1
|
Li T, Cheng F, Du X, Liang J, Zhou L. Efficient removal of metals and resource recovery from acid mine drainage by modified chemical mineralization coupling sodium sulfide precipitation. J Environ Sci (China) 2025; 156:399-407. [PMID: 40412941 DOI: 10.1016/j.jes.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 05/27/2025]
Abstract
Acid mine drainage (AMD) seriously pollutes the environment due to its high acidity and a variety of heavy metals. Although lime neutralization has traditionally been employed to treat AMD, it comes with disadvantages, such as the large quantity of lime required and the generation of substantial amounts of neutralized sludge. Hence, we propose a modified chemical mineralization coupled with sodium sulfide precipitation to simultaneously recover metals from AMD and neutralize acidity. The modified chemical mineralization process effectively removed total iron (TFe) and SO42- through chemically forming schwertmannite (Sch). By regulating temperature and H2O2 addition mode, the hydrolysis of Fe3+ and SO42- in chemical mineralization was significantly enhanced, resulting in a high yield of Sch. Subsequent introduction of sodium sulfide to already-treated AMD using modified chemical mineralization could harvest or recover other valuable metals other than Fe and maintain a neutral pH of the final effluent. The metal levels in the sulphide precipitation reached as high as 17.9 mg/g, which was three times higher than that achieved through lime neutralization (6.3 mg/g). Moreover, the cost of treating AMD was 15 Chinese Yuan (CNY)/m3 AMD, which was significantly lower than that of lime neutralization (35 CNY/m3 AMD). Therefore, this approach has a good engineering application prospect in actual AMD treatment.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fange Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wang J, Wang T, Wang H, Jin H, Liu H, Yan H. Distribution and abundance of iron-sulfur cycle bacteria in acid mine drainage-impacted sediments of the Shandi river basin. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:231. [PMID: 40418288 DOI: 10.1007/s10653-025-02537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Iron-sulfur cycle bacteria are considered the principal participants in the regulation of iron and sulfur cycles, ubiquitously found in diverse natural ecosystems. This study concentrated on the spatial distribution patterns of iron-sulfur bacteria in the acid mine drainage (AMD) sediments, compared with AMD-impacted river sediments, and evaluated the potential influences of iron-sulfur bacteria on the metals in the Shandi River basin. The results showed that the water and sediments near the mine from the Shandi River basin had been seriously polluted by heavy metals and sulfate. Specifically, the Nemerow index (P) exceeded 5, and the comprehensive potential ecological risk factor (RI) surpassed 600. The sediment samples collected exhibited a profusion of iron-sulfur cycle bacteria, with the abundance of these organisms being higher within river sediments compared to AMD sediments, particularly for iron-sulfur reducing bacteria. The results of correlation and redundancy analysis showed that most metals had an impact on the abundance of iron-sulfur cycle microorganisms in different degrees. Meanwhile, SEM-EDS analysis revealed the presence of sulfate minerals in diverse forms in sediments, which might be biogenic. All of findings indicated that iron-sulfur cycle bacteria might regulate the forms of metal and sulphur, fixed most metals and sulfate, and further influencing the synthesis and phase transition of sulfate minerals in the sediments. This study confirmed the ecological values of iron-sulfur bacteria, which will be help for bioremediation of AMD contaminants in Shandi River basin.
Collapse
Affiliation(s)
- Jiawei Wang
- College of Water Conservancy Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Teng Wang
- Taiyuan Bilan Water Conservancy Engineering Design Co., Ltd, Taiyuan, 030024, China
| | - Honghao Wang
- College of Water Conservancy Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hua Jin
- College of Water Conservancy Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hu Liu
- Taiyuan Bilan Water Conservancy Engineering Design Co., Ltd, Taiyuan, 030024, China.
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
3
|
Wang Y, Huang Z, Yan Z, Lei Z, Ma H, Feng C. Overcoming Fe(III) precipitation barrier in acid mine drainage via a visible light-assisted photo-electrochemical system. WATER RESEARCH 2025; 275:123193. [PMID: 39884050 DOI: 10.1016/j.watres.2025.123193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Acid mine drainage (AMD) is characterized by high concentrations of Fe(II) and Fe(III), which can be harnessed for the in-situ formation of schwertmannite, enabling the efficient immobilization of toxic heavy metals. However, existing biological and chemical methods for schwertmannite synthesis face significant challenges, including low Fe(II) oxidation rates and particularly limited Fe(III) precipitation efficiency in acidic environments. In this study, we develop a visible light-assisted photo-electrochemical (PEC) system that effectively overcomes these barriers. By leveraging anodically evolved O2 and cathodically generated OH-, we achieved facile Fe(II) oxidation at pH 3.0, and an impressive Fe(III) precipitation efficiency of 82.8 %, significantly exceeding the < 30 % efficiency reported by other methods. Mössbauer spectroscopy and X-ray diffraction confirmed that the generated minerals are high-purity schwertmannite. Experimental and theoretical analyses revealed that in the presence of cathodic alkalinity, Fe(III) undergoes further hydrolysis to form [(H₂O)3Fe(OH)2(SO4)]- species, which are thermodynamically capable of spontaneous polymerization and mineralization. Furthermore, the photoreduction of [(H₂O)4Fe(SO4)2]- within the PEC system, followed by subsequent oxidation, plays a crucial role in facilitating Fe(III) mineralization. The PEC system also effectively transformed As(III) to As(V) and Cr(VI) to Cr(III) in AMD, promoting their immobilization in the resultant schwertmannite.
Collapse
Affiliation(s)
- Yang Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, PR China
| | - Zhenchao Lei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Cui Y, Zhang X, Yang P, Liu Y, Song M, Su G, Guo Y, Yin Y, Jiao W, Cai Y, Jiang G. Low-molecular weight organic acids can enhance the microbial reduction of iron oxide nanoparticles and pollutants by improving electrons transfer. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137123. [PMID: 39764970 DOI: 10.1016/j.jhazmat.2025.137123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 03/12/2025]
Abstract
The combined application of dissimilatory iron-reducing bacteria (DIRB) and Fe(III) nanoparticles has garnered widespread interest in the contaminants transformation and removal. The efficiency of this composite system relies on the extracellular electron transfer (EET) process between DIRB and Fe(III) nanoparticles. While modifications to Fe(III) nanoparticles have demonstrated improvements in EET, enhancing DIRB activity also shows potential for further EET enhancement, meriting further investigation. In this study, we demonstrated that the addition of low-molecular organic acids (LMWOAs) (oxalate, pyruvate, malate, citrate, or fumarate) can improve the reduction of Fe2O3 nanoparticles by Geobacter sulfurreducens PCA through three pathways: increasing intracellular electron production, enhancing the reductive activity of extracellular metabolites, and improving the electron-donating capacity of extracellular polymeric substances. The maximum reduction of Fe2O3 nanoparticles reached up to 72 %. Our results further showed that LMWOAs significantly boosted the removal rate and ratio of Cr(VI) and hexachlorobenzene (HCB) by accelerating the EET process. Following the introduction of LMWOAs, the maximum reduction ratio of Cr(VI) reached 98 ± 0.05 % within 24 h, while the degradation efficiency of HCB reached 92 ± 0.06 % within 9 h. Overall, our study provided a precise mechanism of the role of LMWOAs on the EET process and a new strategy for reductive bioremediation of pollutants.
Collapse
Affiliation(s)
- Yifan Cui
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Zhang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guijin Su
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Wentao Jiao
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Si M, Wang Y, Mei R, Zhao X, Yuan Q, Fu L, Wu Y, Ostovan A, Arabi M, Wang S, Chen L. Metal-organic framework-based SERS chips enable in situ and sensitive detection of dissolved hydrogen sulfide in natural water: Towards a bring-back-chip mode for field analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136247. [PMID: 39447232 DOI: 10.1016/j.jhazmat.2024.136247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Hydrogen sulfide (H2S) in natural water plays an important role in carbon and sulfur cycles in biosphere. Current detection protocol is complicated, which need to "bring back water" to lab followed by gas chromatograph analysis. In situ, field detection is still challenging. Herein, a portable, sensitive surface enhanced Raman scattering (SERS) chip was proposed for in situ H2S sampling and SERS signal stabilizing, enabling a "bring back chip" manner for lab analysis. The SERS chip was composed of single core-shell gold nanorod-ZIF-8 framework (Au NR@ZIF-8) nanoparticle. Relying on headspace adsorption, evaporated H2S was enriched in the ZIF-8 shell and then reacted with Au NR, resulting in the weakening of the Au-Br bond Raman peak (175 cm-1) and the appearance of the Au-S bond Raman peak (273 cm-1). The SERS signal reached equilibrium in 10 min. The detection range of H2S was 0.1-2000 μg/L and limit of detection was 0.098 μg/L. SERS signal was not interfered by normal volatile gases. Moreover, SERS signal of a reacted chip was stable at an ambient condition, allowing for in situ sampling and bring-back detection. The applicability of the chip was verified by dynamic H2S monitoring during artificial black-odor water evolution, and in-field quantitative analysis of H2S content in river water and sediment. Finally, the chip was sealed in a waterproof breathable membrane device, which realized the detection of vertical profiles of H2S in the river. This work provided a promising tool for field analysis of H2S in natural environments.
Collapse
Affiliation(s)
- Meiyu Si
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yuan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shanshan Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.
| |
Collapse
|
6
|
Zhu M, Wang Y, Zheng C, Luo Y, Li Y, Tan S, Sun Z, Ke Y, Peng C, Min X. Near-zero-waste processing of jarosite waste to achieve sustainability: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122396. [PMID: 39244925 DOI: 10.1016/j.jenvman.2024.122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Jarosite waste is a by-product generated from iron removal process in the jarosite process, which typically contains valuable metals including zinc, nickel, cobalt, silver, indium, and lead. Due to the large amount of jarosite and the less efficient and costly methods of recovering residual metals, it is mainly disposed by landfills. However, leachate generated from the landfills can release high concentrations of heavy metals, which contaminate nearby water resources and pose environmental and health risks. In this review, the environmental and resource properties of jarosite waste were briefly summarized. Then those pyrometallurgical, hydrometallurgical and biological methods were discussed. In this review, considering the polymetallic properties and the low content of valuable metal elements of the jarosite waste, it is indicated that these processes had their own benefits and drawbacks such as overall yield, economic and technical constraints, and the necessity for combined processes to recycle multiple metal ions from jarosite wastes. Finally, this paper provided a critical and systematic review of studies on the novel green recycling technology for metals and material preparation based on the jarosite waste. This review can lay a guidance for the near-zero-waste processing of jarosite waste, with a particular focus on the combination of chemical and biological processes and waste-to-materials.
