1
|
Zhu Y, Zheng Y, Dong F, Wu X, Pan X, Xu J. Insight into abiotic and biotic transformations of fenaminstrobin in water and soil: Kinetics, transformation mechanism and ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138324. [PMID: 40267711 DOI: 10.1016/j.jhazmat.2025.138324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
In 2009, fenaminstrobin was officially registered in China as a strobilurin pesticide, particularly developed for effectively controlling fungal diseases. Despite its widespread use, limited information is available regarding its environmental persistence and eco-toxicological profile. Herein, we comprehensively assess the abiotic and biotic transformations of fenaminstrobin, along with the associated ecological risks. Findings indicate that fenaminstrobin exhibits stability in water and soil under dark conditions; however, it undergoes substantial degradation when exposed to simulated sunlight, primarily due to the formation of photo-isomers. Furthermore, various factors within the water matrix that influence photo-degradation rates are revealed. Ten transformation products (TPs) are identified via high-resolution mass spectrometry in conjunction with suspect and non-target screening methodologies. Subsequently, a plausible transformation pathway is proposed based on the analysis of molecular functional groups and density functional theory (DFT) calculations. The pathway involves processes such as hydration, hydrolysis of chlorobenzene and oxime-ether, as well as redox reactions. Eco-toxicity assessments, integrating the predicted toxicity based on the Ecological Structure-Activity Relationship (ECOSAR) program with experimental data, reveal that certain TPs associated with fenaminstrobin remain highly toxic to aquatic organisms, albeit their ecological risk decreases over the course of its transformation. This study elucidates the transformation mechanisms and ecological risks of fenaminstrobin, providing critical insights for its effective and safe utilization.
Collapse
Affiliation(s)
- Yuxiao Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Patiño-Ropero MJ, Nieto-Carmona JC, Cobos-Escudero M, Lamsabhi AM, Alcamí M, Alonso-Prados JL, Sandín-España P. Unveiling the photodegradation of tralkoxydim herbicide and its formulation in natural waters: Structural elucidation of transformation products and toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118409. [PMID: 40449379 DOI: 10.1016/j.ecoenv.2025.118409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Pesticide degradation products (DPs), as emerging contaminants, are being detected in aquatic environments due to the widespread use of their active substances and pose potential risks to aquatic ecology and human health. However, their identification is challenging due to the many environmental conditions that influence their degradation processes. The photodegradation of the herbicide tralkoxydim and its formulation has been studied in ultrapure, spring and river waters and has shown rapid degradation. The photodegradation of tralkoxydim was slower in natural water and in the presence of humic acids (HA) than in ultrapure water, with half-lives of 5.1 h for river water and 1.1 h for ultrapure water. For the first time, three degradation products were identified in aquatic media using HPLC-TOF-MS/MS. These include photoisomerization, photolysis of the N-O bond of the oxime resulting in the tralkoxydim imine (major DP), and cyclization leading to tralkoxydim oxazole. Quantitative structure-activity relationship (QSAR) models were employed to approximate the potential ecotoxicological and environmental impacts of tralkoxydim and its DPs. Additionally, the toxicity of the isolated DPs was evaluated using a standard microtest bioassay with Vibrio fischeri bacteria. The results show that tralkoxydim imine and tralkoxydim oxazole exhibit high toxicity.
Collapse
Affiliation(s)
- María José Patiño-Ropero
- Plant Protection Products Unit, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km.7.5, Madrid 28040, Spain
| | - Juan Carlos Nieto-Carmona
- Plant Protection Products Unit, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km.7.5, Madrid 28040, Spain
| | - María Cobos-Escudero
- Plant Protection Products Unit, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km.7.5, Madrid 28040, Spain
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Módulo 13, Madrid 28049, Spain
| | - Manuel Alcamí
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Módulo 13, Madrid 28049, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia), Madrid 28049, Spain
| | - José Luis Alonso-Prados
- Plant Protection Products Unit, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km.7.5, Madrid 28040, Spain
| | - Pilar Sandín-España
- Plant Protection Products Unit, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km.7.5, Madrid 28040, Spain.
| |
Collapse
|
3
|
Xu F, Zhang Y, Su L, Guo Z, Cheng Q, Xu L, Wang F, Sheng G. Solar-Light-Mediated Phototransformation of Herbicide Tribenuron-Methyl Initiated by Its Coexisting Nitrate Ion in Sunlit Agricultural Drainages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:342-353. [PMID: 39720920 DOI: 10.1021/acs.jafc.4c09764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Understanding the environmental fate of chemical herbicides is crucial to sustainable agriculture. Due to their joint-use with nitrogen fertilizers, their residues often coexist with NO3- in agricultural drainages. In this study, tribenuron-methyl was used as a model to evaluate the role of NO3- in the phototransformation of chemical herbicides, which was characterized by a two-stage process. Initially, a slow hydrolysis occurs (kobs = 2.573 × 10-4 min-1), producing two hydrolysis products: methyl-2-(aminosulfonyl)-benzoate (MSB) and 2-methyl-4-methylamino-6-methoxy-1, 3, 5-triazine (MMT), which can be significantly accelerated by solar irradiation (kobs = 2.152 × 10-2 min-1). Subsequently, MSB undergoes a rapid NO3--initiated photodegradation process (kobs = 2.251 × 10-2 min-1). MMT was identified as the refractory unit and undergoes a slow NO3--initiated photodegradation process (kobs = 4.494 × 10-4 min-1). The underlying mechanisms were elucidated through electron paramagnetic resonance spectroscopy and reactive species quenching experiments. This study fills a knowledge gap on the interaction between NO3- and chemical herbicides, highlighting the pivotal role of NO3- in the phototransformation of chemical herbicides.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yukuai Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Longfei Su
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhenxing Guo
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Cheng
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liqiang Xu
- Department of Resource Science and Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Wang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guoping Sheng
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
4
|
Cervantes-Díaz A, Alonso-Prados E, Alonso-Prados JL, Sandín-España P. Assessing the effect of organic amendments on the degradation of profoxydim in paddy soils: Kinetic modeling and identification of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169072. [PMID: 38048997 DOI: 10.1016/j.scitotenv.2023.169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The fate and behavior of herbicides can be altered in an unpredictable way when organic amendments are added to soil as a beneficial management tool. The objective of this work was to investigate the effect exerted by the addition of two different organic amendments (alperujo compost and biochar) to soil in the degradation of one of the most relevant new generation rice herbicides, profoxydim. In unamended soils, the degradation of profoxydim was quite fast and was governed by both chemical (DT50steril soil = from 1.52 to 9.21 days) and microbial (DT50nonsterile soil = from 0.47 to 0.53 days) processes. Alperujo- and biochar-amended soils significantly increased the persistence of the herbicide in both soils, especially in the presence of biochar, due to the high capacity absorption of this amendment, increasing DT90 from 1.92 to 3.54 days for DT90unamended to 41.02-48.41 days for DT90biochar amended. Different kinetics models applied to fit the observed dissipation datasets showed that a HS biphasic model fits well with the dissipation of profoxydim in amended and unamended soils. For the first time, five degradation products (DPs) were identified by HPLC-QTOF-MS/MS in soil and a degradation pathway was described. Main DP was generated via oxidation of the sulfur atom to give rise to the corresponding sulfoxide derivative, with this DP being more persistent than the active substance. These outcomes can be very useful for the assessment of the environmental risk associated with the use of profoxydim in rice crops and the application of organic amendments as potential measures for minimizing the risk of contamination of natural water resources.
