the main pathway via which the rice grain MeHg concentration was increased. The coupled impact of high mercury input and methylation potential led to extremely high rice grain MeHg in partial grids among Guizhou province and junctions with surrounding provinces. The spatial variation in soil organic matter significantly impacted the methylation potential among grids, especially in Northeast China. Based on the high-resolution rice grain THg concentration, we identified 0.72% of grids as heavily polluted THg grids (rice grain THg > 20 μg/kg). These grids mainly corresponded to areas in which the human activities of nonferrous metal smelting, cement clinker production, and mercury and other metal mining were conducted. Thus, we recommended measures that are targeted at the control of heavy pollution of rice grain by THg according to the pollution sources. In addition, we observed a wide spatial variation range of MeHg to THg ratios not only in China but also in other regions of the world, which highlights the potential risk of rice intake.
Collapse
Affiliation(s)
- Yuying Cui
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Kaiyun Liu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
- . Phone: +86
1062771466. Fax: +86 1062773597
| | - Xun Wang
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tao Jiang
- Department
of Environmental Science and Engineering, Collage of Resources and
Environment, Southwest University, Chongqing 400716, China
| | - Bo Meng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yurong Wu
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Guo
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
25
|
Huang H, Mangal V, Rennie MD, Tong H, Simpson MJ, Mitchell CPJ. Mercury methylation and methylmercury demethylation in boreal lake sediment with legacy sulphate pollution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:932-944. [PMID: 35532885 DOI: 10.1039/d2em00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulphate and dissolved organic matter (DOM) in freshwater systems may regulate the formation of methylmercury (MeHg), a potent neurotoxin that biomagnifies in aquatic ecosystems. While many boreal lakes continue to recover from decades of elevated atmospheric sulphate deposition, little research has examined whether historically high sulphate concentrations can result in persistently elevated MeHg production and accumulation in aquatic systems. This study used sediment from a historically sulphate-impacted lake and an adjacent reference lake in northwestern Ontario, Canada to investigate the legacy effects of sulphate pollution, as well as the effects of newly added sulphate, natural organic matter (NOM) of varying sulphur content and a sulphate reducing bacteria (SRB) inhibitor on enhancing or inhibiting the Hg methylation and demethylation activity (Kmeth and Kdemeth) in the sediment. We found that Kmeth and MeHg concentrations in sulphate-impacted lake sediment were significantly greater than in reference lake sediment. Further adding sulphate or NOM with different sulphur content to sediment of both lakes did not significantly change Kmeth. The addition of a SRB inhibitor resulted in lower Kmeth only in sulphate-impacted sediment, but methylation was not entirely depressed. Methylmercury demethylation potentials in sediment were consistent across lakes and experimental treatments, except for some impacts related to SRB inhibitor additions in the reference lake sediment. Overall, a broader community of microbes beyond SRB may be methylating Hg and demethylating MeHg in this system. This study reveals that legacies of sulphate pollution in boreal lakes may persist for decades in stimulating elevated Hg methylation in sediment.
Collapse
Affiliation(s)
- Haiyong Huang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
| | - Vaughn Mangal
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
| | - Michael D Rennie
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Huan Tong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
- Environmental NMR Centre, University of Toronto Scarborough, Ontario, Canada
| | - Myrna J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
- Environmental NMR Centre, University of Toronto Scarborough, Ontario, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
| |
Collapse
|
26
|
Hao YY, Zhu YJ, Yan RQ, Gu B, Zhou XQ, Wei RR, Wang C, Feng J, Huang Q, Liu YR. Important Roles of Thiols in Methylmercury Uptake and Translocation by Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6765-6773. [PMID: 35483101 DOI: 10.1021/acs.est.2c00169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioaccumulation of the neurotoxin methylmercury (MeHg) in rice is a significant concern due to its potential risk to humans. Thiols have been known to affect MeHg bioavailability in microorganisms, but how thiols influence MeHg accumulation in rice plants remains unknown. Here, we investigated effects of common low-molecular-weight thiols, including cysteine (Cys), glutathione (GSH), and penicillamine (PEN), on MeHg uptake and translocation by rice plants. Results show that rice roots can rapidly take up MeHg, and this process is influenced by the types and concentrations of thiols in the system. The presence of Cys facilitated MeHg uptake by roots and translocation to shoots, while GSH could only promote MeHg uptake, but not translocation, by roots. Conversely, PEN significantly inhibited MeHg uptake and translocation to shoots. Using labeled 13Cys assays, we also found that MeHg uptake was coupled with Cys accumulation in rice roots. Moreover, analyses of comparative transcriptomics revealed that key genes associated with metallothionein and SULTR transporter families may be involved in MeHg uptake. These findings provide new insights into the uptake and translocation of MeHg in rice plants and suggest potential roles of thiol attributes in affecting MeHg bioavailability and bioaccumulation in rice.
