1
|
Buchmann C, Korz S, Moraru A, Richling E, Sadzik S, Scharfenberger-Schmeer M, Muñoz K. From winery by-product to soil improver? - A comprehensive review of grape pomace in agriculture and its effects on soil properties and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179611. [PMID: 40373684 DOI: 10.1016/j.scitotenv.2025.179611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Grape pomace (GP), a by-product of winemaking, is rich in organic carbon and nutrients, offering potential as an alternative to synthetic soil amendments. However, its broader use in agriculture remains limited due to uncertainties about long-term environmental and agronomic impacts. This review assesses the potential of GP as a soil amendment, highlighting its ability to enhance soil organic matter, nutrient availability, and soil physicochemical properties. At the same time, concerns remain regarding its acidic nature, wide carbon-to‑nitrogen (C/N) ratio, and bioactive compounds, such as mycotoxins and (poly)phenols, which could negatively impact soil microbial communities and nutrient cycling. Furthermore, residual contaminants such as pesticides and heavy metals in GP may pose ecotoxicological risks, potentially disrupting soil ecosystem functions and contaminating surrounding environments. Besides these challenges, research on the efficiency, fate and mobility of GP in soil, particularly in relation to soil type, climate, and agricultural practices, is limited. Furthermore, the effects of various (pre)treatments (e.g., composting, fermentation) on GP properties and soil interactions require more systematic investigation. Future research should focus on long-term field trials, advanced analytical methods, and effective monitoring frameworks. It is essential to refine regulatory guidance based on comprehensive risk assessments to ensure safe application and maximize GP's agronomic and environmental benefits. Overcoming these challenges could transform GP into a valuable resource for sustainable agriculture, contributing to soil health, climate resilience, and a circular economy.
Collapse
Affiliation(s)
- Christian Buchmann
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany.
| | - Sven Korz
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany
| | - Anja Moraru
- Institute for Viticulture and Enology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Neustadt an der Weinstraße, Germany
| | - Elke Richling
- Faculty of Chemistry, Division Food Chemistry and Toxicology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Sullivan Sadzik
- Faculty of Chemistry, Division Food Chemistry and Toxicology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Maren Scharfenberger-Schmeer
- Institute for Viticulture and Enology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Neustadt an der Weinstraße, Germany; Kaiserslautern University of Applied Sciences, Wine Campus Neustadt, Neustadt, Germany
| | - Katherine Muñoz
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany.
| |
Collapse
|
2
|
Rabichi I, Ezzahi K, Yaacoubi FE, Izghri Z, Ennaciri K, Ounas A, Yaacoubi A, Baçaoui A, Hafidi M, El Fels L. Evaluating the fixed-bed column adsorption capacity of olive pomace biochar activated with KOH and H 3PO 4 for olive mill wastewater treatment: Insights from TOC and HPLC analysis. CHEMOSPHERE 2025; 377:144356. [PMID: 40147349 DOI: 10.1016/j.chemosphere.2025.144356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
This study explores the treatment of olive mill wastewater (OMWW) using activated carbon derived from olive mill solid waste (OMSW). The OMSW was first converted into biochar on a pilot scale and then activated using potassium hydroxide (KOH) and phosphoric acid (H3PO4). Characterization revealed that AC/KOH had a higher BET surface area (829 m2 g-1) than AC/H3PO4 (749 m2 g-1). Fixed-bed column experiments showed breakthrough times of 250 min for AC/KOH and 220 min for AC/H3PO4. The adsorption capacities determined by the Thomas model were 275.9 mg g-1 for total phenolics (TP), 774.7 mg g-1 for total organic carbon (TOC) with AC/KOH, and 309.1 mg g-1 for TP, 823.5 mg g-1 for TOC with AC/H3PO4. The Adams-Bohart model showed kinetic constants (KAB) of 0.332 for TP and 3.66∗10-5 for TOC with AC/KOH, compared to 0.1926 for TP and 2.21∗10-5 for TOC with AC/H3PO4. The Yoon-Nelson model indicated τ50 % values of 171.57 min for TP 60.39 min for TOC with AC/KOH, 111.79 min for TP, and 41.75 min for TOC with AC/H3PO4. High-performance liquid chromatography (HPLC) analysis revealed hydroxytyrosol concentration decreased from 4.9 g.L-1 to 0.37 g.L-1 with AC/H3PO4 and 0.42 g.L-1 with AC/KOH. The total phenolic concentration reduced from 5.57 g.L-1 in untreated OMWW to 0.66 g.L-1 with AC/H3PO4 and 0.84 g.L-1 with AC/KOH. These results demonstrate that both activated carbons effectively reduce phenolic concentrations. This study achieves some of the highest adsorption capacities reported for OMWW treatment, this technique demonstrates the outstanding performance of the developed materials. Unlike most research, which focuses on static conditions, less than 10 % of studies explore dynamic fixed-bed setups, underscoring the novelty of this work. The materials can be easily integrated into conventional treatment processes, providing a cost-effective and sustainable solution. By utilizing byproducts from the olive oil industry to treat its wastewater, the approach creates a closed-loop system. Furthermore, the activated carbons are regenerable and reusable, enhancing their practicality while enabling the recovery of valuable polyphenols for added resource valorization.
Collapse
Affiliation(s)
- Imad Rabichi
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco; Laboratory of Microbial Biotechnologies Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco.
| | - Kawtar Ezzahi
- Laboratory of Microbial Biotechnologies Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Fatima Ezzahra Yaacoubi
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Zaina Izghri
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Karima Ennaciri
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Abdelaziz Ounas
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Abdelrani Yaacoubi
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Abdelaziz Baçaoui
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| | - Loubna El Fels
- Laboratory of Microbial Biotechnologies Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, 40000, Morocco
| |
Collapse
|
3
|
Soultatos SK, Chatzaki A, Karas PA, Papadaki AA, Kalantzakis GS, Psarras G, Goumas DE, Karpouzas DG, Markakis EA. Biocontrol Potential of Raw Olive Mill Waste Against Verticillium dahliae in Vegetable Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:867. [PMID: 40265782 PMCID: PMC11944966 DOI: 10.3390/plants14060867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025]
Abstract
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae causes severe losses to a broad range of economically important crops worldwide. Chemical disease management is ineffective; thus, alternative control strategies are needed. Olive-producing countries face the challenge of managing olive mill wastewater (OMW) in an environmentally friendly and agronomically beneficial manner. The proper use of OMW supported by scientific research has been proposed as a valuable means for successful disease management. In this respect, we tested whether soil application of raw OMW can protect vegetable crops against V. dahliae and investigated the potential disease-suppressive mechanisms. OMW inhibited significantly fungal growth, sporulation, hyphae width, and conidial and microsclerotial germination in vitro, and these effects were dose-dependent. Moreover, the addition of OMW in the soil provided sufficient protection of eggplant and tomato against V. dahliae in planta. The high OMW-conferred protection of eggplant was gradually decreased, possibly due to the decreased phenolic content in OMW over time. Bioassays with sterilized soil substrate and OMW, along with isolated microbial strains, revealed that soil- and OMW-originated microbes had no role in disease suppression. Moreover, split-root set-ups suggested a non-systemic OMW-induced resistance mechanism. Root-drench application of OMW in eggplant and tomato plants did not cause significant alterations in the structure of the plant microbiome that could be associated with disease suppressiveness.