Collapse
Affiliation(s)
- A Cervantes-Díaz
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - E Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - J L Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - P Sandín-España
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Dcunha R, Kumari S, Najar MA, Aravind A, Suvarna KS, Hanumappa A, Mutalik SP, Mutalik S, Kalthur SG, Rajanikant GK, Siddiqui S, Alrumman S, Alamri SAM, Raghu SV, Adiga SK, Kannan N, Thottethodi Subrahmanya KP, Kalthur G. High doses of GrassOut Max poses reproductive hazard by affecting male reproductive function and early embryogenesis in Swiss albino mice. CHEMOSPHERE 2023:139215. [PMID: 37336444 DOI: 10.1016/j.chemosphere.2023.139215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or 50 mg kg-1 body weight analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d from the first day of treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim-equivalent exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-equivalent treated mice, the expression of Erβ and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-equivalent treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.
Collapse
Affiliation(s)
- Reyon Dcunha
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Keerthana Sandesh Suvarna
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Hanumappa
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Sazada Siddiqui
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | - Sulaiman Alrumman
- Department of Biology, College of Sciences, King Khalid University, Abha, 11362, Saudi Arabia
| | | | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
6
|
Bo T, Lin Y, Han J, Hao Z, Liu J. Machine learning-assisted data filtering and QSAR models for prediction of chemical acute toxicity on rat and mouse. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131344. [PMID: 37027914 DOI: 10.1016/j.jhazmat.2023.131344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Machine learning (ML) methods provide a new opportunity to build quantitative structure-activity relationship (QSAR) models for predicting chemicals' toxicity based on large toxicity data sets, but they are limited in insufficient model robustness due to poor data set quality for chemicals with certain structures. To address this issue and improve model robustness, we built a large data set on rat oral acute toxicity for thousands of chemicals, then used ML to filter chemicals favorable for regression models (CFRM). In comparison to chemicals not favorable for regression models (CNRM), CFRM accounted for 67% of chemicals in the original data set, and had a higher structural similarity and a smaller toxicity distribution in 2-4 log10 (mg/kg). The performance of established regression models for CFRM was greatly improved, with root-mean-square deviations (RMSE) in the range of 0.45-0.48 log10 (mg/kg). Classification models were built for CNRM using all chemicals in the original data set, and the area under receiver operating characteristic (AUROC) reached 0.75-0.76. The proposed strategy was successfully applied to a mouse oral acute data set, yielding RMSE and AUROC in the range of 0.36-0.38 log10 (mg/kg) and 0.79, respectively.
Collapse
Affiliation(s)
- Tao Bo
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yaohui Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| |
Collapse
|
7
|
Man Y, Wu C, Yu B, Mao L, Zhu L, Zhang L, Zhang Y, Jiang H, Yuan S, Zheng Y, Liu X. Abiotic transformation of kresoxim-methyl in aquatic environments: Structure elucidation of transformation products by LC-HRMS and toxicity assessment. WATER RESEARCH 2023; 233:119723. [PMID: 36801572 DOI: 10.1016/j.watres.2023.119723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, abiotic transformation of an important strobilurin fungicide, kresoxim-methyl, was investigated under controlled laboratory conditions for the first time by studying its kinetics of hydrolysis and photolysis, degradation pathways and toxicity of possibly formed transformation products (TPs). The results indicated that kresoxim-methyl showed a fast degradation in pH9 solutions with DT50 of 0.5 d but relatively stable under neutral or acidic environments in the dark. It was prone to photochemical reactions under simulated sunlight, and the photolysis behavior was easily affected by different natural substances such as humic acid (HA), Fe3+and NO3-which are ubiquitous in natural water, showing the complexity of degradation mechanisms and pathways of this chemical compound. The potential multiple photo-transformation pathways via photoisomerization, hydrolyzation of methyl ester, hydroxylation, cleavage of oxime ether and cleavage of benzyl ether were observed. 18 TPs generated from these transformations were structurally elucidated based on an integrated workflow combining suspect and nontarget screening by high resolution mass spectrum (HRMS), and two of them were confirmed with reference standards. Most of TPs, as far as we know, have never been described before. The in-silico toxicity assessment showed that some of TPs were still toxic or very toxic to aquatic organisms, although they exhibit lower aquatic toxicity compared to the parent compound. Therefore, the potential hazards of the TPs of kresoxim-methyl merits further evaluation.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bochi Yu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shankui Yuan
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Paniagua-López M, Jiménez-Pelayo C, Gómez-Fernández GO, Herrera-Cervera JA, López-Gómez M. Reduction in the Use of Some Herbicides Favors Nitrogen Fixation Efficiency in Phaseolus vulgaris and Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1608. [PMID: 37111831 PMCID: PMC10144682 DOI: 10.3390/plants12081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, the quality of agricultural soils has been seriously affected by the excessive application of pesticides, with herbicides being one of the most abundant. Continuous use of herbicides alters the soil microbial community and beneficial interactions between plants and bacteria such as legume-rhizobia spp. symbiosis, causing a decrease in the biological nitrogen fixation, which is essential for soil fertility. Therefore, the aim of this work was to study the effect of two commonly used herbicides (pendimethalin and clethodim) on the legume-rhizobia spp. symbiosis to improve the effectiveness of this process. Phaseolus vulgaris plants grown in pots with a mixture of soil:perlite (3:1 v/v), showed a 44% inhibition of nitrogen fixation rate with pendimethalin. However, clethodim, specifically used against monocots, did not induce significant differences. Additionally, we analyzed the effect of herbicides on root exudate composition, detecting alterations that might be interfering with the symbiosis establishment. In order to assess the effect of the herbicides at the early nodulation steps, nodulation kinetics in Medicago sativa plants inoculated with Sinorhizobium meliloti were performed. Clethodim caused a 30% reduction in nodulation while pendimethalin totally inhibited nodulation, producing a reduction in bacterial growth and motility as well. In conclusion, pendimethalin and clethodim application reduced the capacity of Phaseolus vulgaris and Medicago sativa to fix nitrogen by inhibiting root growth and modifying root exudate composition as well as bacterial fitness. Thus, a reduction in the use of these herbicides in these crops should be addressed to favor a state of natural fertilization of the soil through greater efficiency of leguminous crops.
