1
|
Yang W, Shi M, Zhao T, Xu Z, Chu W. Unseen streams tracing emerging contaminants from stormwater to surface water: A brief review. J Environ Sci (China) 2025; 155:96-110. [PMID: 40246520 DOI: 10.1016/j.jes.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 04/19/2025]
Abstract
Emerging contaminants (ECs) have raised global concern due to their adverse effect on ecosystems and human health. However, the occurrence and transport of ECs in stormwater remain unclear. The impact of ECs from stormwater on surface water quality and ecosystem health is also poorly documented. In this review, we examined the variations in EC concentrations in surface water resulting from stormwater. During the wet weather, the concentrations of most investigated ECs, e.g., microplastics, per- and polyfluoroalkyl substances, and vehicle-related compounds, significantly increase in surface water, indicating that stormwater may be a critical source of these contaminants. Furthermore, the potential pathways of ECs from stormwater enter surface water are outlined. Studies demonstrate that surface runoff and combined sewer overflows are important pathways for ECs, with discharges comparable to or exceeding those from wastewater treatment plants. Illicit connection also plays an important part in elevated EC concentrations in surface water. Overall, our findings underscore the importance of stormwater as a source for ECs in surface waters, and urge for increased emphasis on, and reinforcement of, stormwater monitoring and control measures to minimize the transport of ECs into receiving water bodies.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Minghao Shi
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; Zhejiang Heda Technology, Co., Ltd., Jiaxing 314000, China; ZENNER Metering Technology (Shanghai) Ltd., Shanghai 201700, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Myeong S, Lee YY, Yun J. Optimization and Bioreactor Scale-Up of Cellulase Production in Trichoderma sp. KMF006 for Higher Yield and Performance. Int J Mol Sci 2025; 26:3731. [PMID: 40332326 PMCID: PMC12027645 DOI: 10.3390/ijms26083731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
This study optimized operating parameters to enhance cellulase production and evaluated scale-up feasibility in submerged fermentation (SmF) using Trichoderma sp. KMF006. Flask-scale experiments assessed the effects of Avicel:cellulose ratios (4:0-0:4), agitation speeds (150-210 rpm), and turbulence (baffled vs. non-baffled flasks), with optimized conditions applied to a 10 L bioreactor. A 3:1 Avicel:cellulose ratio (A3C1) significantly accelerated cellulase production, reaching peak activity 6 days earlier than Avicel alone. An agitation speed of 180 rpm was optimal, balancing enzyme activity and energy efficiency. Turbulence enhanced cellulase yields, with baffled flasks increasing EG, BGL, and CBH activities 19.9-, 6.2-, and 8.9-fold, respectively, compared to the control. Biochar further improved cellulase production but only under turbulent conditions, demonstrating a synergistic effect. At the bioreactor scale, the A3-180_Imp (A3C1, 180 rpm, impeller-induced turbulence) achieved the highest enzymatic activity (33.60 U/mL EG, 3.46 U/mL BGL, and 0.63 U/mL CBH). The filter paper unit (FPU) was 84 FPU/mL, a two-fold increase compared to the control. However, excessive turbulence at 210 rpm reduced enzyme stability, emphasizing the importance of balancing shear stress. These findings provide a systematic framework for optimizing SmF conditions, highlighting the significance of balancing hydrodynamic conditions for efficient cellulase production at an industrial scale.
Collapse
Affiliation(s)
| | | | - Jeonghee Yun
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea; (S.M.); (Y.-Y.L.)
| |
Collapse
|
3
|
Beryani A, Flanagan K, You S, Forsberg F, Viklander M, Blecken GT. Critical field evaluations of biochar-amended stormwater biofilters for PFAS and other organic micropollutant removals. WATER RESEARCH 2025; 281:123547. [PMID: 40179730 DOI: 10.1016/j.watres.2025.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Biochar is often promoted as an ideal amendment for stormwater biofilters; however, its effectiveness has rarely been tested under field conditions. This study evaluates the impact of biochar addition on the removal of organic micropollutants (OMPs) in field-scale biofilters operating under real-world conditions for the first time. The research comprised four vegetated biofilter facilities (3 - 5 years old), two without and two with 2.1 wt. % (10 vol. %) biochar amendment. Stormwater and filter material samples from various locations after four years of operation were analyzed for a wide range of common and emerging OMPs found in urban runoff. Unlike hydrophobic OMPs (hydrocarbons, polychlorinated biphenyls, and di(2-ethylhexyl) phthalate), the investigated biofilters demonstrated low, or inconsistent, removal of hydrophilic and slow-adsorbing OMPs like bisphenol A, monobutyltin, and per-fluoroalkyl substances (PFASs). Although the physiochemical properties of biochar were well-adapted to pollutant removal, biochar amendment did not significantly improve OMP removal when compared with the status quo. This can be attributed to several field conditions and suboptimal design interfering with the biochar's sorption capacity, namely, the large particle size (D50 ∼4 mm) and low quantity of biochar, high levels of competing agents (i.e., dissolved oxygen carbon (DOC) and cations), co-contaminants in stormwater, limited contact time, biochar pore blockage (e.g., by DOC molecules and sediments/minerals), diminished biochar surface porosity, and sometimes increased removal uncertainty due to low influent concentrations. Our findings demonstrated the complexities associated with applying biochar for stormwater treatment. Further research on biochar-specific biofilter designs is needed to optimize the sorption potential of this material under field conditions.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Kelsey Flanagan
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Shujie You
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Fredrik Forsberg
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Maria Viklander
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
4
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1139-1166. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
5
|
Haque MT, Robles MEL, Vispo C, Oh Y, Kim LH. Evaluating factors affecting soil organic carbon retention in sustainable stormwater nature - based technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123370. [PMID: 39566214 DOI: 10.1016/j.jenvman.2024.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Low impact development (LID) are prominent type of vegetated stormwater infrastructure that provides various ecosystem services, such as biodiversity, carbon storage, and improvement in air quality. This study investigated six LID technologies to assess SOC retention and factors influencing accumulation. Soil samples (0-20 cm depth) were analyzed using the Walkley-Black method, specifically focusing on wet oxidation. SOC stocks ranged from 18.5 to 66.3 t C/ha in the inflow and 18.6 to 79.1 t C/ha in the outflow, with SCW and TBF showing higher SOC due to root turnover, stormwater runoff, and media composition. This study found that vegetation and impervious catchments significantly influenced SOC levels. Trees exhibited higher SOC due to their extensive root systems and longer life cycles. Roads and parking lots had higher SOC from plant debris and hydrocarbons in stormwater runoff. SOC also varied seasonally, peaking in spring due to photosynthesis and decreasing in summer and autumn from increased microbial respiration. A complex relationship between SOC and soil physico-chemeical perameters were also investigated, with moisture content and total nitrogen being critical factors for carbon stocks. Overall, the results from this study are seen as beneficial in optimizing the design guidelines for LID technologies for carbon sequestration and green space expansion in urban areas.
Collapse
Affiliation(s)
- Md Tashdedul Haque
- Department of Civil and Environmental Engineering, Kongju National University, Chungnamdo, South Korea
| | - Miguel Enrico L Robles
- Department of Civil and Environmental Engineering, Kongju National University, Chungnamdo, South Korea
| | - Chiny Vispo
- Department of Civil and Environmental Engineering, Kongju National University, Chungnamdo, South Korea
| | - Yugyeong Oh
- Department of Civil and Environmental Engineering, Kongju National University, Chungnamdo, South Korea
| | - Lee-Hyung Kim
- Department of Civil and Environmental Engineering, Kongju National University, Chungnamdo, South Korea.
| |
Collapse
|
6
|
Fu X, Liu J, Zhang X, Liu Y, Wu T, Lin X. High-performance removal of methylene blue dye using porous lignin extracted from sugarcane bagasse by deep eutectic solvent. Int J Biol Macromol 2024; 279:135470. [PMID: 39250998 DOI: 10.1016/j.ijbiomac.2024.135470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
This study evaluated the ability of triethyl benzyl ammonium chloride/lactic acid deep eutectic solvent extracted lignin (TEBAC/LA-DES-L) to adsorb methylene blue (MB) without additional functional group modification. The structure and morphology of TEBAC/LA-DES-L were characterized using SEM, BET, FT-IR, and TGA techniques. Various factors influencing MB adsorption, such as extraction temperature, solution pH, adsorbent dose, initial MB concentration, adsorption time, and reaction temperature, were investigated. The Redlich-Peterson isotherm displayed a good fit for the experimental data, with a maximum adsorption capacity of 85.16 mg/g. Kinetic analysis suggested that the adsorption process followed the pseudo-second-order model, with adsorption occurring in <100 min on DES-L-4 h. The mechanism of MB adsorption on DES-L-4 h was attributed to electrostatic attraction, hydrophobic interactions, and hydrogen bonding forces. Overall, DES-L-4 h demonstrated high adsorption capacity and rapid adsorption rate, making it a promising adsorbent for effectively removing cationic dyes from wastewater.
Collapse
Affiliation(s)
- Xinyuan Fu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Jingke Liu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xiaodong Zhang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Yao Liu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Ting Wu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
7
|
Wiener EA, Ewald JM, LeFevre GH. Fungal diversity and key functional gene abundance in Iowa bioretention cells: implications for stormwater remediation potential. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1796-1810. [PMID: 39192758 DOI: 10.1039/d4em00275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Stormwater bioretention cells are green stormwater infrastructure systems that can help mitigate flooding and remove contaminants. Plants and bacteria improve nutrient removal and degrade organic contaminants; however, the roles of fungi in bioretention cells are less known. Although mycorrhizal fungi aid in plant growth/improve nutrient uptake, there is a notable lack of research investigating fungal diversity in bioretention cells. Other types of fungi could benefit bioretention cells (e.g., white rot fungi degrade recalcitrant contaminants). This study addresses the knowledge gap of fungal function and diversity within stormwater bioretention cells. We collected multiple soil samples from 27 different bioretention cells in temperate-climate eastern Iowa USA, characterized soil physicochemical parameters, sequenced the internal transcribed spacer (ITS) amplicon to identify fungal taxa from extracted DNA, and measured functional gene abundances for two fungal laccases (Cu1, Cu1A) and a fungal nitrite reductase gene (nirKf). Fungal biodegradation functional genes were present in bioretention soils (mean copies per g: 7.4 × 105nirKf, 3.2 × 106Cu1, 4.0 × 108Cu1A), with abundance of fungal laccase and fungal nitrite reductase genes significantly positively correlated with soil pH and organic matter (Pearson's R: >0.39; rho < 0.05). PERMANOVA analysis determined soil characteristics were not significant explanatory variables for community composition (beta diversity). In contrast, planting specifications significantly impacted fungal diversity; the presence/absence of a few planting types and predominant vegetation type in the cell explained 89% of variation in fungal diversity. These findings further emphasize the importance of plants and media as key design parameters for bioretention cells, with implications for fungal bioremediation of captured stormwater contaminants.