Collapse
Affiliation(s)
- Stefanos K. Soultatos
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos, 71004 Heraklion, Greece; (S.K.S.); (D.E.G.)
| | - Anastasia Chatzaki
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization—DIMITRA, Agrokipio, 73100 Chania, Greece (A.A.P.); (G.S.K.); (G.P.)
| | - Panagiotis A. Karas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larisa, Greece; (P.A.K.); (D.G.K.)
| | - Anastasia A. Papadaki
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization—DIMITRA, Agrokipio, 73100 Chania, Greece (A.A.P.); (G.S.K.); (G.P.)
| | - Georgios S. Kalantzakis
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization—DIMITRA, Agrokipio, 73100 Chania, Greece (A.A.P.); (G.S.K.); (G.P.)
| | - Georgios Psarras
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization—DIMITRA, Agrokipio, 73100 Chania, Greece (A.A.P.); (G.S.K.); (G.P.)
| | - Dimitrios E. Goumas
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos, 71004 Heraklion, Greece; (S.K.S.); (D.E.G.)
| | - Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larisa, Greece; (P.A.K.); (D.G.K.)
| | - Emmanouil A. Markakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos, 71004 Heraklion, Greece; (S.K.S.); (D.E.G.)
| |
Collapse
|
4
|
Dich A, Abdelmoumene W, Belyagoubi L, Assadpour E, Belyagoubi Benhammou N, Zhang F, Jafari SM. Olive oil wastewater: a comprehensive review on examination of toxicity, valorization strategies, composition, and modern management approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6349-6379. [PMID: 40025331 DOI: 10.1007/s11356-025-36127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Olive mill wastewater (OMWW), a by-product of olive oil production, poses severe environmental challenges due to its toxicity, primarily caused by its high organic load and phenolic compounds, along with organic acids, lipids, and heavy metals. These components contribute to its elevated chemical and biological oxygen demand, making OMWW a persistent pollutant that necessitates urgent and effective treatment strategies. The ecological risks, including water contamination, soil degradation, and biodiversity loss, underscore the need for sustainable management approaches. This review explores the composition and toxicity of OMWW, examining advanced treatment technologies, e.g., bioremediation, membrane filtration, advanced oxidation processes, and integrated systems that enhance efficiency while minimizing environmental impact. In addition, this study investigates the potential for OMWW valorization as a rich source of polyphenols with antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds have significant economic value in industries such as pharmaceuticals, cosmetics, and functional foods. By evaluating sustainable extraction techniques and integrating advanced treatments with economic valorization, OMWW can be transformed from an environmental pollutant into a valuable resource. Such integrated approaches support a circular economy within the olive oil industry, reducing its ecological footprint and fostering sustainable development.
Collapse
Affiliation(s)
- Asmaâ Dich
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Waffa Abdelmoumene
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Larbi Belyagoubi
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Nabila Belyagoubi Benhammou
- Laboratory of Natural Products, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe Sciences, University Abou-Bekr Belkaïd, 13000, Tlemcen, Algeria.
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
5
|
Viteri G, Aranda A, Díaz de Mera Y, Rodríguez A, Rodríguez D, Rodríguez-Fariñas N, Valiente N, Seseña S. Effects of massive desiccation of olive waste residues on air quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124542. [PMID: 39002752 DOI: 10.1016/j.envpol.2024.124542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
New industries are proliferating in the recovery of agri-food wastes, such as those involved in the revaluation of alperujo, generated in the production of olive oil. Despite the potential environmental benefits, their activity is not exempt from new forms of emissions, aggravated by the massification of waste treatments. This work reports a six-month field campaign carried out in an alperujo desiccation plant which can serve as a proxy for these emerging industries in the Mediterranean countries. The study focused on air quality parameters, covering criteria pollutants, metals and microbiological load of particulate matter and the characterization of volatile organic compounds (VOCs). The results show a slight contribution of the factory to the NOx levels in the surroundings (3.0-12.5 μg/m3). Statistically significant effects were not observed for ozone, CO, SO2, or PM10. Concerning the levels of metals, concentrations were low and calculated health risk indexes indicated safe conditions in the area. The most abundant elements were Na (6.5 × 102 ng/m3), K (4.0 × 102 ng/m3), Al (2.7 × 102 ng/m3), Zn (2.1 × 102 ng/m3), Ca (2.16 × 102 ng/m3), Fe (3.6 × 101 ng/m3) and Mg (3.2 × 101 ng/m3). Bacterial counts, with a mean value of 15.9 CFU/m3, showed a seasonal shift, mainly explained by weather (air moisture and temperature) and PM2.5 concentration. The genomic analysis showed Cutibacterium as the dominant genus during the cold months while Bacillus predominated in the warm season. The VOCs with higher average concentrations were acetic acid (130 μg/m3), nonanoic acid (124 μg/m3), benzoic acid (29.7 μg/m3), octanoic acid (19.9 μg/m3) and nonanal (4.70 μg/m3), with the rest of compounds in concentrations below 4 μg/m3. Odorant pollutants with the greatest contribution to olfactory nuisance were aldehydes (from pentanaldehyde to decanaldehyde), acetic acid and phenol. Although the observable effects of the waste treatments were low, several parameters showed an influence on the environment which should be assessed to foresee and prevent long-term consequences.
Collapse
Affiliation(s)
- Gabriela Viteri
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Alfonso Aranda
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Yolanda Díaz de Mera
- Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Ana Rodríguez
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Diana Rodríguez
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III s/n, 45071, Toledo, Spain
| | | | - Nicolás Valiente
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Campus Universitario s/n, 02071, Albacete, Spain
| | - Susana Seseña
- Facultad de Ciencias Ambientales y Bioquímica, Avenida Carlos III s/n, 45071, Toledo, Spain
| |
Collapse
|
6
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
7
|
Košćak L, Lamovšek J, Lukić M, Kovačević TK, Đermić E, Goreta Ban S, Major N, Godena S. Varietal Susceptibility of Olive to Pseudomonas savastanoi pv. savastanoi and the Antibacterial Potential of Plant-Based Agents. Microorganisms 2024; 12:1301. [PMID: 39065069 PMCID: PMC11278643 DOI: 10.3390/microorganisms12071301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Olive knot disease, caused by the bacterium Pseudomonas savastanoi pv. savastanoi, causes great damage in olive orchards. While control measures of P. savastanoi pv. savastanoi in olive orchards primarily rely on pruning and copper-based treatments, the use of antibiotics as bactericidal preparations in agriculture is limited and highly restricted. However, plants are naturally endowed with protective molecules, such as phenolic compounds, which defend them against herbivores, insects, and microorganisms. This research aimed to test the virulence of five strains of P. savastanoi pv. savastanoi isolated from different growing regions and olive varieties, and to examine whether there is a difference in plant susceptibility based on the variety. An additional goal was to test the antimicrobial activity of olive mill wastewater, known for its high content of phenolic compounds, and aqueous garlic hydrolysate, as well as to compare them with a commercial copper-based product, pure hydroxytyrosol, and a standard antibiotic as references. Analysis of knot characteristics showed variations in the virulence of the P. savastanoi pv. savastanoi strains, with the highest virulence being observed for the strain I7L and the lowest virulence for the strain B45C-PR. The olive cultivar Rosinjola displayed higher susceptibility compared to Frantoio, Buža, and Leccino, while cv. Istarska bjelica exhibited the least susceptibility compared to the other investigated olive cultivars. In an attempt to explore alternative solutions for disease control, in vitro tests revealed that the phenol HTyr, GE, and the wastewater with the highest total phenolic content (cv. Istarska bjelica) possess the highest antibacterial activity. This supports the role of polyphenols in host defense, aligning with previous field observations of lower susceptibility of cv. Istarska bjelica to olive knot disease. These findings highlight the complex nature of olive knot interactions with bacterial strains and olive cultivars, simultaneously accentuating and underscoring the importance of considering the host's defenses as well as bacterial virulence in disease management strategies.