Collapse
|
9
|
Sandín-España P, Dagnac T. Development of Analytical Methods to Analyze Pesticide Residues. Molecules 2023; 28:molecules28073074. [PMID: 37049839 PMCID: PMC10095687 DOI: 10.3390/molecules28073074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Pesticides are compounds applied on crops to eliminate or control pests, diseases and weeds and it is known that their use provides unquestionable benefits in increasing agricultural production [...].
Collapse
Affiliation(s)
- Pilar Sandín-España
- Unit of Plant Protection Products, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km. 7, 28040 Madrid, Spain
| | - Thierry Dagnac
- Galician Agency for Food Quality-Agronomic and Agrarian Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, 15080 A Coruña, Spain
| |
Collapse
|
10
|
Villaverde JJ, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P. A study using QSAR/QSPR models focused on the possible occurrence and risk of alloxydim residues from chlorinated drinking water, according to the EU Regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156000. [PMID: 35597336 DOI: 10.1016/j.scitotenv.2022.156000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Any active substance with phytosanitary capacity intended to be marketed in Europe must pass exhaustive controls to assess its risk before being marketed and used in European agriculture. Since the implementation of Regulation (EC) No 1107/2009, agrochemical companies have been obliged to study the formation of pesticide transformation products (TPs) during the treatment of drinking water containing pesticide residues. However, there is no consensus on how to address this requirement. In this research work, the open literature collection on alloxydim was used to propose potential chlorination paths from alloxydim isomers. Furthermore, several QSAR/QSPR models have been used to fill the of knowledge gap relative to some key parameters in the physico-chemical, environmental and ecotoxicological areas of potential alloxydim TPs from chlorinated water for which little information exists. In this way, it has been possible to estimate the state of aggregation of these TPs (they exist mainly as liquids) as well as their ease of transit between the different phases, to predict their possible behaviour in the three environmental compartments (e.g., thermophysical properties point to a change in their evolution with respect to the parent alloxydim isomers) and to anticipate their potential risk to human and animal health (e.g., all of them cause developmental toxicity). These and other results highlight that the hazards of several TPs, i.e., both chlorinated and nonchlorinated from parent alloxydim or from those obtained after cleavage of the N - O bond and the subsequent reaction with chlorine, should be seriously considered. The obtained results reopen the debate on the implications of the use of QSAR/QSPR models for pesticide risk assessment in the legislative framework.
Collapse
Affiliation(s)
- Juan José Villaverde
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Beatriz Sevilla-Morán
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| | - José Luis Alonso-Prados
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Pilar Sandín-España
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| |
Collapse
|
11
|
Pan M, Mu S, Li Y, Yang Y, Zhang Y, Chen L, Hu D. Kinetics of the photolysis of pyridaben and its main photoproduct in aqueous environments under simulated solar irradiation. RSC Adv 2022; 12:21647-21654. [PMID: 35975087 PMCID: PMC9350664 DOI: 10.1039/d2ra02601e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
The photolytic fate of pyridaben and its main photolysis product was investigated in different aqueous solutions. Results showed that the photolysis of pyridaben followed pseudo first-order kinetics or the hockey-stick model. In buffer solutions, the half-life of pyridaben was the shortest at pH 4, while the degradation rate within 24 h was the highest at pH 9. Humic acids (HA) at concentrations of 1-20 mg L-1 favored the photolysis of pyridaben while fulvic acids (FA) did not have a significant effect. Nitrate at low concentrations (0.01 mM) accelerated the photolysis and Fe(iii) at high concentrations (0.01 and 0.1 mM) significantly inhibited the photolysis. The photolysis rate of pyridaben in rainwater, tap water, and river water was significantly higher than that in distilled water. The half-lives in distilled water, rainwater, tap water, river water, and pond water were 2.36, 1.36, 1.61, 1.77, and 2.68 h, respectively. Ultra-high-performance liquid chromatography/high-resolution mass spectrometry identified M328 as a photolysis product. The degradation of M328 followed pseudo first-order kinetics in distilled water, buffer solutions and aqueous solutions fortified with HA. The half-lives of M328 were in the range of 7.07-13.95 h. These results are essential for further environmental risk assessment of pyridaben.
Collapse
Affiliation(s)
- Mengyuan Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang P. R. China +86 88292090 +86 851 88292090
| | - Shiyin Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang P. R. China +86 88292090 +86 851 88292090
| | - Yunfang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang P. R. China +86 88292090 +86 851 88292090
| | - Ya Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang P. R. China +86 88292090 +86 851 88292090
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang P. R. China +86 88292090 +86 851 88292090
| | - Lingzhu Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang P. R. China +86 88292090 +86 851 88292090
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang P. R. China +86 88292090 +86 851 88292090
| |
Collapse
|
12
|
A Systematic Review of Photolysis and Hydrolysis Degradation Modes, Degradation Mechanisms, and Identification Methods of Pesticides. J CHEM-NY 2022. [DOI: 10.1155/2022/9552466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The degradation modes and characteristics of different pesticides were introduced. In addition, this paper also describes the degradation mechanism of different pesticides, classifies, and summarizes the methods of degradation products identification. For the sake of human life health and better biological environment, we should have a familiar knowledge of the natural degradation of pesticides and understand the photo-hydrolysis and its influencing factors (temperature, pH, light, etc.). Through the degradation mechanism and influencing factors, the degradation time could be accelerated and it also provides a theoretical basis and basic support for the treatment of pesticide residues in the future.
Collapse
|
13
|
Zhong Q, Li H, Wang M, Luo F, Wang X, Yan H, Cang T, Zhou L, Chen Z, Zhang X. Enantioselectivity of indoxacarb during the growing, processing, and brewing of tea: Degradation, metabolites, and toxicities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153763. [PMID: 35151732 DOI: 10.1016/j.scitotenv.2022.153763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Chiral pesticides are unique hazardous materials. Here, we systematically studied the potentially harmful products of enantioselective indoxacarb degradation throughout tea growth, processing, and brewing and tested their toxicity to tea geometrid larvae and honeybees. The half-lives of S-indoxacarb and R-indoxacarb during tea growth were 2.6 d and 3.3 d, respectively. There was a trend toward the production of S-indoxacarb from R-indoxacarb. The degradation products IN-JT333, IN-MK638, IN-MF014, and IN-KG433 were also characterized in tea growth and processing and detected. IN-JT333, previously known as a direct insecticidal compound produced by the enzymatic transformation of indoxacarb in insects, was first found in plant samples. The fixation and rolling of green tea and the rolling of black tea were the most important steps that affected indoxacarb and its degradation products. The leaching rates of R-indoxacarb and S-indoxacarb were slightly higher in green tea than in black tea. The maximum leaching rates of IN-MK638 and IN-MF014 during the brewing process reached 89.9% and 94.1%, respectively. Contact toxicity tests with honeybees and tea geometrid larvae in the lab showed that the relative toxicities of the compounds could be ranked as follows: S-indoxacarb > indoxacarb (3S + 1R) ≫ R-indoxacarb. TEST toxicity predictions showed that relative toxicities were ranked IN-KG433 > indoxacarb > IN-JT333 > IN-MK638 > IN-MF014. The toxicity of the degradation product IN-KG433 is higher than that of indoxacarb itself, and its maximum leaching rate is as high as 88.2%. It therefore transfers readily from processed tea to the tea infusion during the brewing process. These findings indicate the need to pay attention to the risk of metabolites and enantiomeric differences and provide new, comprehensive insight into the risk factors for indoxacarb in tea and are relevant to the study of other chiral pesticides.
