1
|
Moreno-Vega G, Frazão LR, De-La-Cruz LT, Lopes RM. Changes in the swimming behavior of Temora turbinata (Copepoda, Calanoida) in response to sub-lethal concentrations of caffeine and triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107352. [PMID: 40209295 DOI: 10.1016/j.aquatox.2025.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Caffeine (CAF) and triclosan (TCS) are contaminants of emerging environmental concern due to their widespread presence in marine environments and their potential biological effects on non-target organisms. Despite growing efforts to assess the toxicity of CAF and TCS in aquatic organisms, knowledge of their impacts on marine zooplankton remains limited, particularly regarding physiological aspects such as swimming behavior, a key component of copepod ecology. As the most abundant group of zooplankton, copepods play a crucial role in pelagic food webs and biogeochemical carbon cycles. This study presents findings from microcosm experiments designed to evaluate the immediate effects of two sub-lethal concentrations of CAF and TCS on the three-dimensional swimming behavior of the marine calanoid copepod Temora turbinata. Using 3D horizontal optical system, we analyzed the displacement patterns and swimming speeds of adult T. turbinata individuals before, during, and after exposure to 50 µg L⁻¹ and 100 µg L⁻¹ concentrations of CAF and TCS. Results indicate that both CAF and TCS immediately affect copepod free-swimming behavior, with CAF exposure inducing hyperactivity and TCS exposure leading to hypoactivity. By addressing knowledge gaps concerning the effects of emerging contaminants on marine zooplankton, this study supports the use of copepod kinematics as a sensitive indicator of short-term responses to sub-lethal chemical exposure, providing a predictive tool for assessing contaminant effects on planktonic communities.
Collapse
Affiliation(s)
- Gelaysi Moreno-Vega
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil
| | - Luciana Rocha Frazão
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil
| | - Leandro Ticlia De-La-Cruz
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil
| | - Rubens M Lopes
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Butantã, SP 05508120, Brasil.
| |
Collapse
|
2
|
Serra T, Vilaseca F, Colomer J. The chronic effects of polyethylene terephthalate and biodegradable polyhydroxybutyrate microplastics on Daphniamagna. ENVIRONMENTAL RESEARCH 2025; 274:121281. [PMID: 40049353 DOI: 10.1016/j.envres.2025.121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/09/2025]
Abstract
The inappropriate disposal of plastic materials and their slow decomposition into microplastics (MP) pollutes aquatic ecosystems, leading to toxic effects on organisms. MP can have different shapes and be made from different polymeric materials; being carbon-based polymers the common ones. The toxicity associated with such MP has led to the need to search for alternative polymers with faster degradation times. Biodegradable polymers such as polyhydroxybutyrate (PHB) are promising substitutes for synthetic polymers. In this work, the environmental impact of PHB was determined and compared to that of polyethylene terephthalate (PET). For this purpose, the model organism Daphnia magna was used in a 26-day experiment. The toxic effects of MPs was assessed by analysing the survival, the swimming velocity and the filtration rate of Daphnia magna. After 21 days of exposure, PET in the form of fibers or fragments caused the most toxicity, resulting in a 20% decrease in swimming velocity and a 20% of Daphnia magna survival. However, after 21 days, PHB resulted in 80% survival, which is comparable to control experiments, and Daphnia magna showed mobility that was comparable to that seen for control experiments. Therefore, with the presence of food PHB microplastic particles had no negative effects on Daphnia magna. Considering these results, PHB might be a promising material as a substitute of conventional polymers.
Collapse
Affiliation(s)
- Teresa Serra
- Environmental Physics Group, Department of Physics, University of Girona, C/ Universitat de Girona, 4, 17003-Girona Spain.
| | - Fabiola Vilaseca
- Advanced Biomaterials and Nanotechnology, Dept. of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Jordi Colomer
- Environmental Physics Group, Department of Physics, University of Girona, C/ Universitat de Girona, 4, 17003-Girona Spain
| |
Collapse
|
3
|
Prosnier L, Rojas E, Valéro O, Médoc V. Chronic Broadband Noise Increases the Fitness of a Laboratory-Raised Freshwater Zooplankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40350607 DOI: 10.1021/acs.est.5c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Although there is an increasing interest in the effects of anthropogenic noise on underwater wildlife, most studies focus on marine mammals and fish, while many other taxa of substantial ecological importance are still overlooked. This is the case for zooplankton species, which ensure the coupling between primary producers and fishes in pelagic food webs. Here, we measured lifespan, reproduction, and mobility of laboratory-raised water fleas Daphnia magna, a widespread freshwater zooplankton species, in response to continuous broadband noise. Surprisingly, we found a significant increase in survival and fecundity, leading to a higher individual fitness when considering total offspring production and a slight increase in the population growth rate according to the Euler-Lotka equation. Exposed water fleas were found to be slower than control individuals, and we discussed potential links between mobility and fitness. Our results can have implications in aquaculture and for in-lab studies (e.g., in ecotoxicology) where the acoustic environment receives little attention. Chronic broadband noise can be associated with certain human activities, but the consequences for natural Daphnia populations might differ as reduced velocity could have negative outcomes when considering competition and predation. Our work is one of the few showing an effect of noise on individual fitness and suggests that noise should be better accounted for in laboratory studies.
Collapse
Affiliation(s)
- Loïc Prosnier
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
- France Travail, 42000 Saint-Etienne, France
| | - Emilie Rojas
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7018 Trondheim, Norway
| | - Olivier Valéro
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
| | - Vincent Médoc
- ENES Bioacoustics Research Team, CRNL, CNRS, Inserm, University of Saint Etienne, 42100 Saint-Etienne, France
| |
Collapse
|
4
|
Huang M, Zhang Y, Xu X, Duan R, Yang H. Chronic chlorothalonil exposure inhibits locomotion and interferes with the gut-liver axis in Pelophylax nigromaculatus tadpoles. Sci Rep 2025; 15:14573. [PMID: 40280937 PMCID: PMC12032272 DOI: 10.1038/s41598-025-98081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Chlorothalonil is a widely used fungicide that has a negative effect on individual movement, but its impact pathway needs further refinement. Here, the effects of exposure to chlorothalonil on the locomotion behavior of Pelophylax nigromaculatus tadpoles (GS23) were measured at three different levels (0 µg/L, 10 µg/L, and 50 µg/L), and the possible pathways of its effects were analyzed from the gut-liver axis. Chlorothalonil exposure levels of 10 µg/L and 50 µg/L significantly reduced the average speed of P. nigromaculatus tadpoles by 26% and 32.7%, respectively, and significantly decreased the locomotor frequency by 27.1% and 58.6%, respectively. Gut microbiota analysis revealed chlorothalonil exposure significantly increased the abundance of Firmicutes, while significantly decreased the abundance of Actinobacteriota, Pseudomonas, and Rhodococcus. Metabolomics analysis identified that chlorothalonil treatment changed amino acid-related metabolism pathways in the gut and liver and altered the glycerophospholipid metabolism pathway in the liver. This study indicated that chlorothalonil can affect individual locomotor abilities and interfering with the gut-liver axis of aquatic animals. These findings establish that chlorothalonil compromises aquatic organism motility through a multi-target mechanism involving gut microbiota modulation, amino acid metabolic interference, and hepatic lipid pathway disruption.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
- Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Yuhao Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Xiang Xu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
- Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China.
| | - Hui Yang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
5
|
Sha Y, Zhang H, Wang H, Hansson LA, Niu C. Neonicotinoid insecticide causes multigenerational impairment of inducible antipredator defenses in Daphnia. ENVIRONMENTAL RESEARCH 2025; 271:121076. [PMID: 39922265 DOI: 10.1016/j.envres.2025.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Nowadays organisms encounter not only natural challenges from predators but also significant anthropogenic stressors, such as insecticides, which can profoundly disrupt their normal growth and behavior. However, the knowledge on their potential interactions remains largely unknown, particularly regarding how insecticides may affect predator-prey interactions and prey responses across multiple generations. Here, we conducted a multigenerational experiment exposing two generations of Daphnia sinensis to predator kairomone from fish (Carassius auratus) and imidacloprid (a widely used neonicotinoid insecticide), both individually and in combination, followed by rearing two generations in a clean medium to examine effects on a series of traits including morphology, behavior, physiology, growth rate and reproduction. We found that fish kairomone and imidacloprid affected D. sinensis in different ways across generations, with effects remaining detectable even two generations after removing the threats. Combined stressors induced more pronounced adverse long-term effects than single stressors, affecting traits such as body size, thoracic limb movement, age at first reproduction and offspring number. Exposure to imidacloprid over generations led to a cumulative weakening of essential antipredator defenses, especially in the development of tail spine and reproductive traits, with more pronounced effects observed in the second exposure generation. Our findings highlight the complex interplay between natural and anthropogenic stressors and underscore the importance of considering multigenerational responses to fully understand their ecological impacts on aquatic ecosystems. Further research is essential to explore the underlying mechanisms driving these effects and to inform strategies for mitigating the ecological risks posed by continuous insecticide exposure.
Collapse
Affiliation(s)
- Yongcui Sha
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Haiqing Wang
- School of Marine Biology and Fisheries, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Lars-Anders Hansson
- Department of Biology, Aquatic Ecology, Lund University, Lund SE-22362, Sweden
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
6
|
Chen W, Xu X, Zeng Z, Zhou M, Chen J, Hu G, Shen A, Li D, Xiangjiang L. The role of pyruvate dehydrogenase in the lifespan determination of daphnids. Nat Commun 2025; 16:3267. [PMID: 40188124 PMCID: PMC11972366 DOI: 10.1038/s41467-025-58666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
The general association between longevity and energy metabolism has been well-documented for some time, yet the specific metabolic processes that regulate longevity remain largely unexplored. In contrast to the common active swimming daphnids (e.g., Daphnia sinensis), Simocephalus vetulus is notable for being sedentary and having a lower metabolic rate, yet it has a longer lifespan than D. sinensis. In this study, metabolomic analysis and drug validation experiments are employed to demonstrate that the lower pyruvate dehydrogenase (PDH) activity reduces the locomotor performance of S. vetulus and to identify PDH activity as a regulator of the lifespan of daphnids. Inhibition of PDH activity in daphnids by CPI-613 attenuates its ATP supply and locomotor performance but significantly induces longevity. The study also determines that the invertebrate neurotransmitter octopamine and temperature have a significant impact on PDH activity and modulate daphnids lifespan. And when the effects of temperature and octopamine on PDH activity are counteracted by inhibitors or agonists, the impact on lifespan becomes ineffective. These results support an important role for PDH in lifespan regulation and locomotor performance in daphnids and provide insights into the metabolic regulation of lifespan.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhidan Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingsen Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anfu Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Xiangjiang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Adamczuk M, Bownik A, Pawlik-Skowrońska B. Single and mixture effect of cyanobacterial metabolites, cylindrospermopsin, anabaenopeptin-A, microginin-FR1 and aeruginosin 98-A, on behaviour, food uptake, oxygen consumption and muscular F-actin degradation of Thamnocephalus platyurus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104677. [PMID: 40122194 DOI: 10.1016/j.etap.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
This study showed that single cyanobacterial metabolites had various effects on the tested parameters. Among them, only cylindrospermopsin was lethal to the animals; cylindrospermopsin was also the most potent inhibitor of the remaining parameters. Cylindrospermopsin in binary mixtures with the other tested metabolites displayed antagonistic or additive effects for survival, movement, food uptake and oxygen consumption and synergistic effect for F-actin degradation. Aeruginosin 98 A at lower concentrations displayed an enhanced effect on movement, food uptake and oxygen consumption while inhibiting these parameters at higher concentrations. Anabaenopeptin-A at higher concentrations (> 250 µg/L) had a significant inhibitory effect on T. platyurus. Microginin-FR1 had the lowest impact on T. platyurus, but produced mainly synergistic effects in a binary mixture with aeruginosin 98 A and mostly antagonistic or additive effects in a mixture with anabaenopeptin-A. Quaternary mixtures of metabolites had mostly antagonistic effects on the examined parameters.