Collapse
Affiliation(s)
- Yun-Yun Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Jie Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruo-Qun Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren-Rui Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Li Y, Lu C, Zhu N, Chao J, Hu W, Zhang Z, Wang Y, Liang L, Chen J, Xu D, Gao Y, Zhao J. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128447. [PMID: 35158248 DOI: 10.1016/j.jhazmat.2022.128447] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Sulfur-fertilizer is commonly applied in croplands and in immobilizing Hg in contaminated soil. However, there is still great uncertainty and controversy concerning Hg transportability and transformation when supplying sulfur in paddies with complex conditions. Herein, we explored the effect of adding sulfate in paddy soil at different rice growth stages on soil Hg release and MeHg accumulation in rice and uncovered the correlation between sulfur induced MeHg production and the dynamically changed soil Eh, dissolved Fe, and dissolved organic carbon (DOC). In specific, sulfate addition at early stages (flooding period) triggered the decrease of Eh and increase of DOC and dissolved Fe, which in turn promoted Hg release and favored MeHg generation (increased by 235.19-555.07% vs control). Interestingly, adding sulfate at late stages (drainage condition), as compared with that at early stages, alleviated Hg release and MeHg production accompanied by the increase of Eh and decrease of dissolved Fe and DOC. The microcosmic experiment further confirmed the reduction of sulfate to sulfide promoted the change of Eh, thereby stimulating HgS dissolution in soil extract. The results give clues on the rational application of sulfur-fertilizer and through the water-sulfur fertilizer management considering the correspondingly changed soil conditions to diminish Hg bioavailability and MeHg production in paddies and paddy-like environments.
Collapse
Affiliation(s)
- Yunyun Li
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chang Lu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiang Chao
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenjun Hu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhiyuan Zhang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Yongjie Wang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lichun Liang
- Agricultural and rural Bureau of Dehua County, 362500, Fujian China
| | - Jinkan Chen
- Agricultural and rural Bureau of Dehua County, 362500, Fujian China
| | - Diandou Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
29
|
Strickman RJ, Larson S, Huang H, Kakouros E, Marvin-DiPasquale M, Mitchell CPJ, Neumann RB. The relative importance of mercury methylation and demethylation in rice paddy soil varies depending on the presence of rice plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113143. [PMID: 34998262 DOI: 10.1016/j.ecoenv.2021.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Neurotoxic methylmercury (MeHg) accumulates in rice grain from paddy soil, where its concentration is controlled by microbial mercury methylation and demethylation. Both up- and down-regulation of methylation is known to occur in the presence of rice plants in comparison to non-vegetated paddy soils; the influence of rice plant presence/absence on demethylation is unknown. To assess the concurrent influence of rice plant presence/absence on methylation and demethylation, and to determine which process was more dominant in controlling soil MeHg concentrations, we maintained six rhizoboxes of paddy soil with and without rice plants. At the peak of plant growth, we simultaneously measured ambient MeHg, ambient inorganic mercury (IHg), and potential rate constants of methylation and demethylation (Kmeth and Kdemeth) in soil using stable isotope tracers and ID-GC-ICPMS. We also measured organic matter content, elemental S, and water-extractable sulfate. We found MeHg concentrations were differentially controlled by MeHg production and degradation processes, depending on whether plants were present. In non-vegetated boxes, MeHg concentration was controlled by Kmeth, as evidenced by a strong and positive correlation, while Kdemeth had no relation to MeHg concentration. These results indicate methylation was the dominant driver of MeHg concentration in non-vegetated soil. In vegetated boxes, Kdemeth strongly and negatively predicted MeHg concentration, indicating that demethylation was the dominant control in soil with plants. MeHg concentration, Kmeth, and % MeHg all had significantly less variance in vegetated than in non-vegetated soils due to a consistent elimination of greater values. This pattern suggests that reduced MeHg production capacity was a secondary control on MeHg concentrations in vegetated soils. We observed no difference in the magnitude or variance of Kdemeth between treatments, suggesting that demethylation was robust to soil chemical conditions influenced by the plant, perhaps because of a wider taxonomic diversity of demethylators. Our results suggest that methylation and demethylation processes could both be leveraged to alter MeHg concentrations in rice paddy soil.
Collapse
Affiliation(s)
- R J Strickman
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA.
| | - S Larson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
| | - H Huang
- University of Toronto Scarborough, Ontario, Canada
| | - E Kakouros
- US Geological Survey, Menlo Park, Palo Alto, CA, USA
| | | | | | - R B Neumann
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
| |
Collapse
|
30
|
Aslam MW, Meng B, Abdelhafiz MA, Liu J, Feng X. Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149967. [PMID: 34482140 DOI: 10.1016/j.scitotenv.2021.149967] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) accumulation in rice is an emerging health concern worldwide. However, sources and interactions responsible for Hg species accumulation in different rice tissues are still uncertain. Four experimental plots were carefully designed at an artisanal Hg mining site and a control site to evaluate the effect of atmospheric and soil Hg contents on Hg accumulation in rice. We showed that inorganic Hg (IHg) contents in rice tissues grown either in contaminated or control site soil (non-contaminated soil) were higher at Hg artisanal mining site than those at the control site. Elevated total gaseous mercury (TGM) levels in ambient air were the predominant source of IHg to rice at the Hg mining area. Methylmercury (MeHg) concentrations in rice plant tissues increased in proportionality with MeHg contents in paddy soil. Our results suggest that both atmosphere and soil Hg sources have been impacted the IHg accumulation in rice. Above ground rice tissues, grains, leaves, and stalk accumulated IHg from both atmosphere and soil to varying degrees. Nonetheless, the study also provides the first direct evidence that atmospheric Hg accumulated by above-ground rice tissues could be translocated to below-ground tissues (roots). However, the extent to which atmosphere or soil Hg contributes to IHg in rice tissues may vary with each source's concentration gradient at the given site. No evidence of in planta Hg methylation was found during the current study. Hence, paddy fields are potential MeHg production sites, whereas paddy soil is a unique MeHg accumulation source in rice plants. This study expands and clarifies the contribution of various sources involved in Hg accumulation in the soil rice system. The findings here provide the basis for future research strategies to deal with the global issue of Hg contaminated rice.
