1
|
Zhou X, Xiao Z, Ren X, Xi B, Wang Q. Optimizing extraction conditions to enhance the humification and soil remediation potential of compost-derived dissolved organic matter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125349. [PMID: 40228475 DOI: 10.1016/j.jenvman.2025.125349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Compost tea (CT), primarily composed of dissolved organic matter derived from compost, is widely used in various environmental and agricultural applications. Nevertheless, limited information is available regarding how extraction parameters influence the quality of CT and its efficacy in soil remediation. In this study, a multi-factor orthogonal design L16 (43) was employed to investigate the effects of compost-to-water ratio (CWR), extraction time (ET), and aeration pattern (AP) on nutrient extraction and humification of CT, aiming to optimize the extraction conditions. Results showed that N, P2O5, and K2O extraction efficiencies in all treatments ranged from 10 to 25 %, 10-20 %, and 50-85 %, respectively. The comprehensive humification score was in the range of 1.27-1.60. Among the three parameters, ET showed the most significant influence on CT quality. The optimal treatment for nutrient extraction was T15 (CWR 1:60, ET 48 h, and stirring), while T17 (CWR 1:30, ET 48 h, and aeration) exhibited superior performance on humification. Furthermore, the total Cd removal efficiency of T17 was 83.64 % after multiple washing cycles, which was attributed to an increased number of hydroxyl, carboxyl, and carbonyl functional groups that provided additional binding sites for Cd.
Collapse
Affiliation(s)
- Xiangyang Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ziling Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Bin Xi
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100000, PR China.
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
2
|
Gao L, Dong Z, Xu Y, Zhao L, Xing X, Han Z, Jin M, Li X, Zhang X, Zhang Z. Advancements in Biochar Research Methods for Soil Pollution Remediation: Development and Applications. ACS OMEGA 2025; 10:9854-9868. [PMID: 40124018 PMCID: PMC11923846 DOI: 10.1021/acsomega.4c10533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
This review primarily focuses on the advancement of biochar research methods and their application in treating soil pollution and agriculture. Biochar, a novel material for soil treatment, shows great potential because of its high specific surface area, abundant functional groups, and well-developed pore structure. This work first introduces the current state and hazards of soil pollution and the limitations of traditional remediation technologies. It then discusses biochar research methods and advancements in biochar preparation techniques. This paper also discussed the application of biochar in the agricultural field. Although biochar has shown many advantages in soil remediation, technical and economic issues in its production remain to be resolved, and long-term environmental impacts and ecological safety need to be further evaluated. Future research should focus on the functional modification and application optimization of biochar to fully realize its potential in soil remediation and sustainable agricultural development.
Collapse
Affiliation(s)
- Lina Gao
- Shandong
Provincial Territorial Spatial Ecological Restoration Center, Jinan 250000, China
| | - Zheng Dong
- Shandong
Provincial Territorial Spatial Ecological Restoration Center, Jinan 250000, China
| | - Yingnan Xu
- Academy
of Fine Arts, Shandong Normal University, Jinan 250000, China
| | - Lin Zhao
- Shandong
Provincial Territorial Spatial Ecological Restoration Center, Jinan 250000, China
| | - Xiaoqian Xing
- School
of Economics and Management, Dalian Ocean
University, Dalian 116023, China
| | - Zile Han
- Shandong
Academy for Environmental Planning, Jinan 250101, China
| | - Meiying Jin
- Shandong
Academy for Environmental Planning, Jinan 250101, China
| | - Xinqi Li
- Shandong
Academy for Environmental Planning, Jinan 250101, China
| | - Xu Zhang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhibin Zhang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
3
|
Chen M, Wang Y, Pan J, Zhong L, Qiao M, Gao C, Li T, Wang Y. Can N-Doped Biochar Achieve Safe Vegetable Production in Soil Heavily Contaminated by Heavy Metals? TOXICS 2025; 13:79. [PMID: 39997895 PMCID: PMC11860317 DOI: 10.3390/toxics13020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Although the cultivation of food crops in farmland heavily contaminated by heavy metals is prohibited in China, vegetables can still be planted on a small-scale due to their short growth cycles and flexible sale models, posing a significant threat to local consumers. In this study, a pot culture experiment was conducted to investigate the feasibility of safe production through the in-situ stabilization of heavy metals in heavily contaminated soil. The remediation efficiency of wheat straw biochar and N-doped biochar, the growth of spinach, the heavy metal accumulation in spinach, and potential health risks were also explored. The results indicated that both biochar and N-doped biochar significantly affected the soil pH, cation exchange capacity, organic matter, available phosphorus, available potassium, alkaline nitrogen content, and spinach biomass, but the trends were variable. Additionally, the diethylenetriaminepentaacetic-extractable Pb, Cd, Cu, Zn, and Ni concentrations decreased 9.23%, 7.54%, 5.95, 7.44%, and 16.33% with biochar, and 10.46%, 12.91%, 21.98%, 12.62%, and 12.24% with N-doped biochar, respectively. Furthermore, N-doped biochar significantly reduced the accumulation of Pb, Cd, and Ni in spinach by 35.50%, 33.25%, and 30.31%, respectively. Health risk assessment revealed that the non-carcinogenic risk index for adults and children decreased from 17.0 and 54.8 to 16.3 and 52.5 with biochar and 11.8 and 38.2 with N-doped biochar, respectively, but remained significantly higher than the acceptable range (1.0). The carcinogenic risk assessment revealed that the risk posed by Cd in spinach exceeded the acceptable value (10-4) for both adults and children across all treatments. These results may imply that biochar and N-doped biochar cannot achieve the safe production of vegetables in soil heavily contaminated by heavy metals through in-situ stabilization.