Collapse
Affiliation(s)
- Laura Košćak
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia; (L.K.); (M.L.); (T.K.K.); (S.G.B.); (N.M.)
| | - Janja Lamovšek
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia;
| | - Marina Lukić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia; (L.K.); (M.L.); (T.K.K.); (S.G.B.); (N.M.)
| | - Tvrtko Karlo Kovačević
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia; (L.K.); (M.L.); (T.K.K.); (S.G.B.); (N.M.)
| | - Edyta Đermić
- Department of Plant Pathology, Division of Phytomedicine, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia; (L.K.); (M.L.); (T.K.K.); (S.G.B.); (N.M.)
| | - Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia; (L.K.); (M.L.); (T.K.K.); (S.G.B.); (N.M.)
| | - Sara Godena
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia; (L.K.); (M.L.); (T.K.K.); (S.G.B.); (N.M.)
| |
Collapse
|
8
|
Di Rauso Simeone G, Scala G, Scarpato M, Rao MA. Response of chemical and biochemical soil properties to the spreading of biochar-based treated olive mill wastewater. Heliyon 2024; 10:e31157. [PMID: 38813145 PMCID: PMC11133665 DOI: 10.1016/j.heliyon.2024.e31157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Despite the polluting potential olive mill wastewater (OMW) can be a useful source of nutrients and organic compounds to improve soil properties. The aim of this paper was to verify if biochar-based treatment of OMW could be an efficient method to contrast the richness in phenolic compounds and phytotoxicity of OMW making it more suitable. for soil amendment. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). In soil amendment BP-treated OMW induced an increase of organic carbon by approximately 15 % and notably BP10 treated OMW enhanced available phosphorous by 25 % after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass and enzymatic activities were significantly enhanced after 30 and 90 days, with no effect on cress seed germination. Therefore, biochar based-treatment could be cost-effective and able to facilitate the long-term management of OMW in terms of storage and disposal.
Collapse
Affiliation(s)
- Giuseppe Di Rauso Simeone
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy
| | - Giuseppina Scala
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy
| | - Marcello Scarpato
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy
| | - Maria A. Rao
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy
| |
Collapse
|
9
|
Enaime G, Dababat S, Wichern M, Lübken M. Olive mill wastes: from wastes to resources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20853-20880. [PMID: 38407704 PMCID: PMC10948480 DOI: 10.1007/s11356-024-32468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Olive oil extraction has recently experienced a continuous increase due to its related beneficial properties. Consequently, large amounts of olive mill wastes (OMWs) derived from the trituration process are annually produced, causing serious environmental problems. The limited financial capabilities of olive mills make them usually unable to bear the high costs required for the disposal of their wastes. Alternatively, the valorization of OMWs within the framework of the so-called waste-to-resource concept and their recycling can represent a successful strategy for the implementation of circular economy model in the olive industry, which could have significant socioeconomic impacts on low-income Mediterranean countries. There is, however, no unique solution for OMWs valorization, due to the wide variety of the wastes' composition and their seasonal production. In this review, the potential of OMWs for being reused and the recent technological advances in the field of OMWs valorization are assessed. Special focus is given to the analysis of the advantages and limitations of each technology and to reporting the most significant issues that still limiting its industrial scale-up. The information collected in this review shows that OMW could be effectively exploited in several sectors, including energy production and agriculture. OMWs potential seems, however, undervalued, and the implementation of sustainable valorization strategies in large-scale remains challenging. More efforts and policy actions, through collective actions, encouraging subsidies, and establishing public-private collaborations, are still needed to reconcile research progress with industrial practices and encourage the large-scale implementation of the waste-to-resource concept in the olive sector.
Collapse
Affiliation(s)
- Ghizlane Enaime
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Salahaldeen Dababat
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Manfred Lübken
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
10
|
Di Rauso Simeone G, Scala G, Scarpato M, Rao MA. Response of chemical and biochemical soil properties to the spreading of biochar-based treated olive mill wastewater. Heliyon 2023; 9:e22894. [PMID: 38125515 PMCID: PMC10730756 DOI: 10.1016/j.heliyon.2023.e22894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Olive mill wastewater (OMW) is the effluent derived from the oil extraction processes from olives. Despite the polluting potential OMW can be a useful source of nutrients and organic compounds to improve soil properties. OMW could negatively affect soil and water quality as this waste is rich in phenolic compounds and has high COD and BOD5. Biochar-based treatment could be an efficient method to remediate OMW. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). BP-treated OMW was used in soil amendment and induced an increase in chemical properties, especially in organic carbon after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass, enzymatic activities, and cress seed germination were significantly enhanced after 30 and 90 days.
Collapse
Affiliation(s)
- Giuseppe Di Rauso Simeone
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Giuseppina Scala
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Marcello Scarpato
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Maria A. Rao
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| |
Collapse
|
11
|
Silberbush A, Halabi M, Shteindel N, Gerchman Y, Azaizeh H, Shahar B, Kurzbaum E. Olive Mill Wastewater Extract as a Potential Mosquito Larvicide. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 48:141-144. [PMID: 37843457 DOI: 10.52707/1081-1710-48.2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Alon Silberbush
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel,
| | - Maram Halabi
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel
| | - Nimrod Shteindel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel
| | - Yoram Gerchman
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa - Oranim, Israel
| | - Hassan Azaizeh
- Institute of Applied Research, The Galilee Society, Shefa-Amr 20200, Israel
- Tel Hai College, Department of Environmental Science, Upper Galilee 12208, Israel
- Department of Natural Resources & Environmental Management, University of Haifa, Haifa, 3498838, Israel
| | - Ben Shahar
- Shamir Research Institute, University of Haifa, Qatzrin, Israel
| | - Eyal Kurzbaum
- Tel Hai College, Department of Environmental Science, Upper Galilee 12208, Israel
- Shamir Research Institute, University of Haifa, Qatzrin, Israel
- Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Haifa 3498838, Israel
| |
Collapse
|
12
|
Bouhia Y, Hafidi M, Ouhdouch Y, Lyamlouli K. Olive mill waste sludge: From permanent pollution to a highly beneficial organic biofertilizer: A critical review and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:114997. [PMID: 37210993 DOI: 10.1016/j.ecoenv.2023.114997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Olive mill wastewater sludge (OMWS) is a by-product of the olive extraction process that is attracting substantial attention due to its extremely hazardous effects on aquatic and terrestrial ecosystems. OMWS is a product of the common disposal method of olive oil mill wastewater (OMWW) that accumulates in evaporation ponds. It is estimated that approximately 10 × 106 m3 of OMWS is generated worldwide each year. OMWS is characterized by its significantly variable physicochemical properties and organic pollutant constituents, such as phenols and lipids, which are dependent upon the environmental features of the receiving ponds. Nonetheless, many related studies have recognized the biofertilizer potential of this sludge owing to its high mineral nutrient and organic matter load. OMWS exhibits promising valorization potential in several fields, including agriculture and energy production. Compared to those of OMWW, studies of OMWS are still lacking concerning its composition and characteristics, which are necessary for the future implementation of efficient valorization strategies. The main purpose of this review paper is to fill the gap that exists in the literature by providing a critical analysis of the available data on OMWS production, distribution, characteristics, and properties. Additionally, this work sheds light on important factors affecting OMWS properties, including the variability of the indigenous microbial communities regarding bioremediation. Finally, this review addresses the current and future valorization routes, from detoxification to the development of promising applications in agriculture, energy, and the environment, which could have significant socioeconomic implications for low-income Mediterranean countries.