Collapse
Affiliation(s)
- Erica A Wiener
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Jessica M Ewald
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Srivastav AL, Rani L, Sharda P, Patel A, Patel N, Chaudhary VK. Sustainable biochar adsorbents for dye removal from water: present state of art and future directions. ADSORPTION 2024; 30:1791-1804. [DOI: 10.1007/s10450-024-00522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 01/05/2025]
|
9
|
Shang Q, Chi J. Mechanistic insight into the effects of interaction between biochar and soil with different properties on phenanthrene sorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121961. [PMID: 39067347 DOI: 10.1016/j.jenvman.2024.121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Soil composition varies considerably in nature, so it is vital to investigate the mechanism of the effect of various soil parameters on biochar sorption capacity. In this study, two biochars (W4 and W7) were derived from wheat straw at temperatures of 400 and 700 °C and were incubated with three different soils. Changes in biochar surface features by aging in the soils and the consequent impact on phenanthrene sorption were examined. The results showed that the effect of adding biochar on phenanthrene sorption capacity (Koc) varied by soil. When biochar was freshly mixed with soil, the Koc value in soil with higher clay content was more dramatically altered by biochar, which is due to clay particles adhering to the biochar surface. Moreover, the Koc value was significantly decreased by the addition of W4 but increased by the addition of W7 in general. After aging, most of the Koc value decreased. The greatest decrease in Koc value was observed in biochar and soil composed with the highest clay content for W4 (24-63%), as well as soil composed with the highest organic matter content for W7 (46-64%). This is because the surface polarity and micropores of biochar dropped the most rapidly in these mixes, resulting in a significant decrease in hydrophobic and pore-filling properties. The results revealed that the impact of biochar-soil interactions on phenanthrene sorption is related to not only biochar properties but also soil clay particles, soil organic matter content and pH. The findings of the study can be utilized to assess the efficacy of biochar application in soil remediation for various features.
Collapse
Affiliation(s)
- Qiongqiong Shang
- Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, PR China.
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
10
|
Zhang K, Zheng Z, Mutzner L, Shi B, McCarthy D, Le-Clech P, Khan S, Fletcher TD, Hancock M, Deletic A. Review of trace organic chemicals in urban stormwater: Concentrations, distributions, risks, and drivers. WATER RESEARCH 2024; 258:121782. [PMID: 38788526 DOI: 10.1016/j.watres.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Urban stormwater, increasingly seen as a potential water resource for cities and towns, contains various trace organic chemicals (TrOCs). This study, conducted through a comprehensive literature review of 116 publications, provides a detailed report on the occurrence, concentration distribution, health, and ecological risks of TrOCs, as well as the impact of land use and rainfall characteristics on their concentrations. The review uncovers a total of 629 TrOCs detected at least once in urban stormwater, including 228 pesticides, 132 pharmaceutical and personal care products (PPCPs), 29 polycyclic aromatic hydrocarbons (PAHs), 30 per- and polyfluorinated substances (PFAS), 28 flame retardants, 24 plasticizers, 22 polychlorinated biphenyls (PCBs), nine corrosion inhibitors, and 127 other industrial chemicals/intermediates/solvents. Concentration distributions were explored, with the best fit being log-normal distribution. Risk assessment highlighted 82 TrOCs with high ecological risk quotients (ERQ > 1.0) and three with potential health risk quotients (HQ > 1.0). Notably, 14 TrOCs (including six PAHs, five pesticides, three flame-retardants, and one plasticizer) out of 68 analyzed were significantly influenced by land-use type. Relatively weak relationships were observed between rainfall characteristics and pollutant concentrations, warranting further investigation. This study provides essential information about the occurrence and risks of TrOCs in urban stormwater, offering valuable insights for managing these emerging chemicals of concern.
Collapse
Affiliation(s)
- Kefeng Zhang
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Kensington, NSW 2052, Australia.
| | - Zhaozhi Zheng
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Lena Mutzner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Baiqian Shi
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| | - David McCarthy
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia; Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Stuart Khan
- School of Civil Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Tim D Fletcher
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Richmond, VIC 3121, Australia
| | - Marty Hancock
- Water Research Australia, Adelaide, SA 5000, Australia
| | - Ana Deletic
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
11
|
Pritchard JC, Hawkins KM, Cho YM, Spahr S, Higgins CP, Luthy RG. Flow rate and kinetics of trace organic contaminants removal in black carbon-amended engineered media filters for improved stormwater runoff treatment. WATER RESEARCH 2024; 258:121811. [PMID: 38833811 DOI: 10.1016/j.watres.2024.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Urban stormwater runoff is considered a key component of future water supply portfolios for water-stressed cities. Beneficial use of runoff, such as capture for recharge of drinking water aquifers, relies on improved stormwater treatment. Many dissolved constituents, including metals and trace organic contaminants (TrOCs) such as hydrophilic pesticides and poly- and perfluoroalkyl substances (PFASs), are of concern due to their toxicity, persistence, prevalence in stormwater runoff, and poor removal in conventional stormwater control measures. This study explores the operational flow rate limitations of black carbon (BC)-amended engineered media filters for removal of a wide suite of dissolved metals and TrOCs and provides validation for a previously developed predictive TrOC transport model. Column experiments were conducted with face velocities of 40 and 60 cm h-1 to assess Douglas Fir-based biochar and regenerated activated carbon (RAC) filter performance in light of media-contaminant removal kinetic limitations. This study found that increasing the face velocity in BC-amended filters to 40 and 60 cm h-1, which are representative of field conditions, decreased the removal of total suspended solids, turbidity, dissolved hydrophilic TrOCs, and PFASs when expressed as volume treated relative to previous studies conducted at 20 cm h-1. Dissolved metals and hydrophobic TrOCs removal were not substantially affected by the increased flow rates. A predictive 1-d intraparticle pore diffusion-limited sorption model with sorption and effective tortuosity parameters determined previously from experiments conducted at 20 cm h-1 was validated for these higher flow rates. This work provides insights to the kinetic limitations of contaminant removal within biochar and RAC filters and implications for stormwater filter design and operation.
Collapse
Affiliation(s)
- James Conrad Pritchard
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Kathleen Mills Hawkins
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Yeo-Myoung Cho
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Stephanie Spahr
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Christopher P Higgins
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Richard G Luthy
- Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, USA; Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Rullander G, Lorenz C, Strömvall AM, Vollertsen J, Dalahmeh SS. Bark and biochar in horizontal flow filters effectively remove microplastics from stormwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124335. [PMID: 38848957 DOI: 10.1016/j.envpol.2024.124335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 μm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by μFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 μm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.
Collapse
Affiliation(s)
- Gabriella Rullander
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden.
| | - Claudia Lorenz
- Environmental Dynamics, Department of Science and Environment, Roskilde University, Universitetsvej 1, 11.2 DK-4000, Roskilde, Denmark
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jes Vollertsen
- Aalborg University, Department of The Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| | - Sahar S Dalahmeh
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden
| |
Collapse
|
13
|
Buates J, Sun Y, He M, Mohanty SK, Khan E, Tsang DCW. Performance of wood waste biochar and food waste compost in a pilot-scale sustainable drainage system for stormwater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123767. [PMID: 38492753 DOI: 10.1016/j.envpol.2024.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Sustainable drainage system (SuDS) for stormwater reclamation has the potential to alleviate the water scarcity and environmental pollution issues. Laboratory studies have demonstrated that the capacity of SuDS to treat stormwater can be improved by integrating biochar and compost in the filter media, whereas their performance in scaled-up applications is less reported. This study examines the effectiveness of a pilot-scale SuDS, bioswale followed by bioretention, amended with wood waste biochar (1, 2, and 4 wt.%) and food waste compost (2 and 4 wt.%) to simultaneously remove multiple pollutants including nutrients, heavy metals, and trace organics from the simulated stormwater. Our results confirmed that SuDS modified with both biochar (2 wt.%) and compost (2 wt.%) displayed superior water quality improvement. The system exhibited high removal efficiency (> 70%) for total phosphorus and major metal species including Ni, Pb, Cd, Cr, Cu, and Zn. Total suspended solids concentration was approaching the detection limit in the effluent, thereby confirming its capability to reduce turbidity and particle-associated pollutants from stormwater. Co-application of biochar and compost also moderately immobilized trace organic contaminants such as 2,4-dichlorophenoxyacetic acid, diuron, and atrazine at field-relevant concentrations. Moreover, the soil amendments amplified the activities of enzymes including β-D-cellobiosidase and urease, suggesting that the improved soil conditions and health of microbial communities could possibly increase phyto and bioremediation of contaminants accumulated in the filter media. Overall, our pilot-scale demonstration confirmed that the co-application of biochar and compost in SuDS can provide a variety of benefits for soil/plant health and water quality.
Collapse
Affiliation(s)
- Jittrera Buates
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- School of Agriculture, Sun Yat-sen University, Guangdong, China
| | - Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California Los Angeles, United States
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 89154, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
14
|
Alfei S, Pandoli OG. Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario. TOXICS 2024; 12:245. [PMID: 38668468 PMCID: PMC11054495 DOI: 10.3390/toxics12040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Biochar (BC) is a carbonaceous material obtained by pyrolysis at 200-1000 °C in the limited presence of O2 from different vegetable and animal biomass feedstocks. BC has demonstrated great potential, mainly in environmental applications, due to its high sorption ability and persistent free radicals (PFRs) content. These characteristics enable BC to carry out the direct and PFRs-mediated removal/degradation of environmental organic and inorganic contaminants. The types of PFRs that are possibly present in BC depend mainly on the pyrolysis temperature and the kind of pristine biomass. Since they can also cause ecological and human damage, a systematic evaluation of the environmental behavior, risks, or management techniques of BC-derived PFRs is urgent. PFRs generally consist of a mixture of carbon- and oxygen-centered radicals and of oxygenated carbon-centered radicals, depending on the pyrolytic conditions. Here, to promote the more productive and beneficial use of BC and the related PFRs and to stimulate further studies to make them environmentally safer and less hazardous to humans, we have first reviewed the most common methods used to produce BC, its main environmental applications, and the primary mechanisms by which BC remove xenobiotics, as well as the reported mechanisms for PFR formation in BC. Secondly, we have discussed the environmental migration and transformation of PFRs; we have reported the main PFR-mediated application of BC to degrade inorganic and organic pollutants, the potential correlated environmental risks, and the possible strategies to limit them.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Omar Ginoble Pandoli
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- Department of Chemistry, Pontifical Catholic University, Rua Marquês de São Vincente 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
15
|
Panghal V, Singh A, Arora D, Kumar S. Biochar-modified constructed wetlands using Eclipta alba as a plant for sustainable rural wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17299-17310. [PMID: 38340301 DOI: 10.1007/s11356-024-32144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Constructed wetlands (CWs) provide a low-cost, effective solution for domestic wastewater treatment in developing nations compared to costly traditional wastewater systems. Biochar which is an organic material created by pyrolysis offers straightforward, affordable methods for treating wastewater and lowering carbon footprint by acting as a substrate in CWs. Batch mode biochar-amended subsurface flow (SSF) CWs planted with Eclipta alba (L) with a hydraulic retention time (HRT) of 3 days were used for the treatment of rural domestic wastewater in the present investigation. Two control CWs, without plants (C1) and with plants (C2), and five different amendments of biochar 5% (B5), 10% (B10), 15% (B15), 20% (B20) and 25% (B25) in ratio with soil were set up to check the treatment efficiency of CWs. Removal efficiency (RE%) of the CWs for parameters namely chemical oxygen demand (COD), biochemical oxygen demand (BOD), phosphate (PO42-), sulphate (SO42-), nitrate (NO3-) and total Kjeldhal nitrogen (TKN) was determined using standard methods. Removal efficiency of 93%, 91%, 74% and 77% was observed for BOD, COD, nitrate and sulphate, respectively, in the B25 amendment at HRT 72 h. The highest removal of TKN (67%) was also observed in the B25 amendment at HRT of 72 h. No stable trend for the removal of phosphates was found during the study, and maximum removal was observed at HRT 48 h; afterward, phosphate was slightly inclined with the increasing HRT. The findings of one-way ANOVA using Tukey's test show significant variations (p < 0.05) in the removal efficiencies of pollutants after 72 h between two controls (C1 and C2) and various biochar amendments in CWs, indicating a significant role of the wetland plants and concentration of the biochar as substrate. Biochar shows a positive impact on the removal of organic pollutants and nitrates. Hence, biochar-amended CWs can be a sustainable way of treating rural domestic wastewater.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
16
|
Yang J, Guo Y, Tam VW, Shen A, Qin X, Tan J, Zhang J, Zhang C. Research on the purification efficiency and mechanism for road runoff pollutants in pervious concrete with recycled aggregates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120180. [PMID: 38308988 DOI: 10.1016/j.jenvman.2024.120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The use of recycled aggregate (RA) in pervious concrete (PC) is a green approach that can effectively mitigate urban waterlogging, excessive RA, and runoff pollution, thereby enhancing the urban ecological environment. This article focuses on the long-term purification efficiency of runoff pollutants by PC at different porosities and RA dosages. Moreover, the purification mechanism of pollutants by recycled aggregate pervious concrete (RAPC) was revealed utilizing particle size analysis, microstructure, and elemental analysis. Finally, the recovery effects of different maintenance approaches on the purification capacity of RAPC were explored. The results indicate that an increase in the RA dosage reduced the effective porosity of PC, thereby decreasing the permeability of RAPC. In addition, PC with a lower porosity demonstrated a slightly greater purification effectiveness for pollutants. However, the utilization of RA significantly enhanced the purification capacity of PC for various pollutants, primarily by leveraging advantages in terms of pore structure, micromorphology, and surface chemical composition. Additionally, RAPC exhibited nearly 100 % retention effectiveness for particles larger than 68.95 μm but relatively lower purification efficiency for particles ranging from 1.541 to 17.11 μm. In particular, it displayed the poorest purification performance for particles with a diameter of 6.396 μm. The surface of RAPC's pore channels exhibited a loose state with high porosity and appeared rough and uneven with numerous pits and grooves. RAPC had a larger surface area and contained more components, such as SiO2, CaCO3, and Al2O3, than regular PC. Therefore, RAPC possessed a higher purification capacity. High-pressure flushing (HPF) and sodium citrate flushing (SCF) under different maintenance frequencies significantly contributed to the recovery of the purification efficiency of RAPC. However, overall, a lower maintenance frequency led to a less favorable recovery effect. Furthermore, SCF had a better recovery effect than HPF.