Collapse
Affiliation(s)
- Ming Chen
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
| | - Yangzhou Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
| | - Junchao Pan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
| | - Lin Zhong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
| | - Mengjiao Qiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
| | - Chenyang Gao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
| | - Tianqi Li
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (M.C.); (Y.W.); (J.P.); (L.Z.); (M.Q.); (C.G.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Nie X, Huang X, Li M, Lu Z, Ling X. Advances in Soil Amendments for Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Impact, and Future Prospects. TOXICS 2024; 12:872. [PMID: 39771087 PMCID: PMC11679158 DOI: 10.3390/toxics12120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments. By thoroughly examining and contrasting their remediation mechanisms and effects, this study provides a detailed evaluation of their influence on soil physicochemical properties, leachable heavy metal content, and microbial communities. Through bibliometric analysis, current research priorities and trends are highlighted, offering a multidimensional comparison of these amendments and clarifying their varying applicability and limitations. Furthermore, this review explores future prospects and the inherent challenges in soil amendments for heavy metal contamination, aiming to offer valuable insights and theoretical references for the development and selection of novel, efficient, multifunctional, environmentally friendly amendments.
Collapse
Affiliation(s)
- Xinyi Nie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230601, China
| | - Man Li
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Zhaochi Lu
- Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
| | - Xinhe Ling
- College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
5
|
He L, Wang Y, Ding C, Huang G, Tu X, Zhou Z, Yin Y, Tang X, Guo Z, Li Z, Zhang T, Wang X, Zheng S. Selective and efficient immobilization of cadmium in soil by layered double hydroxides intercalated with the mercaptosuccinic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173473. [PMID: 38788936 DOI: 10.1016/j.scitotenv.2024.173473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Cadmium (Cd) contamination in cropland poses a significant threat to the quality of agricultural products, but even though in-situ remediation has been extensively applied, non-selective immobilization remains an issue. In order to develop a material that specifically immobilizes Cd in soil, a layered double hydroxide, intercalated with mercaptosuccinic acid (MSA-CFA), was synthesized through co-precipitation. In this case, the MSA-CFA's maximum adsorption capacity was increased from the 513.8 mg·g-1 for unintercalated hydrotalcite CFA to 692.6 mg·g-1. Besides, MSA-CFA efficiently removed 99.25 % of Cd from soil water-extract solution and immobilized up to 70.03 % of bio-available Cd. However, interestingly, its immobilization effects on beneficial metal elements Fe, Mn and Zn were milder, being equivalent to 2/7, 5/7 and 1/2 that of lime, respectively. Moreover, XRD and XPS techniques revealed isomorphous substitution with calcium and sulfhydryl complexation during the Cd adsorption by MSA-CFA. Compared with CFA, the increased adsorption capacity of MSA-CFA for Cd was due to intercalated MSA acting as a new adsorption site, while the enhanced selectivity was contributed by sulfhydryl's affinity for Cd. Altogether, MSA-CFA showed great promise as a competitive and highly efficient candidate amendment in Cd-contaminated soil remediation.
Collapse
Affiliation(s)
- Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xiangming Tu
- Agricultural Ecology and Resource Protection Agency of Jiangxi Province, Nanchang 330046, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Guo
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| | - Shun'an Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| |
Collapse
|
6
|
Kostecki J, Greinert A. Possibility of brewery wastes application to soil as an organic improver of biological and chemical properties. Sci Rep 2024; 14:17198. [PMID: 39060354 PMCID: PMC11282282 DOI: 10.1038/s41598-024-67668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Soil degradation, marked by declining organic matter, threatens global food security. The impact of brewer's spent yeast (BSY) on clay and sand was analysed at varying application rates to assess its effectiveness in improving soil quality. A randomized complete block design with three replicates was employed. One kilogram of soil were mixed with BSY at application rates of 2 t/ha and 5 t/ha. The samples were incubated at 26 °C for 5 months with daily watering. We analysed pH, total nitrogen, organic carbon, total phosphorus, and electrical conductivity (EC); microbial activity (total heterotrophic bacteria, actinobacteria, and fungi) and soil enzyme activity (dehydrogenase, catalase, protease). BSY application improved soil quality, particularly in clay. Clay showed increased in pH, EC, N and C. BSY significantly boosted microbial populations (bacteria, fungi) in clay with a lesser effect in sand. Enzyme activity and a fertility index also improved in BSY-treated clay, while sand displayed increased activity of a different enzyme. Results suggest BSY holds promise as an organic fertilizer, especially for clay soils. Further research is needed to optimize application, understand long-term effects, and evaluate economic feasibility and social acceptance. This study contributes to the search for sustainable, local solutions to improve soil health and agricultural practices.