Collapse
Affiliation(s)
- Youness Bouhia
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, labeled Research Unit CNRST N°4 Cadi Ayyad University, Marrakesh 40000, Morocco; AgroBioSciences Program, Mohammed 6 Polytechnic University UM6P, Benguerir 43150, Morocco.
| | - Mohamed Hafidi
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, labeled Research Unit CNRST N°4 Cadi Ayyad University, Marrakesh 40000, Morocco; AgroBioSciences Program, Mohammed 6 Polytechnic University UM6P, Benguerir 43150, Morocco
| | - Yedir Ouhdouch
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, labeled Research Unit CNRST N°4 Cadi Ayyad University, Marrakesh 40000, Morocco; AgroBioSciences Program, Mohammed 6 Polytechnic University UM6P, Benguerir 43150, Morocco
| | - Karim Lyamlouli
- AgroBioSciences Program, Mohammed 6 Polytechnic University UM6P, Benguerir 43150, Morocco
| |
Collapse
|
13
|
Brugnoli M, La China S, Lasagni F, Romeo FV, Pulvirenti A, Gullo M. Acetic acid bacteria in agro-wastes: from cheese whey and olive mill wastewater to cellulose. Appl Microbiol Biotechnol 2023; 107:3729-3744. [PMID: 37115254 DOI: 10.1007/s00253-023-12539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
In this study, cheese whey and olive mill wastewater were investigated as potential feedstocks for producing bacterial cellulose by using acetic acid bacteria strains. Organic acids and phenolic compounds composition were assayed by high-pressure liquid chromatography. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction were used to investigate modifications in bacterial cellulose chemical and morphological structure. Cheese whey was the most efficient feedstock in terms of bacterial cellulose yield (0.300 g of bacterial cellulose/gram of carbon source consumed). Bacterial cellulose produced in olive mill wastewater presented a more well-defined network compared to pellicles produced in cheese whey, resulting in a smaller fiber diameter in most cases. The analysis of bacterial cellulose chemical structure highlighted the presence of different chemical bonds likely to be caused by the adsorption of olive mill wastewater and cheese whey components. The crystallinity ranged from 45.72 to 80.82%. The acetic acid bacteria strains used in this study were characterized by 16S rRNA gene sequencing, allowing to assign them to Komagataeibacter xylinus and Komagataeibacter rhaeticus species. This study proves the suitability to perform sustainable bioprocesses for producing bacterial cellulose, combining the valorisation of agro-wastes with microbial conversions carried out by acetic acid bacteria. The high versatility in terms of yield, morphology, and fiber diameters obtained in cheese whey and olive mill wastewater contribute to set up fundamental criteria for developing customized bioprocesses depending on the final use of the bacterial cellulose. KEY POINTS: • Cheese whey and olive mill wastewater can be used for bacterial cellulose production. • Bacterial cellulose structure is dependent on the culture medium. • Komagataeibacter strains support the agro-waste conversion in bacterial cellulose.
Collapse
Affiliation(s)
- Marcello Brugnoli
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore La China
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Federico Lasagni
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Flora Valeria Romeo
- Research Centre for Olive, Fruit and Citrus Crops (CREA), Acireale, 95024, Italy
| | - Andrea Pulvirenti
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Maria Gullo
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy.
| |
Collapse
|
14
|
Hassan MS, Naz N, Ali H, Ali B, Akram M, Iqbal R, Ajmal S, Ali B, Ercisli S, Golokhvast KS, Hassan Z. Ultra-Responses of Asphodelus tenuifolius L. (Wild Onion) and Convolvulus arvensis L. (Field Bindweed) against Shoot Extract of Trianthema portulacastrum L. (Horse Purslane). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030458. [PMID: 36771542 PMCID: PMC9920381 DOI: 10.3390/plants12030458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 05/29/2023]
Abstract
Weed infestation is a prime challenge coupled with lowering crop production owing to their competition with crop plants for available resources such as nutrients, water, space, moisture, and sunlight. Among weed control methods, the implementation of synthetic herbicides offers an instant solution for getting rid of weeds; however, they are a direct source of potential hazards for humans and generate resistance against synthetic weedicides, making them less effective. Allelopathy is something that happens in nature that can be used as a weed control method that increases crop yield and decreases dependency on synthetic chemicals. The mode of action of some phytochemicals corresponds to synthetic herbicides. Due to this feature, allelochemicals are used as bio-herbicides in weed management and prove more environmentally friendly than synthetic weedicides. The present investigation aims to assess the ultra-responses of A. tenuifolius and C. arvensis, while growing them in a pot experiment. Various levels of shoot extract (L2, L3, and L4) of T. portulacastrum along with the L1 (distilled water) and L5 (synthetic herbicide) were applied to the weeds. Results indicated that aqueous extracts of shoot of T. portulacastrum significantly (p ≤ 0.05) affect all the measured traits of weeds and their effects were concentration specific. All morphological parameters were suppressed due to biotic stress with an increase in free amino acids and calcium ions along with a decline in metaxylem cell area and cortical thickness in the root, while the vascular bundle area increased. The shoot extract intrusive with metabolisms corresponded with the synthetic herbicide. It is concluded that Trianthema shoot extract has a powerful phytotoxic impact on weeds (A. tenuifolius and C. arvensis) and can be used in bio-herbicide production.
Collapse
Affiliation(s)
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 62100, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khawja Freed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khawja Freed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 62100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sidra Ajmal
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 62100, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Presidium, 630501 Krasnoobsk, Russia
| | - Zeshan Hassan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah 31200, Pakistan
| |
Collapse
|
15
|
Gueboudji Z, Kadi K, Mahmoudi M, Hannachi H, Nagaz K, Addad D, Yahya LB, Lachehib B, Hessini K. Maceration and liquid-liquid extractions of phenolic compounds and antioxidants from Algerian olive oil mill wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3432-3439. [PMID: 35948794 DOI: 10.1007/s11356-022-22482-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Olive oil mill wastewater (OMW) is a major waste stream generated in olive oil industry. It is highly polluted due to phenolic compounds. The present study focused on the physicochemical properties of OMW as well as the quantitative and qualitative effects of two extraction methods of phenolic compounds which were liquid-liquid and maceration methods. Spectrophotometry and high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) were adopted to quantify the phytochemical contents and the phenolic compounds. The extract obtained by the maceration method showed the highest yields of total polyphenol, flavonoid, and tannin contents. The LC-MS results revealed the presence of 16 phenolic compounds in the macerated, and only 12 phenolic compounds were found in the extract of the second method. Quinic acid was identified as the most abundant compound. Moreover, the macerated extracts possessed the highest antioxidant potential as evidenced by their strong ferric reducing antioxidant power (FRAP) and their 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activities. The phytochemical contents, as well as the antioxidant potentials of OMW after extraction using maceration, were significantly greater than using liquid-liquid method. Therefore, maceration seemed to be the most effective method for extracting phenolic compounds from OMW. The OMW constitute a rich source of natural phenolic compounds that could be used as a potential source of natural antioxidants.