Collapse
Affiliation(s)
- Jingyu Yang
- Key Laboratory for Special Region Highway Engineering, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Yinchuan Guo
- Key Laboratory for Special Region Highway Engineering, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Vivian Wy Tam
- School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag, 1797, Penrith, NSW, 2751, Australia.
| | - Aiqin Shen
- Key Laboratory for Special Region Highway Engineering, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Xiao Qin
- School of Transportation and Civil Engineering and Architecture, Foshan University, Foshan, 528000, Guangdong, China.
| | - Jingjing Tan
- Key Laboratory for Special Region Highway Engineering, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Jianfeng Zhang
- Key Laboratory for Special Region Highway Engineering, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Chong Zhang
- Key Laboratory for Special Region Highway Engineering, Ministry of Education, Chang'an University, Xi'an, 710064, Shaanxi, China.
| |
Collapse
|
17
|
Kong Z, Song Y, Xu M, Yang Y, Wang X, Ma H, Zhi Y, Shao Z, Chen L, Yuan Y, Liu F, Xu Y, Ni Q, Hu S, Chai H. Multi-media interaction improves the efficiency and stability of the bioretention system for stormwater runoff treatment. WATER RESEARCH 2024; 250:121017. [PMID: 38118254 DOI: 10.1016/j.watres.2023.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Bioretention systems are one of the most widely used stormwater control measures for urban runoff treatment. However, stable and effective dissolved nutrient treatment by bioretention systems is often challenged by complicated stormwater conditions. In this study, pyrite-only (PO), pyrite-biochar (PB), pyrite-woodchip (PW), and pyrite-woodchip-biochar mixed (M) bioretention systems were established to study the feasibility of improving both stability and efficiency in bioretention system via multi-media interaction. PB, PW, and M all showed enhanced dissolved nitrogen and/or phosphorus removal compared to PO, with M demonstrating the highest efficiency and stability under different antecedent drying durations (ADD), pollutant levels, and prolonged precipitation depth. The total dissolved nitrogen and dissolved phosphorus removal in M ranged between 64%-86% and 80%-95%, respectively, with limited organic matter and iron leaching. Pore water, microbial community, and material analysis collectively indicate that pyrite, woodchip, and biochar synergistically facilitated multiple nutrient treatment processes and protected each other against by-product leaching. Pyrite-woodchip interaction greatly increased nitrate removal by facilitating mixotrophic denitrification, while biochar further enhanced ammonium adsorption and expanded the denitrification area. The Fe3+ generated by pyrite aerobic oxidation was adsorbed on the biochar surface and potentially formed a Fe-biochar composite layer, which not only reduced Fe3+-induced pyrite excessive oxidation but also potentially increased organic matter adsorption. Fe (oxyhydr)oxides intermediate product formed by pyrite oxidation, in return, controlled the phosphorus and organic matter leaching from biochar and woodchip. Overall, this study demonstrates that multi-media interaction may enable bioretention systems to achieve stable and effective urban runoff treatment.
Collapse
Affiliation(s)
- Zheng Kong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mei Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yan Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xinyue Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiyu Shao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yunsong Yuan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fujian Liu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Yanhong Xu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Qichang Ni
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
18
|
Esfandiar N, Suri R, McKenzie ER. Evaluation of sorbent amendments used with stormwater management practices to remove contaminants: Impacts of rainfall intensity and antecedent dry periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167766. [PMID: 37848142 DOI: 10.1016/j.scitotenv.2023.167766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
For a comprehensive evaluation of the suitability and efficiency of soil amendments in bioretention systems, it is crucial to investigate the capability of amendments for simultaneously serving three important functions under intermittent and variable flow conditions: removing a wide range of contaminants, supporting plant health, and maintaining media infiltration rate. However, most studies have not considered these important factors and conditions simultaneously, which may overestimate or underestimate the bioretention performance. In this study, a long-term vegetated column study was conducted to investigate the ability of various sorbent amendments- coconut coir fiber (CCF), blast furnace slag (BFS), and waste tire crumb rubber (WTCR) -for removal of metals, nutrients, and polycyclic aromatic hydrocarbons (PAHs) from stormwater. The experiments were performed under intermittent flow conditions considering different runoff intensities and antecedent dry periods (ADP). The long-term effect of bioretention usage on plant health and media infiltration rate was also investigated. All amended and unamended columns were able to remove >99 % of influent metals, except Cu, over the 7-month experiment period with different rain intensities and dry periods; modest effluent Cu concentrations occurred with higher rainfall. The performance of different media for removing PAHs such as naphthalene and acenaphthylene varied with the rain intensity. The BFS-amended media had high phosphate removal capacity (>90 %) under tested conditions. In all columns, nitrate removal was notably affected by changes in stormwater intensity and ADP, with high nitrate removal during heavy rainfall. Over the entire experiment, all media had good infiltration rate within the locally acceptable range (1-25 cm/h). The high iron and aluminum contents of BFS adversely affected the plant health in BFS-amended media. Overall, this study identifies the opportunities and challenges associated with the usage of bioretention amendments, and improves awareness among bioretention designers to consider seasonal effect on the performance of bioretention systems.
Collapse
Affiliation(s)
- Narges Esfandiar
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Erica R McKenzie
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
19
|
Akpinar D, Chowdhury S, Tian J, Guo M, Barton S, Imhoff PT. Understanding a wood-derived biochar's impact on stormwater quality, plant growth, and survivability in bioretention soil mixtures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119359. [PMID: 37871550 DOI: 10.1016/j.jenvman.2023.119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Bioretention systems are planted media filters used in stormwater infrastructure. Maintaining plant growth and survival is challenging because most designs require significant sand. Conventional bioretention soil media (BSM) might be augmented with biochar to make the BSM more favorable to plants, to improve nutrient removal efficiency, and enhance plant survivability during drought while replacing compost/mulch components that have been linked to excess nutrient export. Pots with BSMs representing high and moderate sand content were amended with wood biochar, planted with switchgrass, and subjected to weekly storms for 20 weeks, followed by a 10-week drought. After 20 weeks, 4% biochar amendment significantly increased stormwater infiltration (67%) and plant available water (52%) in the high sand content BSM (NC mix, which meets requirements for the state of North Carolina (US) and contains no compost/mulch), and these favorable hydraulic properties were not statistically different from a moderate sand content, biochar-free BSM with compost/mulch (DE mix, which meets requirements for state of Delaware (US)). While biochar amendment improved plant height (25%), the number of shoots (89%), and total biomass (70%) in the NC mix, these parameters were still less than those in the biochar-free DE mix containing compost/mulch. TN and NO3-1 removal were also improved (28-35%) by biochar amendment to NC mix, and the resulting TN and TP loadings to groundwater were 10 and 7 times less, respectively than biochar-free DE mix with compost/mulch. During the drought period, biochar amendment increased the time to switchgrass wilting by ∼8 days in the NC mix but remained 40% less than the biochar-free DE mix. A recalcitrant carbon-like biochar mitigates some of the deleterious effects of high sand content BSM on plants, and where nutrient pollution is a concern, replacement of compost/mulch with wood biochar in BSM may be desired.
Collapse
Affiliation(s)
- Derya Akpinar
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA
| | - Sraboni Chowdhury
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA; Department of Civil and Environmental Engineering, University of Iowa, IA, 52242, Iowa City, USA
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Mingxin Guo
- Department of Agriculture and Natural Resources, Delaware State University, DE, 19901, Dover, USA
| | - Susan Barton
- Department of Plant and Soil Sciences, University of Delaware, DE, 19716, Newark, USA
| | - Paul T Imhoff
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA.
| |
Collapse
|
20
|
Raoelison OD, Das TK, Visweswaran A, Guyett K, Spallone S, Ramos R, Merrifield R, Dittrich TM, Mohanty SK. Do drinking water treatment residuals underperform in the presence of compost in stormwater media filters? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166635. [PMID: 37647961 DOI: 10.1016/j.scitotenv.2023.166635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Drinking water treatment residuals (WTR), a waste-derived product, are often recommended to use as an amendment in stormwater biofilters to enhance their capacity to remove phosphate and microbial pollutants. However, their efficacy has been assumed to remain high in the presence of compost, one of the most common amendments used in biofilters. This study tests the validity of that assumption by comparing the removal capacities of WTR-amended biofilters with and without the presence of compost. Our results show that amending sand with WTR increased E. coli removal by at least 1-log, but the addition of compost in the sand-WTR media lowered the removal capacity by 13 %. Similarly, the addition of WTR to sand improved phosphate removal to nearly 1177 %, but the removal decreased slightly by 8 % when adding compost to the media. The results confirmed that dissolved organic carbon (DOC) leached from the compost could compete for adsorption sites for bacteria and phosphate, thereby lowering WTR's adsorption capacity based on the amount of DOC adsorbed on WTR. Collectively, these results indicate that the stormwater treatment industry should avoid mixing compost with WTR to get the maximum benefits of WTR for bacterial removal and improve the performance lifetime of WTR-amended biofilters.