Collapse
Grants
- UMO2018/29/Z/ST10/02986 NCN, Poland, 71961137011 NSFC, China, 870234 FFG, Austria JPI Urban Europe/China collaboration
- UMO2018/29/Z/ST10/02986 NCN, Poland, 71961137011 NSFC, China, 870234 FFG, Austria JPI Urban Europe/China collaboration
Collapse
Affiliation(s)
- Jakub Kostecki
- University of Zielona Gora, Institute of Environmental Engineering, Zielona Góra, Zielona Góra, Poland.
| | - Andrzej Greinert
- University of Zielona Gora, Institute of Environmental Engineering, Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
7
|
Li X, Wang L, Hou D. Layered double hydroxides for simultaneous and long-term immobilization of metal(loid)s in soil under simulated aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174777. [PMID: 39009152 DOI: 10.1016/j.scitotenv.2024.174777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Soil contamination by toxic metals and metalloids poses a grave threat to food security and human well-being. Immobilization serves as an effective method for the remediation of soils contaminated by metal(loid)s. Nevertheless, the ability of soil amendments for simultaneous immobilization of cations and oxyanions, and the long-term effectiveness of immobilization need substantial improvements. In this study, we used a series of layered double hydroxides (LDHs), including Mg-Al LDH and Ca-Al LDH fabricated from pure chemicals, and one waste-derived LDH synthesized using granulated ground blast furnace slag (GGBS), for the immobilization of Cu, Zn, As, and Sb in a historically contaminated soil obscured from a mining-affected region. The LDHs were first subjected to iron (Fe) modification to enhance their short-term immobilization performances toward metal(loid)s. Furthermore, the long-term effectiveness of Fe-modified LDHs was examined via two sets of experiments, including column experiments simulating 2-year water leaching, and accelerated aging experiments simulating 100-year proton attack. It was observed that Fe-modified LDHs, either made from pure chemicals or GGBS, demonstrated promising long-term immobilization performances toward metal(loid)s. Results from this study are encouraging for the future use of LDHs for simultaneous and long-term immobilization of metal(loid)s in soil.
Collapse
Affiliation(s)
- Xuanru Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Zhou C, Zhu L, Zhao T, Dahlgren RA, Xu J. Fertilizer application alters cadmium and selenium bioavailability in soil-rice system with high geological background levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124033. [PMID: 38670427 DOI: 10.1016/j.envpol.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The co-occurrence of cadmium (Cd) pollution and selenium (Se) deficiency commonly exists in global soils, especially in China. As a result, there is great interest in developing practical agronomic strategies to simultaneously achieve Cd remediation and Se mobilization in paddy soils, thereby enhancing food quality/safety. To this end, we conducted a field-plot trial on soils having high geological background levels of Cd (0.67 mg kg-1) and Se (0.50 mg kg-1). We explored 12 contrasting fertilizers (urea, potassium sulfate (K2SO4), calcium-magnesium-phosphate (CMP)), amendments (manure and biochar) and their combinations on Cd/Se bioavailability. Soil pH, total organic carbon (TOC), soil available Cd/Se, Cd/Se fractions and Cd/Se accumulation in different rice components were determined. No significant differences existed in mean grain yield among treatments. Results showed that application of urea and K2SO4 decreased soil pH, whereas the CMP fertilizer and biochar treatments increased soil pH. There were no significant changes in TOC concentrations. Three treatments (CMP, manure, biochar) significantly decreased soil available Cd, whereas no treatment affected soil available Se at the maturity stage. Four treatments (CMP, manure, biochar and manure+urea+CMP+K2SO4) achieved our dual goal of Cd reduction and Se enrichment in rice grain. Structural equation modeling (SEM) demonstrated that soil available Cd and root Cd were negatively affected by pH and organic matter (OM), whereas soil available Se was positively affected by pH. Moreover, redundancy analysis (RDA) showed strong positive correlations between soil available Cd, exchangeable Cd and reducible Cd with grain Cd concentration, as well as between pH and soil available Se with grain Se concentration. Further, there was a strong negative correlation between residual Cd/Se (non-available fraction) and grain Cd/Se concentrations. Overall, this study identified the primary factors affecting Cd/Se bioavailability, thereby providing new guidance for achieving safe production of Se-enriched rice through fertilizer/amendment management of Cd-enriched soils.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lianghui Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, 95616, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
10
|
Deng S, Zhang X, Zhu Y, Zhuo R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 2024; 72:108337. [PMID: 38460740 DOI: 10.1016/j.biotechadv.2024.108337] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.