Collapse
Affiliation(s)
- Zakia Gueboudji
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Kenza Kadi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Maher Mahmoudi
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia.
- Laboratory of Plant, Soil and Environment Interactions (LIPSE), LR21LS01, University of Tunis El Manar, 1068, Tunis, Tunisia.
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Arid Regions Institute, Street Djerba km 22.5, Medenine, Tunisia.
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity And Environmental Constraint LR18ES04, Department of Biology, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Kamel Nagaz
- Drylands and Oases Cropping Laboratory, IRA, Medenine, Tunisia
| | - Dalila Addad
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Leila Ben Yahya
- Drylands and Oases Cropping Laboratory, IRA, Medenine, Tunisia
| | | | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
16
|
Sustainable vs. Conventional Approach for Olive Oil Wastewater Management: A Review of the State of the Art. WATER 2022. [DOI: 10.3390/w14111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main goal of this review is to collect and analyze the recently published research concerning the conventional and sustainable treatment processes for olive mill wastewater (OMW). In the conventional treatment processes, it is noticed that the main objective is to meet the environmental regulations for remediated wastewater without considering the economical values of its valuable constituents such as polyphenols. These substances have many important environmental values and could be used in many vital applications. Conversely, sustainable treatment processes aim to recover the valuable constituents through different processes and then treat the residual wastewater. Both approaches’ operational and design parameters were analyzed to generalize their advantages and possible applications. A valorization-treatment approach for OMW is expected to make it a sustainable resource for ingredients of high economical value that could lead to a profitable business. In addition, inclusion of a recovery process will detoxify the residual OMW, simplify its management treatment, and allow the possible reuse of the vast amounts of processed water. In a nutshell, the proposed approach led to zero waste with a closed water cycle development.
Collapse
|
17
|
Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering (Basel) 2022; 9:bioengineering9050207. [PMID: 35621485 PMCID: PMC9137473 DOI: 10.3390/bioengineering9050207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The production and large-scale application of traditional chemical pesticides will bring environmental pollution and food safety problems. With the advantages of high safety and environmental friendliness, botanical biopesticides are in line with the development trend of modern agriculture and have gradually become the mainstream of modern pesticide development. However, the traditional production of botanical biopesticides has long been faced with prominent problems, such as limited source and supply, complicated production processes, and excessive consumption of resources. In recent years, the rapid development of synthetic biology will break through these bottlenecks, and many botanical biopesticides are produced using synthetic biology, such as emodin, celangulin, etc. This paper reviews the latest progress and application prospect of synthetic biology in the development of botanical pesticides so as to provide new ideas for the analysis of synthetic pathways and heterologous and efficient production of botanical biopesticides and accelerate the research process of synthetic biology of natural products.
Collapse
|
18
|
Zahi MR, Zam W, El Hattab M. State of knowledge on chemical, biological and nutritional properties of olive mill wastewater. Food Chem 2022; 381:132238. [PMID: 35114626 DOI: 10.1016/j.foodchem.2022.132238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Abstract
The Mediterranean olive oil industries are producing annually a massive quantity of olive mill wastewater (OMWW). Unfortunately, the OMWW is released arbitrarily in the nature without any pretreatment. Thus, it exhibits a high toxicity against the whole natural ecosystem including, microorganisms, plants and animals. In order to eliminate or reduce its pollution, OMWW must be properly treated prior to its release in the nature. In this regard, different treatment methods have been developed by researchers, but some of them were costly and others were inappropriate. Thus, more efforts should be made to save the nature from this pollutant. In the light of that, the current work summaries the state of knowledge regarding the OMWW from a chemical, biological, nutraceutical point of view, and the treatment methods that were used to eliminate its risk of pollution.
Collapse
Affiliation(s)
- Mohamed Reda Zahi
- Laboratory of Natural Products Chemistry and Biomolecules, Faculty of Sciences, Saad Dahlab University of Blida, 1- POB 270, Soumaa Road, Blida, Algeria.
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Tartous University, Syria
| | - Mohamed El Hattab
- Laboratory of Natural Products Chemistry and Biomolecules, Faculty of Sciences, Saad Dahlab University of Blida, 1- POB 270, Soumaa Road, Blida, Algeria
| |
Collapse
|
19
|
Olive Mill Wastewater as Renewable Raw Materials to Generate High Added-Value Ingredients for Agro-Food Industries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167511] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olive oil production represents an agro-industrial activity of vital economic importance for many Mediterranean countries. However, it is associated with the generation of a huge amount of by-products, both in solid and liquid forms, mainly constituted by olive mill wastewater, olive pomace, wood, leaves, and stones. Although for many years olive by-products have only been considered as a relevant environmental issue, in the last decades, numerous studies have deeply described their antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antihypertensive, anticancer, anti-hyperglycemic activities. Therefore, the increasing interest in natural bioactive compounds represents a new challenge for olive mills. Studies have focused on optimizing methods to extract phenols from olive oil by-products for pharmaceutical or cosmetic applications and attempts have been made to describe microorganisms and metabolic activity involved in the treatment of such complex and variable by-products. However, few studies have investigated olive oil by-products in order to produce added-value ingredients and/or preservatives for food industries. This review provides an overview of the prospective of liquid olive oil by-products as a source of high nutritional value compounds to produce new functional additives or ingredients and to explore potential and future research opportunities.
Collapse
|
20
|
Date T, Shigeno K, Hiroshima M, Seo K, Sato M, Tebayashi S, Sato S. Verbascoside from Verbena incompta is a plant root growth inhibitor. Biosci Biotechnol Biochem 2021; 85:1602-1608. [PMID: 34003212 DOI: 10.1093/bbb/zbab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/11/2021] [Indexed: 11/15/2022]
Abstract
The use of biopesticides has expanded rapidly in recent years; however, their use in weed control is less advanced. Herein, we describe the development of a weed control agent by screening 208 plant extracts (104 species) for their plant growth-inhibition activities, which resulted in 142 active samples (from 89 plant species). Verbascoside, isolated from the shoots of Verbena incompta, was identified as a growth inhibitor against rice root (EC50, 1.75 m m), and its root growth-inhibition activity was also confirmed in radish, tomato, and Lotus japonicus. Verbascoside is composed of hydroxytyrosol (EC50,12.51 m m) and caffeic acid (EC50, 4.08 m m), 2 poorly water-soluble phenolic components with weak growth-inhibition activities, and 2 sugars, which are more soluble but inactive. The plant apparently developed a more active and highly soluble compound by condensing these 4 components. We conclude that a biopesticide containing verbascoside may be useful for weed-control purposes.