Collapse
Affiliation(s)
- Małgorzata Adamczuk
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland.
| | - Adam Bownik
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland
| | | |
Collapse
|
8
|
da Silva GH, Ji J, Maia MT, Mattia D, Martinez DST. Exploring the combined toxicity of boron nitride nanosheets, cadmium and natural organic matter on Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107198. [PMID: 39657301 DOI: 10.1016/j.aquatox.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The increase in anthropogenic activities has led to the release of numerous chemicals and pollutants into aquatic ecosystems, raising significant concerns for water quality and health. Among the emerging issues is the interaction between pollutants and nanomaterials (mixture effects). In this work, it was studied the combined toxicity of boron nitride nanosheets (BNNS) and cadmium (Cd2+) incorporating the influence of natural organic matter (NOM) to enhance ecological relevance for the first time. Colloidal stability studies showed that BNNS is highly unstable, aggregating and precipitating over time in mineral reconstituted water. However, the addition of natural organic matter stabilizes BNNS. Acute toxicity results showed that this material has a good biocompatibility with D. magna, not causing acute toxic effect (immobility) even at high concentration (100 mg L-1). Moreover, when combined with cadmium, BNNS exhibited a "Trojan horse" effect, enhancing Cd2+ toxicity by facilitating its uptake at 1 mg L-1. 48h-EC50 values of Cd2+ and BNNS+Cd2+ were 0.21 and 0.14 mg L-1, respectively. Nevertheless, NOM (10 mg L-1) mitigated this combined toxicity effect after 48 h of exposure. These findings provide novel insights into nanomaterial-pollutant interactions linked to toxicological effects in aquatic environments, contributing to the risk assessment for the safe and sustainable development of the emerging boron nitride nanomaterials and novel products.
Collapse
Affiliation(s)
- Gabriela Helena da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Jing Ji
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Marcella Torres Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Davide Mattia
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom.
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Küster E, Addo GG, Aulhorn S, Kühnel D. Miniaturisation of the Daphnia magna immobilisation assay for the reliable testing of low volume samples. UCL OPEN. ENVIRONMENT 2025; 7:e3037. [PMID: 39925409 PMCID: PMC11804477 DOI: 10.14324/111.444/ucloe.3037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/29/2024] [Indexed: 02/11/2025]
Abstract
International standard test guidelines for the ecotoxicological characterisation of various substances use organisms such as algae, daphnids and fish embryos. These guidelines recommend or use relatively high volumes of water for the process of testing, for example, 200 mL for a complete dose-response relationship in a daphnia assay. However, for various samples such as concentrated extracts from environmental monitoring or leachates from microplastic ageing experiments, the amount of available sample volume is limited, that is, rather in the range of 10-50 mL/biotest. Using the exposure volumes as recommended in test guidelines would not allow to test a range of different concentrations or to repeat tests or use multiple different organismic bioassays. Lower media volumes would allow the testing of more samples (more concentrations per sample, more test repetitions for statistical robustness, etc.) but it may also decrease the possible number of organisms tested in the same volume. Here, we aimed at reducing the test volumes in the acute daphnia assay (using a maximum of 30 mL for a complete dose-response relationship) without impacting animals' sensitivity towards toxicants. A literature review on existing miniaturisation approaches was used as a starting point. Subsequently, assays employing conventional as well as reduced test volumes were compared for 16 selected test substances with a diverse spectrum of lipophilicity. Results showed that there are differences in EC50 between the two approaches, but that these differences were overall only within a range of a factor of two to three. Further, by retrieving EC50 values for the genus Daphnia and 16 test substances from the United States Environmental Protection Agency database, we demonstrated that our results are well in line with the general differences in sensitivities.
Collapse
Affiliation(s)
- Eberhard Küster
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - George Gyan Addo
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Silke Aulhorn
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dana Kühnel
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
10
|
Kizgin A, Schmidt D, Bosshard J, Singer H, Hollender J, Morgenroth E, Kienle C, Langer M. Integrating Biological Early Warning Systems with High-Resolution Online Chemical Monitoring in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23148-23159. [PMID: 39692315 PMCID: PMC11697333 DOI: 10.1021/acs.est.4c07316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Detection of micropollutants (MPs) in wastewater effluents using traditional toxicity tests or chemical analysis with discrete samples is challenging due to concentration dynamics. This study evaluates a continuous monitoring approach for detecting MPs in wastewater effluents using a combination of biological early warning systems (BEWS). Three BEWS with Chlorella vulgaris, Daphnia magna, and Gammarus pulex were operated in parallel in a full-scale municipal wastewater treatment plant. Concentrations of MPs were monitored by simultaneous online chemical analysis using high performance liquid chromatography-high resolution mass spectrometry (MS2Field). Over 5 weeks, behavioral changes observed in the BEWS occasionally exceeded acute toxicity thresholds, triggering alarms. These changes were related to MPs identified by the MS2Field, to abiotic factors, or to operational parameters of the BEWS. For one toxic event, behavioral responses were linked to a pesticide, not authorized in Switzerland, at concentrations close to literature EC50 values. Verification tests confirmed that the pesticide in the effluent was the most likely cause for the organism response. The study demonstrates the potential of BEWS as a stand-alone technique for detecting contamination peaks in wastewater, and identifies key limitations and critical factors that need to be addressed to optimize the use of BEWS in wastewater monitoring.
Collapse
Affiliation(s)
- Ali Kizgin
- Swiss
Centre for Applied Ecotoxicology, Dübendorf, 8600 Zürich, Switzerland
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
| | - Danina Schmidt
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8647 Kastanienbaum, Switzerland
- University
of Tübingen, Animal Physiological Ecology, 72074 Tübingen, Germany
| | - Julian Bosshard
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
| | - Heinz Singer
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
| | - Juliane Hollender
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Eberhard Morgenroth
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
- Institute
of Environmental Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Cornelia Kienle
- Swiss
Centre for Applied Ecotoxicology, Dübendorf, 8600 Zürich, Switzerland
| | - Miriam Langer
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
- Institute
for Ecopreneurship, FHNW Muttenz, 4132 Muttenz, Switzerland
| |
Collapse
|
11
|
Masseroni A, Federico L, Villa S. Ecological fitness impairments induced by chronic exposure to polyvinyl chloride nanospheres in Daphnia magna. Heliyon 2024; 10:e40065. [PMID: 39669135 PMCID: PMC11636108 DOI: 10.1016/j.heliyon.2024.e40065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The aim of this study was to evaluate the effects of chronic exposure (21 days) to an environmentally relevant concentration (10 μg/L) of two different nanoplastic (NP) polymers on the aquatic model organism Daphnia magna. This study examined the impact of exposure to 200 nm polystyrene nanoplastics (PS-NPs) and polyvinyl chloride nanoplastics (PVC-NPs), which had an average size similar to that of PS-NPs (ranging from 50 nm to 350 nm). The effects of polymer exposure on morphometric parameters, number of molts, swimming behaviour, and reproductive outcomes were evaluated. The findings indicate that PVC exposure induced higher body dimensions, while both polymers resulted in an increase in molting behaviour. Moreover, exposure to PVC-NPs had a negative impact on the reproduction of D. magna, as evidenced by a delay in the day of the first brood, a reduction in the total number of offspring produced, and, consequently, a slower population growth rate. It is hypothesised that the ingestion of PVC-NPs by D. magna may have resulted in an impairment of ecdysone hormone functionality and that the increased moulting events potentially representing an adaptive response to the negative effects of PVC-NP adhesion to the organism's body surfaces. These two organisms' responses could concur to explain the observed effects. This study identified the fitness impairments caused by exposure to PVC-NPs, which can lead to relevant ecological consequences. The comparative analysis of the effects induced by two types of polymers has revealed the generation of disparate hazards to D. magna. Furthermore, the chemical composition appears to be a pivotal factor in the onset of these effects. It can therefore be stated that PS is not a suitable standard for representing the toxicity of all plastics.
Collapse
Affiliation(s)
- Andrea Masseroni
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Lorenzo Federico
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
12
|
Riedel JA, Smolina I, Donat C, Svendheim LH, Farkas J, Hansen BH, Olsvik PA. Into the deep: Exploring the molecular mechanisms of hyperactive behaviour induced by three rare earth elements in early life-stages of the deep-sea scavenging amphipod Tmetonyx cicada (Lysianassidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175968. [PMID: 39226952 DOI: 10.1016/j.scitotenv.2024.175968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 μg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 μg L-1 to <20 % in the Yb-group at ca. 2000 μg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.