Collapse
Affiliation(s)
- Mingfei Zhu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Chujing Zheng
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, 92501, USA.
| | - Yongjian Luo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Yun Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Shuaixia Tan
- Institute for Advanced Study, Central South University, Changsha, 410083, China.
| | - Zhumei Sun
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Yong Ke
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Cong Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|
7
|
Yu C, Johnson A, Karlsson A, Chernikov R, Sjöberg V, Song Z, Dopson M, Åström ME. Uranium Repartitioning during Microbial Driven Reductive Transformation of U(VI)-Sorbed Schwertmannite and Jarosite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18324-18334. [PMID: 39361056 PMCID: PMC11483811 DOI: 10.1021/acs.est.4c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/16/2024]
Abstract
This study exposes U(VI)-sorbed schwertmannite and jarosite to biotic reductive incubations under field-relevant conditions and examines the changes in aqueous and solid-phase speciation of U, Fe, and S as well as associated microbial communities over 180 days. The chemical, X-ray absorption spectroscopy, X-ray diffraction, and microscopic data demonstrated that the U(VI)-sorbed schwertmannite underwent a rapid reductive dissolution and solid-phase transformation to goethite, during which the surface-sorbed U(VI) was partly reduced and mostly repartitioned to monomeric U(VI)/U(IV) complexes by carboxyl and phosphoryl ligands on biomass or organic substances. Furthermore, the microbial data suggest that these processes were likely driven by the consecutive developments of fermentative and sulfate- and iron- reducing microbial communities. In contrast, the U(VI)-sorbed jarosite only stimulated the growth of some fermentative communities and underwent very limited reductive dissolution and thus, remaining in its initial state with no detectable mineralogical transformation and solid-phase U reduction/repartitioning. Accordingly, these two biotic incubations did not induce increased risk of U reliberation to the aqueous phase. These findings have important implications for understanding the interactions of schwertmannite/jarosite with microbial communities and colinked behavior and fate of U following the establishment of reducing conditions in various acidic and U-rich settings.
Collapse
Affiliation(s)
- Changxun Yu
- Department
of Biology and Environmental Science, Linnaeus
University, 39231 Kalmar, Sweden
| | - Anders Johnson
- Centre
for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Andreas Karlsson
- Department
of Geosciences, Swedish Museum of Natural
History, 10405 Stockholm, Sweden
| | - Roman Chernikov
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2 V3, Canada
| | - Viktor Sjöberg
- Man-Technology-Environment
Research Centre (MTM), Örebro University, 70182 Örebro, Sweden
| | - Zhaoliang Song
- Institute
of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Mark Dopson
- Centre
for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Mats E. Åström
- Department
of Biology and Environmental Science, Linnaeus
University, 39231 Kalmar, Sweden
| |
Collapse
|
8
|
Liu A, Wang J, Zhou A, Yang F, Pan X, She Z, Yue Z. Interaction between acid-tolerant alga Graesiella sp. MA1 and schwertmannite under long-term acidic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174017. [PMID: 38897455 DOI: 10.1016/j.scitotenv.2024.174017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Schwertmannite (Sch), a typical Fe(III)-oxyhydroxysulphate mineral, is the precipitation reservoir of toxic elements in acid mine drainage (AMD). Acid-tolerant microbes in AMD can participate in the microbe-mediated transformation of Sch, while Sch affects the physiological characteristics of these acid-tolerant microbes. Based on our discovery of algae and Sch enrichment in a contaminated acid mine pit lake, we predicted the interaction between algae and Sch when incubated together. The acid-tolerant alga Graesiella sp. MA1 was isolated from the pit-lake surface water of an acidic mine and incubated with different contents of Sch. Sch was detected as the main product at the end of 81 d; however, there was a weak transformation. The presence of dissolved Fe(II) could be largely attributed to the photoreduction dissolution of Sch, which was promoted by Graesiella sp. MA1. The adaptation and growth phases of Graesiella sp. MA1 differed under Sch stress. The photosynthetic and metabolic activities increased and decreased at the adaptation and growth phases, respectively. The MDA contents and antioxidant activity of SOD, APX, and GSH in algal cells gradually enhanced as the Sch treatment content increased, indicating a defense strategy of Graesiella sp. MA1. Metabolomic analysis revealed that Sch affected the expression of significant differential metabolites in Graesiella sp. MA1. Organic carboxylic acid substances were essentially up-regulated in response to Sch stress. They were abundant in the medium-Sch system with the highest Fe(III) reduction, capable of complexing Fe(III), and underwent photochemical reactions via photo-induced charge transfer. The significant up-regulation of reducing sugars revealed the high energy requirement of Graesiella sp. MA1 under Sch stress. And first enriched KEGG pathway demonstrated the importance of sugar metabolism in Graesiella sp. MA1. Data acquired in this study provide novel insights into extreme acid stress adaptation of acid-tolerant algae and Sch, contributing to furthering understanding of AMD environments.
Collapse
Affiliation(s)
- Azuan Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ao Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fan Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
9
|
Wang R, Zhuang J, Chen S, Li H, Wang X, Ning Z, Liu C, Zheng G, Zhou L. Phase transformation of schwertmannite in paddy soil under different water management regimes and its impact on the migration of arsenic in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124452. [PMID: 38936036 DOI: 10.1016/j.envpol.2024.124452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Schwertmannite (Sch) holds a great promise as an iron material for remediating Arsenic (As)-contaminated paddy soils, due to its extremely high immobilization capacities for both arsenate [As(V)] and arsenite [As(III)]. However, there is still limited knowledge on the mineral phase transformation of this metastable iron-oxyhydroxysulfate mineral in paddy soils, particularly under different water management regimes including aerobic, intermittent flooding, and continuous flooding, and how its phase transformation impacts the migration of As in paddy soils. In this study, a membrane coated with schwertmannite was first developed to directly reflect the phase transformation of bulk schwertmannite applied to paddy soils. A soil incubation experiment was then conducted to investigate the mineral phase transformation of schwertmannite in paddy soils under different water management regimes and its impact on the migration of As in paddy soil. Our findings revealed that schwertmannite can persist in the paddy soil for 90 days in the aerobic group, whereas in the continuous flooding and intermittent flooding groups, schwertmannite transformed into goethite, with the degree or rate of mineral phase transformation being 5% Sch >1% Sch > control. These results indicated that water management practices and the amount of schwertmannite applied were the primary factors determining the occurrence and degree of mineral transformation of schwertmannite in paddy soil. Moreover, despite undergoing phase transformation, schwertmannite still significantly reduced the porewater As (As(III) and As(V)), and facilitated the transfer of non-specifically adsorbed As (F1) and specifically adsorbed As (F2) to amorphous iron oxide-bound As (F3), effectively reducing the bioavailability of soil As. These findings contribute to a better understanding of the mineralogical transformation of schwertmannite in paddy soils and the impact of mineral phase transformation on the retention of As in soil, which carry important implications for the application of schwertmannite in remediating As-contaminated paddy soils.
Collapse
Affiliation(s)
- Ru Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shufan Chen
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Li
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
10
|
Tran TQ, Riechelmann S, Banning A, Wohnlich S. Environmental relevance monitoring and assessment of ochreous precipitates, hydrochemistry and water sources from abandoned coal mine drainage. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:700. [PMID: 38963476 PMCID: PMC11224094 DOI: 10.1007/s10661-024-12858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the mineralogical and chemical characteristics of ochreous precipitates and mine water samples from abandoned Upper Carboniferous hard coal mines in an extensive former mining area in western Germany. Mine water characteristics have been monitored and assessed using a multi-methodological approach. Thirteen mine water discharge locations were sampled for hydrochemical analysis, with a total of 46 water samples seasonally collected in the whole study area for stable isotopic analyses. Mineralogical composition of 13 ochreous precipitates was identified by a combination of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM/EDS). Results showed that abandoned mine drainage was characterized by circumneutral pH, Eh values ranging from 163 to 269 mV, relatively low concentrations of Fe and Mn, and was dominated by HCO3- > SO42- > Cl- > NO3- and Na+ > Ca2+ > Mg2+ > K+. Goethite and ferrihydrite were the dominant precipitated Fe minerals, with traces of quartz, dolomite, and clay minerals. Some metal and metalloid elements (Mn, Al, Si, and Ti) were found in the ochreous sediments. The role of bacteria in the formation of secondary minerals was assessed with the detection of Leptothrix ochracea. The δ18O and δ2H values of mine water plotted on and close to the GMWL and LMWLs indicated local derivation from meteoric water and represented the annual mean precipitation isotopic composition. Results might help to develop strategies for the management of water resources, contaminated mine water, and public health.
Collapse
Affiliation(s)
- Tuan Quang Tran
- Department of Hydrogeochemistry and Hydrogeology, Institute of Geology, Mineralogy and Geophysics, Faculty of Geosciences, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
- Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, No. 18, Pho Vien, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam.
| | - Sylvia Riechelmann
- Department of Sediment and Isotope Geology, Institute of Geology, Mineralogy and Geophysics, Faculty of Geosciences, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Andre Banning
- Department of Applied Geology, Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17A, 17489, Greifswald, Germany
| | - Stefan Wohnlich
- Department of Hydrogeochemistry and Hydrogeology, Institute of Geology, Mineralogy and Geophysics, Faculty of Geosciences, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
11
|
Zhong H, Lyu H, Wang Z, Tian J, Wu Z. Application of dissimilatory iron-reducing bacteria for the remediation of soil and water polluted with chlorinated organic compounds: Progress, mechanisms, and directions. CHEMOSPHERE 2024; 352:141505. [PMID: 38387660 DOI: 10.1016/j.chemosphere.2024.141505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Chlorinated organic compounds are widely used as solvents, but they are pollutants that can have adverse effects on the environment and human health. Dissimilatory iron-reducing bacteria (DIRB) such as Shewanella and Geobacter have been applied to treat a wide range of halogenated organic compounds due to their specific biological properties. Until now, there has been no systematic review on the mechanisms of direct or indirect degradation of halogenated organic compounds by DIRB. This work summarizes the discussion of DIRB's ability to enhance the dechlorination of reaction systems through different pathways, both biological and biochemical. For biological dechlorination, some DIRB have self-dechlorination capabilities that directly dechlorinate by hydrolysis. Adjustment of dechlorination genes through genetic engineering can improve the dechlorination capabilities of DIRB. DIRB can also adjust the capacity for the microbial community to dechlorinate and provide nutrients to enhance the expression of dechlorination genes in other bacteria. In biochemical dechlorination, DIRB bioconverts Fe(III) to Fe(II), which is capable of dichlorination. On this basis, the DIRB-driven Fenton reaction can efficiently degrade chlorinated organics by continuously maintaining anoxic conditions to generate Fe(II) and oxic conditions to generate H2O2. DIRB can drive microbial fuel cells due to their electroactivity and have a good dechlorination capacity at low levels of energy consumption. The contribution of DIRB to the removal of pesticides, antibiotics and POPs is summarized. Then the DIRB electron transfer mechanism is discussed, which is core to their ability to dechlorinate. Finally, the prospect of future work on the removal of chlorine-containing organic pollutants by DIRB is presented, and the main challenges and further research directions are suggested.