Collapse
Affiliation(s)
- Qing Zhong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haifeng Yan
- Zhejiang Corechem Co., Ltd., Shaoxing 312367, China
| | - Tao Cang
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
14
|
Ferreira AVDTPF, Barbosa LV, de Souza SD, Ciuffi KJ, Vicente MA, Trujillano R, Korili SA, Gil A, de Faria EH. Titania-triethanolamine-kaolinite nanocomposites as adsorbents and photocatalysts of herbicides. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Man Y, Stenrød M, Wu C, Almvik M, Holten R, Clarke JL, Yuan S, Wu X, Xu J, Dong F, Zheng Y, Liu X. Degradation of difenoconazole in water and soil: Kinetics, degradation pathways, transformation products identification and ecotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126303. [PMID: 34329017 DOI: 10.1016/j.jhazmat.2021.126303] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marianne Stenrød
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marit Almvik
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Roger Holten
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Jihong Liu Clarke
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Shankui Yuan
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Yu T, Ma H, Zhang H, Xiong M, Liu Y, Li F. Fabrication and characterization of purified esterase-embedded zeolitic imidazolate frameworks for the removal and remediation of herbicide pollution from soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112450. [PMID: 33823448 DOI: 10.1016/j.jenvman.2021.112450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The fragility and high cost of enzymes represent critical challenges limiting their practical application in the removal of pesticides. Herein, an aryloxyphenoxypropionate herbicide-hydrolyzing enzyme, QpeH, was purified via one-step affinity chromatography and embedded into two types of zeolitic imidazolate frameworks (ZIFs) through biomimetic mineralization. The catalytic activity towards the herbicide quizalofop-P-ethyl, the loading capacity and efficiency of the resulting two composites, QpeH@ZIF-10 with cruciate flower-like morphology and QpeH@ZIF-8 with rhombic dodecahedral morphology, were compared. Both composites had excellent stability and reusability after 10 reuse cycles, with QpeH@ZIF-10 having a better performance. More importantly, when applied for the removal of quizalofop-P-ethyl pollution in the watermelon field, QpeH@ZIF-10 (88%) showed a remarkably improved degradation efficiency compared to QpeH@ZIF-8 (84%) despite the latter having a greater loading capacity. Finally, the use of QpeH@ZIF composites was shown to recover the bacterial community in soil. This work provides a new insight into the low-cost synthesis of nanobiocatalysts combining simple purified enzymes and metal-organic frameworks (MOFs) for the remediation of pesticide-contaminated soils.
Collapse
Affiliation(s)
- Ting Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Hengyan Ma
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Hui Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Minghua Xiong
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yuan Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
17
|
Li C, Zhu H, Li C, Qian H, Yao W, Guo Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem 2021; 354:129552. [PMID: 33756332 DOI: 10.1016/j.foodchem.2021.129552] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Pesticide residues are one of the most important issues affecting food safety. In this review, the general situation of pesticide residues in fruits and vegetables based on the background of the Chinese fruit and vegetable industry is first described. On the basis of primary processing of agricultural products, the effects of processing methods on the removal and metabolism of pesticide residues are reviewed in this paper. In addition, the transformation mechanism of pesticides in crops and in the environment is discussed. Finally, this study summarizes the development trend of pesticide-residue monitoring methods. With the prohibition of a large number of pesticides in China, the risk of pesticide residues is gradually reduced. However, some highly toxic pesticides can still be detected. Furthermore, the development of high-resolution mass spectrometry screening methods and rapid and intelligent detection instruments is the development trend for pesticide monitoring in the future.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Huimin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Changyan Li
- YanTai Institute, China Agricultural University, Yantai 264670, Shandong Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
18
|
Brêda-Alves F, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11528-11539. [PMID: 33128150 DOI: 10.1007/s11356-020-11367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The large-scale use of herbicides deteriorates water quality and threatens aquatic biodiversity. Unfortunately, there are few studies on the ecological effects of herbicides on toxin-producing strains of cyanobacteria under changing nutrient conditions. The objective of the present study was to investigate the effects of the herbicide clethodim and nitrogen variation on the allelopathic interactions and toxin production of Microcystis aeruginosa BCCUSP232 and Raphidiopsis raciborskii (formerly known as Cylindrospermopsis raciborskii) ITEPA1. M. aeruginosa had increased cell density when exposed to the clethodim (H +) (23.55 mg/L), whereas the highest cell density of R. raciborskii was observed in the treatment with clethodim plus limited nitrogen. Also, the cell-free exudate of R. raciborskii significantly stimulated the growth of M. aeruginosa on day 3 of the experiment. The concentration of chlorophyll-a in M. aeruginosa cultures generally increased in all the treatments, while in R. raciborskii cultures, the opposite occurred. Total microcystins (MCs) content of M. aeruginosa in the mixed cultures was 68% higher in nitrogen-enriched conditions than the control. A similar increase in MC content occurred in M. aeruginosa unialgal culture treated with R. raciborskii exudate. Total saxitoxin concentration was 81% higher in mixed cultures of R. raciborskii simultaneously exposed to high nitrogen and clethodim. Similarly, unialgal cultures of R. raciborskii exposed to either high nitrogen or clethodim had higher saxitoxins concentrations than the control. The intracellular H2O2 content of M. aeruginosa cultures decreased, whereas, in R. raciborskii cultures, it increased during exposure to high nitrogen and clethodim. Only R. raciborskii had a significant variation in peroxidase activity. The activities of glutathione S-transferase of both strains were higher in the presence of clethodim. These results revealed that nitrogen enrichment and the presence of clethodim might lead to the excessive proliferation of M. aeruginosa and R. raciborskii and increased production of cyanotoxins in aquatic environments.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil.