Collapse
Affiliation(s)
- Shaoxiong Deng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
11
|
Buates J, Sun Y, He M, Mohanty SK, Khan E, Tsang DCW. Performance of wood waste biochar and food waste compost in a pilot-scale sustainable drainage system for stormwater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123767. [PMID: 38492753 DOI: 10.1016/j.envpol.2024.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Sustainable drainage system (SuDS) for stormwater reclamation has the potential to alleviate the water scarcity and environmental pollution issues. Laboratory studies have demonstrated that the capacity of SuDS to treat stormwater can be improved by integrating biochar and compost in the filter media, whereas their performance in scaled-up applications is less reported. This study examines the effectiveness of a pilot-scale SuDS, bioswale followed by bioretention, amended with wood waste biochar (1, 2, and 4 wt.%) and food waste compost (2 and 4 wt.%) to simultaneously remove multiple pollutants including nutrients, heavy metals, and trace organics from the simulated stormwater. Our results confirmed that SuDS modified with both biochar (2 wt.%) and compost (2 wt.%) displayed superior water quality improvement. The system exhibited high removal efficiency (> 70%) for total phosphorus and major metal species including Ni, Pb, Cd, Cr, Cu, and Zn. Total suspended solids concentration was approaching the detection limit in the effluent, thereby confirming its capability to reduce turbidity and particle-associated pollutants from stormwater. Co-application of biochar and compost also moderately immobilized trace organic contaminants such as 2,4-dichlorophenoxyacetic acid, diuron, and atrazine at field-relevant concentrations. Moreover, the soil amendments amplified the activities of enzymes including β-D-cellobiosidase and urease, suggesting that the improved soil conditions and health of microbial communities could possibly increase phyto and bioremediation of contaminants accumulated in the filter media. Overall, our pilot-scale demonstration confirmed that the co-application of biochar and compost in SuDS can provide a variety of benefits for soil/plant health and water quality.
Collapse
Affiliation(s)
- Jittrera Buates
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- School of Agriculture, Sun Yat-sen University, Guangdong, China
| | - Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California Los Angeles, United States
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 89154, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
12
|
Luo J, Feng S, Li M, He Y, Deng Y, Cao M. Effect of magnetized water irrigation on Cd subcellular allocation and chemical forms in leaves of Festuca arundinacea during phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116376. [PMID: 38657453 DOI: 10.1016/j.ecoenv.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.
Collapse
Affiliation(s)
- Jie Luo
- Yangtze University, University Road, No.1, Wuhan, China
| | - Siyao Feng
- Yangtze University, University Road, No.1, Wuhan, China.
| | - Mingpo Li
- The South of Zhejiang Comprehensive Engineering Survey and Mapping Institute Co., Ltd, China
| | - Yue He
- Yangtze University, University Road, No.1, Wuhan, China
| | - Yuping Deng
- Yangtze University, University Road, No.1, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
13
|
Marques JP, Nauerth IMR, Kasemodel MC, Rodrigues VGS. Systematic review of alternative materials that improve retention of potentially toxic metals in soil/clay liners in waste disposal areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:394. [PMID: 38526605 DOI: 10.1007/s10661-024-12546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
When soils available for the construction of liners do not display the characteristics necessary for a good performance, mixtures with other materials can be employed for achieving the desired quality. Several researchers have addressed those mixtures from either a geotechnical or a gas diffusion perspective, emphasizing low hydraulic conductivity. However, in recent years, growing attention has been drawn to the ability of liners to mitigate contamination. The literature lacks studies on the use of amendments for soil liners or cover systems to retain potentially toxic metals, which are important inorganic contaminants. This paper provides a systematic review of the literature considering publications available on Web of Science and SpringerLink databases between January 1st, 2012, and December 5th, 2022. The aim of the review was to identify the types of soils and amendments studied as liners or cover systems for such retention of potentially toxic metals, the methodologies of application of the alternative materials in the soils, and the research gaps and perspectives in the field. Seventeen papers that addressed 31 materials as amendments were retrieved. The most studied amendment was coal fly ash, and 17 amendments were residues or by-products, which indicates concerns over waste destination and sustainability. Among the potentially toxic metals analyzed are Pb, Cu, and Cd. Gaps such as lack of pilot, field-scale, and long-term studies, as well as perspectives for future research (e.g., different liner configurations, concomitant mixtures of two or more materials in the soil, and focus on the sustainability of amendments), were identified.