Collapse
Affiliation(s)
- Hua Zhong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei Engineering Research Center of Pollution Control in Power System, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
12
|
Liu JL, Yao J, Li R, Liu H, Zhu JJ, Sunahara G, Duran R. Unraveling assemblage of microbial community dwelling in Dabaoshan As/Pb/Zn mine-impacted area: A typical mountain mining area of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168850. [PMID: 38043811 DOI: 10.1016/j.scitotenv.2023.168850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microbial community assemblage includes microorganisms from the three domains including Bacteria, Archaea, and Eukarya (Fungi), which play a crucial role in geochemical cycles of metal(loid)s in mine tailings. Mine tailings harbor vast proportions of metal(loid)s, representing a unique source of co-contamination of metal(loid)s that threaten the environment. The elucidation of the assembly patterns of microbial communities in mining-impacted ecospheres has received little attention. To decipher the microbial community assembly processes, the microbial communities from the five sites of the Dabaoshan mine-impacted area were profiled by the MiSeq sequencing of 16S rRNA (Bacteria and Archaea) genes and internal transcribed spacers (Fungi). Results indicated that the coexistence of 31 bacterial, 10 fungal, and 3 archaeal phyla, were mainly dominated by Mucilaginibacter, Cladophialophora, and Candidatus Nitrosotalea, respectively. The distribution of microorganisms was controlled by deterministic processes. The combination of Cu, Pb, and Sb was the main factor explaining the structure of microbial communities. Functional predicting analysis of bacteria and archaea based on the phylogenetic investigation of communities by reconstruction of unobserved states analyses revealed that the metabolic pathways related to arsenite transporter, arsenate reductase, and FeS cluster were important for metal detoxification. Furthermore, the ecological guilds (pathogens, symbiotrophs, and saprotrophs) of fungal communities explained 44.5 % of functional prediction. In addition, metal-induced oxidative stress may be alleviated by antioxidant enzymes of fungi communities, such as catalase. Such information provides new insights into the microbial assembly rules in co-contaminated sites.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Ruofei Li
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Houquan Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun-Jie Zhu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Geoffrey Sunahara
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec H9X3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
13
|
Ke C, Deng Y, Zhang S, Ren M, Liu B, He J, Wu R, Dang Z, Guo C. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167690. [PMID: 37820819 DOI: 10.1016/j.scitotenv.2023.167690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Schwertmannite (Sch) is a highly bioavailable iron-hydroxysulfate mineral commonly found in acid mine drainage contaminated environment rich in sulfate (SO42-). Microbial-mediated Sch transformation has been well-studied, however, the understanding of how SO42- availability affects the microbial-mediated Sch transformation and the secondary minerals influence microbes is relatively limited. This study examined the effect of SO42- availability on the iron-reducing bacteria (FeRB) and SO42--reducing bacteria (SRB) consortium-mediated Sch transformation and the resulting secondary minerals in turn on bacteria. Increased SO42- accelerated the onset of microbial SO42- reduction, which significantly accelerated Sch reduction transformation. The extent of intermediate products such as lepidocrocite (22.1 % ~ 76.3 %, all treatments) and goethite (15.3 %, 10 mM SO42-, 5 d) formed by Sch transformation depended on SO42- concentrations. Vivianite, siderite and iron‑sulfur minerals (e.g., FeS and FeS2) were the dominant secondary minerals, in which the relative content of vivianite and siderite decreased while iron‑sulfur minerals increased with increasing SO42- concentration. Correspondingly, the abundance of FeRB and SRB was negatively and positively correlated with SO42- concentration, respectively; 1 mM SO42- promoted the cymA and omcA expression of FeRB, but 10 mM SO42- lowerd the cymA and omcA expression compared to the 1 mM SO42-; the dsr expression of SRB related linearly to the SO42- concentration. These secondary minerals accumulated on the cell surface to form cell encrustations, which limited the growth and gene expression of FeRB and SRB, and even inhibited the activity of SRB in the 10 mM SO42- treatment group. The 10 mM SO42- treatment group with low-intensity ultrasound effectively restored the SRB activity for reducing SO42- by disintegrating the cell-mineral aggregation, further indicating that cell encrustations limited the microbial metabolism. The results highlight the critical role that SO42- availability can play in controlling microbial transformation of mineral, and the influence of secondary minerals on microbial metabolism.
Collapse
Affiliation(s)
- Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Meihui Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bingcheng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi He
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Renren Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
14
|
Zhang Y, O'Loughlin EJ, Park SY, Kwon MJ. Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166993. [PMID: 37717756 DOI: 10.1016/j.scitotenv.2023.166993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microbial Fe(III) reduction is a key component of the iron cycle in natural environments. However, the susceptibility of Fe(III) (hydr)oxides to microbial reduction varies depending on the mineral's crystallinity, and the type of Fe(III) (hydr)oxide in turn will affect the composition of the microbial community. We created microcosm reactors with microbial communities from four different sources (soil, surface water, groundwater, and aerosols), three Fe(III) (hydr)oxides (lepidocrocite, goethite, and hematite) as electron acceptors, and acetate as an electron donor to investigate the shaping effect of Fe(III) mineral type on the development of microbial communities. During a 10-month incubation, changes in microbial community composition, Fe(III) reduction, and acetate utilization were monitored. Overall, there was greater reduction of lepidocrocite than of goethite and hematite, and the development of microbial communities originating from the same source diverged when supplied with different Fe(III) (hydr)oxides. Furthermore, each Fe(III) mineral was associated with unique taxa that emerged from different sources. This study illustrates the taxonomic diversity of Fe(III)-reducing microbes from a broad range of natural environments.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
15
|
Dong H, Yu L, Xu T, Liu Y, Fu J, He Y, Gao J, Wang J, Sun S, She Y, Zhang F. Cultivation and biogeochemical analyses reveal insights into biomineralization caused by piezotolerant iron-reducing bacteria from petroleum reservoirs and their application in MEOR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166465. [PMID: 37619717 DOI: 10.1016/j.scitotenv.2023.166465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Interactions between minerals and iron-reducing bacteria under in-situ pressure and temperature conditions play important roles in oil extraction, residual oil methanation, and CO2 storage in petroleum reservoirs. However, the impacts of pressure on dissimilatory iron-reducing bacteria (DIRB) are poorly understood. Herein, the interactions between clay minerals and microbes under elevated hydrostatic pressure conditions were elucidated through enrichment experiments. Bioreduction experiments were performed under hydrostatic pressures of 0.1-40 MPa. Microbial diversity analysis revealed that high pressures significantly increased microbial diversity in petroleum reservoirs, which is helpful for restoring underground ecosystems in situ. The key piezotolerant iron-reducing bacteria in the samples were Shewanella and Flaviflexus. These two genera were isolated for the first time from petroleum reservoirs and identified as piezophiles. The SEM results clearly showed mineral surface dissolution. Moreover, nanoscale secondary minerals were produced during biomineralization. XRD analysis revealed that illite, albite, and clinoptilolite were present after bioreduction. The isolates showed the capacity to inhibit hydro-swelling and prevent plugging-related damage in reservoirs.
Collapse
Affiliation(s)
- Hao Dong
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Li Yu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Ting Xu
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Yulong Liu
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Jian Fu
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Yanlong He
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Ji Gao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Jiaqi Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Shanshan Sun
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Yuehui She
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, Cooperative Innovation Center of Unconventional Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China.
| | - Fan Zhang
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, College of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
16
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
17
|
Lin K, Yu T, Ji W, Li B, Wu Z, Liu X, Li C, Yang Z. Carbonate rocks as natural buffers: Exploring their environmental impact on heavy metals in sulfide deposits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122506. [PMID: 37673319 DOI: 10.1016/j.envpol.2023.122506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Carbonate rocks are closely related to the genesis and spatial distribution of polymetallic sulfide deposits. The natural buffering of carbonate rocks can reduce the ecological impact of heavy metals produced by mining and smelting. Ignoring the buffering effect of carbonate rocks on the heavy metals in the mine environment leads to inaccurate ecological risk assessment, wasting land resources and funds. This study investigates Cd, Zn, and Pb distribution and speciation in the water and soil-rice system in the polymetallic sulfide deposit at Daxin, Guangxi. The study aims to reveal the effects of the natural buffering of carbonate rocks on the migration and transformation of heavy metals. The results show that the water Zn and Cd concentrations decreased from 1857.0 to 0.9 mg L-1 to 0.16 and 0.001 mg L-1, respectively, from the mining area to 4 km downstream. The natural buffering of carbonate increases the water pH from 2.80 to 7.64, resulting in a tendency for Cd, Zn, and Pb to separate from the aqueous phase and enrich the sediments. Soil Cd content in the mining area reached 110.0 mg kg-1 (mean value 55.88 mg kg-1), and rice Cd seriously exceeded the maximum limit. However, the weathering of carbonate reduces the migration ability and bioavailability of Cd. Soil Cd is mainly in the Fe-Mn bound and carbonate-bound fractions, resulting in lower Cd content in downstream soils (mean value 2.73 mg kg-1). Soil CaO, tFe2O3, and Mn hindered the uptake of soil Cd by rice rendering a lower exceedance of Cd in downstream rice. Therefore, this study recommends a farmland management plan under the premise of rice Cd content and integrated soil Cd content, which ensures food safety and fully utilizes farmland resources. This result provides a scientific basis for ecological risk assessment, mine environmental protection, and management in the carbonatite sulfide mine environment.
Collapse
Affiliation(s)
- Kun Lin
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Wenbing Ji
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing 210042, China
| | - Bo Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Zhiliang Wu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Xu Liu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Cheng Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, China.
| |
Collapse
|
18
|
Zhang M, Huang C, Ni J, Yue S. Global trends and future prospects of acid mine drainage research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109233-109249. [PMID: 37770736 DOI: 10.1007/s11356-023-30059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
The uncontrolled release of acid mine drainage (AMD) results in the ongoing deterioration of groundwater and surface water, along with harmful impacts on aquatic ecosystems and surrounding habitats. This study employed a bibliometric analysis to examine research activities and trends related to AMD from 1991 to 2021. The analysis demonstrated a consistent growth in AMD research over the years, with a notable surge in the number of publications starting from 2014. Applied Geochemistry and Science of the Total Environment emerged as the top two extensively published journals in the field of AMD research. The USA held a prominent position, achieving the highest h-index (96) and central value (0.36) among 111 countries/territories, with China and Spain following closely behind. The author keyword analysis provides an overview of the main focuses in AMD research. Furthermore, the co-citation reference analysis reveals four primary domains of AMD research. Moreover, the prevention and remediation of AMD, including source prevention and migration control, as well as the hazards posed by heavy metals/metalloids and the mechanisms and techniques employed for their removal, are discussed in detail.