Collapse
Affiliation(s)
- Juliane Annemieke Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Coline Donat
- IUT de Saint Étienne, Université Jean Monnet, 28 Av. Léon Jouhaux, 42100 Saint-Étienne, France
| | | | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
13
|
Etcheverry L, Spaccesi FG, Cappelletti NE, Lavarías SML. Basal levels of biochemical biomarkers in the freshwater prawn Palaemon argentinus and their alterations due to the exposure of both insecticides cypermethrin and spirotetramat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174958. [PMID: 39067605 DOI: 10.1016/j.scitotenv.2024.174958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The aim of this study was to evaluate the sensitivity of the prawn Palaemon argentinus to the pyrethroid cypermethrin (CYP) and the tetramic acid spirotetramat (STM). These treatments were compared with prawns collected at a reference site to define their basal physiological state. Initially, physicochemical parameters and several pollutants at the selected site were analyzed. The LC50-96 h was determined in adult prawns. Then, prawns were exposed for 96 h to sublethal concentrations of CYP (0.0005 μg/l) and STM (0.44 mg/l) to evaluate the effects on some biochemical endpoints. A treatment combining both pesticides was also added at 5 % of these values. Controls with and without solvent (acetone) were included. The LC50-96 h values were 0.005 μg/l and 4.43 mg/l for CYP and STM, respectively. Moreover, some biomarkers linked to oxidative and energy metabolism were analyzed in the hepatopancreas and muscle of both essayed prawns and those at the basal state. The STM caused a significant decrease in total protein content (32 %) in contrast to the increase of protein carbonyl content (71 %) (p < 0.05). Also, glutathione S-transferase (52 %) and catalase (61 %) activities in the hepatopancreas of exposed prawns were higher compared to both the control and state basal groups (p < 0.05). In muscle, only a significant decrease in the lactate content (69 %) was caused by STM (p < 0.05). In addition, CYP caused a significant increase in the lactate dehydrogenase activity (110 %) in muscle and triacylglycerol content (73 %) in the hepatopancreas (p < 0.05). The integrated biomarker index (IBRv2) analysis showed that STM caused greater damage than CYP. Besides, the combined treatment showed an antagonistic interaction between both insecticides. The differential response of biomarkers to both CYP and STM exposure with respect to their basal levels shows a high sensitivity of P. argentinus demonstrating its potential role as a bioindicator organism.
Collapse
Affiliation(s)
- Leda Etcheverry
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Exactas, UNLP, Buenos Aires, Argentina
| | - Fernando G Spaccesi
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Naturales y Museo, UNLP, Buenos Aires, Argentina
| | - Natalia E Cappelletti
- CONICET-Departamento de Ambiente y Turismo, Universidad Nacional de Avellaneda, Buenos Aires, Argentina
| | - Sabrina M L Lavarías
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Médicas, UNLP, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Zidar P, Kühnel D, Škapin AS, Skalar T, Drobne D, Škrlep L, Mušič B, Jemec Kokalj A. Comparing the effects of pristine and UV-VIS aged microplastics: Behavioural response of model terrestrial and freshwater crustaceans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117020. [PMID: 39276645 DOI: 10.1016/j.ecoenv.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Physico-chemical properties of microplastics (MPs) change during weathering in the environment. There is a lack of knowledge about the effects of such environmentally relevant MPs on organisms. We investigated: 1) the physico-chemical changes of MPs due to UV-VIS weathering, and 2) compared the effect of pristine and aged MPs on the behaviour of the water flea Daphnia magna and terrestrial crustacean Porcellio scaber. Dry powders of MPs were produced from widely used polymer types: disposable three-layer polypropylene (PP) medical masks (inner, middle and outer), polyester textile fibres, car tires and low-density polyethylene (LDPE) bags and were subjected to accelerated ultraviolet-visible (UV-VIS) ageing. Our results show that the extent of transformation depends on the type of polymer, with PP showing the most changes, followed by LDPE, textile fibres and tire particles. Obvious fragmentation was observed in PP and textile fibres. In the case of PP, but not polyester textile fibres, changes in FTIR spectra and surface properties were observed. Tire particles and LDPE did not change in size, but clear changes were observed in their FTIR spectra. Most MPs, aged and pristine, did not affect the swimming of daphnids. The only effect observed was a significant increase in path length and swimming speed for the pristine tire particles when the recording was done with particles remaining in the wells. After transfer to a clean medium, this effect was no longer present, suggesting a physical rather than chemical effect. Similarly, woodlice showed no significant avoidance response to the MPs tested, although there was a noticeable trend to avoid soils contaminated with pristine polyester textile fibers and preference towards the soils contaminated with aged MP of the middle mask layer. Overall, the apparent changes in physico-chemical properties of MPs after accelerated ageing were not reflected in their effects on woodlice and daphnids.
Collapse
Affiliation(s)
- Primož Zidar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 03418, Germany
| | - Andrijana Sever Škapin
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, Ljubljana SI-1000, Slovenia; Faculty of Polymer Technology-FTPO, Ozare 19, Slovenj Gradec SI-2380, Slovenia
| | - Tina Skalar
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia
| | - Luka Škrlep
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, Ljubljana SI-1000, Slovenia
| | - Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, Ljubljana SI-1000, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
15
|
Mena F, Araújo CVM, Echeverría-Sáenz S, Brenes-Bravo G, Moreira-Santos M. Assessing habitat selection in the prawn Macrobrachium rosenbergii using the model toxicant copper and colonization as a test endpoint: Does prior exposure determine biochemical and behavioral responses? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107073. [PMID: 39232254 DOI: 10.1016/j.aquatox.2024.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Habitat selection by aquatic organisms is dependent on the availability of adequate conditions to support life and the benefits that the habitat provides. Contaminated environments tend to be less attractive to organisms because reduced habitat quality leads to increased maintenance costs. Consequently, reduced colonization of such disturbed habitats is an expected response. However, colonization has been understudied as an ecotoxicological test endpoint, despite its proven ability to assess habitat selection by populations across various taxa. The aim of the present study was to investigate whether previous exposure to copper could alter the colonization behavior of the freshwater prawn Macrobrachium rosenbergii along a non-forced exposure gradient of interconnected copper-contaminated habitats (0 to 500 µg/L) due to physiological and behavioral impairments. To assess this, post-larvae of M. rosenbergii were pre-exposed to 0, 50, 250 and 500 µg/L copper for a maximum period of 48 h. The physiological status and motility of the organisms after pre-exposure to copper were evaluated using behavioral endpoints (swimming activity by video tracking) and biochemical biomarkers (biotransformation, oxidative stress and neurotoxicity). The results indicated that pre-exposure to copper (at concentrations of 0, 50 and 500 µg/L) significantly influenced the median colonization concentration (CC50), which decreased from 270 µg/L to 109 µg/L. None of the assessed swimming parameters (speed, motility rate, exploration rate, and total distance) were affected by the pre-exposure to copper (0, 50 and 250 µg/L). Biochemically, cholinesterase levels were only affected in the prawn population exposed to 250 µg/L of copper. The present study provides a better understanding of the relevance of colonization as an ecotoxicological endpoint for assessing the spatial distribution of populations, including both new inhabitants and previously exposed organisms, in recovering habitats.
Collapse
Affiliation(s)
- Freylan Mena
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain
| | - Silvia Echeverría-Sáenz
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica
| | - Gabriel Brenes-Bravo
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica
| | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology - Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
16
|
Rowan E, Leung A, Grintzalis K. A Novel Method for the Assessment of Feeding Rate as a Phenotypic Endpoint for the Impact of Pollutants in Daphnids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2211-2221. [PMID: 39056977 DOI: 10.1002/etc.5960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Traditional approaches for monitoring aquatic pollution primarily rely on chemical analysis and the detection of pollutants in the aqueous environments. However, these methods lack realism and mechanistic insight and, thus, are increasingly supported by effect-based methods, which offer sensitive endpoints. In this context, daphnids, a freshwater species used extensively in molecular ecotoxicology, offer fast and noninvasive approaches to assess the impact of pollutants. Among the phenotypic endpoints used, feeding rate is a highly sensitive approach because it provides evidence of physiological alterations even in sublethal concentrations. However, there has been no standardized method for measuring feeding rate in daphnids, and several approaches follow different protocols. There is a diversity among tests employing large volumes, extensive incubation times, and high animal densities, which in turn utilize measurements of algae via fluorescence, radiolabeling, or counting ingested cells. These tests are challenging and laborious and sometimes require cumbersome instrumentation. In the present study, we optimized the conditions of a miniaturized fast, sensitive, and high-throughput assay to assess the feeding rate based on the ingestion of fluorescent microparticles. The protocol was optimized in neonates in relation to the concentration of microplastic and the number of animals to increase reproducibility. Daphnids, following exposures to nonlethal concentrations, were incubated with microplastics; and, as filter feeders, they ingest microparticles. The new approach revealed differences in the physiology of daphnids in concentrations below the toxicity limits for a range of pollutants of different modes of action, thus proving feeding to be a more sensitive and noninvasive endpoint in pollution assessment. Environ Toxicol Chem 2024;43:2211-2221. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Emma Rowan
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - Anne Leung
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | | |
Collapse
|
17
|
Qin F, Zhao N, Yin G, Wang T, Jv X, Han S, An L. Rapid Response of Daphnia magna Motor Behavior to Mercury Chloride Toxicity Based on Target Tracking. TOXICS 2024; 12:621. [PMID: 39330549 PMCID: PMC11435506 DOI: 10.3390/toxics12090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
A rapid and timely response to the impacts of mercury chloride, which is indispensable to the chemical industry, on aquatic organisms is of great significance. Here, we investigated whether the YOLOX (improvements to the YOLO series, forming a new high-performance detector) observation system can be used for the rapid detection of the response of Daphnia magna targets to mercury chloride stress. Thus, we used this system for the real-time tracking and observation of the multidimensional motional behavior of D. magna. The results obtained showed that the average velocity (v¯), average acceleration (a¯), and cumulative travel (L) values of D. magna exposed to mercury chloride stress changed significantly under different exposure times and concentrations. Further, we observed that v¯, a¯ and L values of D. magna could be used as indexes of toxicity response. Analysis also showed evident D. magna inhibition at exposure concentrations of 0.08 and 0.02 mg/L after exposure for 10 and 25 min, respectively. However, under 0.06 and 0.04 mg/L toxic stress, v¯ and L showed faster toxic response than a¯, and overall, v¯ was identified as the most sensitive index for the rapid detection of D. magna response to toxicity stress. Therefore, we provide a strategy for tracking the motile behavior of D. magna in response to toxic stress and lay the foundations for the comprehensive screening of toxicity in water based on motile behavior.
Collapse
Affiliation(s)
- Feihu Qin
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Nanjing Zhao
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Gaofang Yin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
- Key Laboratory of Optical Monitoring Technology for Environmental, Hefei 230031, China
| | - Tao Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Xinyue Jv
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Shoulu Han
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| | - Lisha An
- University of Science and Technology of China, Hefei 230026, China; (F.Q.); (X.J.); (L.A.)
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (T.W.); (S.H.)
| |
Collapse
|
18
|
Guelfo JL, Ferguson PL, Beck J, Chernick M, Doria-Manzur A, Faught PW, Flug T, Gray EP, Jayasundara N, Knappe DRU, Joyce AS, Meng P, Shojaei M. Lithium-ion battery components are at the nexus of sustainable energy and environmental release of per- and polyfluoroalkyl substances. Nat Commun 2024; 15:5548. [PMID: 38977667 PMCID: PMC11231300 DOI: 10.1038/s41467-024-49753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Lithium-ion batteries (LiBs) are used globally as a key component of clean and sustainable energy infrastructure, and emerging LiB technologies have incorporated a class of per- and polyfluoroalkyl substances (PFAS) known as bis-perfluoroalkyl sulfonimides (bis-FASIs). PFAS are recognized internationally as recalcitrant contaminants, a subset of which are known to be mobile and toxic, but little is known about environmental impacts of bis-FASIs released during LiB manufacture, use, and disposal. Here we demonstrate that environmental concentrations proximal to manufacturers, ecotoxicity, and treatability of bis-FASIs are comparable to PFAS such as perfluorooctanoic acid that are now prohibited and highly regulated worldwide, and we confirm the clean energy sector as an unrecognized and potentially growing source of international PFAS release. Results underscore that environmental impacts of clean energy infrastructure merit scrutiny to ensure that reduced CO2 emissions are not achieved at the expense of increasing global releases of persistent organic pollutants.