Collapse
Affiliation(s)
- Jéssica Pelinsom Marques
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| | - Isabela Monici Raimondi Nauerth
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | | | | |
Collapse
|
14
|
Haque KS, Islam MS, Ahmed S, Rahman MZ, Hemy DH, Islam MT, Hossain MK, Uddin MR, Md Towfiqul Islam AR, Mia MY, Ismail Z, Al Bakky A, Ibrahim KA, Idris AM. WITHDRAWN: Trace metals translocation from soil to plants: Health risk assessment via consumption of vegetables in the urban sprawl of a developing country. Food Chem Toxicol 2024:114580. [PMID: 38467293 DOI: 10.1016/j.fct.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Km Shamsul Haque
- School of Agricultural Environmental and Veterinary Sciences, Charles Sturt University, Wagga, NSW, 2650, Australia
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Sujat Ahmed
- Environment, Center for People & Environ (CPE), Dhaka, Bangladesh
| | - Md Zillur Rahman
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The 13 University of Sydney, Australia
| | - Debolina Halder Hemy
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Towhidul Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Kamal Hossain
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Rafiq Uddin
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor, Malaysia
| | - Abdullah Al Bakky
- Agricultural wing, Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, 62529, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha, 62529, Saudi Arabia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
15
|
Garau M, Pinna MV, Nieddu M, Castaldi P, Garau G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. PLANTS (BASEL, SWITZERLAND) 2024; 13:284. [PMID: 38256837 PMCID: PMC10818981 DOI: 10.3390/plants13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Biochar and compost are able to influence the mobility of potentially toxic elements (PTEs) in soil. As such, they can be useful in restoring the functionality of contaminated soils, albeit their effectiveness can vary substantially depending on the chemical and/or the (micro)biological endpoint that is targeted. To better explore the potential of the two amendments in the restoration of PTE-contaminated soils, biochar, compost (separately added at 3% w/w), and their mixtures (1:1, 3:1, and 1:3 biochar-to-compost ratios) were added to contaminated soil (i.e., 2362 mg kg-1 of Sb and 2801 mg kg-1 of Zn). Compost and its mixtures promoted an increase in soil fertility (e.g., total N; extractable P; and exchangeable K, Ca, and Mg), which was not found in the soil treated with biochar alone. All the tested amendments substantially reduced labile Zn in soil, while biochar alone was the most effective in reducing labile Sb in the treated soils (-11% vs. control), followed by compost (-4%) and biochar-compost mixtures (-8%). Compost (especially alone) increased soil biochemical activities (e.g., dehydrogenase, urease, and β-glucosidase), as well as soil respiration and the potential catabolic activity of soil microbial communities, while biochar alone (probably due to its high adsorptive capacity towards nutrients) mostly exhibited an inhibitory effect, which was partially mitigated in soils treated with both amendments. Overall, the biochar-compost combinations had a synergistic effect on both amendments, i.e., reducing PTE mobility and restoring soil biological functionality at the same time. This finding was supported by plant growth trials which showed increased Sb and Zn mineralomass values for rigid ryegrass (Lolium rigidum Gaud.) grown on biochar-compost mixtures, suggesting a potential use of rigid ryegrass in the compost-biochar-assisted phytoremediation of PTE-contaminated soils.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
- Nucleo Ricerca Desertificazione, University of Sassari, 07100 Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| |
Collapse
|
16
|
Masud MAA, Shin WS, Sarker A, Septian A, Das K, Deepo DM, Iqbal MA, Islam ARMT, Malafaia G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166813. [PMID: 37683867 DOI: 10.1016/j.scitotenv.2023.166813] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Biochar, a carbon-rich material produced from the pyrolysis of organic biomass, has gained significant attention as a potential solution for sustainable green remediation practices. Several studies analyze biomass-derived biochar techniques and environmental applications, but comprehensive assessments of biochar limitations, uncertainty, and future research directions still need to be improved. This critical review aims to present a comprehensive analysis of biochar's efficacy in environmental applications, including soil, water, and air, by sequentially addressing its preparation, application, and associated challenges. The review begins by delving into the diverse methods of biochar production, highlighting their influence on physical and chemical properties. This review explores the diverse applications of biochar in remediating contaminated soil, water, and air while emphasizing its sustainability and eco-friendly characteristics. The focus is on incorporating biochar as a remediation technique for pollutant removal, sequestration, and soil improvement. The review highlights the promising results obtained from laboratory-scale experiments, field trials, and case studies, showcasing the effectiveness of biochar in mitigating contaminants and restoring ecosystems. The environmental benefits and challenges of biochar production, characterization, and application techniques are critically discussed. The potential synergistic effects of combining biochar with other remediation methods are also explored to enhance its efficacy. A rigorous analysis of the benefits and drawbacks of biochar for diverse environmental applications in terms of technical, environmental, economic, and social issues is required to support the commercialization of biochar for large-scale uses. Finally, future research directions and recommendations are presented to facilitate the development and implementation of biochar-based, sustainable green remediation strategies.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional, BRIN), Serpong 15314, Indonesia.
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
17
|
Mehrab N, Chorom M, Norouzi Masir M, Biswas JK, Fernandes de Souza M, Meers E. Impact of soil treatment with Nitrilo Triacetic Acid (NTA) on Cd fractionation and microbial biomass in cultivated and uncultivated calcareous soil. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:319-332. [PMID: 37869606 PMCID: PMC10584783 DOI: 10.1007/s40201-023-00857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2023] [Indexed: 10/24/2023]
Abstract
Purpose The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil-plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation. Methods The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg-1 soil) and three levels of NTA (0, 15, and 30 mmol L-1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times. Results The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd50NTA30 was 9.2 and 6.1 mg L-1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd25NTA30 was 5.7 and 3.1 mg L-1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd25NTA30 in cultivated soil. In Cd25NTA30 compared to Cd25NTA0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg-1), and soil respiration (27.5 mg C-CO2 kg-1 24 h-1) decreased, while metabolic quotient (qCO2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L-1) increased. Moreover, the changes of Cd fractions in Cd25NTA30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F1, 0.27 mg kg-1) and Fe/Mn-oxide-bounded Cd (F4, 0.15 mg kg-1) fractions increased, in contrast, carbonate-Cd (F2, 2.67 mg kg-1) and, organically bounded Cd (F3, 0.06 mg kg-1) fractions decreased. NTA had no significant effect on the residual fraction (F5). Conclusion The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.