Collapse
Affiliation(s)
- Min Zhang
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Chang Huang
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Jin Ni
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Siyuan Yue
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, Jiangxi Province, China.
| |
Collapse
|
19
|
Wang M, Wang X, Zhou S, Chen Z, Chen M, Feng S, Li J, Shu W, Cao B. Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem. WATER RESEARCH 2023; 243:120343. [PMID: 37482007 DOI: 10.1016/j.watres.2023.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Acid mine drainage (AMD) serves as an ideal model system for investigating microbial ecology, interaction, and assembly mechanism in natural environments. While previous studies have explored the structure and function of microbial communities in AMD, the succession patterns of microbial association networks and underlying assembly mechanisms during natural attenuation processes remain elusive. Here, we investigated prokaryotic microbial diversity and community assembly along an AMD-impacted river, from the extremely acidic, heavily polluted headwaters to the nearly neutral downstream sites. Microbial diversity was increased along the river, and microbial community composition shifted from acidophile-dominated to freshwater taxa-dominated communities. The complexity and relative modularity of the microbial networks were also increased, indicating greater network stability during succession. Deterministic processes, including abiotic selection of pH and high contents of sulfur and iron, governed community assembly in the headwaters. Although the stochasticity ratio was increased downstream, manganese content, microbial negative cohesion, and relative modularity played important roles in shaping microbial community structure. Overall, this study provides valuable insights into the ecological processes that govern microbial community succession in AMD-impacted riverine ecosystems. These findings have important implications for in-situ remediation of AMD contamination.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sining Zhou
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zifeng Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengyun Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiwei Feng
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jintian Li
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Baichuan Cao
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
20
|
Li X, Wu Y, Wang H, Wen J, Zhu M. Effects of microorganisms on the migration and transformation of typical heavy metal (loid)s in mercury-thallium mining waste slag during the combined application of fish manure and natural minerals. CHEMOSPHERE 2023:139385. [PMID: 37394189 DOI: 10.1016/j.chemosphere.2023.139385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Mercury-thallium mining waste slag has the characteristics of extremely acidic, low fertility and highly toxic polymetallic composite pollution, making it difficult to be treated. We use nitrogen- and phosphorus-rich natural organic matter (fish manure) and calcium- and phosphorus-rich natural minerals (carbonate and phosphate tailings) individually or in combination to amend the slag, analyze their effects on the migration and transformation of potentially toxic elements (Tl and As) in the waste slag. We set up sterile and non-sterile treatments specifically to further investigate the direct or indirect effect of microorganisms attached to added organic matter on Tl and As. The results showed that addition of fish manure and natural minerals to the non-sterile treatments promoted the release of As and Tl, resulting in an increase in As and Tl concentrations in the tailing lixiviums from 0.57 to 2.38-6.37 μg/L and from 69.92 to 107.51-157.21 μg/L, respectively. Sterile treatments promoted the release of As (from 0.28 to 49.88-104.18 μg/L) and inhibited the release of Tl (from 94.53 to 27.60-34.50 μg/L). Use of fish manure and natural minerals alone or in combination significantly reduced the biotoxicity of the mining waste slag, in which the combination was more efficient. XRD analysis showed that microorganisms in the medium promoted the dissolution of jarosite and other minerals, which indicated that the release and migration of As and Tl in Hg-Tl mining waste slag were closely related to microbial activities. Furthermore, metagenomic sequencing revealed that microorganisms such as Prevotella, Bacteroides, Geobacter, and Azospira, which were abundant in the non-sterile treatments, had remarkable resistance to a variety of highly toxic heavy metals and could affect the dissolution of minerals and the release and migration of heavy metals through redox reactions. Our results may aid in the rapid soilless ecological restoration of related large multi-metal waste slag dumps.
Collapse
Affiliation(s)
- Xingying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Hui Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jichang Wen
- New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Mei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
21
|
Qin J, Jiang X, Yan Z, Zhao H, Zhao P, Yao Y, Chen X. Heavy metal content and microbial characteristics of soil plant system in Dabaoshan mining area, Guangdong Province. PLoS One 2023; 18:e0285425. [PMID: 37294818 PMCID: PMC10256142 DOI: 10.1371/journal.pone.0285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/21/2023] [Indexed: 06/11/2023] Open
Abstract
The disordered mining of Dabaoshan lead-zinc mineral resources in Shaoguan has brought serious harm to the regional ecological environment. In order to investigate the heavy metal pollution status and microbial characteristics of soil plant system in mining area, The distribution of heavy metals in the soil, the activity of soil microorganisms and the accumulation characteristics of heavy metals in the dominant plant Miscanthus floridulus were studied. The results indicated that metal element contents of Miscanthus floridulus in sequence were: Zn>Pb>Cu> Cd. This study demonstrated that the elemental content of the Miscanthus floridulus plant showed Zn>Pb>Cu>Cd, with Zn being the most significantly correlated with soil elements, followed by Pb. Compared with the control group, the Miscanthus floridulus-soil system possessed obviously different soil microbial features: intensiver in microbial basal respiration strength, and higher microbial eco-physiological parameters Cmic/Corg and qCO2, but lower in soil microbial biomass. The results showed the soil enzymatic activities decreased significantly with increase of contamination of heavy metals, especially dehydrogenase and urease activities. With the increase of the content of heavy metals in the mining area soil, the intensity of soil biochemical action in the mining area (Q1, Q2) soil decreased significantly, and the biochemical action showed a significant negative correlation with the content of heavy metals in the soil. Compared with the non mining area (Q8) soil, the intensity of soil ammonification, nitrification, N fixation and cellulose decomposition decreased by 43.2%~71.1%, 70.1%~92.1%, 58.7%~87.8% and 55.3%~79.8% respectively. The decrease of soil microbial activity weakened the circulation rate and energy flow of C and N nutrients in the soil of the mining area.
Collapse
Affiliation(s)
- Jianqiao Qin
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | | | - Huarong Zhao
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Peng Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou, 510655, China
| | - Yibo Yao
- Guangdong Provincial Academy of Environmental Scienc, Guangzhou, 510045, China
| | - Xi Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
22
|
Li XT, Huang ZS, Huang Y, Jiang Z, Liang ZL, Yin HQ, Zhang GJ, Jia Y, Deng Y, Liu SJ, Jiang CY. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161752. [PMID: 36690115 DOI: 10.1016/j.scitotenv.2023.161752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Monitoring of the microbial community in bioleaching system is essential for control process parameters and enhance the leaching efficiency. Due to the difficulty of sampling, microbial distribution, community succession and bioleaching activity along the vertical depth of bioleaching heaps remain unresolved. This study investigated the geochemical parameters and microbial community structure along a depth profile in a bioleaching heap and leachate. 80 ore samples at different heap depths and 9 leaching solution samples from three bioheaps of Zijin Copper Mine were collected. Microbial composition, mineral types and geochemical parameters of these samples were analyzed by 16S rRNA high-throughput sequencing and a series of chemical measurement technologies. The results revealed that the pH, Cu, Fe and the total sulfur contents were the major factors shaping the composition of the microbial communities in the bioleaching system. The extent of mineral oxidation increased as the sample depth increases, followed by the increasing of sulfur oxidizers. The abundance of sulfur and iron oxidizers including members of Acidithiobacillus, Sulfobacillus and Acidiferrobacter were significantly higher in the leaching heap than in the leaching solution, meanwhile, they showed strong positive interactions with other members within the same genera and iron oxidizer Leptospirillum and Ferroplasma. Besides, Acidithiobacillus negatively interacted with heterotrophs such as Sphingobium, Exiguobacterium, Brevundimonas and so on. On the contrast, members of Leptospirillum and unclassified Archaea were significantly abundant in the leaching solution and revealed strong interactions with members of Thermoplasmatales. The main conclusion of this study, especially the leaching potential of microorganisms prevailing in bioheaps and their relationships with geochemical factors, provides theoretical guidance for future process design such as the control of processing parameters and microbial community in heap leaching.
Collapse
Affiliation(s)
- Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Sheng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Zijin Mining Group Company Limited, Shanghang 364200, Fujian, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Qun Yin
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guang-Ji Zhang
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Jia
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Fu Y, Zhang R, Wang N, Wu P, Zhang Y, An L, Zhang Y. Effects of Initial pH and Carbonate Rock Dosage on Bio-Oxidation and Secondary Iron Mineral Synthesis. TOXICS 2023; 11:224. [PMID: 36976989 PMCID: PMC10056450 DOI: 10.3390/toxics11030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The effect of pH is a key factor in biomineralization mediated by Acidithiobacillus ferrooxidans to promote the transformation of Fe into secondary iron minerals. This study aimed to investigate the effects of initial pH and carbonate rock dosage on bio-oxidation and secondary iron mineral synthesis. Variations in pH and the concentrations of Ca2+, Fe2+, and total Fe (TFe) in the growth medium of A. ferrooxidans were examined in the laboratory to determine how they affect the bio-oxidation process and secondary iron mineral synthesis. The results showed that in systems with an initial pH of 1.8, 2.3, and 2.8, the optimum dosages of carbonate rock were 30, 10, and 10 g, respectively, which significantly improved the removal rate of TFe and the amount of sediments. At an initial pH of 1.8 and a carbonate rock dosage of 30 g, the final removal rate of TFe reached 67.37%, which was 28.03% higher than that of the system without the addition of carbonate rock, and 36.9 g·L-1 of sediments were generated, which was higher than that of the system without the addition of carbonate rock (6.6 g·L-1). Meanwhile, the number of sediments generated by adding carbonate rock were significantly higher than those without the addition of carbonate rock. The secondary minerals were characterized by a progressive transition from low crystalline assemblages composed of calcium sulfate and subordinated jarosite, to well crystal-line assemblages composed of jarosite, calcium sulfate, and goethite. These results have important implications for comprehensively understanding the dosage of carbonate rock in mineral formation under different pH conditions. The findings help reveal the growth of secondary minerals during the treatment of AMD using carbonate rocks under low-pH conditions, which offers valuable information for combining the carbonate rocks with secondary minerals to treat AMD.
Collapse
Affiliation(s)
- Yuran Fu
- Resource and Environmental Engineering College, Guizhou University, Guiyang 550025, China
| | - Ruixue Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China
| | - Neng Wang
- Resource and Environmental Engineering College, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- Resource and Environmental Engineering College, Guizhou University, Guiyang 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China
| | - Yahui Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang 550025, China
| | - Li An
- Resource and Environmental Engineering College, Guizhou University, Guiyang 550025, China
| | - Yuhao Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang 550025, China
| |
Collapse
|
24
|
Ke C, Guo C, Zhang S, Deng Y, Li X, Li Y, Lu G, Ling F, Dang Z. Microbial reduction of schwertmannite by co-cultured iron- and sulfate-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160551. [PMID: 36460112 DOI: 10.1016/j.scitotenv.2022.160551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Schwertmannite (Sch) is an iron-hydroxysulfate mineral commonly found in acid mine drainage contaminated environment. The transformation mechanism of Sch mediated by pure cultured iron-reducing bacteria (FeRB) or sulfate-reducing bacteria (SRB) has been studied. However, FeRB and SRB widely coexist in the environment, the mechanism of Sch transformation by the consortia of FeRB and SRB is still unclear. This study investigated the Sch reduction by co-cultured Shewanella oneidensis (FeRB) and Desulfosporosinus meridiei (SRB). The results showed that co-culture of FeRB and SRB could accelerate the reductive dissolution of Sch, but not synergistically, and there were two distinct phases in the reduction of Sch mediated by FeRB and SRB: an initial phase in which FeRB predominated and Fe3+ in Sch was reduced, accompanied with the release of SO42-, and the detected secondary minerals were mainly vivianite; the second phase in which SRB predominated and mediated the reduction of SO42-, producing minerals including mackinawite and siderite in addition to vivianite. Compared to pure culture, the abundance of FeRB and SRB in the consortia decreased, and more minerals aggregated inside and outside the cell; correspondingly, the transcription levels of genes (cymA, omcA, and mtrCBA) related to Fe3+ reduction in co-culture was down-regulated, while the transcription levels of SO42--reducing genes (sat, aprAB, dsr(C)) was generally up-regulated. These phenomena suggested that secondary minerals produced in co-culture limited but did not inhibit bacterial growth, and the presence of SRB was detrimental to dissimilatory Fe3+ reduction, while existed FeRB was in favor of dissimilatory SO42- reduction. SRB mediated SO42- reduction by up-regulating the expression of SO42- reduction-related genes when its abundance was limited, which may be a strategy to cope with external coercion. These findings allow for a better understanding of the process and mechanism of microbial mediated reduction of Sch in the environment.