| | - Valéria de Oliveira Fernandes
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria
| |
Collapse
|
19
|
Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Ligor M, Bukowska M, Ratiu IA, Gadzała-Kopciuch R, Buszewski B. Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries. Molecules 2020; 25:E5817. [PMID: 33317195 PMCID: PMC7764438 DOI: 10.3390/molecules25245817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
A method development for determination of neonicotinoid residues in honey samples was developed. The proposed methodology consisted in QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe). That was used for sample preparation and UHPLC/UV (ultra-performance liquid chromatography with ultraviolet detection) utilized for chromatographic analysis. The developed method proved to be sensitive, with LOD (Limit of detection) value in the range of 60.80 to 80.98 ng/g hence LOQ (Limit of quantification) value was in the range of 184.26 to 245.40 ng/g. The method has tested on Polish honey and applied to honey from various countries (Bulgaria, Czech Republic, France, Greece, Italy, Portugal, Romania, Australia, Brazil, Cameroon, Russia, USA and Turkey). Several honey types were tested, while physicochemical properties of all honeys and were investigated. The methodology for general characterization of pollen grains originated from selected plants, to confirm the type of honey was also presented. There was a total lack of the mentioned neonicotinoids in sunflower honey. Except of this, only two samples of rapeseed and two samples of acacia honey (from Poland and Romania) were neonicotinoids free. In 19 samples the targeted pesticides were detected above LOQ. In all other investigated samples, the neonicotinoids were found at least at the LOD or LOQ level.
Collapse
Affiliation(s)
- Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.B.); (R.G.-K.)
| | - Małgorzata Bukowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.B.); (R.G.-K.)
| | - Ileana-Andreea Ratiu
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Torun, Poland;
- “RalucaRipan” Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele, RO-400239 Cluj-Napoca, Romania
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.B.); (R.G.-K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Torun, Poland;
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.B.); (R.G.-K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Torun, Poland;
| |
Collapse
|
21
|
Li C, Zhang Y, Cai W, Zhang X, Xie Y, Guo Y, Yu H, Yao W, Qian H. Mechanism insights into the transformation of carbosulfan during apple drying processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110729. [PMID: 32485491 DOI: 10.1016/j.ecoenv.2020.110729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
The transformation of carbosulfan (CSN) in apples was investigated during oven-drying, microwave drying, and sun-drying. CSN transformed primarily into carbofuran (COA) during these drying processes. The conversion kinetics of CSN and COA was fitted by curve regression and mainly conformed to quadratic models (R2 = 0.70-0.97). Oven-drying promoted the transformation of CSN into COA. Microwave drying resulted in the highest scavenging capacity against CSN and COA (41%-100%). Moreover, a transformation mechanism was proposed on the basis of density functional theory (DFT) calculation. The COA originated from a series of chemical reactions involving hydroxyl substitution, cleavage, and oxidation; this result was further confirmed on the basis of molecular electrostatic potential (MEP) and molecular orbital theory. Furthermore, the toxicity and stability of CSN and COA were evaluated with the T.E.S.T. program. COA was less toxic than CSN to aquatic organisms but more toxic than CSN to rats. Therefore, COA production should be avoided during drying. Microwave drying was found to be the optimum choice for drying apples.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahan Zhang
- Suzhou Institute for Food Control, No.1336 Wuzhong Avenue, Suzhou, Jiangsu Province, 215000, China
| | - Wen Cai
- Suzhou Institute for Food Control, No.1336 Wuzhong Avenue, Suzhou, Jiangsu Province, 215000, China
| | - Xuejing Zhang
- Suzhou Institute for Food Control, No.1336 Wuzhong Avenue, Suzhou, Jiangsu Province, 215000, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
22
|
Nataraj B, Maharajan K, Hemalatha D, Rangasamy B, Arul N, Ramesh M. Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134546. [PMID: 31839308 DOI: 10.1016/j.scitotenv.2019.134546] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we explored the adverse effects of Octyl methoxycinnamate (OMC), and its photoproducts, namely 2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA) on the developmental stages of zebrafish using various biomarkers such as developmental toxicity, oxidative stress, antioxidant response, neurotoxicity and histopathological changes. The 96 h effective concentrations (EC50) of OMC, 2-EH and 4-MBA were found to be 64.0, 34.0 and 3.5 µg/mL, respectively in the embryo toxicity test. Embryos exposed to the EC50 of OMC, 2-EH and 4-MBA showed time-dependent increases in the malformation, heart rate and hatching delay. The lipid peroxidation (LPO) level was significantly (p < 0.05) increased and both induction and inhibition of SOD, CAT, GPx and GST activities were observed in the zebrafish embryos exposed to OMC, 2-EH and 4-MBA. GSH activity was significantly (p < 0.05) decreased in the highest exposure groups, when compared with the control. AChE activity was increased in lower concentrations of OMC, 2-EH and 4-MBA exposed embryos whereas, the activity was found to be decreased in highest concentration. Moreover, the histopathological studies showed severe damage to the muscle fibers and yolk sac regions of the larvae with 4-MBA treatment. The photoproduct 4-MBA has the highest toxic effect, followed by 2-EH and OMC. Our results provide useful insights into the impacts of OMC and its photoproducts on zebrafish development.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University, Coimbatore, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; PG and Research Department of Zoology, PSG College of Arts and Science, Coimbatore, 641014, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Narayanasamy Arul
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
23
|
Hensen B, Olsson O, Kümmerer K. A strategy for an initial assessment of the ecotoxicological effects of transformation products of pesticides in aquatic systems following a tiered approach. ENVIRONMENT INTERNATIONAL 2020; 137:105533. [PMID: 32113087 DOI: 10.1016/j.envint.2020.105533] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/03/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
In order to conduct a fast and comprehensive toxicity screening of pesticide transformation products (TPs), this study used a tiered approach by a combination of in silico and experimental methods to determine the probability to be of relevance for risk assessment. The six pesticides Boscalid, Penconazole, Diuron, Terbutryn, Octhilinone (OIT), and Mecoprop were used as model compounds. Identification of corresponding environmental known and unknown TPs were done by literature analysis and photolysis experiments in combination. Aquatic solutions of the pesticides were photolysed to generate TPs which can be expected in the aquatic environment. The resulting mixtures were screened for TPs by high resolution LC-MS/MS. The herein developed approach was conducted at three different tiers: Literature review and in silico methods were used to predict exemplary the environmental bacterial toxicity and the genotoxicity of every single TP at tier I. In case of indications to be toxic, experiments at tier II were applied. Hereby, the photolytic mixtures containing parent compound and TPs were used for the consecutive toxicity test. Microtox assay for the parent compounds and the photolytic mixture was conducted to determine the acute and chronic toxicity and the growth inhibition of V. fischeri. Umu-tests were conducted to determine primary DNA damage. At tier III, single substance standards were used to conduct toxicity tests in case of toxic indication by previous tiers and availability of analytical standard. Identification of TPs revealed 45 known environmental TPs that originated from the six pesticides. The number of substances that need to be assessed was therefore more than sevenfold. By the tiered approach, it was possible to assess toxicological effects on environmental bacteria of 94% of the selected TPs. For 20% we found strong evidence to be toxic to environmental bacteria, as they were assessed at least at two tiers. For further 44% of the TPs we found slight evidence, as they could be assessed at one tier. Contrary, this approach turned out to be unsuitable to assess genotoxic effects of TPs neither by in silico tools nor by experiments. The number of substances that could probably pose a risk onto environment was quadrupled in comparison to the consideration of solely the parent compounds. Thus, this study demonstrates that the conducted screening approach allows for easy and fast identification of environmental relevant TPs. However, the study presented was a very first screening. Its applicability domain needs to be assessed further. For this purpose as a very next step the approach suggested here should be verified by applying additional endpoints and including additional parent compounds.