Collapse
Affiliation(s)
- Onja D Raoelison
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA.
| | - Tonoy K Das
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Ananya Visweswaran
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Keegan Guyett
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Sophia Spallone
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Roxana Ramos
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Rachel Merrifield
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Timothy M Dittrich
- Civil and Environmental Engineering, Wayne State University, Detroit 48202, USA
| | - Sanjay K Mohanty
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA.
| |
Collapse
|
21
|
Lousada ME, Lopez Maldonado EA, Nthunya LN, Mosai A, Antunes MLP, Fraceto LF, Baigorria E. Nanoclays and mineral derivates applied to pesticide water remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104264. [PMID: 37984165 DOI: 10.1016/j.jconhyd.2023.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Although pesticides are vital in agroecosystems to control pests, their indiscriminate use generates innumerable environmental problems daily. Groundwater and surface water networks are the most affected environmental matrices. Since these water basins are mainly used to obtain water for human consumption, it is a challenge to find solutions to pesticide contamination. For these reasons, development of efficient and sustainable remedial technologies is key. Based on their unique properties including high surface area, recyclability, environmental friendliness, tunable surface chemistry and low cost, nanoclays and derived minerals emerged as effective adsorbents towards environmental remediation of pesticides. This study provides a comprehensive review of the use of nanoclays and mineral derivatives as adsorbents for pesticides in water. For this purpose, the characteristics of existing pesticides and general aspects of the relevant clays and minerals are discussed. Furthermore, the study provides insightful discussion on the potential application of nanoclays and their derivatives toward the mitigation of pesticide pollution in the environment. Finally, the outlook and future prospects on nanoclay implications and their environmental implementation are elucidated.
Collapse
Affiliation(s)
- María E Lousada
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Eduardo A Lopez Maldonado
- Faculty of Chemical Sciences and Engineering Autonomous University of Baja California, Parque Internacional Industrial Tijuana, 22424 Tijuana, B.C., Mexico.
| | - Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Alseno Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| | - María Lucia Pereira Antunes
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Estefanía Baigorria
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET - Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10890, Mar del Plata, Buenos Aires 7600, Argentina.
| |
Collapse
|
22
|
Liao W, Halim MA, Kayes I, Drake JAP, Thomas SC. Biochar Benefits Green Infrastructure: Global Meta-Analysis and Synthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15475-15486. [PMID: 37788297 DOI: 10.1021/acs.est.3c04185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Urbanization has degraded ecosystem services on a global scale, and cities are vulnerable to long-term stresses and risks exacerbated by climate change. Green infrastructure (GI) has been increasingly implemented in cities to improve ecosystem functions and enhance city resilience, yet GI degradation or failure is common. Biochar has been recently suggested as an ideal substrate additive for a range of GI types due to its favorable properties; however, the generality of biochar benefits the GI ecosystem function, and the underlying mechanisms remain unclear. Here, we present a global meta-analysis and synthesis and demonstrate that biochar additions pervasively benefit a wide range of ecosystem functions on GI. Biochar applications were found to improve substrate water retention capacity by 23% and enhance substrate nutrients by 12-31%, contributing to a 33% increase in plant total biomass. Improved substrate physicochemical properties and plant growth together reduce discharge water volume and improve discharge water quality from GI. In addition, biochar increases microbial biomass on GI by ∼150% due to the presence of biochar pores and enhanced microbial growth conditions, while also reducing CO2 and N2O emissions. Overall results suggest that biochar has great potential to enhance GI ecosystem functions as well as urban sustainability and resilience.
Collapse
Affiliation(s)
- Wenxi Liao
- Institute of Forestry and Conservation, John H Daniels Faculty of Architecture Landscape and Design, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada
| | - Md Abdul Halim
- Institute of Forestry and Conservation, John H Daniels Faculty of Architecture Landscape and Design, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada
| | - Imrul Kayes
- Institute of Forestry and Conservation, John H Daniels Faculty of Architecture Landscape and Design, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada
| | - Jennifer A P Drake
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, John H Daniels Faculty of Architecture Landscape and Design, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada
| |
Collapse
|
23
|
Zeng S, Kan E. Enhanced Escherichia coli removal from stormwater with bermudagrass-derived activated biochar filtration systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118403. [PMID: 37364494 DOI: 10.1016/j.jenvman.2023.118403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Stormwater treatment and reuse can alleviate water pollution and scarcity while current sand filtration systems showed low treatment performance for stormwater. For enhancing E. coli removal in stormwater, this study applied the bermudagrass-derived activated biochars (BCs) in the BC-sand filtration systems for E. coli removal. Compared with the pristine BC (without activation), the FeCl3 and NaOH activations increased the BC carbon content from 68.02% to 71.60% and 81.22% while E. coli removal efficiency increased from 77.60% to 81.16% and 98.68%, respectively. In all BCs, the BC carbon content showed a highly positive correlation with E. coli removal efficiency. The FeCl3 and NaOH activations also led to the enhancement of roughness of BC surface for enhancing E. coli removal by straining (physical entrapment). The main mechanisms for E. coli removal by BC-amended sand column were found to be hydrophobic attraction and straining. Additionally, under 105-107 CFU/mL of E. coli, final E. coli concentration in NaOH activated BC (NaOH-BC) column was one order of magnitude lower than those in pristine BC and FeCl3 activated BC (Fe-BC) columns. The presence of humic acid remarkably lowered the E. coli removal efficiency from 77.60% to 45.38% in pristine BC-amended sand column while slightly lowering the E. coli removal efficiencies from 81.16% and 98.68% to 68.65% and 92.57% in Fe-BC and NaOH-BC-amended sand columns, respectively. Moreover, compared to pristine BC, the activated BCs (Fe-BC and NaOH-BC) also resulted in the lower antibiotics (tetracycline and sulfamethoxazole) concentrations in the effluents from the BC-amended sand columns. Therefore, for the first time, this study indicated NaOH-BC showed high potential for effective treatment of E. coli from stormwater by the BC-amended sand filtration system compared with pristine BC and Fe-BC.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA; Department of Wildlife, And Natural Resources, Tarleton State University, TX, 76401, USA.
| |
Collapse
|
24
|
Cheng J, Bi J, Gong Y, Cheng X, Yu J, Gan H, Wang R, Wang K. Processes of nitrogen removal from rainwater runoff in bioretention filters modified with ceramsite and activated carbon. ENVIRONMENTAL TECHNOLOGY 2023; 44:3317-3330. [PMID: 35316154 DOI: 10.1080/09593330.2022.2057236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Conventional bioretention filters lack satisfactory performance in nitrogen removal. In this study, we used a mixture of cultivated soil and river sand as the bioretention filter to remove nitrogen pollutants from simulated rainwater runoff. To improve its permeability and nitrogen removal performance, both activated carbon and ceramsite were used as additives. The nitrogen removal processes and its mass accumulation in the modified bioretention filters were studied. The contribution of adsorption and biotransformation processes, together with the effects of percolate rate on nitrogen removal performance was explored. The results showed that an activated carbon layer in the bioretention filters could obviously improve nitrogen removal efficiencies, but its location made no significant difference in nitrogen removal performance. Bioretention filters modified with 20% of ceramsite could achieve the optimal percolate rate and nitrogen removal efficiencies. At given conditions, the average removal efficiencies of ammonium nitrogen (NH3-N), nitrate-nitrogen (NO3-N), and total nitrogen (TN) by the modified bioretention filter reached 80.27%, 41.48%, and 59.45%, respectively. During the leaching processes, organic nitrogen originated in the filter materials can be mineralised into NH3-N, then be denitrified and completely removed in the anaerobic environment under flooding conditions. Biotransformation in the modified bioretention filters caused a reduction of NH3-N removal efficiency by 15.41% and an increase of NO3-N removal efficiency by 31.03%. The modified bioretention filter can withstand a long-term operation. Compared with NO3-N and TN, the pollutant of NH3-N in rainwater runoff is not easy to form a mass accumulation in the modified bioretention filter.Highlights The modified bioretention filter showed high percolation rate and nitrogen removal.Hydraulic residence time is a critical design parameter to achieve nitrogen removal.NH3-N is not easy to form a mass accumulation in the filler media as NO3-N.Biodegradation increased NO3-N removal efficiency by 31.03% at given conditions.
Collapse
Affiliation(s)
- Junrui Cheng
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Junpeng Bi
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Yuemin Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jie Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Rong Wang
- Ningbo Yinzhou Ecological and Environmental Monitoring Station, Ningbo, People's Republic of China
| | - Kan Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
25
|
Lotfi M, Bahram M, Najafi Moghadam P. The study of the removal of penconazole fungicide from surface water using carboxymethyl tragacanth-based hydrogel grafted with poly (acrylic acid-co-acrylamide). Sci Rep 2023; 13:13569. [PMID: 37604865 PMCID: PMC10442386 DOI: 10.1038/s41598-023-40862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
In this study, a polymeric adsorbent based on carboxymethyl tragacanth (CMT) grafted by poly acrylic acid-co-acrylamide (AAc-co-AAm) synthesized by radical polymerization for the first time was used to remove the fungicide penconazole (PEN) or Topas 20% from surface water. The parameters of solution pH, adsorption isotherm, and adsorption kinetics of PEN were studied by the synthetic adsorbent. The surface morphology and functional groups of CMT-g-poly (AAc-co-AAm) were confirmed by XRD, SEM and FT-IR techniques. Adsorption of PEN on CMT-g-poly (AAc-co-AAm) follows the Freundlich and pseudo-second-order models. The significant maximum adsorption capacity of the synthesized polymer was found to be 196.08 mg/g. The synthetic adsorbent had good reproducibility in PEN removal for up to 5 cycles. CMT-g-poly (AAc-co-AAm) is a cost-effective and non-toxic adsorbent for the decontamination of surface water from pesticides.
Collapse
Affiliation(s)
- Magsoud Lotfi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Morteza Bahram
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | | |
Collapse
|
26
|
Dad FP, Khan WUD, Kirkham MB, Bolan N, Tanveer M. Microplastics: a review of their impacts on different life forms and their removal methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86632-86655. [PMID: 37438501 DOI: 10.1007/s11356-023-28513-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
The pollution of microplastics (MPs) is a worldwide major concern, as they have become a major part of our food chain. MPs enter our ecosystem via different pathways, including anthropogenic activities and improper disposal of plastics. The aim of this article is to review the current scientific literature related to MPs and how they affect different life forms on earth. Briefly, MPs induced negative effects on humans are primarily linked with the oxidative stress and disruption in immunity. MPs not only affect the soil chemical and physical properties such as reduction in soil health and productivity but also impose harmful effects on soil microorganisms. Moreover, MP-induced plant growth reduction results from three complementary mechanisms: (i) reduction in root and shoot growth, (ii) reduction in photosynthesis accompanied by higher reactive oxygen species (ROS) production, and (iii) reduction in nutrient uptake via altered root growth. Given the negative effects of MPs on different life forms, it is important to remove or remediate them. We have discussed different MP removal methods including coagulation, membrane filtration technology, biochar, and biological degradation of MPs in soil and wastewater effluents. The use of ozone as ultrafiltration technique has also been shown as the most promising technique for MP removal. Finally, some future research recommendations are also put forward at the end to further enhance our understanding of the MPs induced negative effects on different life forms. The flowchart shows the interaction of MPs from water contaminated with MPs with different parts of the ecosystem and final interaction with human health.