Collapse
Affiliation(s)
- Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Xiaofei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Yuancheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
25
|
Qian F, Huang X, Bao Y. Heavy metals reshaping the structure and function of phylloplane bacterial community of native plant Tamarix ramosissima from Pb/Cd/Cu/Zn smelting regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114495. [PMID: 36640572 DOI: 10.1016/j.ecoenv.2022.114495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal (HM) is noxious element that cannot be biodegraded, thus accumulating in the environment and posing a serious threat to the ecology. Plant phylloplane harbors diverse microbial communities that profoundly influence ecosystem functioning and host health. With more HM accumulating around smelters, native plants and microbes in various habitats tend to suffer from HM. However, the response of phylloplane bacteria of native plants to HM remains unclear. Thus, this study aimed to explain the response of Tamarix ramosissima, a phylloplane bacterial community to HM as well as the effect of the process on host growth in situ by investigating the potential source of HM and bacterial community shift. Results showed that, in most cases, the contaminated site with high HM level caused more accumulation of HM in phylloplane and leaves. Moreover, HM in the phylloplane was not from the internal transport of the plant but it could be due to the wind action or rains. Bacteria in phylloplane may have come from the soil due to their strong positive correlation with corresponding soil at the genus level. High HM level inhibited the relative abundance of dominant bacteria, increased the diversity and species richness of bacterial community in phylloplane, and induced more special bacteria to maintain higher productivity of the host plant, for which, Cu and Pb were the major contributors. Meanwhile, bacteria in phylloplane showed a universal positive correlation in the co-occurrence network, which showed less stability than that in corresponding soil in the smelting region, and it is helpful to regulate the growth of plants more rapidly. Nearly 25% of KEGG pathways were modulated by high HM level and bacterial function tended to stabilize HM to avoid the potential process of leaf absorption. The study illustrated that HM in phylloplane played an important role in shaping the bacterial community of phylloplane as compared to HM in leaves or phyllosphere, and the resulting increase of diversity and richness of bacterial community and special bacteria further maintained the growth of the host plant suffering from HM stress.
Collapse
Affiliation(s)
- Fanghan Qian
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinjian Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
26
|
Yan S, Yang J, Si Y, Tang X, Ma Y, Ye W. Arsenic and cadmium bioavailability to rice (Oryza sativa L.) plant in paddy soil: Influence of sulfate application. CHEMOSPHERE 2022; 307:135641. [PMID: 35817182 DOI: 10.1016/j.chemosphere.2022.135641] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) and cadmium (Cd) accumulate easily in rice grains that pose a non-negligible threat to human health worldwide. Sulfur fertilizer has been shown to affect the mobilization of As and Cd in paddy soil, but the effect of co-contamination by As and Cd has not been explored. This study selected three soils co-contaminated with As and Cd from Shangyu (SY), Tongling (TL) and Ma'anshan (MA). Incubation experiments and pot experiments were carried out to explore the effect of sulfate supply (100 mg kg-1) on the bioavailability of As and Cd in soil and the rice growth. The results showed that the exogenous sulfate decreased As concentrations in porewater of SY and TL by 51.1% and 29.2% through forming arsenic-sulfide minerals. The exchangeable Cd in soil also declined by 25.6% and 18.6% and transformed into Fe and Mn oxides-bound Cd. The relative abundance of Desulfotomaculum, Desulfurispora and dsr gene increased remarkably indicated that sulfate addition stimulated the activity of sulfate-reducing bacteria. In MA soil, sulfate addition immobilized Cd but had little effect on As solubility, which was speculated to be related to the high sulfate background of the soil. Further pot experiments showed that sulfate application significantly increased rice tillers, biomass, chlorophyll content in shoots, and decreased electrolyte leakage in root. Finally, sulfate significantly reduced As and Cd in SY rice shoots by 60.2% and 40.8%, respectively, while As decreased by 39.6% in TL rice shoots and Cd decreased by 23.0% in MA rice shoots. These results indicate that the application of sulfate can reduce the bioavailability of As and Cd in the soil-rice system and promote rice growth, and it is possible to reduce the accumulation of As and Cd in rice plants simultaneously.
Collapse
Affiliation(s)
- Shiwei Yan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Jianhao Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Xianjin Tang
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, 310058, China
| | - Youhua Ma
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Key Laboratory of Agri-Food Safety of Anhui Province, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| |
Collapse
|
27
|
Ying H, Zhao W, Feng X, Gu C, Wang X. The impacts of aging pH and time of acid mine drainage solutions on Fe mineralogy and chemical fractions of heavy metals in the sediments. CHEMOSPHERE 2022; 303:135077. [PMID: 35623433 DOI: 10.1016/j.chemosphere.2022.135077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fe (oxyhydr)oxides are the main components that accumulate heavy metals (HMs) in the acid mine drainage (AMD) sediments, but how the aging pH and time of AMD solution affects the Fe mineralogy and HMs speciation remains ambiguous. Herein, we determined the impacts of aging pH and time on the Fe mineralogy and chemical fractions of HMs in the sediments from Dabaoshan mining area using mineral characterizations, chemical extraction, and AMD solution incubation. For the natural AMD sediments, jarosite and goethite are the major Fe (oxyhydr)oxides in sample S1 with solution pH 2.68, while schwertmannite is dominant in sample S2 with solution pH 6.78, co-existing minor ferrihydrite. With increasing the AMD solution pH, the total contents of HMs (expect for As) and the reducible fraction of HMs (expect for Pb) in the sediments both increase. The HMs of Mn, Zn, Ni, and Cd are mainly associated with Fe (oxyhydr)oxides, while Pb possibly exists as Pb-bearing minerals (e.g., PbSO4) in the sediments. The oxidizable fraction of all HMs is negligible in both sediments. When the AMD solution of S1 was aged at different pHs, schwertmannite is dominant initially at all pHs, with a higher crystallinity being at a lower pH. With increasing aging time, the pre-formed schwertmannite transforms to goethite and jarosite at pH ≤ 3, while it keeps stable at pH 5 and 7 due to the accumulation of more HMs. These new insights are essential to assess the mobility and availability of HMs in the AMD-affected areas.
Collapse
Affiliation(s)
- Hong Ying
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wantong Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China
| | - Chunhao Gu
- Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China.
| |
Collapse
|
28
|
Chen HR, Zhang DR, Li Q, Nie ZY, Pakostova E. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. WATER RESEARCH 2022; 223:118957. [PMID: 35970106 DOI: 10.1016/j.watres.2022.118957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Mining activities expose sulfidic minerals including arsenopyrite (FeAsS) to acid mine drainage (AMD). The subsequent release of toxic arsenic (As) can have great negative implications for the environment and human health. This study investigated the evolution of secondary products and As speciation transformations during arsenopyrite bio-oxidation in AMD collected from a polymetallic mine. Immobilization of the As solubilized via arsenopyrite bio-oxidation using red mud (RM) was also studied. The results show that the high ionic strength (concentrations of dissolved Fe3+, SO42-, and Ca2+ reached values up to 0.75, 3.38, and 0.35 g/L, respectively) and redox potential (up to +621 mV) of AMD (caused primarily by Fe3+) enhanced the dissolution of arsenopyrite. A high [Fe]aq/[As]aq ratio in the AMD favored the precipitation of tooeleite during arsenopyrite bio-oxidation, and the formation of other poorly crystalline products such as schwertmannite and amorphous ferric arsenate also contributed to As immobilization. Bacterial cells served as important nucleation sites for the precipitation of mineral phases. Arsenopyrite completely dissolved after 12 days of bio-oxidation in AMD and the [As]aq (mainly present as As(III)) reached 1.92 g/L, while a greater [As]aq was observed in a basal salts medium (BSM) assay (reaching 3.02 g/L). An RM addition significantly promoted As(III) immobilization, with final [As(III)]aq decreasing to 0.16 and 1.43 g/L in AMD and BSM assays respectively. No oxidation of As(III) was detected during the immobilization process. These findings can help predict As release from arsenopyrite on contact with AMD and, on a broader scale, assist in designing remediation and treatment strategies to mitigate As contamination in mining.
Collapse
Affiliation(s)
- Hong-Rui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Duo-Rui Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Zhen-Yuan Nie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Eva Pakostova
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
29
|
Ilin AM, van der Graaf CM, Yusta I, Sorrentino A, Sánchez-Andrea I, Sánchez-España J. Glycerol amendment enhances biosulfidogenesis in acid mine drainage-affected areas: An incubation column experiment. Front Bioeng Biotechnol 2022; 10:978728. [PMID: 36105607 PMCID: PMC9464833 DOI: 10.3389/fbioe.2022.978728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Microbial sulfate (SO42−) reduction in Acid Mine Drainage (AMD) environments can ameliorate the acidity and extreme metal concentrations by consumption of protons via the reduction of SO42− to hydrogen sulfide (H2S) and the concomitant precipitation of metals as metal sulfides. The activity of sulfate-reducing bacteria can be stimulated by the amendment of suitable organic carbon sources in these generally oligotrophic environments. Here, we used incubation columns (IC) as model systems to investigate the effect of glycerol amendment on the microbial community composition and its effect on the geochemistry of sediment and waters in AMD environments. The ICs were built with natural water and sediments from four distinct AMD-affected sites with different nutrient regimes: the oligotrophic Filón Centro and Guadiana acidic pit lakes, the Tintillo river (Huelva, Spain) and the eutrophic Brunita pit lake (Murcia, Spain). Physicochemical parameters were monitored during 18 months, and the microbial community composition was determined at the end of incubation through 16S rRNA gene amplicon sequencing. SEM-EDX analysis of sediments and suspended particulate matter was performed to investigate the microbially-induced mineral (neo)formation. Glycerol amendment strongly triggered biosulfidogenesis in all ICs, with pH increase and metal sulfide formation, but the effect was much more pronounced in the ICs from oligotrophic systems. Analysis of the microbial community composition at the end of the incubations showed that the SRB Desulfosporosinus was among the dominant taxa observed in all sulfidogenic columns, whereas the SRB Desulfurispora, Desulfovibrio and Acididesulfobacillus appeared to be more site-specific. Formation of Fe3+ and Al3+ (oxy)hydroxysulfates was observed during the initial phase of incubation together with increasing pH while formation of metal sulfides (predominantly, Zn, Fe and Cu sulfides) was observed after 1–5 months of incubation. Chemical analysis of the aqueous phase at the end of incubation showed almost complete removal of dissolved metals (Cu, Zn, Cd) in the amended ICs, while Fe and SO42− increased towards the water-sediment interface, likely as a result of the reductive dissolution of Fe(III) minerals enhanced by Fe-reducing bacteria. The combined geochemical and microbiological analyses further establish the link between biosulfidogenesis and natural attenuation through metal sulfide formation and proton consumption.