Collapse
Affiliation(s)
- Narges Mehrab
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mostafa Chorom
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Norouzi Masir
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal India
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Qiu J, Fernandes de Souza M, Edayilam N, Yang Y, Ok YS, Ronsse F, Morabito D, Meers E. Metal behavior and soil quality changes induced by the application of tailor-made combined biochar: An investigation at pore water scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165552. [PMID: 37454836 DOI: 10.1016/j.scitotenv.2023.165552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The remediation performance of biochar varies based on the biomass used for its production. Further innovation involves developing tailor-made biochar by combining different raw materials to compensate for the limitations of pure biochar. Therefore, tailor-made combined biochar produced from the co-pyrolysis of pig manure and invasive Japanese knotweed (P1J1), as well as biochars produced from these feedstocks separately, i.e., pure pig manure (PM) and pure Japanese knotweed (JK), were applied to Pb and As contaminated soil to evaluate the biochar-induced changes on soil properties, microbial activity, DOM, and metal and metalloids solubility at the soil pore water scale. Biochar application reduced soluble Pb, whereas enhanced the As mobility; the increased soil pH after biochar addition played a fundamental role in reducing the Pb solubility, as revealed by their significant negative correlation (r = -0.990, p < 0.01). In contrast, the release of dissolved P strongly influenced As mobilization (r = 0.949, p < 0.01), especially in P-rich PM and P1J1 treatments, while JK showed a marginal effect in mobilizing As. Soils treated with PM, P1J1, and JK mainly increased Gram-negative bacteria by 56 %, 52 %, and 50 %, respectively, compared to the control. Fluorescence excitation-emission matrix spectroscopy combined with parallel factor analysis identified three components in pore water DOM, C1 (long wavelength humic-like), C2 (short wavelength humic-like), and C3 (protein-like), which were dominant respectively in the P1J1, JK, and PM-added soil. A principal component analysis (PCA) confirmed that the PM and P1J1 had similar performance and were more associated with releasing P and Mg and specific DOM components (C1 and C3). Meanwhile, P1J1 supplemented soil OM/OC and K, similar to JK. The results of this study suggest that combined biochar P1J1 can comprehensively enhance soil quality, embodying the advantages of pure PM and JK biochar while overcoming their shortcomings.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nimisha Edayilam
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yongyuan Yang
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Domenico Morabito
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Peera Sheikh Kulsum PG, Khanam R, Das S, Nayak AK, Tack FMG, Meers E, Vithanage M, Shahid M, Kumar A, Chakraborty S, Bhattacharya T, Biswas JK. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. ENVIRONMENTAL RESEARCH 2023; 220:115098. [PMID: 36586716 DOI: 10.1016/j.envres.2022.115098] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a major contaminant of concern, has been extensively reviewed and debated for its anthropogenic global shifts. Cadmium levels in rice grains raise wide food safety concerns. The aim of this review is therefore to capture the dynamics of Cd in paddy soil, translocation pathways of Cd from soil to consumption rice, and assess its bio-accessibility in human consumption. In crop plants, Cd reduces absorption of nutrients and water, triggers oxidative stress, and inhibits plant metabolism. Understanding the mechanisms and behaviour of Cd in paddy soil and rice allows to explain, predict and intervene in Cd transferability from soil to grains and human exposure. Factors affecting Cd movement in soil, and further to rice grain, are elucidated. Recently, physiological and molecular understanding of Cd transport in rice plants have been advanced. Morphological-biochemical characteristics and Cd transporters of plants in such a movement were also highlighted. Ecologically viable remediation approaches, including low input cost agronomic methods, phytoremediation and microbial bioremediation methods, are emerging.