Collapse
Affiliation(s)
- Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China.
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, PR China.
| |
Collapse
|
31
|
Enamorado-Montes G, Reino-Causil B, Urango-Cardenas I, Marrugo-Madrid S, Marrugo-Negrete J. Mercury Accumulation in Commercial Varieties of Oryza sativa L. Cultivated in Soils of La Mojana Region, Colombia. TOXICS 2021; 9:304. [PMID: 34822695 PMCID: PMC8624091 DOI: 10.3390/toxics9110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The Hg accumulation in different commercial varieties of Oryzasativa L. was evaluated in the region of La Mojana, Colombia, where rice cultivation has become the staple food of the population living in this area. The varieties studied were Fedearroz-473 (FA473), Fedearroz-2000 (FA2000), and Fedearroz-Mocari (FAM). Soil spiked at different Hg levels was evaluated, (130, 800, and 1500 µg kg-1) using a 32 factorial design that consisted of 3 (rice varieties) × 3 (Hg contents). The biomass, 1000-grain weight, and the accumulation of Hg in the roots, grains, and husks were determined. The highest biomass was found in the FA473 (308.76 ± 108.26 g), and the lowest was found in FAM (144.04 ± 26.45 g) in the 1500 µg kg-1 Hg soil in both cases. The weight per 1000-grains decreased significantly in the soil containing 800 µg of Hg kg-1. Hg accumulation in the organs of the evaluated varieties was higher in the roots, followed by in the husks and grains. The Hg in the rice grains of the evaluated varieties presented levels close to the permissible limit of the Chinese standard (20 μg Hg kg-1) in the evaluated soils and were only exceeded by FA473. Although in natural soil concentrations, the non-cancer health risk (HQ) from rice consumption was lower for FA473 and FAM; Hg enrichment in the soil of La Mojana region may endanger the health of future populations due to their high consumption of rice.
Collapse
Affiliation(s)
| | | | | | | | - José Marrugo-Negrete
- Departamento de Química, Laboratorio de Toxicología y gestión ambiental, Facultad de Ciencias Básicas, Universidad de Córdoba, Carrera 6 No. 77-305, Montería 230002, Córdoba, Colombia; (G.E.-M.); (B.R.-C.); (I.U.-C.); (S.M.-M.)
| |
Collapse
|
32
|
Chang C, Yin R, Huang F, Wang R, Chen C, Mao K, Feng X, Zhang H. A new method of predicting the contribution of TGM to Hg in white rice: Using leaf THg and implications for Hg risk control in Wanshan Hg mine area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117727. [PMID: 34329067 DOI: 10.1016/j.envpol.2021.117727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Rice plants accumulate Hg from the soil and ambient air, however, evaluating the contribution of Hg from these two sources remains challenging. Here, we proposed a practical method to predict the contribution of total gaseous mercury (TGM) to Hg in white rice in Wanshan Hg mine area (WMM). In this study, rice was planted in the same low-Hg soil at different sites of WMM with varying TGM levels. Comparing to the control sites at IG (Institute of Geochemistry, Guiyang), TGM is the dominant source of Hg in rice leaves and white rice at TB (Tianba) and ZJW (Zhangjiawan) sites of WMM. Subsequently, a good correlation between the Hg concentrations in rice leaves and the concentration contributions of TGM to Hg in white rice was obtained. Such a correlation enabled feasible quantification of the contribution of TGM to Hg in white rice collected from the Wanshan Hg mine. The contribution of TGM to Hg in white rice across the WMM area was also estimated, demonstrating that white rice receives 14-83% of Hg from the air. Considering the high contribution of TGM to Hg in white rice, we compared the relative health risks of Hg via inhalation and rice consumption and found that inhalation, rather than rice consumption, was the major pathway for bioaccessible Hg exposure in adults at high-TGM sites. This study provides new knowledge of Hg biogeochemistry in Hg-mining areas.
Collapse
Affiliation(s)
- Chuanyu Chang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Ruirui Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
33
|
Tang B, Chen J, Wang Z, Qin P, Zhang X. Mercury accumulation response of rice plant (Oryza sativa L.) to elevated atmospheric mercury and carbon dioxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112628. [PMID: 34418855 DOI: 10.1016/j.ecoenv.2021.112628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 05/11/2023]
Abstract
New observations and updated models now suggest terrestrial ecosystems are net sink of atmospheric mercury (Hg), and the critical constrained process to identify the strengths of terrestrial sink is whether the large amount of Hg stored in vegetation originates from the soil as well as from the atmosphere. In this study, field open top chambers (OTCs) experiments reveal that rice plant can assimilate gaseous elemental mercury (GEM, Hg0) from the atmosphere through stomata, and Hg concentrations in rice leaves, upper and bottom stalks and grains increased with Hg0 levels in air, showing significantly quadratic linear relationships. Coupling field stable isotope soil amendment experiments, atmospheric source of Hg in rice plant is quantified with more than 90% of Hg accumulation in rice aboveground biomass from air and approximately 80% of rice root Hg from soil. Furthermore, elevated atmospheric carbon dioxide (CO2) exposure led to lower Hg concentration in rice tissues through reduction stomatal conductance of rice leaf, and subsequently impact the capacity of Hg storage in rice aboveground parts from the atmosphere. The findings from experiments provide a foundation for future quantification of atmospheric sink of crops in local and larger scales and comprehensive evaluation atmosphere - terrestrial processes and exposure risks in the global Hg cycling.