Collapse
Affiliation(s)
- A. M. Ilin
- Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
- *Correspondence: A. M. Ilin, ; J. Sánchez-España,
| | - C. M. van der Graaf
- Laboratory of Microbiology, Wageningen University (WUR), Wageningen, Netherlands
| | - I. Yusta
- Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
| | - A. Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona, Spain
| | - I. Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University (WUR), Wageningen, Netherlands
| | - J. Sánchez-España
- Mine Wastes and Environmental Geochemistry Research Group, Department of Geological Resources for the Ecological Transition, (CN IGME-CSIC), Madrid, Spain
- *Correspondence: A. M. Ilin, ; J. Sánchez-España,
| |
Collapse
|
30
|
Secondary Minerals from Minothem Environments in Fragnè Mine (Turin, Italy): Preliminary Results. MINERALS 2022. [DOI: 10.3390/min12080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Fragnè mine, located in the Lanzo valley in the municipality of Chialamberto (Turin, Piedmont Region), represented the most important regional site for Fe–Cu sulfide exploitation over a period of more than eighty years (1884–1965). The entire mining area is part of a structural complex in the Lower Piedmont Unit of the Western Alps, characterized by the presence of amphibolite, metabasite (“prasinite”), and metagabbroic rocks. In particular, the pyrite ore deposit occurs as massive mineralizations within interlayered metabasites and amphibolites. In this work, we describe secondary minerals and morphologies of minothems from the Fragnè mine that are found only in abandoned underground works, such as soda straws, normal and jelly stalactites and stalagmites, jellystones, columns, crusts, blisters, war-clubs, and hair, characterized by different mineralogical associations. All minothems were characterized by minerals formed during acid mine drainage (AMD) processes. Blisters are composed only of schwertmannite, war-clubs by schwertmannite, and goethite with low crystallinity and hair by epsomite and hexahydrite minerals. Jelly stalactites and stalagmites are characterized by schwertmannite often in association with bacteria, while solid stalactites and stalagmites are characterized by jarosite and goethite. The results indicate that the mineralogical transformation from schwertmannite to goethite observed in some minothems is probably due to aging processes of schwertmannite or local pH variations due to bacterial activity. On the basis of these results, we hypothesize that all the jelly samples, in association with strong bacterial activity, are slowly transformed into more solid goethite, and are thus precursors of goethite stalactites.
Collapse
|
31
|
Cao C, Huang J, Yan CN. Unveiling changes of microbial community involved in N and P removal in constructed wetlands with exposing to silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128642. [PMID: 35286932 DOI: 10.1016/j.jhazmat.2022.128642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) are environmentally friendly engineered systems to purify wastewater, with low-cost and easy maintenance. However, it is not clear on responses of functional microbes for nitrogen (N) and phosphorus (P) biotransformation in CWs to silver nanoparticles (Ag NPs). The high throughput sequencings were employed to reveal microbial communities in vertical flow subsurface CWs with stable operation for 120 days. The results indicated that NH4+-N, TN and TP removal of soil layer decreased by 43.56%, 15.7% and 22.7% under stress of Ag NPs. Microbial richness index and compositions were affected, and control wetland enriched Sulfurospirillum, Desulfarculaceae and Flavobacterium whereas CWs exposed to Ag NPs enriched Desulfosporosinus and Desulfurispora from LEfSe analysis. Moreover, after dosing Ag NPs, relative abundances of functional genes amoA and hao for nitrification, nirK and norB for denitrification and ppx and phoA/phoD for phosphorus conversions in upper soil were significantly downregulated. Inhibition on functional bacteria and genes of Ag NPs explained poor removal efficiencies of nitrogen and phosphorus pollutants in CWs. Our findings give an insight into ecological toxicity of Ag NPs on CWs with N and P bioconversions and provide the understanding of response of nitrifiers, denitrifies and PAOs.
Collapse
Affiliation(s)
- Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Ni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
32
|
Li Q, Ji B, Honaker R, Noble A, Zhang W. Partitioning behavior and mechanisms of rare earth elements during precipitation in acid mine drainage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Bao Y, Lai J, Wang Y, Fang Z, Su Y, Alessi DS, Bolan NS, Wu X, Zhang Y, Jiang X, Tu Z, Wang H. Effect of fulvic acid co-precipitation on biosynthesis of Fe(III) hydroxysulfate and its adsorption of lead. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118669. [PMID: 34921941 DOI: 10.1016/j.envpol.2021.118669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Iron (III) co-precipitation with dissolved organic matter (DOM) is pervasive in many natural environments. However, the effects of DOM on the formation of Fe(III) hydroxysulfate (FHS) and its environmental implications are poorly understood. In this study, fulvic acid (FA) was used as a model DOM compound, and experiments were devised to investigate the effects of FA on the formation of FHS. In addition, the Pb(II) adsorption capabilities of FHSs biosynthesized under various FA dosages, including kinetics and sorption isotherm experiments, were conducted. These experiments showed that co-precipitation of FA promoted the formation of Fe-FA composites, FA-doped schwertmannite, and small particles of jarosite. Co-precipitates are more enriched in carboxyl (-COOH) functional groups due to their preferential binding with FHS. The adsorption kinetics, isotherms and mechanisms of Pb onto the biosynthesized FHSs were then comprehensively characterized and modeled. Though the specific surface area decreased with increasing FA loading, the introduction of FA into FHSs increased Pb(II) adsorption, with the highest concentration of FA addition improving the removal capacity of Pb(II) to 91.54%. Kinetics studies and intra-particle diffusion models indicated that the adsorption of Pb(II) onto the FHSs was correlated with the number of active sites, and two adsorption steps: surface adsorption and the diffusion of Pb(II) in channels inside the biosynthesized FHSs, are suggested. The adsorption mechanism was attributed to cation exchange between Pb(II) and -OH and -COOH functional groups, and the co-precipitated FA provided additional sites for Pb(II) adsorption by FHS.
Collapse
Affiliation(s)
- Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Jinhao Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Yishun Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Zheng Fang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Yongshi Su
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Yan Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Zhihong Tu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
34
|
Du P, Li X, Yang Y, Zhou Z, Fan X, Chang H, Liang H. Regulated-biofilms enhance the permeate flux and quality of gravity-driven membrane (GDM) by in situ coagulation combined with activated alumina filtration. WATER RESEARCH 2022; 209:117947. [PMID: 34910991 DOI: 10.1016/j.watres.2021.117947] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
It is a critical challenge for drinking water production when treating algae-contaminated surface water. In this study, the impact of in situ coagulation (C), activated alumina filtration (AA) and their combination (CAA) on the performance of gravity-driven membrane (GDM) was systematically assessed during 105-day operation. The results indicated that pretreatments in particular CAA could effectively enhance GDM flux, and the stable fluxes were increased to 3.1, 4.9 and 8.3 L/(m2·h) (LMH) for CGDM, AA/GDM and CAA/GDM, respectively when compared to the control GDM (2.0 LMH). Coagulation was beneficial to formation of thick but loose biofouling layer, while AA filtration was effective to retain foulants including extracellular polymeric substances (EPS), organics, total nitrogen and total phosphorus. The CAA/GDM could mostly remove these foulants, and facilitate the proliferation of bacterial genera that could consume EPS, further alleviating membrane fouling. The difference in loosely bound EPS and tightly bound EPS of biofouling layer attributed to the difference of reversible fouling and irreversible fouling, respectively. Morphological observations, variation in functional groups or elements further confirmed the difference in biological layers in different GDM systems. The occurrence of specific bacterial genera involving the potential to degrade protein, chitin and other high molecular weight organics was responsible for contaminant removals.
Collapse
Affiliation(s)
- Peng Du
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China; China Academy of Building Research, Institute of Building Fire Research, Beijing 100013, China
| | - Xing Li
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Yanling Yang
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Zhou
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyan Fan
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
35
|
Yang B, Luo W, Hong M, Wang J, Liu X, Gan M, Qiu G. Inhibition of hematite on acid mine drainage caused by chalcopyrite biodissolution. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Lang Y, Yu Y, Zou H, Ye J, Zhang S, Chen J. Flavin mononucleotide-stimulated microbial fuel cell for efficient gaseous toluene abatement. CHEMOSPHERE 2022; 287:132247. [PMID: 34826930 DOI: 10.1016/j.chemosphere.2021.132247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Chemical park is regarded as a major contributor of VOCs emissions in China. Currently, a green and safe technology, microbial fuel cells (MFCs), is being developed for the VOCs abatement. Noting that effective electron transfer is critical to the MFC performance. In this work, flavin mononucleotide (FMN) was dosed as an electron shuttle to improve the removal of the typical toxic VOCs, toluene. The experimental results revealed that the performance of toluene removal and power generation were accelerated with the dosage of 0.2-2 μM FMN. With the addition of 1 μM FMN, the removal efficiency, the maximum output voltage and the coulombic efficiency of MFC were increased by 18.4%, 64.4% and 56.3%, respectively. However, a further increase in FMN concentration to 2 μM caused a reduction in the removal efficiency and coulombic efficiency. The images of scanning electron microscopy and confocal laser scanning microscopy showed that the presence of FMN greatly promoted the microbial growth and its activity. Furthermore, microbial community analysis also implied that the moderate dosage of FMN (0.2-1 μM) was beneficial for the growth of the typical exoelectrogens, Geobacter sp., and thus the coulombic efficiency was increased. In addition, an electron transfer pathway involving in cytochrome b, OMCs, cytochrome c, and MtrA was proposed based on the cyclic voltammetry analysis. This work will provide a fundamental theoretical support for its application of toxic VOCs abatement from the chemical park.
Collapse
Affiliation(s)
- Yue Lang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiexu Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
37
|
Lu C, Yang B, Cui X, Wang S, Qu C, Zhang W, Zhou B. Characteristics and Environmental Response of White Secondary Mineral Precipitate in the Acid Mine Drainage From Jinduicheng Mine, Shaanxi, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1012-1021. [PMID: 34417845 DOI: 10.1007/s00128-021-03355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The study focuses on the white secondary mineral precipitate and its environmental response formed in acid mine drainage (AMD) at Jinduicheng Mine (Shaanxi, China). The mineral composition of white precipitate was characterized by Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray photoelectron spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Inductively coupled plasma-atomic emission spectrometer (ICP-AES), chemical quantitative calculation and PHREEQC software. The white precipitate was a kind of amorphous crystal with the characteristics of a fine powder, and its main elements were O, Al, S, F, OH- and SO42- groups. Moreover, by comparing the mole number of chemical elements, the main mineral composition of the white precipitate was closest to basaluminite. The geochemical simulation result of the PHREEQC software verified that the white precipitate was basaluminite. According to the analysis of water quality characteristics of water samples, basaluminite can reduce the ions content in the AMD and enrich Cu, Ni, Mo, Cr and F ions, showing an excellent self-purification capacity of the water body. These results are helpful to improve the understanding of secondary mineral and its environmental response, and are of great significance for the environmental protection and sustainable development of mining area.
Collapse
Affiliation(s)
- Cong Lu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Shaanxi Key Laboratory of Environmental Pollution Control Technology and Reservoir Protection of Oilfield, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Bo Yang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710072, P. R. China
- Shaanxi Key Laboratory of Environmental Pollution Control Technology and Reservoir Protection of Oilfield, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Xing Cui
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710072, P. R. China
| | - Sichang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chengtun Qu
- Shaanxi Key Laboratory of Environmental Pollution Control Technology and Reservoir Protection of Oilfield, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Weiwei Zhang
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Bo Zhou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
| |
Collapse
|
38
|
Lin Y, Grembi JA, Goots SS, Sebastian A, Albert I, Brennan RA. Advantageous microbial community development and improved performance of pilot-scale field systems treating high-risk acid mine drainage with crab shell. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126665. [PMID: 34351284 DOI: 10.1016/j.jhazmat.2021.126665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities are crucial to the effectiveness and stability of bioremediation systems treating acid mine drainage (AMD); however, little research has addressed how they correlate to system performance under changing environmental conditions. In this study, 16S rRNA gene sequencing and quantitative PCR (qPCR) were used to characterize microbial communities within different substrate combinations of crab shell (CS) and spent mushroom compost (SMC) and their association with chemical performance in pilot-scale vertical flow ponds (VFPs) treating high risk AMD in central Pennsylvania over 643 days of operation. As compared to a control containing SMC, VFPs containing CS sustained higher alkalinity, higher sulfate-reducing rates, and more thorough metals removal (>90% for Fe and Al, >50% for Mn and Zn). Correspondingly, CS VFPs supported the growth of microorganisms in key functional groups at increasing abundance and diversity over time, especially more diverse sulfate-reducing bacteria. Through changing seasonal and operational conditions over almost two years, the relative abundance of the core phyla shifted in all reactors, but the smallest changes in functional gene copies were observed in VFPs containing CS. These results suggest that the high diversity and stability of microbial communities associated with CS are consistent with effective AMD treatment.