Collapse
Affiliation(s)
- Fiza Pir Dad
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
- Department of Agriculture, Government College University, Lahore, 54000, Pakistan
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
27
|
Putri FK, Hidayah E, Ma'ruf MF. Enhancing stormwater management with low impact development (LID): a review of the rain barrel, bioretention, and permeable pavement applicability in Indonesia. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2345-2361. [PMID: 37186635 PMCID: wst_2023_095 DOI: 10.2166/wst.2023.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Low impact development (LID) is a sustainable land use and planning strategy that aims to minimize the environmental impacts of development. A community can enhance their water resources and create sustainable and resilient neighbourhoods. This approach has demonstrated success in managing stormwater and promoting water reuse globally, however, its suitability in developing countries like Indonesia remains uncertain and requires further investigation. The implementation of LID in developing countries may face several challenges including high density and complex drainage networks, combined sewer usage, clay soil type, irregular housing layouts, community socio-economic characteristics, affordability, cost, and the availability of regulations and policies. With proper planning and site-specific strategies, LID can be implemented effectively in Indonesia. Clear regulations, secured funding source and community-based LID are all essential for successful LID deployment. This paper can be used as a starting point for considering LID implementation in Indonesia and other countries with similar characteristics.
Collapse
Affiliation(s)
- Fidyasari Kusuma Putri
- Department of Civil Engineering, Jember University, Jl. Kalimantan Tegalboto No.37, Jember, Jawa Timur 68121, Indonesia E-mail:
| | - Entin Hidayah
- Department of Civil Engineering, Jember University, Jl. Kalimantan Tegalboto No.37, Jember, Jawa Timur 68121, Indonesia E-mail:
| | - Mokhammad Farid Ma'ruf
- Department of Civil Engineering, Jember University, Jl. Kalimantan Tegalboto No.37, Jember, Jawa Timur 68121, Indonesia E-mail:
| |
Collapse
|
28
|
Fang X, Zhang D, Feng Y, Li X, Ding D, Wang X, Xu Z. Directional regulation and mechanism analysis of the surface properties of hydrothermal carbon by circulating liquid in the hydrothermal carbonization procedure. ENVIRONMENTAL RESEARCH 2023; 229:116003. [PMID: 37127106 DOI: 10.1016/j.envres.2023.116003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The complexity of the chemistry behind the hydrothermal conversion is enormous. Components interact with their own physical and chemical structure, making it harsh to understand the conversion as a whole. Herein, the six-water recirculation and loading nano SiO2 experiment in a one-pot hydrothermal carbonization procedure was designed to elucidate the mechanism of regulating the functional groups and microporous structure of the hydrochar surface. The hydrochar prepared by the second circulating liquid and loading nano-SiO2 (HBC-R2/Si) was equipped most enriched functional groups (carboxyl = 11.48 μmol/g, phenolic hydroxyl = 52.98 μmol/g, lactone groups = 46.52 μmol/g) and suitable pore size (1.90 nm-1.93 nm) as a sorbent riched in hemicellulose. The sorption kinetics (equilibrium reached ≈ 480 min) are approximately evenly fitted by the pseudo-second-order, Weber and Morris, and Elovich models, indicating that membranes and particles diffusion, pore diffusion, and surface sorption coexisted in the sorption of methylene blue (MB) on the hydrochar materials. Simultaneously, all hydrochar materials achieved over 25% MB removal within 90 min (liquid membrane diffusion) and over 40% for HBC-R2 and HBC-R2/Si, suggesting that liquid membrane diffusion is the predominant rate-limiting step. Pearson's correlation analysis and Mantel's analysis announced that the cation exchange capacity (CEC), pore size, and carboxyl groups on the hemicellulose affect the sorption capacity by limiting the pore diffusion procedure. However, the CEC and the phenolic hydroxyl groups on the cellulose and hemicellulose affect the sorption rate by limiting membrane diffusion. Three consecutive sorption/desorption cycles confirmed the high stability and reusability of HBC-R2/Si composites.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Di Zhang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Black Soil Protection and Restoration, Harbin, Heilongjiang, 150030, China.
| | - Yanming Feng
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiang Li
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ding Ding
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xinting Wang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ziqi Xu
- Harbin De Qiang School, Harbin, Heilongjiang, 150000, China
| |
Collapse
|
29
|
Simpson IM, Winston RJ, Dorsey JD. Monitoring the effects of urban and forested land uses on runoff quality: Implications for improved stormwater management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160827. [PMID: 36509280 DOI: 10.1016/j.scitotenv.2022.160827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Urban stormwater is a substantial source of non-point source pollution. Despite considerable monitoring efforts, little is known about stormwater quality in certain geographic regions. These spatial gaps induce uncertainty when extrapolating data and reduce model calibration capabilities, thereby limiting pollutant load reduction strategies. In this study, stormwater quality was monitored from 15 watersheds to characterize pollutant event mean concentrations (EMCs) and loads as a function of urban and forested (i.e., surrogates for pre-development) land use and land covers (LULCs) and rainfall patterns from a geographic region where these data are sparse. Residential and heavy industrial, heavy industrial, and industrial and commercial LULCs, respectively, were the primary generators of nutrients, total suspended solids (TSS), and heavy metals. Increased rainfall intensities (average and peak) significantly increased the EMCs of all particulate bound pollutants. Pollutant loads increased with rainfall depth and, in general, did not follow the same LULC trends as EMCs, suggesting loads were influenced substantially by watershed hydrologic responses. Mean annual urban loads of total phosphorus, total nitrogen, TSS, and zinc (Zn) ranged from 0.4 (low density residential [LDR]) to 1.5 (heavy industrial), 3.2 (single family residential [SFR]) to 11.5 (heavy industrial), 122.6 (SFR) to 1219.9 (heavy industrial), and 0.1 (LDR) to 0.7 (commercial) kg/ha/yr, respectively. Annual urban loads of TSS were 3.5 to 34 and - 1.5 to 6.8-fold greater than annual loads from forested and agricultural watersheds, respectively. Mean annual loads of heavy metals from urban LULCs were substantially greater than loads produced by forested and agricultural watersheds (e.g., 8.6 to 92 and 6.8 to 73-fold greater, respectively, for Zn), while loads of nutrients were generally similar between urban and agricultural watersheds. Findings herein suggest non-point source pollution will continue to threaten surface water quality as land is developed; results can help guide the development of cost-efficient stormwater management strategies.
Collapse
Affiliation(s)
- Ian M Simpson
- Tennessee Water Resources Research Center, University of Tennessee, Knoxville, 600 Henley Street Suite 311, Knoxville, TN 37902, USA; Formerly with Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH 43210, USA.
| | - Ryan J Winston
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH 43210, USA; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 2070 Neil Ave., Columbus, OH 43210, USA
| | - Jay D Dorsey
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH 43210, USA
| |
Collapse
|
30
|
Mitchell CJ, Jayakaran AD, McIntyre JK. Biochar and fungi as bioretention amendments for bacteria and PAH removal from stormwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116915. [PMID: 36462489 DOI: 10.1016/j.jenvman.2022.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Bioretention has been widely used to mitigate hydrologic impacts of stormwater runoff and is increasingly being relied upon to treat chemical and biological pollutants transported by stormwater. Despite this reliance, we still lack an understanding of treatment performance for certain organic and biological contaminants which may interact with biotic and abiotic components of bioretention systems. We evaluated the treatment of fecal indicator bacteria (FIB) and polycyclic aromatic hydrocarbons (PAHs) in stormwater runoff by bioretention. We compared treatment performance by Washington's standard bioretention mix of 60% sand: 40% compost (by volume), and by three other mixtures amended with biochar, fungi (Stropharia rugosoannulata), or both. All bioretention columns were conditioned with clean water and then dosed with collected roadway runoff at a rate equivalent to a 6 month, 24 h storm in this region during 8 events over a 14-month period. Effluents for each column were analyzed for 23 PAHs, Escherichia coli, fecal coliform, dissolved organic carbon (DOC), and total suspended solids (TSS). The fate and transport of PAHs within the bioretention columns was tracked by measuring soil PAHs in media cores taken from the columns. ΣPAH were almost completely removed by all treatments across all storms, with removal rates ranging from 97 to 100% for 94 out of 96 samples. Compost appeared to be a source of PAHs in bioretention media, as biochar-amended media initially contained half the ΣPAHs as treatments with the standard 60:40 sand:compost mixture. We observed a net loss of ΣPAHs (19-73%) in bioretention media across the study, which could not be explained by PAHs in the effluent, suggesting that bioremediation by microbes and/or plants attenuated media PAHs. E. coli and fecal coliform were exported in the first dosing event, but all columns achieved some treatment in subsequent dosing events. Overall, these findings suggest that PAHs in stormwater can be remediated with bioretention, are unlikely to accumulate in bioretention media, and that biochar amendments can improve the treatment of E. coli.
Collapse
Affiliation(s)
- Chelsea J Mitchell
- Washington State University-Puyallup, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA
| | - Anand D Jayakaran
- Washington State University-Puyallup, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| | - Jenifer K McIntyre
- Washington State University-Puyallup, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA
| |
Collapse
|
31
|
Das TK, Kabir A, Zhao W, Stenstrom MK, Dittrich TM, Mohanty SK. A review of compaction effect on subsurface processes in soil: Implications on stormwater treatment in roadside compacted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160121. [PMID: 36370790 DOI: 10.1016/j.scitotenv.2022.160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sustainable cities require spacious infrastructures such as roadways to serve multiple functions, including transportation and water treatment. This can be achieved by installing stormwater control measures (SCM) such as biofilters and swales on the roadside compacted soil, but compacted soil limits infiltration and other functions of SCM. Understanding the effect of compaction on subsurface processes could help design SCM that could alleviate the negative impacts of compaction. Therefore, we synthesize reported data on compaction effects on subsurface processes, including infiltration rate, plant health, root microbiome, and biochemical processes. The results show that compaction could reduce runoff infiltration rate, but adding sand to roadside soil could alleviate the negative impact of compaction. Compaction could decrease the oxygen diffusion rate in the root zone, thereby affecting plant root activities, vegetation establishment, and microbial functions in SCM. The impacts of compaction on carbon mineralization rate and root biomass vary widely based on soil type, aeration status, plant species, and inherent soil compaction level. As these processes are critical in maintaining the long-term functions of SCM, the analysis would help develop strategies to alleviate the negative impacts of compaction and turn road infrastructure into a water solution in sustainable cities.