Collapse
Affiliation(s)
- Birte Hensen
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Oliver Olsson
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| |
Collapse
|
24
|
Pang K, Hu J. Simultaneous Analysis and Dietary Exposure Risk Assessment of Fomesafen, Clomazone, Clethodim and Its Two Metabolites in Soybean Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1951. [PMID: 32191999 PMCID: PMC7143629 DOI: 10.3390/ijerph17061951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022]
Abstract
A commercial formulation, 37% dispersible oil suspension (DOS) (fomesafen, clomazone, and clethodim), is being registered in China to control annual or perennial weeds in soybean fields. In this paper, a liquid chromatography tandem mass spectrometry method with QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation was developed for the simultaneous determination of fomesafen, clomazone, clethodim, and its two metabolites (CSO and CSO2) in soybean, green soybean, and soybean straw samples. The mean recoveries of our developed method for the five analytes in three matrices were ranged from 71% to 116% with relative standard deviations (RSDs) less than 12.6%. The limits of quantification (LOQs) were 0.01 mg/kg in soybean, 0.01 mg/kg in green soybean, and 0.02 mg/kg in soybean straw while the limits of detection (LODs) ranged from 0.018 to 0.125 μg/kg for these five analytes. The highest final residual amount of CSO2 in green soybean samples (0.015 mg/kg) appeared in Anhui, and the highest in soybean straw samples was 0.029 mg/kg in Guangxi, whilst the terminal residues of fomesafen, clomazone, clethodim and CSO were lower than LOQs (0.01 mg/kg) in all samples. Furthermore, these terminal residues were all lower than the maximum residue limits (MRLs) set by China (0.1 mg/kg for fomesafen and clethodim, 0.05 mg/kg for clomazone) at harvest. Additional chronic dietary risk was evaluated using a risk quotients (RQs) method based on Chinese dietary habits. The chronic dietary exposure risk quotients were 4.3 for fomesafen, 0.12 for clomazone, and 19.3 for clethodim, respectively, which were significantly lower than 100. These results demonstrated that the dietary exposure risk of fomesafen, clomazone, and clethodim used in soybean according to good agricultural practices (GAP) was acceptable and would not pose an unacceptable health risk to Chinese consumers. These results not only offer insight with respect to the analytes, but also contribute to environmental protection and food safety.
Collapse
Affiliation(s)
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science Technology Beijing, Beijing 100083, China;
| |
Collapse
|
25
|
Brêda-Alves F, Militão FP, de Alvarenga BF, Miranda PF, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii. CHEMOSPHERE 2020; 243:125318. [PMID: 31995862 DOI: 10.1016/j.chemosphere.2019.125318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Increased agricultural intensification goes with the widespread use of herbicides that adversely affect aquatic biodiversity. The effects of herbicides on toxin-producing cyanobacteria have been poorly studied. The present study aimed to investigate the toxicological and physiological effects of the herbicide clethodim on Raphidiopsis raciborskii (a.k.a. Cylindrospermopsis raciborskii) ITEPA1 and Microcystis aeruginosa BCCUSP232. On day four of the experiment, the exposure to 25 mg/L clethodim resulted in the highest cell density of R. raciborskii. Similarly, exposure to the 1, 5, 20, and 50 mg/L clethodim treatments resulted in the highest cell densities of M. aeruginosa on day 4 of the experiment. Medium effect concentrations (EC50) after 96 h of exposure of both strains to clethodim were 192.98 mg/L and 168.73 mg/L for R. raciborskii and M. aeruginosa, respectively. The presence of clethodim significantly increased the total microcystin content of M. aeruginosa compared to the control cultures. At 400 mg/L, total saxitoxins content of R. raciborskii was 27% higher than that of the control cultures on day 4. In contrast, cultures exposed to 100 mg/L clethodim had the lowest saxitoxins levels per cell quota. There was an increase in the levels of intracellular hydrogen peroxide in both species during exposure to clethodim, which was followed by significant changes (p < 0.05) in the activity of antioxidant enzymes such as peroxidase and superoxide dismutase. These results revealed that the presence of low levels of clethodim in the aquatic environment might lead to the excessive proliferation of cyanobacteria and alteration of their cyanotoxins content.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil.
| | - Frederico Pacheco Militão
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Brener Freitas de Alvarenga
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Pamela Ferreira Miranda
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Valéria de Oliveira Fernandes
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
26
|
Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P. QSAR/QSPR models based on quantum chemistry for risk assessment of pesticides according to current European legislation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:49-72. [PMID: 31766890 DOI: 10.1080/1062936x.2019.1692368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
In Europe, agencies and official organizations involved in the pesticide control such as the EFSA, ECHA, JRC and ECETOC or even the OECD are pointing out that the software tools based on quantitative structure relationship models, i.e. QSAR and QSPR, have a huge potential to improve the pesticide risk assessment process. In this sense, these non-animal test methods can promote the competitiveness of agriculture in this region: the consumer safety is increased with them due to the possibility of perform an overall better risk assessment of the degradation products and metabolites from pesticides. However, the use of theses computational-based (in silico) tools must be much more systematised and harmonised, improving their validation and including case studies to test them. To open databases, incorporating critical data in an orderly manner for building the models, becomes also necessary. Moreover, quantum chemistry through the Density Functional Theory should be promoted as tool for calculation of quantum descriptors, especially for the study of similar compounds with the same carbon skeleton but differing substitution patterns, e.g. isomers.