Collapse
Affiliation(s)
- Bin Tang
- Hunan Provincial Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410002, China
| | - Jian Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pufeng Qin
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Stable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining area. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
35
|
Guo P, Du H, Wang D, Ma M. Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142682. [PMID: 33572042 DOI: 10.1016/j.scitotenv.2020.142682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) in rice is presumed to be derived from MeHg formed in the soil, although it is still controversial. Moderate soil mercury (Hg) concentration can affect the diversity of soil microorganisms and may also impact the physiological changes and MeHg absorption of rice. In this study, the pot experiment was conducted to explore the effects of Hg concentration gradients (0, 0.3, 3, and 30 mg kg-1) stress on Hg transformation in the rhizosphere, Hg translocation in rice, and physiological changes in rice leaves during the whole rice growing season. Moderate soil Hg concentration (3 mg kg-1) greatly increased the MeHg/THg (1.69%) of rhizosphere, while 30 mg kg-1 soil Hg concentration sharply reduced the MeHg/THg (0.29%) of rhizosphere. Highest MeHg/THg of the four groups all appeared at the blooming or filling stage. There was a significant positive correlation between Fe2+ in rhizosphere and MeHg/THg, but no significant correlation between SO42- and MeHg/THg was observed. Although the 3 mg kg-1 soil Hg concentration significantly enhanced MeHg concentrations in seeds, it considerably reduced the bioaccumulation factors of MeHg in roots, stalks, old leaves and young leaves. Soil Hg concentration of 30 mg kg-1, to a certain extent, curtailed MeHg concentrations in seeds, while MeHg concentrations in the husk were significantly increased. Consistent with the result that there was no significant difference for THg concentrations in old and young leaves among the four Hg treatment groups, the content of chlorophyll, H2O2, malondialdehyde and antioxidant substances, and the activities of antioxidant enzyme in old and young leaves varied indistinctly among groups. MAIN FINDING: Moderate soil mercury concentration (3 mg kg-1) could extremely enhance MeHg production in the rhizosphere soil and its accumulation in rice; MeHg production in the rhizosphere soil increased greatly at the blooming or filling stage, whereas little effect on antioxidant systems in leaves was observed.
Collapse
Affiliation(s)
- Pan Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Du H, Guo P, Wang T, Ma M, Wang D. Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116431. [PMID: 33453697 DOI: 10.1016/j.envpol.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/13/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Rice has been confirmed as one of the principal intake pathways for methylmercury (MeHg) in human, however, the impact of edible organisms, such as snails, loaches and eels, living in the rice-based ecosystem to the overall MeHg intake has been overlooked. Here, we conducted a cross-sectional ecological study, and the results showed that bioaccumulation of MeHg in these edible organisms was significantly higher than in paddy soils and rice roots (p < 0.001), even though rice roots and grains have significantly higher total Hg (THg) (p < 0.001). The MeHg/THg ratios were consistently and significantly higher in those edible organisms than in rice grains, suggesting a potential elevated MeHg exposure risk through consumption. Based on results of bioaccumulation factors (BAFs) for MeHg, it was clear that MeHg was bioaccumulated and biotransformed from paddy soils to earthworms and then to eels, as well as from paddy soils to snails and then to eels and loaches, potentially indicating that the consumption of eels and loaches was absolutely pernicious to people regularly feeding on them. Overall, MeHg was biomagnified along the food chain of the paddy ecosystem from soil to the organisms, and it was of potential higher risks for local residents to eat them, especially eels and loaches. Therefore, it is intensely indispensable for people fond of such diets to attenuate their consumption of rice, eels and loaches, thus mitigating their MeHg exposure risks.
Collapse
Affiliation(s)
- Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
37
|
Qin C, Du B, Yin R, Meng B, Fu X, Li P, Zhang L, Feng X. Isotopic Fractionation and Source Appointment of Methylmercury and Inorganic Mercury in a Paddy Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14334-14342. [PMID: 33112617 DOI: 10.1021/acs.est.0c03341] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioaccumulation of methylmercury (MeHg) in rice grains has been an emerging issue of human health, but the mechanism of bioaccumulation is still poorly understood. Mercury (Hg) isotope measurements are powerful tools for tracing the sources and biogeochemical cycles of Hg in the environment. In this study, MeHg compound-specific stable isotope analysis (CSIA) was developed in paddy soil and rice plants to trace the biogeochemical cycle of Hg in a paddy ecosystem during the whole rice-growing season. Isotopic fractionation was analyzed separately for MeHg and inorganic Hg (IHg). Results showed distinct isotopic signals between MeHg and IHg in rice plants, indicating different sources. δ202Hg values of MeHg showed no significant differences between roots, stalks, leaves, and grains at each growth stage. The similar Δ199Hg values of MeHg between rice tissues (0.14 ± 0.08‰, 2SD, n = 12), soil (0.13 ± 0.03‰, 2SD, n = 4), and irrigation water (0.17 ± 0.09‰, 2SD, n = 5) suggested that the soil-water system was the original source of MeHg in rice plants. Δ199Hg values of IHg in the paddy ecosystem indicated that water, soil, and atmosphere contributed to IHg in grains, leaves, stalks, and roots with varying degree. This study demonstrates that successful application of MeHg CSIA can improve our understanding of the sources and bioaccumulation mechanisms of MeHg and IHg in the paddy ecosystems.