Collapse
Affiliation(s)
- Tonoy K Das
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| | - Alija Kabir
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Weiyang Zhao
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Michael K Stenstrom
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Timothy M Dittrich
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| |
Collapse
|
32
|
Esfandiar N, McKenzie ER. Bioretention soil capacity for removing nutrients, metals, and polycyclic aromatic hydrocarbons; roles of co-contaminants, pH, salinity and dissolved organic carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116314. [PMID: 36166865 DOI: 10.1016/j.jenvman.2022.116314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Conventional bioretention soil media (BSM: e.g., loamy sand) is employed in infiltration-based stormwater management practices, but concerns exist on its limited sorption capacity. However, limited quantitative data is available, particularly considering the wide range of contaminants and water quality conditions that occur in stormwater. This study utilized batch tests to investigate the capability of conventional BSM for simultaneous removal of three nutrients (ammonium, nitrate, and phosphate), six metals (Cd, Cr, Cu, Ni, Pb and Zn), and four polycyclic aromatic hydrocarbons (PAHs: naphthalene, acenaphthylene, phenanthrene, and pyrene) from synthetic stormwater. Moreover, the effects of co-contaminants and different stormwater chemistry parameters (pH, salinity, and dissolved organic carbon (DOC)) on BSM sorption capacity were investigated. BSM was not effective for nutrients removal; however, it had good removal efficiency for metals such as Cu, Pb, and Cr which are less soluble at neutral pH values compared to metals such as Ni, Cd and Zn. Moreover, BSM was effective for removing PAHs with higher hydrophobicity such as pyrene and phenanthrene. Metals sorption capacity of BSM was greater at higher pH, lower salinity and DOC; however, the sorption capacity of BSM for PAHs was not sensitive to stormwater chemistry parameters. However, competitive sorption had a notable effect on low molecular weight PAHs, Cd, and Ni. This study provides a quantitative evaluation of the BSM performance and compares the sorption capacity to potential sorptive amendments used in stormwater management. While select sorbent amendments out-performed the BSM, this was not universal and was contaminant specific; careful consideration of water quality enhancement goals and solution chemistry are required in selecting a sorbent. Overall, this study identifies the possible limitations in BSM compositions and factors that may adversely affect BSM sorption capacity, and finally describes options to enhance BSM performance and recommendations for future research.
Collapse
Affiliation(s)
- Narges Esfandiar
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States
| | - Erica R McKenzie
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
33
|
Madzin Z, Zahidi I, Raghunandan ME, Talei A. Potential application of spent mushroom compost (SMC) biochar as low-cost filtration media in heavy metal removal from abandoned mining water: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:6989-7006. [PMID: 36373081 PMCID: PMC9638476 DOI: 10.1007/s13762-022-04617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 05/24/2023]
Abstract
Overpopulation and rapid development have put an increasing burden on the environment, leading to various water crisis. Importing water from abandoned mines as an alternative raw water source could be the next answer to alleviate water scarcity problems globally. However, due to its high heavy metals content, there is a need to find an economical and effective method to remove heavy metals before reusing it as potable water source. Biochar, a low-cost and carbon-rich biosorbent, has received increasing attention on its application as a remediating agent to remove heavy metals from water. Previous studies have revealed the potential properties of biochar as a heavy metal removal agent including high cation exchange capacity, high surface area, active surface functional groups, as well as efficient adsorption. Apparently, the most important factor influencing the sorption mechanism is the type of feedstock materials. Spent mushroom compost (SMC), a waste product from mushroom cultivation, has been found as an excellent biosorbent. SMC has received global attention as it is low cost and eco-friendly. It also has been proved as an efficient heavy metals remover from water. Nevertheless, its application as biochar is still scarce. Therefore, this review focuses on the potential of transforming SMC into modified biochar to remove heavy metals, especially from abandoned mining water. The present review emphasizes the current trends in adsorption methods for heavy metal removal from water, assembles data from previous studies on the feedstock of biosorbents to biochars, and discusses the potentials of SMC as a biochar for water treatment.
Collapse
Affiliation(s)
- Z. Madzin
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - I. Zahidi
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - M. E. Raghunandan
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - A. Talei
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
34
|
Teixidó M, Charbonnet JA, LeFevre GH, Luthy RG, Sedlak DL. Use of pilot-scale geomedia-amended biofiltration system for removal of polar trace organic and inorganic contaminants from stormwater runoff. WATER RESEARCH 2022; 226:119246. [PMID: 36288663 DOI: 10.1016/j.watres.2022.119246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Stormwater runoff capture and groundwater recharge can provide a sustainable means of augmenting the local water resources in water-stressed cities while simultaneously mitigating flood risk, provided that these processes do not compromise groundwater quality. We developed and tested for one year an innovative pilot-scale stormwater treatment train that employs cost-effective engineered geomedia in a continuous-flow unit-process system to remove contaminants from urban runoff during aquifer recharge. The system consisted of an iron-enhanced sand filter for phosphate removal, a woodchip bioreactor for nitrate removal coupled to an aeration step, and columns packed with different configurations of biochar- and manganese oxide-containing sand to remove trace metals and persistent, mobile, and toxic trace organic contaminants. During conditioning with authentic stormwater runoff over an extended period (8 months), the woodchip bioreactor removed 98% of the influent nitrate (9 g-N m-3 d-1), while phosphate broke through the iron-enhanced sand filter. During the challenge test (4 months), geomedia removed more than 80% of the mass of metals and trace organic compounds. Column hydraulic performance was stable during the entire study, and the weathered biochar and manganese oxide were effective at removing trace organic contaminants and metals, respectively. Under conditions likely encountered in the field, sustained nutrient removal is probable, but polar organic compounds such as 2,4-D could breakthrough after about a decade for conditions at the study site.
Collapse
Affiliation(s)
- Marc Teixidó
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Joseph A Charbonnet
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA
| | - Gregory H LeFevre
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 USA; Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Richard G Luthy
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 USA
| | - David L Sedlak
- National Science Foundation Engineering Research Center, Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Kaya D, Croft K, Pamuru ST, Yuan C, Davis AP, Kjellerup BV. Considerations for evaluating innovative stormwater treatment media for removal of dissolved contaminants of concern with focus on biochar. CHEMOSPHERE 2022; 307:135753. [PMID: 35963377 DOI: 10.1016/j.chemosphere.2022.135753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Stormwater from complex land uses is an important contributor of contaminants of concern (COCs) such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), Copper, and Zinc to receiving water bodies. A large portion of these COCs bind to particulate matter in stormwater, which can be removed through filtration by traditional media. However, the remaining dissolved COCs can be significant and require special attention such as engineered treatment measures and media. Biochar is a porous sorbent produced from a variety of organic materials. In the last decade biochar has been gaining attention as a stormwater treatment medium due to low cost compared to activated carbon. However, biochar is not a uniform product and selection of an appropriate biochar for the removal of specific contaminants can be a complex process. Biochars are synthesized from various feedstocks and using different manufacturing approaches, including pyrolysis temperature, impact the biochar properties thus affecting ability to remove stormwater contaminants. The local availability of specific biochar products is another important consideration. An evaluation of proposed stormwater control measure (SCM) media needs to consider the dynamic conditions associated with stormwater and its management, but the passive requirements of the SCM. The media should be able to mitigate flood risks, remove targeted COCs under high flow SCM conditions, and address practical considerations like cost, sourcing, and construction and maintenance. This paper outlines a process for selecting promising candidates for SCM media and evaluating their performance through laboratory tests and field deployment with special attention to unique stormwater considerations.
Collapse
Affiliation(s)
- Devrim Kaya
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kristen Croft
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sai Thejaswini Pamuru
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Chen Yuan
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
36
|
Pritchard J, Hawkins KM, Cho YM, Spahr S, Struck SD, Higgins CP, Luthy RG. Black Carbon-Amended Engineered Media Filters for Improved Treatment of Stormwater Runoff. ACS ENVIRONMENTAL AU 2022; 3:34-46. [PMID: 36691657 PMCID: PMC9856624 DOI: 10.1021/acsenvironau.2c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
Urban stormwater runoff is a significant driver of surface water quality impairment. Recently, attention has been drawn to potential beneficial use of urban stormwater runoff, including augmenting drinking water supply in water-stressed areas. However, beneficial use relies on improved treatment of stormwater runoff to remove mobile dissolved metals and trace organic contaminants (TrOCs). This study assesses six engineered media mixtures consisting of sand, zeolite, high-temperature gasification biochar, and regenerated activated carbon (RAC) for removing a suite of co-contaminants comprising five metals, three herbicides, four pesticides, a corrosion inhibitor, six per- and polyfluoroalkyl substances (PFASs), five polychlorinated biphenyls (PCBs), and six polycyclic aromatic hydrocarbons (PAHs). This long-term laboratory-scale column study uses a novel approach to generate reproducible synthetic stormwater that incorporates catch basin material and straw-derived dissolved organic carbon. Higher flow conditions (20 cm hr-1), larger sized media (0.42-1.68 mm), and downflow configuration with outlet control increase the relevance of this study to better enable implementation in the field. Biochar- and RAC-amended engineered media filters removed nearly all of the TrOCs in the effluent over the course of three months of continuous flow (480 empty bed volumes), while sample ports spaced at 25% and 50% along the column depth provide windows to observe contaminant transport. Biochar provided greater benefit to TrOC removal than RAC on a mass basis. This study used relatively high concentrations of contaminants and low biochar and RAC content to observe contaminant transport. Performance in the field is likely to be significantly better with higher biochar- and RAC-content filters and lower ambient stormwater contaminant concentrations. This study provides proof-of-concept for biochar- and RAC-amended engineered media filters operated at a flow rate of 20 cm hr-1 for removing dissolved TrOCs and metals and offers insights on the performance of biochar and RAC for improved stormwater treatment and field trials.
Collapse
Affiliation(s)
- James
Conrad Pritchard
- Re-inventing
the Nation’s Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, Stanford, California 94305, United States,Department
of Civil & Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Kathleen Mills Hawkins
- Re-inventing
the Nation’s Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, Stanford, California 94305, United States,Department
of Civil & Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yeo-Myoung Cho
- Re-inventing
the Nation’s Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, Stanford, California 94305, United States,Department
of Civil & Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Stephanie Spahr
- Re-inventing
the Nation’s Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, Stanford, California 94305, United States,Department
of Ecohydrology and Biogeochemistry, Leibniz
Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany
| | - Scott D. Struck
- Geosyntec
Consultants, Los Angeles, California 90015, United States
| | - Christopher P. Higgins
- Re-inventing
the Nation’s Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, Stanford, California 94305, United States,Department
of Civil & Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Richard G. Luthy
- Re-inventing
the Nation’s Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, Stanford, California 94305, United States,Department
of Civil & Environmental Engineering, Stanford University, Stanford, California 94305, United States,
| |
Collapse
|
37
|
Chen Y, Wu Q, Tang Y, Liu Z, Ye L, Chen R, Yuan S. Application of biochar as an innovative soil ameliorant in bioretention system for stormwater treatment: A review of performance and its influencing factors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1232-1252. [PMID: 36358058 DOI: 10.2166/wst.2022.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an emerging environment functional material, biochar has become a research hotspot in environmental fields because of its excellent ecological and environmental benefits. Recently, biochar has been used as an innovative soil ameliorant in bioretention systems (BRS) to effectively enhance pollutant removal efficiency for BRS. This paper summarizes and evaluates the performance and involved mechanisms of biochar amendment in BRS with respect to the removal of nutrients (TN (34-47.55%) and PO43--P (47-99.8%)), heavy metals (25-100%), pathogenic microorganisms (Escherichia coli (30-98%)), and organic contaminants (77.2-100%). For biochar adsorption, the pseudo-second-order and Langmuir models are the most suitable kinetic and isothermal adsorption models, respectively. Furthermore, we analyzed and elucidated some factors that influence the pollutant removal performance of biochar-amended BRS, such as the types of biochar, the preparation process and physicochemical properties of biochar, the aging of biochar, the chemical modification of biochar, and the hydraulic loading, inflow concentration and drying-rewetting alternation of biochar-amended BRS. The high potential for recycling spent biochar in BRS as a soil ameliorant is proposed. Collectively, biochar can be used as an improved medium in BRS. This review provides a foundation for biochar selection in biochar-amended BRS. Future research and practical applications of biochar-amended BRS should focus on the long-term stability of treatment performances under field conditions, chemical modification with co-impregnated nanomaterials in biochar surface, and the durability, aging, and possible negative effects of biochar.