Collapse
Affiliation(s)
- Jennifer L Guelfo
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA.
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Alonso Doria-Manzur
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Patrick W Faught
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | | | - Evan P Gray
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | | | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Abigail S Joyce
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Pingping Meng
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
- Department of Chemistry, Eastern Carolina University, Greenville, NC, USA
| | - Marzieh Shojaei
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Prosnier L. Zooplankton as a model to study the effects of anthropogenic sounds on aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172489. [PMID: 38621539 DOI: 10.1016/j.scitotenv.2024.172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.
Collapse
Affiliation(s)
- Loïc Prosnier
- Faculté des Sciences et Techniques, University of Saint Etienne, Saint-Etienne, France; France Travail, Saint-Etienne, France.
| |
Collapse
|
20
|
Carvalho AR, Morão AM, Gonçalves VMF, Tiritan ME, Gorito AM, Pereira MF, Silva AMT, Castro BB, Carrola JS, Amorim MM, Ribeiro ARL, Ribeiro C. Toxicity of butylone and its enantiomers to Daphnia magna and its degradation/toxicity potential using advanced oxidation technologies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106906. [PMID: 38588636 DOI: 10.1016/j.aquatox.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 μg L-1) or each enantiomer (at 0.10 or 1.0 μg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 μg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.
Collapse
Affiliation(s)
- Ana R Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; School of Health, Polytechnic Institute of Porto 4200-072, Porto, Portugal
| | - Ana M Morão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal
| | - Virgínia M F Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL 4585-116, Gandra, Portugal
| | - Maria Elizabeth Tiritan
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto 4050-313, Porto, Portugal
| | - Ana M Gorito
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - M Fernando Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - Bruno B Castro
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, University of Minho, 4710-057, Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho 4710-057, Braga, Portugal
| | - João S Carrola
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, CITAB/Inov4Agro 5000-801, Vila Real, Portugal
| | - Maria M Amorim
- School of Health, Polytechnic Institute of Porto 4200-072, Porto, Portugal
| | - Ana R L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal.
| | - Cláudia Ribeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal.
| |
Collapse
|
21
|
Nigro L, Magni S, Ortenzi MA, Gazzotti S, Della Torre C, Signorini SG, Sbarberi R, Binelli A. Unveiling the multilevel impact of four water-soluble polymers on Daphnia magna: From proteome to behaviour (a case study). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134000. [PMID: 38508107 DOI: 10.1016/j.jhazmat.2024.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The ubiquitous presence of water-soluble polymers (WSPs) in freshwater environments raises concerns regarding potential threats to aquatic organisms. This study investigated, for the first time, the effects of widely used WSPs -polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), and polyethylene glycol (PEG)- using a multi-level approach in the freshwater biological model Daphnia magna. This integrated assessment employed a suite of biomarkers, evaluation of swimming behaviour, and proteomic analysis to investigate the effects of three environmentally relevant concentrations (0.001, 0.5, and 1 mg/L) of the tested WSPs from molecular to organismal levels, assessing both acute and chronic effects. Our findings reveal that exposure to different WSPs induces specific responses at each biological level, with PEG being the only WSP inducing lethal effects at 0.5 mg/L. At the physiological level, although all WSPs impacted both swimming performance and heart rate of D. magna specimens, PAA exhibited the greatest effects on the measured behavioural parameters. Furthermore, proteomic analyses demonstrated altered protein profiles following exposure to all WSPs, with PVA emerging as the most effective.
Collapse
Affiliation(s)
- Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | | | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
22
|
Chen W, Dou J, Xu X, Ma X, Chen J, Liu X. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133248. [PMID: 38147752 DOI: 10.1016/j.jhazmat.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
β-cyclocitral is one of the major compounds in cyanobacterial volatile organic compound (VOCs) and can poison other aquatic organisms. To investigate the effect of β-cyclocitral on cyanobacterial-grazer interactions, Daphnia sinensis was fed Microcystis aeruginosa and exposed to β-cyclocitral. Our present study demonstrated that M. aeruginosa could significantly inhibit D. sinensis grazing. And the grazing inhibition by Microcystis aeruginosa results from the suppression of feeding rate, heart rate, thoracic limb activity and swimming speed of D. sinensis. In addition, M. aeruginosa could also induce intestinal peristalsis and emptying in D. sinensis. Interestingly, our present study found that the exposure to β-cyclocitral could mimic a range of phenotypes induced by M. aeruginosa in D. sinensis. These results suggested that M. aeruginosa could release β-cyclocitral to inhibit Daphnia grazing. To further examine the toxic mechanism of β-cyclocitral in Daphnia, several in vivo and in vitro experiments displayed that β-cyclocitral was a novel inhibitor of acetylcholinesterase (AChE). It could induce the accumulation of acetylcholine (ACh) by inhibiting AchE activity in D. sinensis. High level of endogenous Ach could inhibit feeding rate and induce intestinal peristalsis and emptying in D. sinensis.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ximeng Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Jeong H, Park S, Choi B, Yu CS, Hong JY, Jeong TY, Cho KH. Machine learning-based water quality prediction using octennial in-situ Daphnia magna biological early warning system data. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133196. [PMID: 38141299 DOI: 10.1016/j.jhazmat.2023.133196] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
Biological early warning system (BEWS) has been globally used for surface water quality monitoring. Despite its extensive use, BEWS has exhibited limitations, including difficulties in biological interpretation and low alarm reproducibility. This study addressed these issues by applying machine learning (ML) models to eight years of in-situ BEWS data for Daphnia magna. Six ML models were adopted to predict contamination alarms from Daphnia behavioral parameters. The light gradient boosting machine model demonstrated the most significant improvement in predicting alarms from Daphnia behaviors. Compared with the traditional BEWS alarm index, the ML model enhanced the precision and recall by 29.50% and 43.41%, respectively. The speed distribution index and swimming speed were significant parameters for predicting water quality warnings. The nonlinear relationships between the monitored Daphnia behaviors and water physicochemical water quality parameters (i.e., flow rate, Chlorophyll-a concentration, water temperature, and conductivity) were identified by ML models for simulating Daphnia behavior based on the water contaminants. These findings suggest that ML models have the potential to establish a robust framework for advancing the predictive capabilities of BEWS, providing a promising avenue for real-time and accurate assessment of water quality. Thereby, it can contribute to more proactive and effective water quality management strategies.
Collapse
Affiliation(s)
- Heewon Jeong
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Sanghyun Park
- The National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Byeongwook Choi
- Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Chung Seok Yu
- The National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Ji Young Hong
- The National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
24
|
Pérez-Pereira A, Carrola JS, Tiritan ME, Ribeiro C. Enantioselectivity in ecotoxicity of pharmaceuticals, illicit drugs, and industrial persistent pollutants in aquatic and terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169573. [PMID: 38151122 DOI: 10.1016/j.scitotenv.2023.169573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
At present, there is a serious concern about the alarming number of recalcitrant contaminants that can negatively affect biodiversity threatening the ecological status of marine, estuarine, freshwater, and terrestrial ecosystems (e.g., agricultural soils and forests). Contaminants of emerging concern (CEC) such as pharmaceuticals (PHAR), illicit drugs (ID), industrial persistent pollutants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chiral ionic solvents are globally spread and potentially toxic to non-target organisms. More than half of these contaminants are chiral and have been measured at different enantiomeric proportions in diverse ecosystems. Enantiomers can exhibit different toxicodynamics and toxicokinetics, and thus, can cause different toxic effects. Therefore, the enantiomeric distribution in occurrence cannot be neglected as the toxicity and other adverse biological effects are expected to be enantioselective. Hence, this review aims to reinforce the recognition of the stereochemistry in environmental risk assessment (ERA) of chiral CEC and gather up-to-date information about the current knowledge regarding the enantioselectivity in ecotoxicity of PHAR, ID, persistent pollutants (PCBs and PBDEs) and chiral ionic solvents present in freshwater and agricultural soil ecosystems. We performed an online literature search to obtain state-of-the-art research about enantioselective studies available for assessing the impact of these classes of CEC. Ecotoxicity assays have been carried out using organisms belonging to different trophic levels such as microorganisms, plants, invertebrates, and vertebrates, and considering ecologically relevant aquatic and terrestrial species or models organisms recommended by regulatory entities. A battery of ecotoxicity assays was also reported encompassing standard acute toxicity to sub-chronic and chronic assays and different endpoints as biomarkers of toxicity (e.g., biochemical, morphological alterations, reproduction, behavior, etc.). Nevertheless, we call attention to the lack of knowledge about the potential enantioselective toxicity of many PHAR, ID, and several classes of industrial compounds. Additionally, several questions regarding key species, selection of most appropriate toxicological assays and ERA of chiral CEC are addressed and critically discussed.
Collapse
Affiliation(s)
- A Pérez-Pereira
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal
| | - J S Carrola
- University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| | - M E Tiritan
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.
| | - C Ribeiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| |
Collapse
|
25
|
Masseroni A, Fossati M, Ponti J, Schirinzi G, Becchi A, Saliu F, Soler V, Collini M, Della Torre C, Villa S. Sublethal effects induced by different plastic nano-sized particles in Daphnia magna at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123107. [PMID: 38070641 DOI: 10.1016/j.envpol.2023.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
A growing number of studies have reported the toxic effects of nanoplastics (NPs) on organisms. However, the focus of these studies has almost exclusively been on the use of polystyrene (PS) nanospheres. Herein, we aim to evaluate the sublethal effects on Daphnia magna juveniles of three different NP polymers: PS-NPs with an average size of 200 nm, polyethylene [PE] NPs and polyvinyl chloride [PVC] NPs with a size distribution between 50 and 350 nm and a comparable mean size. For each polymer, five environmentally relevant concentrations were tested (from 2.5 to 250 μg/L) for an exposure time of 48 h. NP effects were assessed at the biochemical level by investigating the amount of reactive oxygen species (ROS) and the activity of the antioxidant enzyme catalase (CAT) and at the behavioral level by evaluating the swimming behavior (distance moved). Our results highlight that exposure to PVC-NPs can have sublethal effects on Daphnia magna at the biochemical and behavioral levels. The potential role of particle size on the measured effects cannot be excluded as PVC and PE showed a wider size range distribution than PS, with particles displaying sizes from 50 to 350 nm. However, we infer that the chemical structure of PVC, which differs from that of PE of the same range size, concurs to explain the observed effects. Consequently, as PS seems not to be the most hazardous polymer, we suggest that the use of data on PS toxicity alone can lead to an underestimation of NP hazards.