Collapse
Affiliation(s)
- Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buyun Du
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
38
|
Tang Z, Fan F, Deng S, Wang D. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110950. [PMID: 32800226 DOI: 10.1016/j.ecoenv.2020.110950] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to methylmercury (MeHg) through rice consumption is raising health concerns. It has long been recognized that MeHg found in rice grain predominately originated from paddy soil. Anaerobic conditions in paddy fields promote Hg methylation, potentially leading to high MeHg concentrations in rice grain. Understanding the transformation and migration of Hg in the rice paddy system, as well as the effects of farming activities, are keys to assessing risks and developing potential mitigation strategies. Therefore, this review examines the current state of knowledge on: 1) sources of Hg in paddy fields; 2) how MeHg and inorganic Hg (IHg) are transformed (including abiotic and biotic processes); 3) how IHg and MeHg enter and translocate in rice plants; and 4) how regular farming activities (including the application of fertilizer, cultivation methods, choice of cultivar), affect Hg cycling in the paddy field system. Current issues and controversies on Hg transformation and migration in the paddy field system are also discussed.
Collapse
Affiliation(s)
- Zhenya Tang
- Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China.
| | - Fangling Fan
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China.
| | - Shiping Deng
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, College of Resources and Environment, Southwest University, Chongqing, China.
| |
Collapse
|
39
|
Sun T, Wang Z, Zhang X, Niu Z, Chen J. Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114890. [PMID: 32544787 DOI: 10.1016/j.envpol.2020.114890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Maize (Zea mays L.) leaves play an important role in stomatal uptake and surface adsorption of atmospheric mercury (Hg). However, the influence of atmospheric gaseous elemental mercury (GEM) on methylmercury (MeHg) accumulation in maize plants is poorly understood. In this study, we conducted a field open-top chambers (OTCs) experiment and a soil Hg-enriched experiment to investigate the response of MeHg accumulation in maize tissues to different GEM levels in the air. Maize upper leaves had a higher average MeHg concentration (0.21 ± 0.08 ng g-1) than bottom leaves (0.15 ± 0.05 ng g-1) in the OTCs experiment, which was inconsistent with that in the soil Hg-enriched experiment (maize upper leaves: 0.41 ± 0.07 ng g-1, maize bottom leaves: 0.60 ± 0.05 ng g-1). Additionally, significantly positive correlations were found between MeHg concentrations in maize leaves and air Hg levels, suggesting that elevated air Hg levels enhanced MeHg accumulation in maize leaves, which was possibly attributed to methylation of Hg on leaf surfaces. Mature maize grains from the OTCs experiment had low MeHg concentrations (0.12-0.23 ng g-1), suggesting a low accumulation capability of MeHg by maize grains. Approximately 93-96% of MeHg and 51-73% of total Hg in maize grains were lost from the grain-filling stage to the grain-ripening stage at all GEM level treatments, implying that self-detoxification in maize grains occurred. MeHg concentrations in maize roots showed a significant linear relationship (R2 = 0.98, p < 0.01) with soil Hg levels, confirming that MeHg in maize roots is primarily from soil. This study provides a new finding that elevated air GEM levels could enhance MeHg accumulation in maize leaves, and self-detoxification may occur in maize grains. Further studies are needed to clarify these mechanisms of Hg methylation on maize leaf surfaces and self-detoxification of Hg by maize grains.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Western University, Ontario, N6A 3K7, Canada
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenchuan Niu
- Institute of Earth Environment, Chinese Academy of Science, Xi'an, 710061, China
| | - Jian Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
40
|
Bishop K, Shanley JB, Riscassi A, de Wit HA, Eklöf K, Meng B, Mitchell C, Osterwalder S, Schuster PF, Webster J, Zhu W. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137647. [PMID: 32197286 DOI: 10.1016/j.scitotenv.2020.137647] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This review documents recent advances in terrestrial mercury cycling. Terrestrial mercury (Hg) research has matured in some areas, and is developing rapidly in others. We summarize the state of the science circa 2010 as a starting point, and then present the advances during the last decade in three areas: land use, sulfate deposition, and climate change. The advances are presented in the framework of three Hg "gateways" to the terrestrial environment: inputs from the atmosphere, uptake in food, and runoff with surface water. Among the most notable advances: These and other advances reported here are of value in evaluating the effectiveness of the Minamata Convention on reducing environmental Hg exposure to humans and wildlife.
Collapse
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | | | - Ami Riscassi
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Charlottesville, VA 22904-4123, USA.
| | - Heleen A de Wit
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Norway.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Carl Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble 18 INP, 38000 Grenoble, France.
| | - Paul F Schuster
- U.S. Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303-1066, USA.
| | - Jackson Webster
- Department of Civil Engineering, California State University, 400 W. 1st Street, 21 95929-0930 Chico, CA, USA.