Collapse
Affiliation(s)
- Tomonori Date
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kanamu Shigeno
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Megumi Hiroshima
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kohei Seo
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Shinichi Tebayashi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Shushi Sato
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
21
|
An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. PLANTS 2021; 10:plants10061185. [PMID: 34200860 PMCID: PMC8230470 DOI: 10.3390/plants10061185] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022]
Abstract
Biopesticides are natural, biologically occurring compounds that are used to control various agricultural pests infesting plants in forests, gardens, farmlands, etc. There are different types of biopesticides that have been developed from various sources. This paper underscores the utility of biocontrol agents composed of microorganisms including bacteria, cyanobacteria, and microalgae, plant-based compounds, and recently applied RNAi-based technology. These techniques are described and suggestions are made for their application in modern agricultural practices for managing crop yield losses due to pest infestation. Biopesticides have several advantages over their chemical counterparts and are expected to occupy a large share of the market in the coming period.
Collapse
|
22
|
Biosurfactant production from newly isolated Rhodotorula sp.YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils. World J Microbiol Biotechnol 2021; 37:18. [PMID: 33394175 DOI: 10.1007/s11274-020-02983-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
One of the very promising methods in the field of bioremediation of hydrocarbons is the application of biosurfactant- producing microorganisms based on the use of wastewater as renewable substrates of culture media, contributing to the reduction of costs. With this aim, the production, characterization and properties of the yeast strain YBR producing a biosurfactant newly isolated from an oilfield in Algeria, using wastewater from olive oil mills (OOMW) as a substrate for a low-cost and effective production, have been investigated. Screening of biosurfactant production was carried out with different tests, including emulsification index test (E24), drop collapse test, oil spreading technique and measurement of surface tension (ST). The isolated yeast strain was found to be a potent biosurfactant producer with E24 = 69% and a significant reduction in ST from 72 to 35 mN m-1. The study of the cultural, biochemical, physiological and genetic characteristics of the isolate allowed us to identify it as Rhodotorula sp. strain YBR. Fermentation was carried out in a 2.5 L Minifors Bioreactor using crude OOMW as culture medium, the E24 value reached 90% and a reduction of 72 to 35 mN m-1 in ST. A biosurfactant yield = 10.08 ± 0.38 g L-1 was recorded. The characterization by semi-purification and thin layer chromatography (TLC) of the crude extract of biosurfactant showed the presence of peptides, carbohydrates and lipids in its structure. The crude biosurfactant exhibited interesting properties such as: low critical micellar concentration (CMC), significant reduction in ST and strong emulsifying activity. In addition, it has shown stability over a wide range of pH (2-12), temperature (4-100 °C) and salinity (1-10%). More interestingly, the produced biosurfactant has proven to be of great potential application in the remobilization of hydrocarbons from polluted soil with a removal rate of greater than 95%.
Collapse
|
23
|
Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. BIOLOGY 2020; 9:biology9120450. [PMID: 33291288 PMCID: PMC7762183 DOI: 10.3390/biology9120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Olive oil is the most common vegetable oil used for human nutrition, and its production represents a major economic sector in Mediterranean countries. The milling industry generates large amounts of liquid and solid residues, whose disposal is complicated and costly due to their polluting properties. However, olive mill waste (OMW) may also be seen as a source of valuable biomolecules including plant nutrients, anthocyanins, flavonoids, polysaccharides, and phenolic compounds. This review describes recent advances and multidisciplinary approaches in the identification and isolation of valuable natural OMW-derived bioactive molecules. Such natural compounds may be potentially used in numerous sustainable applications in agriculture such as fertilizers, biostimulants, and biopesticides in alternative to synthetic substances that have a negative impact on the environment and are harmful to human health. Abstract Olive oil production generates high amounts of liquid and solid wastes. For a long time, such complex matrices were considered only as an environmental issue, due to their polluting properties. On the other hand, olive mill wastes (OMWs) exert a positive effect on plant growth when applied to soil due to the high content of organic matter and mineral nutrients. Moreover, OMWs also exhibit antimicrobial activity and protective properties against plant pathogens possibly due to the presence of bioactive molecules including phenols and polysaccharides. This review covers the recent advances made in the identification, isolation, and characterization of OMW-derived bioactive molecules able to influence important plant processes such as plant growth and defend against pathogens. Such studies are relevant from different points of view. First, basic research in plant biology may benefit from the isolation and characterization of new biomolecules to be potentially applied in crop growth and protection against diseases. Moreover, the valorization of waste materials is necessary for the development of a circular economy, which is foreseen to drive the future development of a more sustainable agriculture.
Collapse
|
24
|
Verticillium Wilt of Olive and its Control: What Did We Learn during the Last Decade? PLANTS 2020; 9:plants9060735. [PMID: 32545292 PMCID: PMC7356185 DOI: 10.3390/plants9060735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Verticillium (Verticillium dahliae Kleb.) wilt is one of the most devastating diseases affecting olive (Olea europaea L. subsp. europaea var. europaea) cultivation. Its effective control strongly relies on integrated management strategies. Olive cultivation systems are experiencing important changes (e.g., high-density orchards, etc.) aiming at improving productivity. The impact of these changes on soil biology and the incidence/severity of olive pests and diseases has not yet been sufficiently evaluated. A comprehensive understanding of the biology of the pathogen and its populations, the epidemiological factors contributing to exacerbating the disease, the underlying mechanisms of tolerance/resistance, and the involvement of the olive-associated microbiota in the tree's health is needed. This knowledge will be instrumental to developing more effective control measures to confront the disease in regions where the pathogen is present, or to exclude it from V. dahliae-free areas. This review compiles the most recent advances achieved to understand the olive-V. dahliae interaction as well as measures to control the disease. Aspects such as the molecular basis of the host-pathogen interaction, the identification of new biocontrol agents, the implementation of "-omics" approaches to unravel the basis of disease tolerance, and the utilization of remote sensing technology for the early detection of pathogen attacks are highlighted.
Collapse
|
25
|
Enaime G, Baçaoui A, Yaacoubi A, Belaqziz M, Wichern M, Lübken M. Phytotoxicity assessment of olive mill wastewater treated by different technologies: effect on seed germination of maize and tomato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8034-8045. [PMID: 31897978 DOI: 10.1007/s11356-019-06672-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The phytotoxicity effect of olive mill wastewater (OMWW) treated in a combined system regrouping pretreatment by filtration on olive stones and coagulation-flocculation, and anaerobic digestion (AD) on seed germination of maize and tomato was evaluated through germination tests in petri dishes and growth tests in pots. Three samples, referenced as AD-40, AD-60, and AD-80, were collected from the anaerobic reactor operating with an influent at 40, 60, and 80% OMWW/water (% v/v). Concentrations between 25 and 100% were used for maize and between 5 and 25% were used for tomato using raw and pretreated samples, while anaerobic samples were used without dilution. For maize, 100% and 75% OMWW were very phytotoxic and completely prohibited seed germination, while phytotoxicity was decreased following dilution at 25% and 50% OMWW. Maize germinability was found highly enhanced when watered with anaerobic samples. For tomato, high dilution was required to reduce the phytotoxicity of raw and pretreated OMWW and a high relative germination percentage was registered at 5, 10, and 15% OMWW, while for samples anaerobically treated, a high phytotoxicity is still observed. Growth tests, showed more favorable results for maize watered with raw and pretreated samples at 25% OMWW and with biological samples. For tomato and with the exception of 25% OMWW and AD-80, seeds respond positively to all samples. It was concluded that if the OMWW will be used for irrigating maize, it could be directly used after anaerobic digestion, while for tomato further dilution is required. The phenolic profile analysis of the tested samples coupled with the results of the germination tests showed that the OMWW phytotoxicity appears to be determined by not only the monomeric phenols but also by other toxic components unaffected by the applied treatments.