Collapse
Affiliation(s)
- Andrea Masseroni
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Marco Fossati
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alessandro Becchi
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Francesco Saliu
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Valentina Soler
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy
| | - Maddalena Collini
- Department of Physics "Giuseppe Occhialini, " University of Milano-Bicocca, Piazza Della Scienza 3, 20126, Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milan, Italy.
| |
Collapse
|
26
|
Eghan K, Lee S, Kim WK. Cardio- and neuro-toxic effects of four parabens on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115670. [PMID: 37976924 DOI: 10.1016/j.ecoenv.2023.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Parabens can potentially disrupt the hormonal regulation of energy metabolism, leading to issues related to obesity, metabolic health, and the cardiovascular and nervous systems. However, the health effects of parabens have yielded conflicting research results. The impact of these substances on aquatic organisms, specifically their neuro- and cardio-toxic effects, has been insufficiently investigated. Hence, the primary goal of our research was to investigate and comprehensively assess the neuro- and cardio-toxic effects of four distinct parabens using the Daphnia magna model. After 48 h of exposure to various concentrations (0.1, 1, and 10 mg/L) of four parabens (methyl-, ethyl-, propyl-, and butyl-paraben), along with a solvent control, we conducted a series of physiological tests, behavioral observations, and gene transcription analyses, focusing on cardiomyopathy, serotonin, glutamate, dopamine, GABA, acetylcholine receptors, and ion flux. From a physiological perspective, the heart rate and thoracic limb activity of the exposed daphnids showed substantial time- and dose-dependent inhibitions. Notably, among the parabens tested, butylparaben exhibited the most potent inhibition, with significant alterations in cardiomyopathy-related gene transcription. In the context of neurotoxicity, all the parabens had a significant impact on gene expression, with methylparaben having the most pronounced effect. Additionally, significant changes were observed in parameters such as distance moved, the distance between individuals, and the extent of body contact among the daphnids. In summary, our findings indicate that each paraben has the capacity to induce neurobehavioral and cardiotoxic disorders in Daphnia magna. The effects of butylparaben on the cardiovascular and nervous systems were found to be the most pronounced. These discoveries showed the potential ecological implications of paraben exposure in aquatic ecosystems, particularly regarding the predator avoidance abilities of Daphnia magna.
Collapse
Affiliation(s)
- Kojo Eghan
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
27
|
Rajewicz W, Romano D, Schmickl T, Thenius R. Daphnia's phototaxis as an indicator in ecotoxicological studies: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106762. [PMID: 38000135 DOI: 10.1016/j.aquatox.2023.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Animal-based sensors have been increasingly applied to many water monitoring systems and ecological studies. One of the staple organisms used as living sensors for such systems is Daphnia. This organism has been extensively studied and, with time, used in many toxicological and pharmaceutical bioassays, often used for exploring the ecology of freshwater communities. One of its behaviours used for evaluating the state of the aquatic environment is phototaxis. A disruption in the predicted behaviour is interpreted as a sign of stress and forms the basis for further investigation. However, phototaxis is a result of complex processes counteracting and interacting with each other. Predator presence, food quality, body pigmentation and other factors can greatly affect the predicted phototactic response, hampering its reliability as a bioindicator. Therefore, a holistic approach and meticulous documentation of the methods are needed for the correct interpretation of this behavioural indicator. In this review, we present the current methods used for studying phototaxis, the factors affecting it and proposed ways to optimise the reliability of the results.
Collapse
Affiliation(s)
| | - Donato Romano
- BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, Pontedera, 56025, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertá 33, Pisa, 56127, Italy
| | - Thomas Schmickl
- University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Ronald Thenius
- University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| |
Collapse
|
28
|
Eghan K, Lee S, Yoo D, Kim CH, Kim WK. Adverse effects of bifenthrin exposure on neurobehavior and neurodevelopment in a zebrafish embryo/larvae model. CHEMOSPHERE 2023; 341:140099. [PMID: 37690556 DOI: 10.1016/j.chemosphere.2023.140099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Bifenthrin, a third-generation synthetic pyrethroid, is widely used as an agricultural insecticide. However, it can flow into surface and groundwater, leading to adverse consequences such as immunotoxicity, hepatotoxicity, hormone dysregulation, or neurotoxicity. Nevertheless, the entire range of its neurotoxic consequences, particularly in aquatic organisms, remains unclear. In this study, we conducted an extensive examination of how exposure to bifenthrin affects the behavior and nervous system function of aquatic vertebrates, using a zebrafish model and multiple-layered assays. We exposed wild-type and transgenic lines [tg(elavl3:eGFP) and tg(mbp:mGFP)] to bifenthrin from <3 h post-fertilization (hpf) to 120 hpf. Our findings indicate that bifenthrin exposure concentrations of 103.9 and 362.1 μg/L significantly affects the tail-coiling response at 24 hpf and the touch-evoked responses at 72 hpf. Moreover, it has a significant effect on various aspects of behavior such as body contact, distance between subjects, distance moved, and turn angle. We attribute these effects to changes in acetylcholinesterase and dopamine levels, which decrease in a concentration-dependent manner. Furthermore, neuroimaging revealed neurogenesis defects, e.g., shortened brain and axon widths, and demyelination of oligodendrocytes and Schwann cells. Additionally, the transcription of genes related to neurodevelopment (e.g., gap43, manf, gfap, nestin, sox2) were significantly upregulated and neurotransmitters (e.g., nlgn1, drd1, slc6a4a, ache) was significantly downregulated. In summary, our data shows that bifenthrin exposure has detrimental effects on neurodevelopmental and neurotransmission systems in the zebrafish embryo/larvae model.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Donggon Yoo
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| |
Collapse
|
29
|
Xu J, Chang X, MacIsaac HJ, Zhou Y, Li J, Wang T, Zhang J, Wen J, Xu D, Zhang H, Xu R. Is a lower-toxicity strain of Microcystis aeruginosa really less toxic? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106705. [PMID: 37776710 DOI: 10.1016/j.aquatox.2023.106705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Some well-known hazards of blooming cyanobacteria are caused by toxic metabolites such as microcystins (MCs), though many other bioactive chemicals of unknown toxicity are present in their exudates. It is also unclear whether toxicity of cyanobacterial cells depends on growth phases in the life cycle. In this study, we compared toxicity to Daphnia magna of Microcystis aeruginosa - a common cyanobacterial species - exudates (MaE) from two MC-producing strains over both exponential growth and stationary phases in acute and chronic experiments. Specifically, we assessed mitochondrial dysfunction, oxidative stress and lipid peroxidation, and filtering activity and heartbeat rate of Daphnia exposed to MaE. All MaE treatments induced common characteristics of Microcystis toxicity including disorder in the mitochondrial membrane and aberrant heart rate. MaE from cells at stationary growth phase were more toxic than those at exponential phase. Surprisingly, the MC-lower strain had higher toxicity than MC-higher one. Microcystis at different stage of blooms may differentially affect waterfleas owing to variable MaE-induced physiological dysfunction, abundance and grazing rate. Our study suggested that Microcystis strains with lower microcystin-producing ability might release other detrimental chemicals and should not be ignored in harmful bloom monitoring.
Collapse
Affiliation(s)
- Jun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yuan Zhou
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Jingjing Li
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Tao Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinlong Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jiayao Wen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Daochun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hongyan Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Runbing Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
30
|
Panagiotidis K, Engelmann B, Krauss M, Rolle-Kampczyk UE, Altenburger R, Rochfort KD, Grintzalis K. The impact of amine and carboxyl functionalised microplastics on the physiology of daphnids. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132023. [PMID: 37441864 DOI: 10.1016/j.jhazmat.2023.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Plastic waste is considered a major threat for terrestrial, marine and freshwater ecosystems. Ingestion of primary or secondary microparticles resulting from plastic degradation can lead to their trophic transfer raising serious health concerns. In this study, the effect of amine and carboxy functionalized polystyrene microparticles on the physiology of daphnids was investigated with a combination of phenotypic and metabolic endpoints. Carboxy functionalized microparticles showed higher toxicity in acute exposures compared to their amine counterparts. Accumulation of both microparticles in animal gut was confirmed by stereo-microscopy as well as fluorescent microscopy which showed no presence of particles in the rest of the animal. Fluorescence based quantification of microparticles extracted from animal lysates validated their concentration-dependent uptake. Additionally, exposure of daphnids to amine and carboxy functionalized microparticles resulted in increased activities of key enzymes related to metabolism and detoxification. Finally, significant metabolic perturbations were discovered following exposure to microplastics. These findings suggest that polystyrene microparticles can hinder organism performance of the freshwater species and highlight the importance of seeking for holistic and physiological endpoints for pollution assessment.
Collapse
Affiliation(s)
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Department of Molecular Systems Biology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Republic of Ireland
| | | |
Collapse
|
31
|
Brehm J, Ritschar S, Laforsch C, Mair MM. The complexity of micro- and nanoplastic research in the genus Daphnia - A systematic review of study variability and a meta-analysis of immobilization rates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131839. [PMID: 37348369 DOI: 10.1016/j.jhazmat.2023.131839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
In recent years, the number of publications on nano- and microplastic particles (NMPs) effects on freshwater organisms has increased rapidly. Freshwater crustaceans of the genus Daphnia are widely used in ecotoxicological research as model organisms for assessing the impact of NMPs. However, the diversity of experimental designs in these studies makes conclusions about the general impact of NMPs on Daphnia challenging. To approach this, we systematically reviewed the literature on NMP effects on Daphnia and summarized the diversity of test organisms, experimental conditions, NMP properties and measured endpoints to identify gaps in our knowledge of NMP effects on Daphnia. We use a meta-analysis on mortality and immobilization rates extracted from the compiled literature to illustrate how NMP properties, study parameters and the biology of Daphnia can impact outcomes in toxicity bioassays. In addition, we investigate the extent to which the available data can be used to predict the toxicity of untested NMPs based on the extracted parameters. Based on our results, we argue that focusing on a more diverse set of NMP properties combined with a more detailed characterization of the particles in future studies will help to fill current research gaps, improve predictive models and allow the identification of NMP properties linked to toxicity.