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
| |
Collapse
|
41
|
Zhao L, Meng B, Feng X. Mercury methylation in rice paddy and accumulation in rice plant: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110462. [PMID: 32179234 DOI: 10.1016/j.ecoenv.2020.110462] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The bioavailability and toxicity of mercury (Hg) are dependent on its chemical speciation, in which methylmercury (MeHg) is the most toxic compound. Inorganic Hg can be transformed into MeHg in anaerobic conditions. Subsequent accumulation and biomagnification in the food chain pose a potential threat to human health. Previous studies have confirmed that paddy soil is an important site for MeHg production, and rice fields are an important source of MeHg in terrestrial ecosystems. Rice (Oryza sativa L.) is recently confirmed as a potential bioaccumulator plant of MeHg. Understanding the behaviour of Hg in rice paddies is important, particularly the mechanisms involved in Hg sources, uptake, toxicity, detoxification, and accumulation in crops. This review highlights the issue of MeHg-contaminated rice, and presents the current understanding of the Hg cycling in the rice paddy ecosystem, including the mechanism and processes of Hg species accumulation in rice plants and Hg methylation/demethylation processes in rice paddies and the primary controlling factors. The review also identified various research gaps in previous studies and proposes future research objectives to reduce the impact of Hg-contamination in rice crops.
Collapse
Affiliation(s)
- Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang, 550025, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| |
Collapse
|
42
|
Chang C, Chen C, Yin R, Shen Y, Mao K, Yang Z, Feng X, Zhang H. Bioaccumulation of Hg in Rice Leaf Facilitates Selenium Bioaccumulation in Rice ( Oryza sativa L.) Leaf in the Wanshan Mercury Mine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3228-3236. [PMID: 32101685 DOI: 10.1021/acs.est.9b06486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mercury (Hg) bioaccumulation in rice poses a health issue for rice consumers. In rice paddies, selenium (Se) can decrease the bioavailability of Hg through forming the less bioavailable Hg selenides (HgSe) in soil. Rice leaves can directly uptake a substantial amount of elemental Hg from the atmosphere, however, whether the bioaccumulation of Hg in rice leaves can affect the bioaccumulation of Se in rice plants is not known. Here, we conducted field and controlled studies to investigate the bioaccumulation of Hg and Se in the rice-soil system. In the field study, we observed a significantly positive correlation between Hg concentrations and BAFs of Se in rice leaves (r2 = 0.60, p < 0.01) collected from the Wanshan Mercury Mine, SW China, suggesting that the bioaccumulation of atmospheric Hg in rice leaves can facilitate the uptake of soil Se, perhaps through the formation of Hg-Se complex in rice leaves. This conclusion was supported by the controlled study, which observed significantly higher concentrations and BAFs of Se in rice leaf at a high atmospheric Hg site at WMM, compared to a low atmospheric Hg site in Guiyang, SW China.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Yuan Shen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, United Kingdom
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, P. R. China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, P. R. China
| |
Collapse
|
43
|
Xu X, Han J, Pang J, Wang X, Lin Y, Wang Y, Qiu G. Methylmercury and inorganic mercury in Chinese commercial rice: Implications for overestimated human exposure and health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113706. [PMID: 31864929 DOI: 10.1016/j.envpol.2019.113706] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
China is the largest rice producer and consumer in the world, and mercury (Hg) levels, particularly methylmercury (MeHg), in rice and health exposure risks are public concerns. Total Hg (THg) and MeHg levels in 767 (domestic = 709 and abroad = 58) Chinese commercial rice were investigated to evaluate Hg pollution level, dietary exposures and risks of IHg and MeHg. The mean rice THg and MeHg levels were 3.97 ± 2.33 μg/kg and 1.37 ± 1.18 μg/kg, respectively. The highest daily intake of MeHg and IHg were obtained in younger groups, accounted for 6% of the reference dose-0.1 μg/kg bw/day for MeHg, 0.3% of the provisional tolerance week intake-0.571 μg/kg bw/day for IHg. Residents in Central China and Southern China meet the highest rice Hg exposure, which were more than 7 times of those in Northwest China. Lower concentrations than earlier studies were observed along the implementations of strict policies since 2007. This may indicate that a declining temporal trend of Hg in Chinese grown rice and associated exposures could be obtained with the implementations of strict policies. Though there exist Hg pollution in commercial rice, Hg levels in Chinese commercial rice is generally safe compared with Hg polluted sites. Populations dwelling in China have relatively a quite low and safe MeHg and IHg exposure via the intake of commercial rice. Strict policies contributed to the decrease in THg and MeHg levels in Chinese-grown rice. More attention should be paid to younger groups.