Collapse
Affiliation(s)
- Yishan Lin
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Jessica A Grembi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Sara S Goots
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; Calfee, Halter & Griswold, Cleveland, OH, USA
| | - Aswathy Sebastian
- Bioinformatics, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - István Albert
- Bioinformatics, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rachel A Brennan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
39
|
Chen D, Feng Q, Liang H. Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: microbial community structure, interaction patterns, and metabolic functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53936-53952. [PMID: 34046832 DOI: 10.1007/s11356-021-14566-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
More than twenty abandoned coal mines in the Yudong River Basin of Guizhou Province have discharged acid mine drainage (AMD) for a long time. The revelation of microbial community composition, interaction patterns, and metabolic functions can contribute to a better understanding of such ecosystems, which in its turn can be helpful in the development of strategies aiming at the ecological remediation of AMD pollution. In this study, reference and contaminated soil samples were collected along the AMD flow path for high-throughput sequencing. Results showed that the long-term AMD pollution promoted the evolution of γ-Proteobacteria, and the acidophilic iron-oxidizing bacteria Ferrovum (relative abundance of 15.50%) and iron-reducing bacteria Metallibacterium (9.87%) belonging to this class became the dominant genera. Co-occurrence analysis revealed that the proportion of positive correlations among bacteria increased from 51.02 (reference soil) to 75.16% (contaminated soil), suggesting that acidic pollution promotes the formation of mutualistic interaction networks of microorganisms. Metabolic function prediction (Tax4Fun) revealed that AMD contamination enhanced microbial functions such as translation, repair, and biosynthesis of peptidoglycan and lipopolysaccharide, etc., which may be an adaptive mechanism for microbial survival in extremely acidic environment. In addition, acidic pollution promoted the high expression of nitrogen-fixing genes in soil, and the discovery of autotrophic nitrogen-fixing bacteria such as Ferrovum highlights the possibility of using this taxon for bioremediation of AMD pollution.
Collapse
Affiliation(s)
- Di Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| | - Haoqian Liang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| |
Collapse
|
40
|
Pandey S, Fosso-Kankeu E, Redelinghuys J, Kim J, Kang M. Implication of biofilms in the sustainability of acid mine drainage and metal dispersion near coal tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147851. [PMID: 34034167 DOI: 10.1016/j.scitotenv.2021.147851] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, the ecology of biofilms collected from sediments and efflorescent crusts (EFC) along an acid mine drainage (AMD) system was determined using 16S bacterial metagenomics. The dissolution of coal tailing and EFC by bacteria hosted in biofilms was investigated. Results revealed the predominance of acidophilic bacteria such as Acidithiobacillus ferrooxidans, Leptospirilum ferrooxidans, Acidithrix, Leptospirilum sp, Acidimicrobiaceae, Sulfobacillus, Acidiphilium, and Acidithiobacillus sp. in the biofilms, some of which have been reported to oxidize sulfide minerals and contribute to AMD formation. The experimental results further highlighted the ability of the bacteria in biofilms to leach out metals such as Co, Fe, and Zn, while decreasing the pH of the solution. The bioleaching of EFC was very fast, and increased diversity of the bacterial inoculum contributed to accelerating the leaching rate. Compared to abiotic leaching, the dissolution of minerals by acidophilic bacteria increased the percentage of free hydrated metal speciated forms over the inorganic complex speciated forms, suggesting the potential of biofilms to enhance the dispersion of metals in aquatic systems.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si, Jeollanam-do 57801, Republic of Korea.
| | - Elvis Fosso-Kankeu
- Department of Electrical and Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa.
| | - Johannes Redelinghuys
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North West University, P. Bag X6001, Potchefstroom 2520, South Africa
| | - Joonwoo Kim
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si, Jeollanam-do 57801, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
41
|
Liao R, Yang B, Huang X, Hong M, Yu S, Liu S, Wang J, Qiu G. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution. CHEMOSPHERE 2021; 279:130516. [PMID: 33878694 DOI: 10.1016/j.chemosphere.2021.130516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Chalcopyrite is a crucial contributor causing acid mine drainage (AMD). Silver and pyrite are commonly co-existed with chalcopyrite, and can significantly affect the copper release from chalcopyrite bio-dissolution process. However, the combined effect of them on chalcopyrite bio-dissolution has not been illustrated up to now. To fill this knowledge gap, the combined effect of silver and pyrite on chalcopyrite dissolution with Acidithiobacillus ferrooxidans was investigated in this study. The copper extraction reached the maximum value (62.3 ± 0.1%) with the presence of silver and pyrite, which was 43.8 ± 0.1% higher than the control group (without addition). This suggested more copper ions and acids were released under this circumstance. According to bio-dissolution results, SEM, XRD and XPS analyses, the promotion effect of silver and pyrite on chalcopyrite bio-dissolution was mainly attributed to the increase of ferric ions in solution and the reduction of passivation layer (Sn2-/S0) on chalcopyrite surface. The investigation into the bio-dissolution of chalcopyrite is important for controlling the generation of copper ions and acids. Silver or pyrite bearing chalcopyrite should be carefully treated to avoid the pollution of heavy metal copper and acid in the mining environment.
Collapse
Affiliation(s)
- Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Xiaotao Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Maoxing Hong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Shichao Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Shitong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
42
|
Microbiome of highly polluted coal mine drainage from Onyeama, Nigeria, and its potential for sequestrating toxic heavy metals. Sci Rep 2021; 11:17496. [PMID: 34471151 PMCID: PMC8410811 DOI: 10.1038/s41598-021-96899-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Drains from coal mines remain a worrisome point-source of toxic metal/metalloid pollutions to the surface- and ground-waters worldwide, requiring sustainable remediation strategies. Understanding the microbial community subtleties through microbiome and geochemical data can provide valuable information on the problem. Furthermore, the autochthonous microorganisms offer a potential means to remediate such contamination. The drains from Onyeama coal mine in Nigeria contained characteristic sulphates (313.0 ± 15.9 mg l−1), carbonate (253.0 ± 22.4 mg l−1), and nitrate (86.6 ± 41.0 mg l−1), having extreme tendencies to enrich receiving environments with extremely high pollution load index (3110 ± 942) for toxic metals/metalloid. The drains exerted severe degree of toxic metals/metalloid contamination (Degree of contamination: 3,400,000 ± 240,000) and consequent astronomically high ecological risks in the order: Lead > Cadmium > Arsenic > Nickel > Cobalt > Iron > Chromium. The microbiome of the drains revealed the dominance of Proteobacteria (50.8%) and Bacteroidetes (18.9%) among the bacterial community, whereas Ascomycota (60.8%) and Ciliophora (12.6%) dominated the eukaryotic community. A consortium of 7 autochthonous bacterial taxa exhibited excellent urease activities (≥ 253 µmol urea min−1) with subsequent stemming of acidic pH to > 8.2 and sequestration of toxic metals (approx. 100% efficiency) as precipitates (15.6 ± 0.92 mg ml−1). The drain is a point source for metals/metalloid pollution, and its bioremediation is achievable with the bacteria consortium.
Collapse
|
43
|
Kölbl A, Kaiser K, Winkler P, Mosley L, Fitzpatrick R, Marschner P, Wagner FE, Häusler W, Mikutta R. Transformation of jarosite during simulated remediation of a sandy sulfuric soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145546. [PMID: 33940732 DOI: 10.1016/j.scitotenv.2021.145546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 05/27/2023]
Abstract
Aeration of wetland soils containing iron (Fe) sulfides can cause strong acidification due to the generation of large amounts of sulfuric acid and formation of Fe oxyhydroxy sulfate phases such as jarosite. Remediation by re-establishment of anoxic conditions promotes jarosite transformation to Fe oxyhydroxides and/or Fe sulfides, but the driving conditions and mechanisms are largely unresolved. We investigated a sandy, jarosite-containing soil (initial pH = 3.0, Eh ~600 mV) in a laboratory incubation experiment under submerged conditions, either with or without wheat straw addition. Additionally, a model soil composed of synthesized jarosite mixed with quartz sand was used. Eh and pH values were monitored weekly. Solution concentrations of total dissolved organic carbon, Fe, S, and K as well as proportions of Fe2+ and SO42- were analysed at the end of the experiment. Sequential Fe extraction, X-ray diffraction, and Mössbauer spectroscopy were used to characterize the mineral composition of the soils. Only when straw was added to natural and artificial sulfuric soils, the pH increased up to 6.5, and Eh decreased to approx. 0 mV. The release of Fe (mainly Fe2+), K, and S (mainly SO42-) into the soil solution indicated redox- and pH-induced dissolution of jarosite. Mineralogical analyses confirmed jarosite losses in both soils. While lepidocrocite formed in the natural sulfuric soil, goethite was formed in the artificial sulfuric soil. Both soils showed also increases in non-sulfidized, probably organically associated Fe2+/Fe3+, but no (re-)formation of Fe sulfides. Unlike Fe sulfides, the formed Fe oxyhydroxides are not prone to support re-acidification in the case of future aeration. Thus, inducing moderately reductive conditions by controlled supply of organic matter could be a promising way for remediation of soils and sediments acidified by oxidation of sulfuric materials.
Collapse
Affiliation(s)
- Angelika Kölbl
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Klaus Kaiser
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Pauline Winkler
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Luke Mosley
- Acid Sulfate Soils Centre, The University of Adelaide, South Australia 5064, Australia
| | - Rob Fitzpatrick
- Acid Sulfate Soils Centre, The University of Adelaide, South Australia 5064, Australia
| | - Petra Marschner
- School of Agriculture, Food and Wine, The University of Adelaide, South Australia 5005, Australia
| | - Friedrich E Wagner
- Physik Department, Technische Universität München, 85747 Garching, Germany
| | - Werner Häusler
- Lehrstuhl für Bodenkunde, Technische Universität München, 85350 Freising, Germany
| | - Robert Mikutta
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
44
|
Zhang Y, Gao K, Dang Z, Huang W, Reinfelder JR, Ren Y. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144279. [PMID: 33401041 DOI: 10.1016/j.scitotenv.2020.144279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Arsenic-rich schwertmannite may cause arsenic (As) release during phase transition. In this study, microbial sulfidogenesis on As(V)-loaded schwertmannite (As-Sch) and associated As mobility at different SO42- concentrations were investigated under anaerobic conditions by Desulfosporosinus meridiei (D. meridiei). For biotic treatments, the more SO42- was added, the more Fe3+ was reduced to Fe2+, and the more As(V) was released during the reductive dissolution of As-Sch. The reduction of As(V) to As(III) by D. meridiei resulted in a higher concentration, toxicity, solubility and mobility of As than the corresponding abiotic treatments. However, compared with the abiotic treatments, a variety of new minerals (such as mackinawite, vivianite, sulfur, As2S3, and parasymplesite) were generated in the biotic treatments, and the As concentration in aqueous solution was less than 1 μM at the end of the incubation period regardless of the presence of SO42-. The results of continuous extraction of different species of As from secondary minerals showed that the effect of microorganisms decreased As content of amorphous iron oxide-bound phase, while increasing that bound on the surface of iron oxide surface-bound phase, thus increasing As fluidity. Our findings indicated that under anaerobic conditions, D. meridiei sulfidogenesis can trigger significant As mobilization in the early stage and remove As from the aqueous solutions when new minerals are formed at a later stage.