Collapse
Affiliation(s)
- Julian Brehm
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Sven Ritschar
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Ecology and Environmental Research (BayCEER), Bayreuth, Germany.
| | - Magdalena M Mair
- Bayreuth Center for Ecology and Environmental Research (BayCEER), Bayreuth, Germany; Statistical Ecotoxicology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
32
|
Huber ED, Wilmoth B, Hintz LL, Horvath AD, McKenna JR, Hintz WD. Freshwater salinization reduces vertical movement rate and abundance of Daphnia: Interactions with predatory stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121767. [PMID: 37146869 DOI: 10.1016/j.envpol.2023.121767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Contaminants in human-dominated landscapes are changing ecological interactions. The global increase in freshwater salinity is likely to change predator-prey interactions due to the potential interactive effects between predatory stress and salt stress. We conducted two experiments to assess the interactions between the non-consumptive effects of predation and elevated salinity on the abundance and vertical movement rate of a common lake zooplankton species (Daphnia mendotae). Our results revealed an antagonism rather than a synergism between predatory stress and salinity on zooplankton abundance. Elevated salinity and predator cues triggered a >50% reduction in abundance at salt concentrations of 230 and 860 mg Cl-/L, two thresholds designed to protect freshwater organisms from chronic and acute effects due to salt pollution. We found a masking effect between salinity and predation on vertical movement rate of zooplankton. Elevated salinity reduced zooplankton vertical movement rate by 22-47%. A longer exposure history only magnified the reduction in vertical movement rate when compared to naïve individuals (no prior salinity exposure). Downward movement rate under the influence of predatory stress in elevated salinity was similar to the control, which may enhance the energetic costs of predator avoidance in salinized ecosystems. Our results suggest antagonistic and masking effects between elevated salinity and predatory stress will have consequences for fish-zooplankton interactions in salinized lakes. Elevated salinity could impose additional energetic constraints on zooplankton predator avoidance behaviors and vertical migration, which may reduce zooplankton population size and community interactions supporting the functioning of lake ecosystems.
Collapse
Affiliation(s)
- Eric D Huber
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Bayley Wilmoth
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Leslie L Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Alexander D Horvath
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Jorden R McKenna
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA.
| |
Collapse
|
33
|
Le Cocq C, Paiva E, Bensetra A, De Sonneville J, Van der Kolk KJ, Lejon D, Teisseire ML, Léonard M, Sweetlove C. Utilization of a Gender-Based Sorting Machine for Crustacean Selection in Bioconcentration Studies with the Freshwater Amphipod Hyalella azteca. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1075-1084. [PMID: 36848320 DOI: 10.1002/etc.5594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Bioconcentration factors (BCFs) are determined by fish flow-through tests performed according to Organisation for Economic Co-operation and Development test guideline 305. These are time-consuming and expensive and use a large number of animals. An alternative test design using the freshwater amphipod Hyalella azteca for bioconcentration studies has been recently developed and demonstrated a high potential. For bioconcentration studies using H. azteca, male amphipods are preferred compared with female organisms. Manual sexing of male adult amphipods is, however, time-consuming and requires care and skill. A new fully automatic sorting and dispensing machine for H. azteca based on image analysis has recently been developed by the company Life Science Methods. Nevertheless, an anesthesia step is necessary prior to the automatic selection. In the present study, we show that a single-pulse of 90 min of tricaine at the concentration of 1 g/L can be used and is recommended to select H. azteca males manually or automatically using the sorting machine. In the second part, we demonstrate that the machine has the ability to select, sort, and disperse the males of a culture batch of H. azteca as efficiently as manual procedures. In the last part of the study, BCFs of two organic substances were evaluated using the H. azteca bioconcentration test (HYBIT) protocol, with an anesthetizing step and robotic selection compared with manual selection without an anesthetizing step. The different BCF values obtained were in accordance with those indicated in the literature and showed that an anesthetizing step had no effect on the BCF values. Therefore, these data validated the interest in this sorting machine for selecting males to perform bioconcentrations studies with H. azteca. Environ Toxicol Chem 2023;42:1075-1084. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Elsa Paiva
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Alaa Bensetra
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | | | | | | | | | - Marc Léonard
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | | |
Collapse
|
34
|
He Z, Chen Y, Huo D, Gao J, Xu Y, Yang R, Yang Y, Yu G. Combined methods elucidate the multi-organ toxicity of cylindrospermopsin (CYN) on Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121250. [PMID: 36813104 DOI: 10.1016/j.envpol.2023.121250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Global water bodies are now at risk from inevitable cyanobacterial blooms and their production of multiple cyanotoxins, in particular cylindrospermopsin (CYN). However, research on the CYN toxicity and its molecular mechanisms is still limited, whilst the responses of aquatic species against CYN are uncovered. By integrating behavioral observations, chemical detections and transcriptome analysis, this study demonstrated that CYN exerted multi-organ toxicity to model species, Daphnia magna. The present study confirmed that CYN could cause protein inhibition by undermining total protein contents, and altered the gene expression related to proteolysis. Meantime, CYN induced oxidative stress by increasing reactive oxygen species (ROS) level, decreasing the glutathione (GSH) concentration, and interfered with protoheme formation process molecularly. Neurotoxicity led by CYN was solidly determined by abnormal swimming patterns, reduced acetylcholinesterase (AChE), and downward expression of muscarinic acetylcholine receptor (CHRM). Importantly, for the first time, this research determined CYN directly interfered with energy metabolism in cladocerans. CYN distinctively reduced filtration and ingestion rate by targeting on heart and thoracic limbs, which declined the energy intake, and could be further displayed by the reduction of motional strength and the trypsin concentration. These phenotypic alterations were supported by transcriptomic profile, including the down-regulation of oxidative phosphorylation and ATP synthesis. Moreover, CYN was speculated to trigger the self-defense responses of D. magna, known as "abandon-ship" by moderating lipid metabolism and distribution. This study, overall, comprehensively demonstrated the CYN toxicity and the responses of D. magna against it, which is of great significance to the advancements of CYN toxicity knowledge.
Collapse
Affiliation(s)
- Zhongshi He
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yewei Xu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rui Yang
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Bownik A, Adamczuk M, Skowrońska BP. Effects of cyanobacterial metabolites: Aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin in binary and quadruple mixtures on the survival and oxidative stress biomarkers of Daphnia magna. Toxicon 2023; 229:107137. [PMID: 37121403 DOI: 10.1016/j.toxicon.2023.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The aim of our study was to determine the effects of aeruginosin 98 A (ARE-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A) cylindrospermopsin (CYL) and their binary and quadruple mixtures on the survival and the levels of oxidative stress biomarkers in Daphnia magna: total glutathione (GSH), catalase (CAT), dismutase (SOD) and malondialdehyde (MDA). The biochemical indicators were measured with ELISA kits and the interactive effects were determined by isobole and polygonal analysis with Compusyn® computer software. The study revealed that oligopeptides did not decrease daphnid survival, only CYL inhibited this parameter, with synergistic effects when it was used as a component. The single metabolites at the two highest concentrations and all the binary and quadruple mixtures at all concentrations diminished GSH level, however both in the binary and in the quadruple mixtures most of the interactions between the metabolites were antagonistic. Nearly additive effects were found only in AER-A + CYL and MG-FR1+CYL. On the other hand, CAT activity was slightly increased in daphnids exposed to the binary mixtures with antagonistic interactions, however nearly addivive effects were found in animals exposed to the mixture of AER-A + ANA-A and synergistic in the quadruple mixture. SOD was elevated in daphnids exposed to single AER-A and MG-FR1, however it was diminished in the animals exposed to ANA-A and CYL. Binary mixtures in which CYL was present as a component decreased the level of this enzyme with nearly additive interactions in ANA-A + CYL. The quadruple mixture increased SOD level, with antagonistic interactions. Both single cyanobacterial metabolites, their binary and quadruple mixtures induced lipid peroxidation measured by MDA level and most of interactions in the binary mixtures were synergistic. The study suggested that antioxidative system of Daphnia magna responded to the tested metabolites and the real exposure to mixtures of these products may lead to various interactive effects with varied total toxicity.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
36
|
Lomba L, Errazquin D, Garralaga P, López N, Giner B. Ecotoxicological study of glucose:choline chloride and sorbitol:choline chloride at different contents of water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46427-46434. [PMID: 36717413 DOI: 10.1007/s11356-023-25538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The search of new solvents is currently focused on deep eutectic solvents (DES). However, there are not many ecotoxicological studies in different biomodels of DES that allow knowing how these chemicals affect to the environment along the trophic chain. In this manuscript, two DES at different proportion of water have been prepared and characterized from the ecotoxicological point of view. These solvents are glucose:choline chloride (2:5) and sorbitol:choline chloride (3:2) at different contents of water. To carry out the ecotoxicological study, three biomodels have been used: bacteria Aliivibrio fisheri (A. fisheri), crustacean Daphnia magna (D. magna) and algae Raphidocelis subcapitata (R. subcapitata). The obtained results show that the ecotoxicity of these chemicals depends on the biomodel used and the amount of water, being toxicity values lower for chemicals with higher water content. However, it is important to highlight that the ecotoxicity for all chemicals is quite low with effective concentrations, EC50 values above 1000 mg/L in all the studied cases.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Diego Errazquin
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Pilar Garralaga
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Noelia López
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 Km 299, Villanueva de Gállego, 50830, Zaragoza, Spain.
| |
Collapse
|
37
|
Pérez-Pereira A, Carvalho AR, Carrola JS, Tiritan ME, Ribeiro C. Integrated Approach for Synthetic Cathinone Drug Prioritization and Risk Assessment: In Silico Approach and Sub-Chronic Studies in Daphnia magna and Tetrahymena thermophila. Molecules 2023; 28:2899. [PMID: 37049662 PMCID: PMC10096003 DOI: 10.3390/molecules28072899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Synthetic cathinones (SC) are drugs of abuse that have been reported in wastewaters and rivers raising concern about potential hazards to non-target organisms. In this work, 44 SC were selected for in silico studies, and a group of five emerging SC was prioritized for further in vivo ecotoxicity studies: buphedrone (BPD), 3,4-dimethylmethcathinone (3,4-DMMC), butylone (BTL), 3-methylmethcathinone (3-MMC), and 3,4-methylenedioxypyrovalerone (MDPV). In vivo short-term exposures were performed with the protozoan Tetrahymena thermophila (28 h growth inhibition assay) and the microcrustacean Daphnia magna by checking different indicators of toxicity across life stage (8 days sublethal assay at 10.00 µg L-1). The in silico approaches predicted a higher toxic potential of MDPV and lower toxicity of BTL to the model organisms (green algae, protozoan, daphnia, and fish), regarding the selected SC for the in vivo experiments. The in vivo assays showed protozoan growth inhibition with MDPV > BPD > 3,4-DMMC, whereas no effects were observed for BTL and stimulation of growth was observed for 3-MMC. For daphnia, the responses were dependent on the substance and life stage. Briefly, all five SC interfered with the morphophysiological parameters of juveniles and/or adults. Changes in swimming behavior were observed for BPD and 3,4-DMMC, and reproductive parameters were affected by MDPV. Oxidative stress and changes in enzymatic activities were noted except for 3-MMC. Overall, the in silico data agreed with the in vivo protozoan experiments except for 3-MMC, whereas daphnia in vivo experiments showed that at sublethal concentrations, all selected SC interfered with different endpoints. This study shows the importance to assess SC ecotoxicity as it can distress aquatic species and interfere with food web ecology and ecosystem balance.