Collapse
Affiliation(s)
- Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Pang
- Guizhou Normal University, Guiyang, 550001, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yan Lin
- Norwegian Institute for Water Research, Oslo, 0349, Norway
| | - Yajie Wang
- College of Food Safety, Guizhou Medical University, Guiyang, 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
44
|
Kosik-Bogacka D, Osten-Sacken N, Łanocha-Arendarczyk N, Kot K, Pilarczyk B, Tomza-Marciniak A, Podlasińska J, Chmielarz M, Heddergott M, Frantz AC, Steinbach P. Selenium and mercury in the hair of raccoons (Procyon lotor) and European wildcats (Felis s. silvestris) from Germany and Luxembourg. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1-12. [PMID: 31734834 PMCID: PMC6987061 DOI: 10.1007/s10646-019-02120-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
This study examined the concentration of total mercury (THg) and selenium (Se), as well as the molar ratio of Se:THg in hair samples of terrestrial animals. THg and Se concentrations were measured from the hair of raccoons (Procyon lotor) and European wildcats (Felis s. silvestris) from Germany and Luxembourg. Median THg concentrations in hair from raccoons and wildcats were 0.369 and 0.273 mg kg-1 dry weight (dw), respectively. Se concentrations were higher in the hair of raccoons than of wildcats (0.851 and 0.641 mg kg-1 dw, respectively). Total mercury concentration in hair of raccoons from Luxembourg was almost 5× higher that found in hair of raccoons from Germany; however, Se concentration was similar. Thus, molar ratio of Se:THg was ~4× higher in the hair of raccoons from Germany than those from Luxembourg. Significant negative correlation was found between THg concentration and Se:THg molar ratio in both wildcats and raccoons.
Collapse
Affiliation(s)
- Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Natalia Osten-Sacken
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
- Fondation faune-flore, 25 rue Muenster, L-2160, Luxembourg, Luxembourg
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Hygiene and Prophylaxis, West Pomeranian University of Technology, Judyma 6, 71-466, Szczecin, Poland
| | - Agnieszka Tomza-Marciniak
- Department of Animal Hygiene and Prophylaxis, West Pomeranian University of Technology, Judyma 6, 71-466, Szczecin, Poland
| | - Joanna Podlasińska
- Department of Ecology, Environmental Management and Protection, West Pomeranian University of Technology, Słowackiego 17, 71-434, Szczecin, Poland
| | - Mateusz Chmielarz
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Mike Heddergott
- National Museum of Natural History, 25 Rue Münster, 2160, Luxembourg, Luxembourg
| | - Alain C Frantz
- National Museum of Natural History, 25 Rue Münster, 2160, Luxembourg, Luxembourg
| | - Peter Steinbach
- University of Göttingen, Faculty of Chemistry, Tammannstraße 4, 37077, Göttingen, Germany
| |
Collapse
|
45
|
Cheng L, Wang L, Geng Y, Wang N, Mao Y, Cai Y. Occurrence, speciation and fate of mercury in the sewage sludge of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109787. [PMID: 31629907 DOI: 10.1016/j.ecoenv.2019.109787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Municipal sewage has been identified to be an important source of mercury (Hg) to the environment. However, as the major sink of sewage-borne Hg, sewage sludge (SS) remains unresolved in terms of the occurrence status of Hg species. We presented here, a nation-wide survey on the speciation of Hg in SS of China. Total Hg (THg) and methylmercury (MeHg) were detected in all SS samples, within ranges of 0.4-12.4 mg/kg and 0.1-27.0 μg/kg, respectively. Sludge-borne Hg mainly occurred in the mercury sulfide and organo-chelated phases, with only tiny portions occurring as soluble Hg. The mass loadings of sludge-borne THg and MeHg in China for year 2016 were estimated to be 12.2 metric tons and 19.9 kg, respectively. Landfill was the most important sink of sludge-borne Hg, followed by incineration, land application, and building materials.
Collapse
Affiliation(s)
- Liu Cheng
- School of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China; School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Li Wang
- School of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yuanmeng Geng
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Ning Wang
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yong Cai
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, China
| |
Collapse
|
46
|
Tang W, Su Y, Gao Y, Zhong H. Effects of Farming Activities on the Biogeochemistry of Mercury in Rice-Paddy Soil Systems. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:635-642. [PMID: 31053868 DOI: 10.1007/s00128-019-02627-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The biogeochemistry of mercury (Hg) in rice-paddy soil systems raises concerns, given that (1) the redox potential in paddy soil favors Hg methylation and (2) rice plants have a strong ability to accumulate methylmercury (MeHg), making rice an important source for MeHg exposure to humans. Therefore, all factors affecting the behavior of Hg in rice-paddy soils might impact Hg accumulation in rice, with its subsequent potential risks. As a typical wetland, paddy soils are managed by humans and affected by anthropogenic activities, such as agronomic measures, which would impact soil properties and thus Hg biogeochemistry. In this paper, we reviewed recent advances in the effects of farming activities including water management, fertilizer application and rotation on Hg biogeochemistry, trying to elucidate the factors controlling Hg behavior and thus the ecological risks in rice-paddy soil systems. This review might provide new thoughts on Hg remediation and suggest avenues for further studies.
Collapse
Affiliation(s)
- Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yao Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxi Gao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
- Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, ON, Canada.
| |
Collapse
|
47
|
Franić M, Galić V. As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. PLANT METALLOMICS AND FUNCTIONAL OMICS 2019:209-251. [DOI: 10.1007/978-3-030-19103-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
48
|
Qin C, Chen M, Yan H, Shang L, Yao H, Li P, Feng X. Compound specific stable isotope determination of methylmercury in contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:406-412. [PMID: 29981990 DOI: 10.1016/j.scitotenv.2018.06.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Rice is one of the main sources of methylmercury (MeHg) to humans, and soil is the main source of MeHg to rice grains. Determining the Hg isotope composition in environmental samples is a good way of characterizing sources of Hg pollution and investigating environmental processes. We developed a new compound-specific method for determining stable Hg isotopes in MeHg in contaminated soil and sediment. The method involved HNO3 leaching/solvent extraction, chemical ethylation, and separation by gas chromatography with a solenoid valve optimized to enrich MeHg. The method was optimized by using MeHg standard solution, certified reference materials and paddy soil samples. The δ202Hg precision for replicate MeHg isotope analyses was 0.14‰ (2 × standard deviation, n = 11), and no fractionation of Hg stable isotopes was found during the separation processes. The δ202Hg values for MeHg in paddy soils were -1.78‰ to -1.30‰, which were lower than the δ202Hg values for total Hg (-1.32‰ to -0.44‰). The results indicated that methylation (rather than demethylation) was the dominant process in the paddy soils. The method developed in this study can help us to better understand MeHg migration and transformation processes in paddy soil-rice ecosystem.