Collapse
Affiliation(s)
| | | | - C López-Goti
- Unit of Plant Protection Products, INIA, Madrid, Spain
| | | | | |
Collapse
|
27
|
Jaén-Gil A, Buttiglieri G, Benito A, Gonzalez-Olmos R, Barceló D, Rodríguez-Mozaz S. Metoprolol and metoprolol acid degradation in UV/H 2O 2 treated wastewaters: An integrated screening approach for the identification of hazardous transformation products. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120851. [PMID: 31326839 DOI: 10.1016/j.jhazmat.2019.120851] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Advancements on analytical strategies to determine the chemicals present in treated wastewater are necessary to clearly link their occurrence with the ecotoxicity of such effluents. This study describes the development of an integrated screening approach to determine the highest number of pharmaceutical transformation products (TPs) in a single run. The identification of TPs was based on the comparison of detected features with literature sources, compound prediction tools, in-house libraries and reference standards using high-resolution mass spectrometry (HRMS). This integrated approach allowed a better estimation (in silico) of the ecotoxicological contribution of the individual TPs identified. As a proof of concept, this methodology was applied for identification of the TPs generated from metoprolol and its main human metabolite (metoprolol acid) in pure water, hospital wastewater and industrial wastewater treated by UV/H2O2. Twenty-four TPs with potential ecotoxicological implications were identified and their presence was pinpointed as a function of the treated wastewater. An integrated screening approach has been developed using four different screening methodologies in the same run. Additionally, the metabolite MTPA has been considered as a target pollutant in UV/H2O2 experiments.
Collapse
Affiliation(s)
- Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain
| | - Aleix Benito
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Rafael Gonzalez-Olmos
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, (IDAEA-CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003, Girona, Spain.
| |
Collapse
|
28
|
Pęziak-Kowalska D, Syguda A, Ławniczak Ł, Borkowski A, Fourcade F, Heipieper HJ, Lota G, Chrzanowski Ł. Hybrid electrochemical and biological treatment of herbicidal ionic liquids comprising the MCPA anion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:172-179. [PMID: 31185431 DOI: 10.1016/j.ecoenv.2019.05.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 05/26/2023]
Abstract
The present study was focused on the application of an electrochemical oxidation process combined with biodegradation for the removal of novel Herbicidal Ionic Liquids (HILs) -promising protection plant products which incorporate herbicidal anions and ammonium cations. The influence of carbon chain length (n = 8, 10, 12, 14, 16, 18) in the dialkyldimethylammonium cations on electrochemical oxidation kinetics, degradation efficiency and biodegradation by activated sludge was investigated. It was established that the applied cation influenced the heterogeneous rate constant and diffusion coefficient of electrochemical oxidation. The oxidation efficiency ranged from 17% in case of HILs with C8 alkyl chain to approx. 60% in case of HILs comprising C14 and C16 alkyl chains after 3 h of electrochemical treatment. Subsequent biodegradation studies revealed that electrochemical oxidation improved the mineralization efficiency of the studied HILs. The mineralization efficiency of electrochemically-treated HILs ranged from 28% in case of HILs comprising the C8 alkyl chain to 57% in case of HILs with C14 and C16 alkyl chains after 28 days. In case of untreated HILs, the corresponding mineralization efficiency ranged from 0 to 8%, respectively. This confirms the feasibility of a hybrid electrochemical-biological approach for treatment of herbicidal ionic liquids based on MCPA.
Collapse
Affiliation(s)
- Daria Pęziak-Kowalska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Anna Syguda
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Andrzej Borkowski
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Florence Fourcade
- Université Rennes 1/Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 allées de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Grzegorz Lota
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland.
| |
Collapse
|
29
|
Choudri BS, Charabi Y. Pesticides and herbicides. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1342-1349. [PMID: 31523896 DOI: 10.1002/wer.1227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This paper provides a review of some important scientific articles published in the year 2018 about pesticides and herbicides. The literature review presented in this paper cover pesticides and herbicides presence as well as occurrence in the environment. The review is divided into four sections. Each of these sections highlight issues related to pesticides and herbicides on toxicology, ecology, risk assessment, modeling, and treatment strategies.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
30
|
Development and Application of the Dispersive Solid-Phase Extraction Method Based on Molecular Imprinted Polymers for Removal of Matrix Components of Bivalve Shellfish Extracts in the GC–MS/MS Analysis of Amide/Dinitroaniline/Substituted Urea Herbicides. Chromatographia 2019. [DOI: 10.1007/s10337-019-03729-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Application of Fe-MOFs in advanced oxidation processes. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03820-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Xiong G, Zou L, Deng Y, Meng Y, Liao X, Lu H. Clethodim exposure induces developmental immunotoxicity and neurobehavioral dysfunction in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2019; 86:549-558. [PMID: 30517881 DOI: 10.1016/j.fsi.2018.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Clethodim is one of the most widely used herbicides in agriculture, but its potential negative effects on aquatic organisms are still poorly understood. This study examined the effects of clethodim on zebrafish at aspects of early stage embryonic development, immune toxicity, cell apoptosis and locomotor behavior. Firstly, clethodim exposure markedly decreased the survival rate, body length, and heart rate and resulted in a series of morphological abnormalities, primarily spinal deformities (SD) and yolk sac edema, in zebrafish larvae. Secondly, the number of immune cells was substantially reduced but the levels of apoptosis and oxidative stress were significantly increased in a dose-dependent manner upon clethodim exposure. Thirdly, we evaluated the expression of some key genes in TLR signaling including TLR4, MyD88, and NF-κB p65 and they were all up-regulated by exposure to 300 μg/L clethodim. Meanwhile, some proinflammatory cytokines such as TNF-α, IL-1β, IL8, and IFN-γ were also activated in both the mock and the TLR4-KD conditions. Moreover, the locomotor behaviors and the enzymatic activities of AChE were obviously inhibited but the levels of acetylated histone H3 were greatly increased by clethodim exposure. In addition, incubation of zebrafish larvae with acetylcholine receptor (AChR) agonist carbachol can partially rescue the clethodim-modulated locomotor behavior. Taken together, our results suggest that clethodim has the potential to induce developmental immunotoxicity and cause behavioral alterations in zebrafish larvae. The information presented in this study will help to elucidate the molecular mechanisms underlying clethodim exposure in aquatic ecosystems.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Lufang Zou
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Yunyun Deng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yunlong Meng
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Huiqiang Lu
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China.