Collapse
Affiliation(s)
- Ariana Pérez-Pereira
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), CITAB, 5000-801 Vila Real, Portugal
| | - Ana Rita Carvalho
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
| | - João Soares Carrola
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), CITAB, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Maria Elizabeth Tiritan
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Ribeiro
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
| |
Collapse
|
38
|
Dyomin V, Morgalev Y, Morgalev S, Morgaleva T, Davydova A, Polovtsev I, Kirillov N, Olshukov A, Kondratova O. Features of phototropic response of zooplankton to paired photostimulation under adverse environmental conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:503. [PMID: 36952065 DOI: 10.1007/s10661-023-11102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Our previous studies showed that the change in the plankton response to light could be an indicator of environmental pollution. This study experimentally reveals that the response of Daphnia magna Straus and Daphnia pulex plankton ensembles to photostimulation depends on the intensity of the attracting light. This makes it difficult to identify the occurrence and change of pollutant concentration. The large variability in the magnitude of the behavioral response is caused by the nonlinear response of plankton ensembles to the intensity of the attractor stimulus. As the intensity of the photostimulation increases, the variability of the phototropic response passes through increase, decrease, and relative stabilization phases. The paper proposes a modification of the photostimulation method-paired photostimulation involving successive exposure to two photostimuli of increasing intensity. The first stimulus stabilizes the behavioral response, while the increase in response to the second stimulus makes it possible to more accurately assess the responsiveness of the plankton ensemble. The paper studies the sensitivity of the method of paired stimulation of the behavioral response of different types of freshwater plankton ensembles: Daphnia magna Straus, Daphnia pulex to the effects of pollutants (potassium bichromate, microplastic). The study demonstrates good reliability and increased sensitivity of this method of detecting changes in environmental toxicity compared to single photostimulation or traditional bioindication through the survival rate of test organisms.
Collapse
Affiliation(s)
- Victor Dyomin
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia
| | - Yuri Morgalev
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, Tomsk, Russia
| | - Sergey Morgalev
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, Tomsk, Russia
| | - Tamara Morgaleva
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, Tomsk, Russia
| | - Alexandra Davydova
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia.
| | - Igor Polovtsev
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia
| | - Nikolay Kirillov
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia
| | - Alexey Olshukov
- Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia
| | - Oksana Kondratova
- Center for Biotesting of Nanotechnologies and Nanomaterials Safety, National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
39
|
Zhang Y, Liu J, Jing C, Lu G, Jiang R, Zheng X, He C, Ji W. Life history traits of low-toxicity alternative bisphenol S on Daphnia magna with short breeding cycles: A multigenerational study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114682. [PMID: 36842276 DOI: 10.1016/j.ecoenv.2023.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Due to relatively lower toxicity, bisphenol S (BPS) has become an alternative to previously used bisphenol A. Nevertheless, the occurrence of BPS and its ecological impact have recently attracted increasing attentions because the toxicology effect of BPS with life cycle or multigenerational exposure on aquatic organisms remains questionable. Herein, Daphnia magna (D. magna) multigenerational bioassays spanning four generations (F0-F3) and single-generation recovery (F1 and F3) in clean water were used to investigate the ecotoxicology of variable chronic BPS exposure. For both assays, four kinds of life-history traits (i.e., survival, reproduction, growth and ecological behavior) were examined for each generation. After an 18-day exposure under concentration of 200 μg/L, the survival rate of D. magna was less than 15 % for the F2 generation, whereas all died for the F3 generation. With continuous exposure of four generations of D. magna at environmentally relevant concentrations of BPS (2 μg/L), inhibition of growth and development, prolonged sexual maturity, decreased offspring production and decreased swimming activity were observed for the F3 generation. In particular, it is difficult for D. magna to return to its normal level through a single-generation recovery in clean water in terms of reproductive function, ecological behavior and population health. Hence, multi-generational exposure to low concentrations of BPS can have adverse effects on population health of aquatic organisms with short breeding cycles, highlighting the necessity to assess the ecotoxicology of chronic BPS exposure for public health.
Collapse
Affiliation(s)
- Yixuan Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Chenyang Jing
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiqiang Zheng
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Anhui Academy of Ecological and Environmental Sciences, Key Laboratory of Wastewater Treatment Technology in Anhui Province, Hefei 230061, China
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
40
|
Egan N, Stinson SA, Deng X, Lawler SP, Connon RE. Swimming Behavior of Daphnia magna Is Altered by Pesticides of Concern, as Components of Agricultural Surface Water and in Acute Exposures. BIOLOGY 2023; 12:biology12030425. [PMID: 36979117 PMCID: PMC10045752 DOI: 10.3390/biology12030425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Pesticides with novel modes of action including neonicotinoids and anthranilic diamides are increasingly detected in global surface waters. Little is known about how these pesticides of concern interact in mixtures at environmentally relevant concentrations, a common exposure scenario in waterways impacted by pesticide pollution. We examined effects of chlorantraniliprole (CHL) and imidacloprid (IMI) on the sensitive invertebrate, Daphnia magna. Exposures were first performed using surface waters known to be contaminated by agricultural runoff. To evaluate the seasonal variation in chemical concentration and composition of surface waters, we tested surface water samples taken at two time points: during an extended dry period and after a first flush storm event. In surface waters, the concentrations of CHL, IMI, and other pesticides of concern increased after first flush, resulting in hypoactivity and dose-dependent photomotor responses. We then examined mortality and behavior following single and binary chemical mixtures of CHL and IMI. We detected inverse photomotor responses and some evidence of synergistic effects in binary mixture exposures. Taken together, this research demonstrates that CHL, IMI, and contaminated surface waters all cause abnormal swimming behavior in D. magna. Invertebrate swimming behavior is a sensitive endpoint for measuring the biological effects of environmental pesticides of concern.
Collapse
Affiliation(s)
- Nicole Egan
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Sarah A. Stinson
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
- Correspondence:
| | - Xin Deng
- California Department of Pesticide Regulation, Sacramento, CA 95812, USA
| | - Sharon P. Lawler
- Department of Entomology and Nematology, University of California at Davis, Davis, CA 95616, USA
| | - Richard E. Connon
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
41
|
Vogrin M, Rajewicz W, Schmickl T, Thenius R. Improving the Accuracy of a Biohybrid for Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:2722. [PMID: 36904926 PMCID: PMC10007606 DOI: 10.3390/s23052722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Environmental monitoring should be minimally disruptive to the ecosystems that it is embedded in. Therefore, the project Robocoenosis suggests using biohybrids that blend into ecosystems and use life forms as sensors. However, such a biohybrid has limitations regarding memory-as well as power-capacities, and can only sample a limited number of organisms. We model the biohybrid and study the degree of accuracy that can be achieved by using a limited sample. Importantly, we consider potential misclassification errors (false positives and false negatives) that lower accuracy. We suggest the method of using two algorithms and pooling their estimations as a possible way of increasing the accuracy of the biohybrid. We show in simulation that a biohybrid could improve the accuracy of its diagnosis by doing so. The model suggests that for the estimation of the population rate of spinning Daphnia, two suboptimal algorithms for spinning detection outperform one qualitatively better algorithm. Further, the method of combining two estimations reduces the number of false negatives reported by the biohybrid, which we consider important in the context of detecting environmental catastrophes. Our method could improve environmental modeling in and outside of projects such as Robocoenosis and may find use in other fields.
Collapse
Affiliation(s)
- Michael Vogrin
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Institute of Psychology, University of Graz, 8010 Graz, Austria
| | | | - Thomas Schmickl
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Ronald Thenius
- Institute of Biology, University of Graz, 8010 Graz, Austria
| |
Collapse
|
42
|
Gunathilaka MDKL, Bao S, Liu X, Li Y, Pan Y. Antibiotic Pollution of Planktonic Ecosystems: A Review Focused on Community Analysis and the Causal Chain Linking Individual- and Community-Level Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1199-1213. [PMID: 36628989 DOI: 10.1021/acs.est.2c06787] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibiotic pollution has become one of the most challenging environmental issues in aquatic ecosystems, with adverse effects on planktonic organisms that occupy the base of the aquatic food chain. However, research regarding this topic has not been systematically reviewed, especially in terms of community-level responses. In this review, we provide an overview of current antibiotic pollution in aquatic environments worldwide. Then, we summarize recent studies concerning the responses of planktonic communities to antibiotics, ranging from individual- to community-level responses. Studies have shown that extremely high concentrations of antibiotics can directly harm the growth and survival of plankton; however, such concentrations are rarely found in natural freshwater. It is more likely that environmentally relevant concentrations of antibiotics will affect the physiological, morphological, and behavioral characteristics of planktonic organisms; influence interspecific interactions among plankton species via asymmetrical responses in species traits; and thus alter the structure and function of the entire planktonic ecosystem. This review highlights the importance of community analysis in revealing antibiotic toxicity. We also encourage the establishment of the causal relationships between impacts at multiple scales in the future for predicting the community-level consequences of antibiotics based on the currently available individual-level evidence.
Collapse
Affiliation(s)
- M D K Lakmali Gunathilaka
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Department of Geography, University of Colombo, Colombo 00300, Sri Lanka
| | - Siyi Bao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Xiaoxuan Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China
| | - Ya Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| |
Collapse
|
43
|
Kong R, Yang C, Huang K, Han G, Sun Q, Zhang Y, Zhang H, Letcher RJ, Liu C. Application of agricultural pesticides in a peak period induces an abundance decline of metazoan zooplankton in a lake ecosystem. WATER RESEARCH 2022; 224:119040. [PMID: 36099761 DOI: 10.1016/j.watres.2022.119040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The contamination of pesticides has been recognized as a major stressor in fresh water ecosystems in terms of the losses of services and population declines and extinctions. However, information on the adverse effects of pesticides on zooplankton communities under natural field conditions are still lacking, although zooplankton is quite sensitive to most of pesticides in laboratory studies. In this study, a natural lake ecosystem (Liangzi Lake) was used to determine the relationship between pesticide contamination and abundance decline of metazoan zooplankton. In August 2020, the comprehensive trophic level indexes and the abundance of phytoplankton in the 14 sampling sites of Liangzi Lake were comparable, but the abundance of metazoan zooplankton showed significant variations across two orders of magnitude. These results suggested that other factors, such as pesticide contamination, might be responsible for the variations of metazoan zooplankton community. Furthermore, the responsible pesticides were screened, and totally 29 pesticides were obtained. Finally, five pesticides were identified to provide more than 99.4% toxic contributions and chlorpyrifos and cypermethrin were two main causal agents. These results were further supported by laboratory exposure experiments using D. magna and field study in November 2020, where the concentrations of the 29 pesticides were strongly decreased and the abundance of metazoan zooplankton was comparable across the 14 sites of Liangzi Lake. Taken together, this work provided an evidence that the contamination of pesticides might be responsible for the abundance decline of metazoan zooplankton in a natural freshwater ecosystem.