Collapse
Affiliation(s)
- Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Heng Yao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
49
|
Xu Q, Zhao L, Wang Y, Xie Q, Yin D, Feng X, Wang D. Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:115-126. [PMID: 30172117 DOI: 10.1016/j.envpol.2018.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/12/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Newly constructed reservoirs were recognized as hotspot of mercury (Hg) methylation, and then methylmercury (MeHg) accumulation in food chains. The risk of elevated MeHg concentrations in fish is one of the most important concerns in newly constructed reservoirs. The Three Gorges Reservoir (TGR) is one of the largest reservoirs in the world. However, the distribution and bioaccumulation characteristics of Hg species within the food chains and its potential ecological risk in the TGR remain poorly understood. In this study, 264 fish individuals covering 18 species were collected from the TGR. Total mercury (THg) and MeHg concentrations in different organs (gill, heart, liver, muscle and swim bladder) of fish species were analyzed; the values of δ13C and δ15N in fish muscle were determined as well to reveal the biomagnification properties of Hg in food chains. Our results showed that concentrations of THg (0.5-272 ng g-1, w.w.) and MeHg (0.1-199 ng g-1, w.w.) in fish muscle from the TGR ubiquitously fall below the safe fish consumption limit on Hg recommended by WHO (500 ng g-1, w.w.) and the US-EPA Water Quality Criterion for MeHg (300 ng g-1, w.w.). The short food web jointly with the limited trophic magnification factor in the TGR explained the relatively low Hg concentrations in predators. Among the five fish organs, muscle represented the highest Hg concentrations, followed by heart, liver, swim bladder, and gill, suggesting that muscle has the highest ability to accumulate Hg compared to the other organs. More importantly, no discernible "reservoir effect" was observed in the TGR within the initial few years after impoundment due to its special eco-environment including: 1) neutral and slightly alkaline pH and low dissolved organic carbon of water, 2) less vegetation coverage in inundated areas, 3) simple food web.
Collapse
Affiliation(s)
- Qinqin Xu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Qing Xie
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Deliang Yin
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
50
|
Gong Y, Nunes LM, Greenfield BK, Qin Z, Yang Q, Huang L, Bu W, Zhong H. Bioaccessibility-corrected risk assessment of urban dietary methylmercury exposure via fish and rice consumption in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:222-230. [PMID: 29477821 DOI: 10.1016/j.scitotenv.2018.02.224] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
The role of seafood consumption for dietary methylmercury (MeHg) exposure is well established. Recent studies also reveal that rice consumption can be an important pathway for dietary MeHg exposure in some Hg-contaminated areas. However, little is known about the relative importance of rice versus finfish in MeHg exposure for urban residents in uncontaminated areas. Especially, the lack of data on MeHg bioaccessibility in rice hinders accurately assessing MeHg exposure via rice consumption, and its importance compared to fish. By correcting commonly used risk models with quantified MeHg bioaccessibility, we provide the first bioaccessibility-corrected comparison on MeHg risk in rice and fish for consumers in non-contaminated urban areas of China, on both city- and province-scales. Market-available fish and rice samples were cooked and quantified for MeHg bioaccessibility. Methylmercury bioaccessibility in rice (40.5±9.4%) was significantly (p<0.05) lower than in fish (61.4±14.2%). This difference does not result from selenium content but may result from differences in protein or fiber content. Bioaccessibility-corrected hazard quotients (HQs) were calculated to evaluate consumption hazard of MeHg for consumers in Nanjing city, and Monte Carlo Simulations were employed to evaluate uncertainty and variability. Results indicate that MeHg HQs were 0.14 (P50) and 0.54 (P90). Rice consumption comprised 27.2% of the overall dietary exposure to MeHg in Nanjing, while fish comprised 72.8%. Employing our bioaccessibility data combined with literature parameters, calculated relative contribution to MeHg exposure from rice (versus fish) was high in western provinces of China, including Sichuan (95.6%) and Guizhou (81.5%), and low to moderate in eastern and southern provinces (Guangdong: 6.6%, Jiangsu: 17.7%, Shanghai: 15.1%, Guangxi: 20.6%, Jiangxi: 22.8% and Hunan: 25.9%). This bioaccessibility-corrected comparison of rice versus fish indicates that rice consumption can substantively contribute to dietary MeHg exposure risk for urban populations in Asia, and should be regularly included in dietary MeHg exposure assessment.
Collapse
Affiliation(s)
- Yu Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Luís M Nunes
- University of Algarve, Civil Engineering Research and Innovation for Sustainability Center, Faro, Portugal
| | - Ben K Greenfield
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| | - Zhen Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Qianqi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wenbo Bu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu Province, People's Republic of China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|