| |
Collapse
|
33
|
Villaverde JJ, Sandín-España P, Alonso-Prados JL, Lamsabhi AM, Alcamí M. Pesticide byproducts formation: Theoretical study of the protonation of alloxydim degradation products. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Hamdache S, Sleiman M, de Sainte-Claire P, Jaber F, Richard C. Unravelling the reactivity of bifenazate in water and on vegetables: Kinetics and byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:107-114. [PMID: 29704707 DOI: 10.1016/j.scitotenv.2018.04.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, we aimed to better understand the transformation mechanisms of bifenazate, a biphenyl hydrazine derivative insecticide poorly studied up to now. For this, we compared its reactivity in the dark and under simulated solar light irradiation in different media (water, non-aqueous polar solvent, surface of apolar wax films, skin of vegetable). In air-saturated pH = 5.7 water, bifenazate underwent both autoxidation in the dark (t1/2 = 34 h) and photolysis (t1/2 = 17 h). In an aprotic polar solvent such as acetonitrile, bifenazate was stable in the dark but was quickly photodegraded in the presence of oxygen (t1/2 = 2 h). The phototransformation of bifenazate was due to the oxidation of excited states by oxygen and to the cleavage of the NN bond, while the autoxidation in water started by the initial oxidation of the molecule by oxygen and involved the superoxide anion as chain carrier. On paraffinic wax film, photodegradation (t1/2 = 365 h) and dark autoxidation (t1/2 = 1600 h) were very slow. On green pepper skin, bifenazate disappeared both in the dark (t1/2 = 34 h) and through photolysis (t1/2 = 23 h) at rates close to those measured in water. This shows that on green pepper skin, bifenazate is affected by water contained in the vegetable and possibly released by transpiration. Bifenazate diazene was the major degradation product in all studied conditions. Minor byproducts were detected too. They depended on the experimental conditions showing that degradation pathways are governed by the nature and properties of the medium. In particular, on green pepper one found byproducts generated in acetonitrile and on wax by photolysis and in water by autoxidation. This finding highlights the need for a better model than wax to mimic photolysis on plant surfaces.
Collapse
Affiliation(s)
- Samar Hamdache
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Laboratory of Analysis of Organic Compounds, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Mohamad Sleiman
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Pascal de Sainte-Claire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Farouk Jaber
- Laboratory of Analysis of Organic Compounds, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Claire Richard
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
35
|
Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P. Computational-Based Study of QuEChERS Extraction of Cyclohexanedione Herbicide Residues in Soil by Chemometric Modeling. Molecules 2018; 23:molecules23082009. [PMID: 30103524 PMCID: PMC6222645 DOI: 10.3390/molecules23082009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 11/26/2022] Open
Abstract
Assessment of two buffered QuEChERS (quick, easy, cheap, effective, rugged, and safe) versions (i.e., citrate and acetate) modified by including methanol to recover the residues of three cyclohexanedione oxime (CHD) herbicides and three of their byproducts from agricultural soil was performed. In this context, a full second-order face-centered factorial experimental design was developed to quantify the influences of the main five variables (i.e., extraction time, water content, soil weight, and extraction solvent volume and composition) on the target compound recoveries. The fitting equations satisfactorily described the extraction process behavior. The mathematical models also showed the most influencing independent variables (i.e., extraction solvent composition and soil weight). Handling simpler expressions was possible with the acetate QuEChERS but not with the citrate QuEChERS. The recoveries of the CHD residues were close to 100% after performing the extraction under suitable conditions. Furthermore, dispersive solid-phase extraction (dSPE) clean-up steps were assessed to reduce the matrix effect in mass spectrometry. In this sense, the citrate QuEChERS in combination with the PSA + C18 clean-up step was the best option for the extraction of CHD residues.
Collapse
Affiliation(s)
- Juan José Villaverde
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| | - Beatriz Sevilla-Morán
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| | - Carmen López-Goti
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| | | | - Pilar Sandín-España
- Unit Plant Protection Products, DTEVPF, INIA. Crta. La Coruña, Km.7.5, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Aydın A, Tugcu G. Toxicological assessment of epinephrine and norepinephrine by analog approach. Food Chem Toxicol 2018; 118:726-732. [PMID: 29913233 DOI: 10.1016/j.fct.2018.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/27/2022]
Abstract
Epinephrine and norepinephrine have been used in the management of anaphylactic reactions and cardiac resuscitation, along with treatment of asthma and glaucoma extensively, but their toxicological profiles are not yet completed. Based on this circumstance, various toxicological endpoints of epinephrine and norepinephrine were explored. Since there is a paucity of some endpoints' data, readacross was applied to fill the data gaps using analog approach. Along with structural similarity, biological and mechanistic plausibility were also considered in analog selection. The similarity justification and supporting experimental data were provided for uncertainty evaluation. Short term repeated dose toxicity values as NOAEL and LOAEL belonging to epinephrine were used to estimate the repeated dose toxicity of norepinephrine. The in vivo and in vitro mutagenicity tests were considered representative of genotoxicity. Both chemicals are showed to be non-genotoxic. They are experimentally reported to cause developmental and reproductive toxicity. For the carcinogenicity endpoint, a conclusion could not be reached because similar compounds were seen to show conflicting results.
Collapse
Affiliation(s)
- Ahmet Aydın
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, 34755, Ataşehir, İstanbul, Turkey.
| | - Gulcin Tugcu
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, 34755, Ataşehir, İstanbul, Turkey
| |
Collapse
|
37
|
Assessing the Effects of Alloxydim Phototransformation Products by QSAR Models and a Phytotoxicity Study. Molecules 2018; 23:molecules23050993. [PMID: 29695081 PMCID: PMC6099496 DOI: 10.3390/molecules23050993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/13/2018] [Accepted: 04/21/2018] [Indexed: 11/16/2022] Open
Abstract
Once applied, an herbicide first makes contact with leaves and soil. It is known that photolysis can be one of the most important processes of dissipation of herbicides in the field. However, degradation does not guarantee detoxification and can give rise to byproducts that could be more toxic and/or persistent than the active substance. In this work, the photodegradation of alloxydim herbicide in soil and leaf cuticle surrogates was studied and a detailed study on the phytotoxicity of the main byproduct on sugar beet, tomato, and rotational crops was performed. Quantitative structure⁻activity relationship (QSAR) models were used to obtain a first approximation of the possible ecotoxicological and environmental implications of the alloxydim and its degradation product. The results show that alloxydim is rapidly degraded on carnauba and sandy loam soil surfaces, two difficult matrices to analyze and not previously studied with alloxydim. Two transformation products that formed in both matrices were identified: alloxydim Z-isomer and imine derivative (mixture of two tautomers). The phytotoxicity of alloxydim and the major byproduct shows that tomato possesses high sensitivity to the imine byproduct, while wheat crops are inhibited by the parent compound. This paper demonstrates the need to further investigate the behavior of herbicide degradation products on target and nontarget species to determine the adequate use of herbicidal products to maximize productivity in the context of sustainable agriculture.
Collapse
|
38
|
Villaverde JJ, Sandín-España P, Alonso-Prados JL, Lamsabhi AM, Alcamí M. Computational Study of the Structure and Degradation Products of Alloxydim Herbicide. J Phys Chem A 2018; 122:3909-3918. [DOI: 10.1021/acs.jpca.8b00865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan J. Villaverde
- Plant Protection Products Unit, DTEVPF, INIA, Crta. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Pilar Sandín-España
- Plant Protection Products Unit, DTEVPF, INIA, Crta. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - José L. Alonso-Prados
- Plant Protection Products Unit, DTEVPF, INIA, Crta. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | | | - Manuel Alcamí
- Instituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia), 28049 Madrid, Spain
| |
Collapse
|