Collapse
Affiliation(s)
- Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lilan Ye
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Renyu Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
38
|
Biochar: Production, Applications, and Market Prospects in Portugal. ENVIRONMENTS 2022. [DOI: 10.3390/environments9080095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar produced during the thermochemical decomposition of biomass is an environmentally friendly replacement for different carbon materials and can be used for carbon sequestration to mitigate climate change. In this paper, current biochar production processes and top market applications are reviewed, as well as emerging biochar uses gaining momentum in the market. Various application fields of biochar, including agricultural applications (e.g., soil conditioning), adsorption (for soil and water pollutants), carbon sequestration, catalysis, or incorporation into composites or construction materials, are also presented and discussed. According to this literature overview, slow pyrolysis is the preferred process for biochar production, whereas agricultural applications (for soil conditioning and fertilization) are the most studied and market-ready solutions for biochar use. The Alentejo region (Portugal) shows tremendous potential to be a major player in the developing biochar market considering feedstock availability and large areas for biochar agricultural application. Biochar’s production potential and possible benefits were also estimated for this Portuguese region, proving that agricultural application can effectively lead to many environmental, economic, and social gains.
Collapse
|
39
|
Performance of Various Filtering Media for the Treatment of Cow Manure from Exercise Pens—A Laboratory Study. WATER 2022. [DOI: 10.3390/w14121912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
During summer and winter months, pastures and outdoor pens represent the conventional means of providing exercise for dairy cows housed in tie-stall barns in the province of Québec, Canada. Unfortunately, outdoor pens require large spaces, and their leachates do not meet Québec’s environmental regulations. Therefore, there is a need to develop alternative approaches for these so-called wintering pens. A sustainable year-long approach could be a stand-off pad consisting of a filtering media to manage adequately water exiting the pad. Different filtering materials can be used and mixed (gravel, woodchips, biochar, sphagnum peat moss, sand, etc.). To find the best material and/or mixes, a laboratory study was carried out using 15 PVC pipes (5 cm in diameter and 50 cm long) to test five different combinations of materials over a 3-week period. Different contaminant-removal efficiencies were achieved with the alternative materials, including for chemical oxygen demand (11–38%), phosphates (8–23%), suspended solids (33–57%), and turbidity (23–58%). Alternative treatments with sand, sphagnum peat moss, and biochar improved the filtration capacity when compared to the conventional material (woodchips). However, after three weeks of experimentation, the treatment efficiency of sand gradually decreased for pollutants such as suspended solids and phosphates.
Collapse
|
40
|
Maleki Shahraki Z, Mao X. Biochar application in biofiltration systems to remove nutrients, pathogens, and pharmaceutical and personal care products from wastewater. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:129-151. [PMID: 35135036 DOI: 10.1002/jeq2.20331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Although conventional on-site wastewater treatment systems (OWTSs) provide only primary treatment of domestic wastewater, removal of a limited level of nutrients (N, P), pathogens, and pharmaceuticals and personal care products (PPCPs) could be achieved by such a treatment process. Biochar has the capacity to remove various contaminants and has been widely used as an ideal soil amendment in agriculture due to its persistence, superior nutrient-retention properties, low cost, and ready availability. However, few applications on the use of biochar in onsite wastewater treatment have been explored. In this review, we systematically reviewed the applications of biochar in filtration-based OWTSs for nutrient (N, P) removal and recovery as well as pathogen and PPCP removal. Although adsorption was the main mechanism for P, pathogen, and PPCP removal, biochar can also serve as the growth media for enhanced biological degradation, improves available alkalinity, and increases water holding capacity in the OWTSs. The biochar source, surface modification methods, and preparation procedures (e.g., pyrolysis temperature change) have significant effects on contaminant removal performance in biochar-amended OWTSs. Specifically, contradictory results have been reported on the effect of pyrolysis temperature change on biochar removal performance (i.e., increased, decreased, or no change) of N, P, and PPCPs. Wastewater composition and environmental pH also play important roles in the removal of nutrients, pathogens, and PPCPs. Overall, biochar holds great potential to serve as an alternative filtration material or to be amended to the current OWTS to improve system performance in removing a variety of contaminants at low cost.
Collapse
Affiliation(s)
- Zahra Maleki Shahraki
- Dep. of Civil Engineering, College of Engineering and Applied Sciences, Stony Brook Univ., Stony Brook, NY, 11794, USA
- New York State Center for Clean Water Technology, Stony Brook, NY, 11794, USA
| | - Xinwei Mao
- Dep. of Civil Engineering, College of Engineering and Applied Sciences, Stony Brook Univ., Stony Brook, NY, 11794, USA
- New York State Center for Clean Water Technology, Stony Brook, NY, 11794, USA
| |
Collapse
|
41
|
Esfandiar N, Suri R, McKenzie ER. Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126938. [PMID: 34474369 DOI: 10.1016/j.jhazmat.2021.126938] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 08/15/2021] [Indexed: 05/12/2023]
Abstract
For a comprehensive estimation of metals removal by sorbents in stormwater systems, it is essential to evaluate the impacts of co-contaminants. However, most studies consider only metals (single or multiple), which may overestimate performance. This study employed a batch method to investigate the performance of five low-cost sorbents - coconut coir fiber (CCF), blast furnace slag (BFS), waste tire crumb rubber (WTCR), biochar (BC), and iron coated biochar (FeBC) - for simultaneous removal of Cd, Cr, Cu, Ni, Pb and Zn from simulated stormwater (SSW) containing other contaminants (nutrients and polycyclic aromatic hydrocarbons). BFS and CCF demonstrated the highest sorption capacity of all metals (> 95% removal) in all systems (single and multi-contaminant). However, the presence of other contaminants in solution reduced metals removal for other sorbents, as follows (highest to lowest removal): single-metal > multi-metal > multi-contaminant solutions, and removal efficiency ranking among metals was generally Cr~Cu~Pb > Ni > Cd > Zn. Humic acid (HA) negatively affected the metal sorption, likely due to the formation of soluble HA-metal complexes; NaCl concentration did not impact removal, but alkaline pH improved removal. These findings indicate that sorbents need to be tested under realistic stormwater solution chemistry including co-contaminants to appropriately characterize performance prior to implementation.
Collapse
Affiliation(s)
- Narges Esfandiar
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Erica R McKenzie
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
42
|
Biswal BK, Vijayaraghavan K, Tsen-Tieng DL, Balasubramanian R. Biochar-based bioretention systems for removal of chemical and microbial pollutants from stormwater: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126886. [PMID: 34419842 DOI: 10.1016/j.jhazmat.2021.126886] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 05/14/2023]
Abstract
Biochar has been increasingly used as a filter medium in engineered low impact development systems (e.g., bioretention systems) for decontamination of urban stormwater and management of hydrology. This review paper critically analyzes the performance of biochar-based biofiltration systems for removal of chemical and microbial pollutants present in urban runoff. Biochar-amended biofiltration systems efficiently remove diverse pollutants such as total nitrogen (32 - 61%), total phosphorus: (45 - 94%), heavy metals (27 - 100%), organics (54 - 100%) and microbial pollutants (log10 removal: 0.78 - 4.23) from urban runoff. The variation of biofiltration performance is due to changes in biochar characteristics, the abundance of dissolved organic matter and/or stormwater chemistry. The dominant mechanisms responsible for removal of chemical pollutants are sorption, ion exchange and/or biotransformation, whereas filtration/straining is the major mechanism for bacteria removal. The pseudo-second order and Langmuir isotherm are the best models that describe the kinetics and chemical equilibrium of pollutants, respectively. This critical review provides the fundamental scientific knowledge for designing highly efficient biochar-based bioretention systems for removal of diverse pollutants from urban stormwater. The key knowledge gaps that should be addressed in future research include long-term field-scale bioretention study, development of novel methods for filter media regeneration/reuse, and dynamics of filter media microbial communities.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Kuppusamy Vijayaraghavan
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Daryl Lee Tsen-Tieng
- Centre for Urban Greenery and Ecology, National Parks Board, 1 Cluny Road, 259563, Singapore
| | | |
Collapse
|
43
|
Redwan AM, Millerick K. Anaerobic bacterial responses to carbonaceous materials and implications for contaminant transformation: Cellular, metabolic, and community level findings. BIORESOURCE TECHNOLOGY 2021; 341:125738. [PMID: 34474238 DOI: 10.1016/j.biortech.2021.125738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Carbonaceous materials (CM) enhance the abundance and activity of bacteria capable of persistent organic (micro)pollutant (POP) degradation. This review synthesizes anaerobic bacterial responses to minimally modified CM in non-fuel cell bioremediation applications at three stages: attachment, metabolism, and biofilm genetic composition. Established relationships between biological behavior and CM surface properties are identified, but temporal relationships are not well understood, making it difficult to connect substratum properties and "pioneer" bacteria with mature microorganism-CM systems. Stark differences in laboratory methodology at each temporal stage results in observational, but not causative, linkages as system complexity increases. This review is the first to critically examine relationships between material and cellular properties with respect to time. The work highlights critical knowledge gaps that must be addressed to accurately predict microorganism-CM behavior and to tailor CM properties for optimized microbial activity, critical frontiers in establishing this approach as an effective bioremediation strategy.
Collapse
Affiliation(s)
- Asef Mohammad Redwan
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, TX, United States
| | - Kayleigh Millerick
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, TX, United States.
| |
Collapse
|
44
|
Mehmood S, Ahmed W, Rizwan M, Imtiaz M, Mohamed Ali Elnahal AS, Ditta A, Irshad S, Ikram M, Li W. Comparative efficacy of raw and HNO 3-modified biochar derived from rice straw on vanadium transformation and its uptake by rice (Oryza sativa L.): Insights from photosynthesis, antioxidative response, and gene-expression profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117916. [PMID: 34375849 DOI: 10.1016/j.envpol.2021.117916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Low concentrations of vanadium (V) are essential for various plant species but it becomes toxic to plants, animals, and humans at high levels. A significant amount of V is currently being emitted into the atmosphere due to intensified industrial processing. Therefore, this study aimed at evaluating the effect of raw (BC) and HNO3-modified biochar (OBC) derived from rice straw on growth, photosynthetic assimilation, relative chlorophyll content, SPAD index, ion leakage, enzyme activities, hydrogen peroxide (H2O2), bioavailability and V uptake by rice in a laboratory-scale experiment. Characterization of OBC and BC by FTIR (Fourier transform infrared spectroscopy), SEM (scan electron microscopy), BET (Brunauer-Emmett-Teller), elemental analysis, and z-potential revealed a substantial difference between both of them. The V-stress significantly reduced the rice plant growth, biomass yield, chlorophyll parameters, root length and surface area. Under V-stress conditions, root accumulated more V than shoots and OBC significantly improved the above-mentioned parameters, while, decreasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels in plants. The antioxidant function and gene expression levels induced by V-stress and OBC application further increased the expression profile of three genes (SOD, POD, and CAT) encoding antioxidant enzymes and one metal-tolerant conferring gene (OsFSD1). In summary, these results demonstrated the critical role of OBC in mitigating the detrimental effects of high V-stress on rice growth and enhancing plant defence against V-stress.