Collapse
Affiliation(s)
| | - Rubina Khanam
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Shreya Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Amaresh Kumar Nayak
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Mohammad Shahid
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Anjani Kumar
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Tanushree Bhattacharya
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies &International Centre for Ecological Engineering, Universityof Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
20
|
Meng Z, Huang S, Mu W, Wu J, Lin Z. Quantitative transport and immobilization of cadmium in saturated-unsaturated soils with the combined application of biochar and organic fertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47221-47233. [PMID: 36735122 DOI: 10.1007/s11356-023-25342-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
In this study, cadmium (Cd) transport and immobilization on passivators (biochar, organic fertilizer) and soils under saturated-unsaturated conditions were independently analyzed. The results showed that the Cd adsorption capacities of biochar and organic fertilizer were comparable in acidic soils. But in alkaline soils, the Cd adsorption capacity of organic fertilizer was significantly larger than that of biochar. In acidic soils, passivators effectively immobilized Cd, and the total net effects were in the order: combination (44.05-58.13%) > 3% biochar (31.96-46.88%) > 3% organic fertilizer (28.78-41.82%). In alkaline soils, all treatments had negative effects on Cd immobilization. For acidic soils, the immobilization of Cd was mainly attributed to the passivators, and the positive contribution percentages of relatively stable Cd increase by passivators were 81.05-100%, while those by soils were 0-18.95%. For alkaline soils, after the treatments of passivators, although a considerable amount of Cd was immobilized inside the passivator, Cd was activated more inside the soil. Therefore, it is noteworthy that soil conditions must be fully considered when applying biochar and organic fertilizers for Cd remediation.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenting Mu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Luo Y, Tan C, He Y, Chen Y, Wan Z, Fu T, Wu Y. Rhizosphere activity induced mobilization of heavy metals immobilized by combined amendments in a typical lead/zinc smelter-contaminated soil. CHEMOSPHERE 2023; 313:137556. [PMID: 36528153 DOI: 10.1016/j.chemosphere.2022.137556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The persistence of the stabilization effect of amendments on heavy metals (HMs) is of great concern when they are used for remediating HM-contaminated soil. Here, pot experiments were conducted to investigate the effects of two consecutive seasons of vegetable cultivation on the mobilization of HMs (Cu, Pb, Zn, and Cd) immobilized by different application ratios (0, 20, 40, and 80 g kg-1, labelled C0, C2, C4, and C8) of a combined amendments (lime: sepiolite: biochar: humic acid = 2:2:1:1). The results showed that HM bioavailability decreased with increasing application ratios of the combined amendments in control (CK) treatments. The DOC contents, HM bioavailability, and HM contents in the leaves of vegetables increased, but the pH decreased during two consecutive seasons of vegetable cultivation; however, the HM bioavailability in the C2, C4, and C8 treatments was lower than that in the C0 treatments with vegetables. Catalase, urease, alkaline phosphatase, and dehydrogenase activities in the combined amendment treatments with and without vegetables were decreased compared to those in the C0 treatments. The relative abundances of the dominant bacterial phyla in the different treatments were Actinobacteria > Proteobacteria > Chloroflexi > Acidobacteria > Gemmatimonadetes > Bacteroidetes for the first season and Proteobacteria > Actinobacteria > Chloroflexi > Acidobacteria > Bacteroidetes > Gemmatimonadetes for the second season. Correlations showed that the pH and DOM properties during two consecutive seasons of vegetable cultivation were important factors influencing HM bioavailability, enzyme activity, and bacterial community composition. The bacterial community composition shift indirectly influenced the mobilization of HMs immobilized by the combined amendments. Thus, rhizosphere activity induced the mobilization of HMs immobilized by combined amendments during two consecutive seasons of vegetable cultivation.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Chuanjing Tan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yu He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yulu Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianling Fu
- The New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
22
|
Li J, Otero-Gonzalez L, Lens PNL, Ferrer I, Du Laing G. Assessment of selenium and zinc enriched sludge and duckweed as slow-release micronutrient biofertilizers for Phaseolus vulgaris growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116397. [PMID: 36208519 DOI: 10.1016/j.jenvman.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Selenium (Se) and zinc (Zn) are essential micronutrients that are often lacking in the diet of humans and animals. Application of mineral Se and Zn fertilizers into soils may lead to a waste of Se and Zn due to the fast leaching and low utilization by plants. Slow-release Se and Zn biofertilizer may therefore be beneficial. This study aims to assess the potential of SeZn-enriched duckweed and sludge produced from wastewater as slow-release Se and Zn biofertilizers. Pot experiments with green beans (Phaseolus vulgaris) and sampling of Rhizon soil pore water were conducted to evaluate the bioavailability of Se and Zn in sandy and loamy soils mixed with SeZn-enriched duckweed and sludge. Both the Se and Zn concentrations in the soil pore water increased upon amending the two biomaterials. The concentration of Se released from SeZn-enriched duckweed rapidly decreased in the first 21 days and slowly declined afterwards, while it remained stable during the entire experiment upon application of SeZn-enriched sludge. The Zn content in the soil pore water gradually increased over time. The application of SeZn-enriched duckweed and sludge significantly increased the Se concentrations in plant tissues, in particular in the form of organic Se-methionine in seeds, without a negative impact on plant growth when an appropriate dose was applied (1 mg Se/kg soil). While, it did not increase Zn concentrations in plant seeds. The results indicate that the SeZn-enriched duckweed and sludge could be only used as organic Se biofertilizers for Se-deficient soils. Particularly, the SeZn-enriched sludge dominated with elemental nano-Se was an effective Se source and slow-release Se biofertilizer. These results could offer a theoretical reference to choose an alternative to chemical Se fertilizers for biofortification, avoiding the problem of Se losses by leaching from mineral Se fertilizers while recovering resources from wastewater. This could contribute to the driver for a future circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601, DA, Delft, Netherlands