Collapse
Affiliation(s)
- Ghizlane Enaime
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco.
| | - Abdelaziz Baçaoui
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco
| | - Abdelrani Yaacoubi
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco
| | - Majdouline Belaqziz
- Polyvalent Laboratory of Research and Development, Polydisciplinary Faculty, Sultan Moulay Slimane University, Béni Mellal, Morocco
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Manfred Lübken
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
26
|
Application of the central composite design to mineralization of olive mill wastewater by the electro/FeII/persulfate oxidation method. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1986-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Babić S, Malev O, Pflieger M, Lebedev AT, Mazur DM, Kužić A, Čož-Rakovac R, Trebše P. Toxicity evaluation of olive oil mill wastewater and its polar fraction using multiple whole-organism bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:903-914. [PMID: 31412527 DOI: 10.1016/j.scitotenv.2019.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Olive mill wastewater (OMW) as a by-product of olive oil extraction process has significant polluting properties mainly related to high organic load, increased COD/BOD ratio, high phenolic content and relatively acidic pH. Raw OMW from Slovenian Istria olive oil mill and its polar fraction were investigated in this study. Chemical characterization of OMW polar fraction identified tyrosol as the most abundant phenolic product, followed by catechol. Lethal and sub-lethal effects of OMW matrix and its polar fraction were tested using a battery of bioassays with model organisms: bacteria Vibrio fischeri, algae Chlorella vulgaris, water fleas Daphnia magna, zebrafish Danio rerio embryos, clover Trifolium repens and wheat Triticum aestivum. Raw OMW sample was the most toxic to V. fischeri (EC50 = 0.24% of OMW sample final concentration), followed by D. magna (EC50 = 1.43%), C. vulgaris (EC50 = 5.20%), D. rerio (EC50 = 7.05%), seeds T. repens (EC50 = 8.68%) and T. aestivum (EC50 = 11.58%). Similar toxicity trend was observed during exposure to OMW polar fraction, showing EC50 values 2.75-4.11 times lower comparing to raw OMW. Tested samples induced also sub-acute effects to clover and wheat (decreased roots, sprouts elongation); and to zebrafish embryos (increased mortality, higher abnormality rate, decreased hatching and pigmentation formation rate). A comprehensive approach using a battery of bioassays, like those used in this study should be applied during ecotoxicity monitoring of untreated and treated OMW.
Collapse
Affiliation(s)
- Sanja Babić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Olga Malev
- Srebrnjak Children's Hospital, Department for Translational Medicine, Srebrnjak 100, Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, Zagreb, Croatia
| | - Maryline Pflieger
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Dmitry M Mazur
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Anita Kužić
- TAPI/Analytical R&D, Pliva Croatia Ltd., prilaz Baruna Filipovića 28, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
28
|
Abstract
Weed management represents one of the most serious and costly challenges in organic crop production systems. Agricultural waste/byproducts might present phytotoxicity that can be exploited to control weeds. Two experiments were designed to study the effects of four concentrations of olive vegetation water (OVW) and a control water treatment (with no OVW) on cheeseweed (Malva parviflora L.) seed germination in petri dishes and pots. In a third experiment, two rates of four composts (crop residue mix (CR), olive pomace (OP), dairy/horse manure (DM), and an OP/DM mix) were mixed into a clay‒loam soil at 0.10 or 0.20 L L−1, to assess their effects on weed number and biomass, in addition to bell pepper (Capsicum annuum L.) growth. In the petri dish experiment, the three highest OVW concentrations completely prohibited germination during the five-week duration of the study. For the pot experiment, 25 mL application of OVW significantly delayed and reduced cheeseweed germination, with the reduction being proportional to the concentration of OVW. In the third experiment, composts reduced weed dry matter (composed mostly of purslane (Portulaca oleracea L.)), with the CR compost being the most effective, reducing total weed biomass by 67% compared to the control. CR10 and DM10 tended to increase bell pepper yields, although none of the plant parameters was significantly affected by the compost treatments.
Collapse
|
29
|
Filizola PRB, Luna MAC, de Souza AF, Coelho IL, Laranjeira D, Campos-Takaki GM. Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microb Cell Fact 2019; 18:89. [PMID: 31122261 PMCID: PMC6532204 DOI: 10.1186/s12934-019-1108-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Studies carried out with novel 13 strains of Trichoderma, isolated from mangrove sediments (PE, Brazil) using morphophysiological and molecular characterization, followed evaluation of biocontrol using Fusarium strains isolated from Caatinga soil (PE, Brazil). Trichoderma strains were characterized by polyphasic taxonomic approach, and the extracted DNA was amplified with primers ITS 1 and 4, and sequenced. The biocontrol evaluation was conducted at 24 and 48 h of growth intervals by Tukey test, with a significance of 5%. Antibiosis tests were assessed in vitro by dual plate and partition plate techniques against Fusarium strains. RESULTS Trichoderma molecular identification, sequences of 500 bp were amplified, deposited into GenBank, and used for phylogenetic analyses. The strains were identified as T. asperellum (10), as T. harzianum (2) and one as T. longibrachiatum. Growth rate presented an average of 0.1207 cm h-1 for Trichoderma and lower growth rate of 0.031 cm h-1 for Fusarium spp., respectively. Antibiosis tests presented the best antagonist level of efficiency for T. asperellum UCP 0149 against F. solani UCP 1395 (82.2%) and F. solani UCP 1075 (70.0%), followed by T. asperellum UCP 0319 against F. solani UCP1083 (73.4%) and T. asperellum UCP 0168 against F. solani UCP1098 (71.5%), respectively. CONCLUSIONS The data obtained in this study as tool for identification of novel Trichoderma strains serve as basis for development of several sustainable use for biotechnological processes. Those Trichoderma strains found promising for the management antagonistic potential and interaction could aid the conduct of biotechnological biocontrol of contaminants, and improve environmental conditions for the health of plants.