Collapse
Affiliation(s)
- Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou City, 570100, PR China
| | - Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Muhammad Rizwan
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China; College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Sana Irshad
- School of Environmental Studies, China University of Geosciences, Wuhan, 430070, PR China
| | - Muhammad Ikram
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Weidong Li
- College of Ecology and Environment, Hainan University, Haikou City, 570100, PR China.
| |
Collapse
|
45
|
Alam T, Bezares-Cruz JC, Mahmoud A, Jones KD. Nutrients and solids removal in bioretention columns using recycled materials under intermittent and frequent flow operations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113321. [PMID: 34303939 DOI: 10.1016/j.jenvman.2021.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
This research investigated the fate and removal of nitrite (NO2-N), nitrate (NO3-N), orthophosphate (PO4-P), and total suspended solids (TSS) in two bioretention columns, which were designed with three recycled materials. The first column was packed with Recycled Concrete Aggregate (RCA). The second column was a Layered Media (LM), which has layers of RCA with crushed glass and rice husks. The columns were tested under intermittent and frequent operations of synthetic runoff with low and high feed concentrations. The effect of inflow concentration, antecedent dry days (ADD), column age, and the anticipated number of events (EN) was also statistically analyzed on the performance of columns. Depending on column types, nutrient removal was significantly (p < 0.05) increased under frequent flow operations by 26-53% over intermittent. However, TSS removal was notably (p < 0.05) increased by 23-35% under intermittent operations over frequent. Overall, LM showed an increased NO2-N (92 ± 2%) and NO3-N (88% ± 2%) removal under low feed frequent operations and TSS removal (97% ± 2%) under initial intermittent operations. On the contrary, RCA showed a maximum of 99% PO4-P removal under high feed frequent operations. Results showed that the nutrient outflow concentration was found to have a negative correlation with EN and column age and a positive correlation with ADDs throughout the experiments.
Collapse
Affiliation(s)
- Taufiqul Alam
- Department of Environmental Engineering, Texas A&M University-Kingsville, 917 W. Avenue B, Kingsville, TX, 78363, USA.
| | - Juan César Bezares-Cruz
- Department of Environmental Engineering, Texas A&M University-Kingsville, 917 W. Avenue B, Kingsville, TX, 78363, USA.
| | - Ahmed Mahmoud
- Department of Civil Engineering, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA.
| | - Kim D Jones
- Department of Environmental Engineering, Texas A&M University-Kingsville, 917 W. Avenue B, Kingsville, TX, 78363, USA.
| |
Collapse
|
46
|
Yan Y, Akbar Nakhli SA, Jin J, Mills G, Willson CS, Legates DR, Manahiloh KN, Imhoff PT. Predicting the impact of biochar on the saturated hydraulic conductivity of natural and engineered media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113143. [PMID: 34214790 DOI: 10.1016/j.jenvman.2021.113143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
If biochar is applied to soil or stormwater treatment media, the saturated hydraulic conductivity (K) may be altered, which is a critical property affecting media performance. While a significant number of studies document biochar's effect on a porous medium's K, predictive models are lacking. Herein models are advanced for predicting K for repacked natural soil and engineered media when amended with biochar of various particle sizes and application rates. Experiments were conducted using three repacked natural soils, two uniform sands, and a bioretention medium amended with a wood biochar sieved to seven different biochar particle size distributions and applied at three rates. Experimental measurements showed a strong positive correlation between the interporosity of each medium and K. Across all media, the classic Kozeny-Carman (K-C) model predicted K and the relative change in K because of biochar amendment for each medium best. For soils alone, a recently developed model based on existing pedotransfer functions was optimal. The K-C model error was improved if the particle specific surface area was increased for large biochar particles, which indicates the importance of biochar particle shape on pore structure and K. X-ray Computed Tomography was coupled with pore network modeling to explain the unexpected decrease in K for sands amended with medium and large biochar. While biochar increased interporosity, mean pore radii decreased by ~25% which reduced K. The X-ray measurements and pore network modeling help to explain anomalous results reported for biochar-amended sands in other studies.
Collapse
Affiliation(s)
- Yudi Yan
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, USA; China Energy Conservation DADI Environmental Remediation Co., Ltd, Technology Department, 10Th Floor, Block A, Haidian Science and Technology Wealth Center, Beijing, China
| | - Seyyed Ali Akbar Nakhli
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jing Jin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Godfrey Mills
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Clinton S Willson
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - David R Legates
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Kalehiwot Nega Manahiloh
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, USA; Department of Engineering, Utah Valley University, Orem, UT, 84058, USA
| | - Paul T Imhoff
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
47
|
Feng Y, He H, Xue L, Liu Y, Sun H, Guo Z, Wang Y, Zheng X. The inhibiting effects of biochar-derived organic materials on rice production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112909. [PMID: 34102501 DOI: 10.1016/j.jenvman.2021.112909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The effects of PBC and HBC on rice production, NUE and corresponding mechanisms were examined. Six treatments, P05, P30, H05, H30 (P: PBC; H: HBC; 05 and 30 represented the application rate of 0.5 and 3.0% w/w), CKU (urea application without char) and CK (no application of char and urea), were set up. Results showed that P05, P30 and H05 increased grain yield by 1.8-7.3% (P > 0.05), whereas H30 reduced grain yield by 60.4% (P < 0.05), compared to CKU. Meanwhile, HI under P05, P30 and H05 increased by 3.4-3.6%, while H30 decreased by 9.1% (P < 0.05). NUE and NAE showed similar trends with rice yield. By investigation, the excessive introduction of BDOM plays a crucial role in the reduction of rice production and NUE under higher HBC application. GC-MS/MS analysis showed that the soluble BDOM of HBC and PBC was quite different, and compounds such as 2,6-dimethoxyphenol might stress rice growth. ESI-FT-ICR-MS analysis showed that the BDOM of HBC contained a certain quantity of aromatic compounds, which may also stress rice growth. Overall, HBC pretreatment should be conducted, and the application rate should be strictly controlled before its agricultural application.
Collapse
Affiliation(s)
- Yanfang Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huayong He
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lihong Xue
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Liu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haijun Sun
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhi Guo
- Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yueman Wang
- Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
48
|
Liang L, Xi F, Tan W, Meng X, Hu B, Wang X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. BIOCHAR 2021; 3:255-281. [DOI: doi.org/10.1007/s42773-021-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 06/25/2023]
Abstract
AbstractBiochar (BC) has exhibited a great potential to remove water contaminants due to its wide availability of raw materials, high surface area, developed pore structure, and low cost. However, the application of BC for water remediation has many limitations. Driven by the intense desire of overcoming unfavorable factors, a growing number of researchers have carried out to produce BC-based composite materials, which not only improved the physicochemical properties of BC, but also obtained a new composite material which combined the advantages of BC and other materials. This article reviewed previous researches on BC and BC-based composite materials, and discussed in terms of the preparation methods, the physicochemical properties, the performance of contaminant removal, and underlying adsorption mechanisms. Then the recent research progress in the removal of inorganic and organic contaminants by BC and BC-based materials was also systematically reviewed. Although BC-based composite materials have shown high performance in inorganic or organic pollutants removal, the potential risks (such as stability and biological toxicity) still need to be noticed and further study. At the end of this review, future prospects for the synthesis and application of BC and BC-based materials were proposed. This review will help the new researchers systematically understand the research progress of BC and BC-based composite materials in environmental remediation.
Collapse
|
49
|
Ahmed W, Mehmood S, Núñez-Delgado A, Ali S, Qaswar M, Shakoor A, Mahmood M, Chen DY. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147136. [PMID: 33892324 DOI: 10.1016/j.scitotenv.2021.147136] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
A biochar (BC) was obtained by the pyrolysis of watermelon seeds (WM) in nitrogen environment. In addition, a modified biochar (HP-BC) was obtained by means of H2O2 treatment of BC. Later on, both kinds of biochar (BC and HP-BC) were characterized and compared as regards their potential for Pb(II) adsorption from wastewater. Characterization was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), Zeta potential analysis, elemental mapping, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Pb(II) adsorption characteristics for HP-BC and BC as were evaluated as a function of solution pH, contact time and Pb(II) equilibrium concentration, using kinetic and thermodynamic studies, as well as adsorption isotherms. Regarding kinetics, the pseudo-second order model showed good fitting to experimental data. Based on the Langmuir model, the maximum Pb(II) adsorption capacities were calculated as 44.32 mg g-1 and 60.87 mg g-1 for BC and HP-BC, respectively. Thermodynamic study indicated that Pb(II) adsorption onto BC and HP-BC was spontaneous and primarily governed by chemisorption and surface complexation. In view of the results, the H2O2 modification of the watermelon seeds biochar can be considered as a promising and cost effective approach as regards Pb(II) removal from water/wastewater, which would not cause adverse impacts on the surrounding environments. Overall, it can be seen as a procedure promoting the effective recycling of a waste/by-product, in line of the precepts of the circular economy, aiding to protect human and environmental health.
Collapse
Affiliation(s)
- Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Qaswar
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198, Lleida, Spain
| | - Mohsin Mahmood
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agriculture and Forestry (A & F) University, Yangling 712100, China
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
50
|
Ahmed W, Mehmood S, Núñez-Delgado A, Qaswar M, Ali S, Ying H, Liu Z, Mahmood M, Chen DY. Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146617. [PMID: 34030312 DOI: 10.1016/j.scitotenv.2021.146617] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Water contamination due to radionuclides is considered a crucial environmental issue. In this study, Tribulus terrestris plant biomass was used as a precursor for obtaining biochar (BC), that was further modified by two different methods using FeCl3 to obtain two different magnetic biochars. Both (one-step biochar, called 1S-BC, and two-steps biochar, called 2S-BC) were studied to investigate their capability for adsorbing/removing uranium (VI) from aqueous solutions. The U(VI) removal efficacy of both biochars was tested for different values of pH, ionic strength, initial concentration of U(VI) and temperature. Experimental adsorption data fitted well to the Freundlich model (achieving as highest value for adsorption capacity KF = 49.56 mg g-1 (mg L-1)-1/n, R2 = 0.99). Thermodynamic studies revealed that adsorption was endothermic, characterized by inner-sphere complexation, and entropy-driven with a relatively increased randomness in the solid-solution interface. X-ray photoelectron spectroscopy (XPS) revealed that U(VI) sorption took place by surface complexation between U(VI) and oxygen containing functional groups on both biochars. Five consecutive regeneration cycles verified an excellent reusability for 1S-BC. The overall results allow to conclude that the FeCl3 modification of the biochar obtained from Tribulus terrestris plant biomass could give an efficient alternative adsorbent for U(VI) removal in a variety of environmental conditions, promoting protection of the environment and human health, as well as facilitating resource utilization and sustainable management of the materials studied.
Collapse
Affiliation(s)
- Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Muhammad Qaswar
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huang Ying
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zequan Liu
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Mohsin Mahmood
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agriculture and Forestry (A & F) University, Yangling 712100, China
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|