Collapse
Affiliation(s)
- Ren Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunxiang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guixin Han
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa K1S 5B6, Ontario, Canada
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Single and mixed diets of the toxic Cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii differently affect Daphnia feeding behavior. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Ma Y, Xu D, Li C, Wei S, Guo R, Li Y, Chen J, Liu Y. Combined toxicity and toxicity persistence of antidepressants citalopram and mirtazapine to zooplankton Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66100-66108. [PMID: 35501432 DOI: 10.1007/s11356-022-20203-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Citalopram (CTP) and mirtazapine (MTP) are two typical psychoactive drugs used for the depression treatment. As emerging pollutants, CTP and MTP have raised concern because of their harmful effect on aquatic organisms. Therefore, the ecotoxicological risk of these two pollutants to aquatic organisms should be given more attention. In this study, the effects of CTP and MTP on the feeding rate, heartbeat, nutritional enzymes, and their related gene expression of D. magna were investigated under single and binary mixture pollutant exposure. Subsequently, the recovery of exposed D. magna was studied to assess the toxic persistence of those pollutants. After 24-h exposure, the ingestion rate decreased by 34.2% and 21.5%, in the group of 1.45 mg/L CTP (C-H) and binary mixture with high concentration (Mix-H), respectively. After 24-h recovery, the feeding rate of D. magna was stimulated by a compensatory response. Over the exposure period, the heartbeat rate of D. magna increased significantly in the groups of CTP, MTP, and their binary mixture with low concentration (Mix-L), and then, their heartbeat rate was recovered during the recovery period. The activity of α-amylase (AMS) and trypsin were significantly changed in most of the exposed daphnia, both during the exposure and recovery period. CTP/MTP exposure stimulated the expression of the AMS gene. MTP and Mix-H exposure inhibited the expression of the trypsin gene and the other groups stimulated its expression. After 24-h recovery, the stimulating or inhibitory effects were alleviated. There were different responses between gene expression and enzyme activity. In conclusion, our results highlighted the toxic effects at high concentrations of single and mixed pollution of CTP and MTP on the feeding rate, heartbeat, AMS and trypsin enzyme activity, and expression of related genes of D. magna to assess the environment risk of them.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dong Xu
- School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chenyang Li
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shu Wei
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Li
- Blood Transfusion Department, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
46
|
Eghan K, Lee S, Kim WK. Cardiotoxicity and neurobehavioral effects induced by acrylamide in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113923. [PMID: 35930837 DOI: 10.1016/j.ecoenv.2022.113923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Acrylamide has neurotoxic and/or cardiotoxic effects on humans however available information regarding the neuro- and cardiotoxicity currently is very limited for freshwater organism models. Using three distinct techniques, thus, we investigated the neuro- and cardiotoxic effects of acrylamide in the freshwater invertebrate model, Daphnia magna. We exposed D. magna to acrylamide at concentrations of 0.3, 2.7, and 11.1 mg/L for 48 h alongside a control group. We then conducted physiological (thoracic limb activity and heart rate) and behavioral tests (including distance moved, velocity, turn angle, moving duration, the distance between subjects, and body contact frequency), as well as gene transcription analyses (related to cardiomyopathy, the serotonergic synapse, neuroactive ligand-receptor interactions, the GABAergic synapse, and acetylcholine receptors). After acrylamide exposure, the thoracic limb activity and heart rates of D. magna showed time- and dose dependent inhibition. From low to high exposure concentrations, both heart rates and thoracic limb activity were decreased. Additionally, the distance between subjects and body contact frequencies was significantly reduced. At the gene transcription level, acrylamide significantly altered the transcription of five genes related to cardiomyopathy and eight genes related to the serotonergic synapse, neuroactive ligand-receptor interactions, and the GABAergic synapse. The signs of hindered neural and cardiac functions were shown in D. magna. This suggests that acrylamide exposure leads to cardiotoxicity and neurobehavior defects in D. magna. Because cardiotoxicity and neurobehavioral changes may cause an ecological imbalance via predation of D. magna, acrylamide may also be considered a threat to freshwater ecosystem.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| |
Collapse
|
47
|
Bai Y, Henry J, Karpiński TM, Wlodkowic D. High-Throughput Phototactic Ecotoxicity Biotests with Nauplii of Artemia franciscana. TOXICS 2022; 10:508. [PMID: 36136473 PMCID: PMC9501151 DOI: 10.3390/toxics10090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Analysis of sensorimotor behavioral responses to stimuli such as light can provide an enhanced relevance during rapid prioritisation of chemical risk. Due to technical limitations, there have been, however, only minimal studies on using invertebrate phototactic behaviors in aquatic ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built analytical system for a high-throughput phototactic biotest with nauplii of euryhaline brine shrimp Artemia franciscana. We also, for the first time, present a novel and dedicated bioinformatic approach that facilitates high-throughput analysis of phototactic behaviors at scale with great fidelity. The nauplii exhibited consistent light-seeking behaviors upon extinguishing a brief programmable light stimulus (5500K, 400 lux) without habituation. A proof-of-concept validation involving the short-term exposure of eggs (24 h) and instar I larval stages (6 h) to sub-lethal concentrations of insecticides organophosphate chlorpyrifos (10 µg/L) and neonicotinoid imidacloprid (50 µg/L) showed perturbation in light seeking behaviors in the absence of or minimal alteration in general mobility. Our preliminary data further support the notion that phototactic bioassays can represent an attractive new avenue in behavioral ecotoxicology because of their potential sensitivity, responsiveness, and low cost.
Collapse
Affiliation(s)
- Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| |
Collapse
|
48
|
Melo de Almeida E, Tisserand F, Faria M, Chèvre N. Efficiency of Several Cytochrome P450 Biomarkers in Highlighting the Exposure of Daphnia magna to an Organophosphate Pesticide. TOXICS 2022; 10:482. [PMID: 36006161 PMCID: PMC9416226 DOI: 10.3390/toxics10080482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The cytochromes P450 (CYP450) represent a major enzyme family operating mostly in the first step of xenobiotic detoxification in aquatic organisms. The ability to measure these CYP450 enzymes' activities provides a crucial tool to understand organisms' response to chemical stressors. However, research on CYP450 activity measurement is still limited and has had variable success. In the present study, we optimize, compile, and compare existing scientific information and techniques for a series of CYP450 biomarkers (EROD, MROD, ECOD, APND, and ERND) used on Daphnia magna. Additionally, we explored these CYP450 biomarkers' activities through the first 5 days of life of daphnids, providing a link between their age and sensitivity to chemicals. In the experiment, daphnids were exposed to an organophosphate pesticide (diazinon) from birth to measure the molecular response of the detoxification process. Our results suggest EROD as the most applicable biomarker for organisms such as D. magna, with a higher organophosphate detoxification rate in daphnids that are 2 and 5 days old. Additionally, a larger body size allowed a more accurate EROD measurement; hence, we emphasize the use of 5-day-old daphnids when analyzing their detoxification response.
Collapse
Affiliation(s)
- Elodie Melo de Almeida
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
- School of Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Floriane Tisserand
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Micaela Faria
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nathalie Chèvre
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Lofrano G, Ubaldi F, Albarano L, Carotenuto M, Vaiano V, Valeriani F, Libralato G, Gianfranceschi G, Fratoddi I, Meric S, Guida M, Romano Spica V. Antimicrobial Effectiveness of Innovative Photocatalysts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2831. [PMID: 36014697 PMCID: PMC9415964 DOI: 10.3390/nano12162831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Waterborne pathogens represent one of the most widespread environmental concerns. Conventional disinfection methods, including chlorination and UV, pose several operational and environmental problems; namely, formation of potentially hazardous disinfection by-products (DBPs) and high energy consumption. Therefore, there is high demand for effective, low-cost disinfection treatments. Among advanced oxidation processes, the photocatalytic process, a form of green technology, is becoming increasingly attractive. A systematic review was carried out on the synthesis, characterization, toxicity, and antimicrobial performance of innovative engineered photocatalysts. In recent decades, various engineered photocatalysts have been developed to overcome the limits of conventional photocatalysts using different synthesis methods, and these are discussed together with the main parameters influencing the process behaviors. The potential environmental risks of engineered photocatalysts are also addressed, considering the toxicity effects presented in the literature.
Collapse
Affiliation(s)
- Giusy Lofrano
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Francesca Ubaldi
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Luisa Albarano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Maurizio Carotenuto
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.C.); (V.V.)
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.C.); (V.V.)
| | - Federica Valeriani
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Gianluca Gianfranceschi
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sureyya Meric
- Department of Environmental Engineering, Tekirdag Namik Kemal University, Corlu 59860, Turkey;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy; (L.A.); (G.L.); (M.G.)
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy; (G.L.); (F.U.); (G.G.); (V.R.S.)
| |
Collapse
|
50
|
Nkoom M, Lu G, Liu J. Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: a comparative two-generational study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58963-58979. [PMID: 35378650 DOI: 10.1007/s11356-022-19463-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The chronic toxicity of diclofenac (DCF) and carbamazepine (CBZ) as separate substances and in conjunction with their mixture on Daphnia magna was assessed in the parental (F0) and first filial (F1) generations. The second (F1-B2) and fifth (F1-B5) broods of F1 offspring were investigated and compared. Both drugs and their mixture were exposed to each generation of Daphnia magna for 21 days with life history, behavioural and gene expressions as measured endpoints. After the parental exposure, offspring from these two broods were transferred to a clean medium for a 21-day recovery. Exposure to diclofenac, carbamazepine and their mixture significantly inhibited growth, reproduction, swimming activities, heart rate, thoracic limb activities, reproductive and antioxidant-related genes in the parental as well as the first filial generations. These effects were relatively greater in the F1 generation. This indicates that Daphnia magna's sensitivity improved while its fitness declined over the two generations, which is an indicator of greater energy requirements for maintenance. Besides, the significant inhibition in the antioxidant-related genes implies that oxidative stress occurred in Daphnia magna under the exposure to these drugs. The significant reduction in the reproductive output, moulting frequency and cyp314 gene expression as a result of exposure to CBZ simultaneously obtained herein may indicate that this drug could act as an endocrine disruptor. Most of these significant effects were not recoverable after the 21-day recovery period. The findings reported herein highlight the necessity to include maternal effects in environmental risk assessment processes, considering that pollutant effects are underestimated during single-generational exposure.
Collapse
Affiliation(s)
- Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
- Department of Environment and Sustainability Sciences, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, Ghana
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|