Collapse
Affiliation(s)
- Patrícia Rego Barros Filizola
- Northeast Network for Biotechnology Post-graduation Program, Federal Rural University of Pernambuco, Recife, Pernambuco 52171-900 Brazil
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco 50050-590 Brazil
| | - Marcos Antônio Cavalcanti Luna
- Northeast Network for Biotechnology Post-graduation Program, Federal Rural University of Pernambuco, Recife, Pernambuco 52171-900 Brazil
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco 50050-590 Brazil
| | - Adriana Ferreira de Souza
- Northeast Network for Biotechnology Post-graduation Program, Federal Rural University of Pernambuco, Recife, Pernambuco 52171-900 Brazil
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco 50050-590 Brazil
| | - Iwanne Lima Coelho
- Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco 52171-900 Brazil
| | - Delson Laranjeira
- Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco 52171-900 Brazil
| | - Galba Maria Campos-Takaki
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco 50050-590 Brazil
| |
Collapse
|
30
|
Sisti L, Totaro G, Bozzi Cionci N, Di Gioia D, Celli A, Verney V, Leroux F. Olive Mill Wastewater Valorization in Multifunctional Biopolymer Composites for Antibacterial Packaging Application. Int J Mol Sci 2019; 20:ijms20102376. [PMID: 31091667 PMCID: PMC6566966 DOI: 10.3390/ijms20102376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 11/16/2022] Open
Abstract
Olive mill wastewater (OMW) is the aqueous waste derived from the production of virgin olive oil. OMW typically contains a wide range of phenol-type molecules, which are natural antioxidants and/or antibacterials. In order to exploit the bioactive molecules and simultaneously decrease the environmental impact of such a food waste stream, OMW has been intercalated into the host structure of ZnAl layered double hydroxide (LDH) and employed as an integrative filler for the preparation of poly(butylene succinate) (PBS) composites by in situ polymerization. From the view point of the polymer continuous phase as well as from the side of the hybrid filler, an investigation was performed in terms of molecular and morphological characteristics by gel permeation chromatography (GPC) and X-ray diffraction (XRD); also, the thermal and mechanical properties were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic thermomechanical analysis (DMTA). Antibacterial properties have been assessed against a Gram-positive and a Gram-negative bacterium, Staphylococcus aureus and Escherichia coli, respectively, as representatives of potential agents of foodborne illnesses.
Collapse
Affiliation(s)
- Laura Sisti
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Grazia Totaro
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, Università di Bologna, viale Fanin 42, 40127 Bologna, Italy.
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, Università di Bologna, viale Fanin 42, 40127 Bologna, Italy.
| | - Annamaria Celli
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Vincent Verney
- Institut de Chimie de Clermont Ferrand (ICCF)-UMR 6296 Clermont-Auvergne Université, CNRS, 24 Avenue Blaise Pascal, 63177 Aubiere (CEDEX), France.
| | - Fabrice Leroux
- Institut de Chimie de Clermont Ferrand (ICCF)-UMR 6296 Clermont-Auvergne Université, CNRS, 24 Avenue Blaise Pascal, 63177 Aubiere (CEDEX), France.
| |
Collapse
|
31
|
García-Ballesteros S, Grimalt J, Berto S, Minella M, Laurenti E, Vicente R, López-Pérez MF, Amat AM, Bianco Prevot A, Arques A. New Route for Valorization of Oil Mill Wastes: Isolation of Humic-Like Substances to be Employed in Solar-Driven Processes for Pollutants Removal. ACS OMEGA 2018; 3:13073-13080. [PMID: 31458028 PMCID: PMC6644490 DOI: 10.1021/acsomega.8b01816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/26/2018] [Indexed: 05/27/2023]
Abstract
The valorization of olive oil mill solid wastes (OMW) has been addressed by considering it as a possible source of humic-like substances (HLSs), to be used as auxiliary substances for photo-Fenton, employing caffeine as a target pollutant to test the efficiency of this approach. The OMW-HLS isolation encompassed the OMW basic hydrolysis, followed by ultrafiltration and drying. OMW-HLS structural features have been investigated by means of laser light scattering, fluorescence, size exclusion chromatography, and thermogravimetric analysis; moreover, the capability of OMW-HLS to generate reactive species under irradiation has been investigated using spin-trap electronic paramagnetic resonance. The caffeine degradation by means of photo-Fenton process driven at pH = 5 was significantly increased by the addition of 10 mg/L of OMW-HLS. Under the mechanistic point of view, it could be hypothesized that singlet oxygen is not playing a relevant role, whereas other oxidants (mainly OH• radicals) can be considered as the key species in promoting caffeine degradation.
Collapse
Affiliation(s)
- Sara García-Ballesteros
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Jaume Grimalt
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Silvia Berto
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marco Minella
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Enzo Laurenti
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Rafael Vicente
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Maria F. López-Pérez
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Ana M. Amat
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | | | - Antonio Arques
- Grupo
de Procesos de Oxidación Avanzada, Departamento de Ingeniería
Textil y Papelera, and Departamento de Ingeniería Química
y Nuclear, Universitat Politècnica
de València, Plaza
Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
32
|
Koutsos TM, Chatzistathis T, Balampekou EI. A new framework proposal, towards a common EU agricultural policy, with the best sustainable practices for the re-use of olive mill wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:942-953. [PMID: 29227945 DOI: 10.1016/j.scitotenv.2017.12.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
The disposal of olive mill wastewater (OMW) is a serious environmental issue for the Mediterranean countries. However, there is still no common European legislation on the management and the re-use of OMW in agriculture, in the frame of sustainable crop management and the standards for the safe OMW disposal and re-use are left to be set by each EU country, individually. This review paper presents the most effective and sustainable practices for OMW, (treatment, application and management), which can maximize the benefits of OMW on crops and soils, while minimizing the potential hazards for public health, thus promoting environmental sustainability. The findings of this synthetic work suggest that there is enough information and proven sustainable practices to go ahead with the initial formulation of a new consensual framework, environmentally acceptable, socially bearable and economically viable, that could hopefully help to set the standards for the re-use of olive mil wastewater and can lead to a common EU policy on the management and re-use of OMW.
Collapse
Affiliation(s)
- T M Koutsos
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Chatzistathis
- Hellenic Agricultural Organization Demeter, Institute of Soil and Water Resources, Thessaloniki, Greece
| | - E I Balampekou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
33
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
34
|
Belaqziz M, Tan SP, El-Abbassi A, Kiai H, Hafidi A, O’Donovan O, McLoughlin P. Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters. PLoS One 2017; 12:e0182622. [PMID: 28873097 PMCID: PMC5584791 DOI: 10.1371/journal.pone.0182622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
Olive processing wastewaters (OPW), namely olive mill wastewater (OMW) and table-olive wastewaters (TOW) were evaluated for their antibacterial activity against five Gram-positive and two Gram-negative bacteria using the standard disc diffusion and thin layer chromatography (TLC)-bioautography assays. Disc diffusion screening and bioautography of OMW were compared to the phenolic extracts of table-olive brines. Positive activity against S. aureus was demonstrated. The optimization of chromatographic separation revealed that hexane/acetone in the ratio of 4:6 was the most effective for phenolic compounds separation. A HPLC-MS analysis was performed showing that only two compounds, hydroxytyrosol and tyrosol, were the predominant phenolic compounds in all OPW. The phenolic extract of OMW generated by a semi-modern process showed the highest free radical-scavenging activity (DPPH assay) compared to the other phenolic extracts. It is apparent from the present study that OPW are a rich source of antioxidants suitable for use in food, cosmetic or pharmaceutical applications.
Collapse
Affiliation(s)
- Majdouline Belaqziz
- Center of Analysis and Characterization, Cadi Ayyad University, Marrakech, Morocco
| | - Shiau Pin Tan
- The Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Abdelilah El-Abbassi
- Food Sciences laboratory, Department of Biology, Faculty of Sciences–Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Hajar Kiai
- Food Sciences laboratory, Department of Biology, Faculty of Sciences–Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Abdellatif Hafidi
- Food Sciences laboratory, Department of Biology, Faculty of Sciences–Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Orla O’Donovan
- The Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Peter McLoughlin
- The Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|