Collapse
Affiliation(s)
- Yunling Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Kun Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| |
Collapse
|
45
|
Chacon-Baca E, Santos A, Sarmiento AM, Luís AT, Santisteban M, Fortes JC, Dávila JM, Diaz-Curiel JM, Grande JA. Acid Mine Drainage as Energizing Microbial Niches for the Formation of Iron Stromatolites: The Tintillo River in Southwest Spain. ASTROBIOLOGY 2021; 21:443-463. [PMID: 33351707 DOI: 10.1089/ast.2019.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Iberian Pyrite Belt in southwest Spain hosts some of the largest and diverse extreme acidic environments with textural variation across rapidly changing biogeochemical gradients at multiple scales. After almost three decades of studies, mostly focused on molecular evolution and metagenomics, there is an increasing awareness of the multidisciplinary potential of these types of settings, especially for astrobiology. Since modern automatized exploration on extraterrestrial surfaces is essentially based on the morphological recognition of biosignatures, a macroscopic characterization of such sedimentary extreme environments and how they look is crucial to identify life properties, but it is a perspective that most molecular approaches frequently miss. Although acid mine drainage (AMD) systems are toxic and contaminated, they offer at the same time the bioengineering tools for natural remediation strategies. This work presents a biosedimentological characterization of the clastic iron stromatolites in the Tintillo river. They occur as laminated terraced iron formations that are the most distinctive sedimentary facies at the Tintillo river, which is polluted by AMD. Iron stromatolites originate from fluvial abiotic factors that interact with biological zonation. The authigenic precipitation of schwertmannite and jarosite results from microbial-mineral interactions between mineral and organic matrices. The Tintillo iron stromatolites are composed of bacterial filaments and diatoms as Nitzschia aurariae, Pinnularia aljustrelica, Stauroneis kriegeri, and Fragilaria sp. Furthermore, the active biosorption and bioleaching of sulfur are suggested by the black and white coloration of microbial filaments inside stromatolites. AMD systems are hazardous due to physical, chemical, and biological agents, but they also provide biogeochemical sources with which to infer past geochemical conditions on Earth and inform exploration efforts on extraterrestrial surfaces in the future.
Collapse
Affiliation(s)
- Elizabeth Chacon-Baca
- Departamento de Geología, Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo Léon (UANL), Linares, México
| | - Ana Santos
- Department of Applied Geosciences, CCTH-Science and Technology Research Centre, University of Huelva, Huelva, Spain
- Applied Geosciences Research Group (RNM276), Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| | - Aguasanta Miguel Sarmiento
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Ana Teresa Luís
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- GeoBioTec Research Unit, Department of Geosciences, University of Aveiro, Aveiro, Portugal
| | - Maria Santisteban
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Juan Carlos Fortes
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - José Miguel Dávila
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Jesus M Diaz-Curiel
- Departamento de Geología, Escuela Técnica Superior de Ingenieros de Minas, Madrid, Spain
| | - Jose Antonio Grande
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| |
Collapse
|
46
|
Gao K, Hu Y, Guo C, Ke C, Lu G, Dang Z. Mobilization of arsenic during reductive dissolution of As(V)-bearing jarosite by a sulfate reducing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123717. [PMID: 33254757 DOI: 10.1016/j.jhazmat.2020.123717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
Microbial sulfidization of arsenic (As)-bearing jarosite involves complex processes and is yet to be fully elucidated. Here, we investigated the behavior of As during reductive dissolution of As(V)-bearing jarosite by a pure sulfate reducing bacterium with or without dissolved SO42- amendment. Changes of aqueous chemistry, mineralogical characteristics, and As speciation were examined in batch experiments. The results indicated that jarosite was mostly replaced by mackinawite in the system with added SO42-. In the medium without additional SO42-, mackinawite, vivianite, pyrite, and magnetite formed as secondary Fe minerals, though 24.55 % of total Fe was in form of an aqueous Fe2+ phase. The produced Fe2+ in turn catalyzed the transformation of jarosite. At the end of the incubation, 41.99 % and 48.10 % of As in the solid phase got released into the aqueous phase in the systems with and without added SO42-, respectively. The addition of dissolved SO42- mitigated the mobilization of As into the aqueous phase. In addition, all As5+ on the solid surface was reduced to As3+ during the microbial sulfidization of As-bearing jarosite. These findings are important for a better understanding of geochemical cycling of elements As, S, and Fe in acid mine drainage and acid sulfate soil environments.
Collapse
Affiliation(s)
- Kun Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Yue Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
47
|
Bao Y, Jin X, Guo C, Lu G, Dang Z. Sulfate-reducing bacterial community shifts in response to acid mine drainage in the sediment of the Hengshi watershed, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2822-2834. [PMID: 32895792 DOI: 10.1007/s11356-020-10248-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Sulfate-reducing bacteria (SRB) are an attractive option for treating acid mine drainage (AMD) and are considered to be of great significance in the natural attenuation of AMD, but the available information regarding the highly diverse SRB community in AMD sites is not comprehensive. The Hengshi River, which is continually contaminated by AMD from upstream mining areas, was selected as a study site for investigation of the distribution, diversity, and abundance of SRB. Overall, high-throughput sequencing of the 16S rRNA and dsrB genes revealed the high diversity, richness, and OTU numbers of SRB communities, suggesting the existence of active sulfate reduction in the study area. Further analysis demonstrated that AMD contamination decreased the richness and diversity of the microbial community and SRB community, and led to spatiotemporal shifts in the overall composition and structure of sediment microbial and SRB communities along the Hengshi watershed. However, the sulfate reduction activity was high in the midstream, even though AMD pollution remained heavy in this area. Spatial distributions of SRB community indicated that species of Clostridia may be more tolerant of AMD contamination than other species, because of their predominance in the SRB communities. In addition, the results of CCA revealed that environmental parameters, such as pH, TS content, and Fe content, can significantly influence total microbial and SRB community structure, and dissolved organic carbon was another important factor structuring the SRB community. This study extends our knowledge of the distribution of indigenous SRB communities and their potential roles in natural AMD attenuation.
Collapse
Affiliation(s)
- Yanping Bao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China
- School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
48
|
Jin D, Wang X, Liu L, Liang J, Zhou L. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123108. [PMID: 32593016 DOI: 10.1016/j.jhazmat.2020.123108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
As the predominant treatment approach of acid mine drainage (AMD), lime neutralization often exhibits inefficiencies since the abundance of iron and sulfate in AMD usually form iron hydroxide and gypsum precipitate coatings on the surface of lime. In this study, a novel approach of biomineralization prior to lime neutralization for treating AMD was proposed, in which iron and sulfate were biologically precipitated as schwertmannite through iron biological reduction-oxidation driven by a culture mixed with Acidiphilium multivorum JZ-6 and Acidithiobacillus ferrooxidans LX5. It was found that only five cycles of iron reduction by A. multivorum JZ-6 followed by iron oxidation by A. ferrooxidans LX5 could remove completely iron and nearly 40% of sulfate in AMD, while non-ferrous metals (Al, Mn, Cu, Ni, and Zn) were hardly removed. Consequently, the amounts of lime required and sludge generated in the subsequent lime neutralization process were reduced by 56% and 68%, respectively. As a result, the content of non-ferrous metals in the sludge was increased by 3.2 folds. The level of Al was increased surprisingly to 19% (wt/wt), a level similar to the commercially valuable bauxite. The novel process of biomineralization prior to lime neutralization provides a sustainable way for AMD treatment.
Collapse
Affiliation(s)
- Decheng Jin
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Liu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Rodrigues C, Núñez-Gómez D, Follmann HVDM, Silveira DD, Nagel-Hassemer ME, Lapolli FR, Lobo-Recio MÁ. Biostimulation of sulfate-reducing bacteria and metallic ions removal from coal mine-impacted water (MIW) using shrimp shell as treatment agent. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122893. [PMID: 33027875 DOI: 10.1016/j.jhazmat.2020.122893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This paper comprises several assays aiming to identify the basis for the bioremediation of mine-impacted water (MIW). To do so, the conditions for build anoxic microcosms for treating this effluent were varied, containing MIW, and a source of chitin, to biostimulate sulfate-reducing bacteria (SRB). The chitin sources were: commercial chitin (CHIT) and shrimp shell (SS), which in addition to chitin, contains CaCO3, and proteins in its composition. The CHIT assays were not successful in sulfate-reduction, even when the pH was increased with CaCO3. However, in all SS assays the SRB development was successful (85% sulfate removal for assay 3), including the metal-free (MF-SS) assay (75% for assay 5). High-throughput sequencing analysis revealed the structure of bacterial community in the SS assay: the most abundant genera were Clostridium and Klebsiella, both fermentative and chitinase producers; a few SRB from the genera Desulfovibrio and Desulfosporosinus were also detected. In the MF-SS assay, Desulfovibrio genuswas detected but Comamonas was dominant. It could be deduced that SS is a suitable substrate for SRB development, but CHIT is not. The sulfate-reduction process was provided by the cooperation between fermentative/chitinase-producer bacteria together with SRB, which leads to efficient MIW treatment, removing sulfate and metallic ions.
Collapse
Affiliation(s)
- Caroline Rodrigues
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Dámaris Núñez-Gómez
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Hioná V Dal Magro Follmann
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Daniele D Silveira
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Maria Eliza Nagel-Hassemer
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - Flávio R Lapolli
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| | - María Ángeles Lobo-Recio
- Department of Environmental Engineering, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil; Department of Energy and Sustainability, UFSC, 88906-072, Araranguá, SC, Brazil.
| |
Collapse
|
50
|
Huang Z, Jiang L, Wu P, Dang Z, Zhu N, Liu Z, Luo H. Leaching characteristics of heavy metals in tailings and their simultaneous immobilization with triethylenetetramine functioned montmorillonite (TETA-Mt) against simulated acid rain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115236. [PMID: 32721775 DOI: 10.1016/j.envpol.2020.115236] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
For further understanding leaching characteristics of heavy metals in tailings and better immobilization on heavy metals against acid rain, batch experiments were conducted. The leaching results of Cu(II), Zn(II), Cd(II) and Mn(II) can be well fit by second-order kinetics equation, and Pb(II) can be well fit by two-constant equation. The leaching intensity of heavy metals in tailings was ranged as: Mn(II)> Cu(II)> Cd(II)> Zn(II)> Pb(II). Triethylenetetramine functioned montmorillonite (TETA-Mt) was successfully synthesized and can obtain simultaneous immobilization effect compared with Mt and TETA, and immobilization rates on Cu(II), Cd(II), Mn(II) and Zn(II) can reach above 90%, the immobilization rate on Pb(II) can reach more than 75%. The mechanisms for efficient immobilization of heavy metals on TETA-Mt included buffering and adsorption abilities. The mechanism for TETA-Mt adsorption of heavy metals included physical absorption, chelation and chemical sedimentation. The results showed that TETA-Mt can be applied to effective immobilization of heavy metals in tailings and efficient remediation of acid mine drainage (AMD) in acid rain area.
Collapse
Affiliation(s)
- Zhiyan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Lu Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zehua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|