| | - Ivet Ferrer
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
23
|
Lima JZ, Ferreira da Silva E, Patinha C, Rodrigues VGS. Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115968. [PMID: 35988405 DOI: 10.1016/j.jenvman.2022.115968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The development of waste-derived sorbents to immobilize potentially toxic elements (PTEs) is a promising strategy, contributing to the achievement of sustainable development goals (SDGs). Therefore, this study aimed to assess the sorption performance of cadmium (Cd), lead (Pb) and zinc (Zn), comparing sorbents derived from organic fraction of municipal solid waste (composts and biochars) with peat. The physicochemical characterization, equilibrium of sorption, post-sorption analyzes and bioaccessibility were investigated. Results showed that the sorbents have distinct characteristics; however, each material have their particularities favorable to sorption. For instance, peat and composts have the highest cation exchange capacity (800-1100 mmolc kg-1), while biochar produced at 700 °C has the highest specific surface area (91.21 m2 g-1). The sorption equilibrium data revealed the actual sorption capacity and was well explained by the Freundlich and Langmuir isotherms and, in some cases, by the Dubinin-Radushkevich model. Post-sorption analyzes indicated the occurrence of several sorption mechanisms, driven by the physicochemical properties. Electrostatic interaction stood out for peat and compost. The FTIR spectrum for peat proved the complexation with oxygenated functional groups. The composts showed variations in the released cations (e.g. Ca2+ and K+), indicating cation exchange. Differently, for biochars, the XRD patterns showed that precipitation or coprecipitation seems to be one of the main mechanisms, especially for Cd and Pb. Regarding human bioaccessibility, the results of the gastric phase simulation (pH∼1.20) revealed lower percentages of Pb (33-81%) than Cd (91-99%) or Zn (82-99%), especially for the highest concentrations. Nevertheless, in numerical terms, all bioaccessible concentrations inspire care. In conclusion, among the sorbents, composts and biochars presented the best sorption performances and, therefore, have great potential for environmental applications. Furthermore, the bioaccessibility findings indicate that these assays, still little used in experiments with sorbents, are an important tool that should be better explored in the assessment of the environmental risk associated with contamination.
Collapse
Affiliation(s)
- Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo - 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil; GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Eduardo Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patinha
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valéria Guimarães Silvestre Rodrigues
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo - 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil.
| |
Collapse
|
24
|
Cerqueira B, Covelo EF, Rúa-Díaz S, Marcet P, Forján R, Gallego JLR, Trakal L, Beesley L. Contrasting mobility of arsenic and copper in a mining soil: A comparative column leaching and pot testing approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115530. [PMID: 35752005 DOI: 10.1016/j.jenvman.2022.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The remediation of legacy metal(loid) contaminated soils in-situ relies on the addition of [organic] amendments to reduce the mobility and bioavailability of metal(loid)s, improve soil geochemical parameters and restore vegetation growth. Two vermicomposts of food and animal manure waste origin (V1 and V2) were amended to an arsenic (As) and copper (Cu) contaminated mine soil (≤1500 mg kg-1). Leaching columns and pot experiments evaluated copper and arsenic in soil pore waters, as well as pH, dissolved organic carbon (DOC) and phosphate (PO43-) concentrations. The uptake of As and Cu to ryegrass was also measured via the pot experiment, whilst recovered biochars from the column leaching test were measured for metal sorption at the termination of leaching. Vermicompost amendment to soil facilitated ryegrass growth which was entirely absent from the untreated soil in the pot test. All amendment combinations raised pore water pH by ∼4 units. Copper concentrations in pore waters from columns and pots showed steep reductions (∼1 mg L-1), as a result of V1 & V2 compared to untreated soil (∼500 mg L-1). Combined with an increase in DOC and PO43-, As was mobilised an order of magnitude by V1. Biochar furthest reduced Cu in pore waters from the columns to <0.1 mg L-1, as a result of surface sorption. The results of this study indicate that biochar can restrict the mobility of Cu from a contaminated mine soil after other amendment interventions have been used to promote revegetation. However, the case of As, biochar cannot counter the profound impact of vermicompost on arsenic mobility.
Collapse
Affiliation(s)
- Beatriz Cerqueira
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain; Environmental and Geochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK.
| | - Emma F Covelo
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Sandra Rúa-Díaz
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Purificación Marcet
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Rubén Forján
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| | - José Luis R Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Luke Beesley
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic; Environmental and Geochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK
| |
Collapse
|
25
|
Bhat SA, Bashir O, Ul Haq SA, Amin T, Rafiq A, Ali M, Américo-Pinheiro JHP, Sher F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. CHEMOSPHERE 2022; 303:134788. [PMID: 35504464 DOI: 10.1016/j.chemosphere.2022.134788] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Rapid industrialization, increased waste production and surge in agricultural activities, mining, contaminated irrigation water and industrial effluents contribute to the contamination of water resources due to heavy metal (HM) accumulation. Humans employ HM-contaminated resources to produce food, which eventually accumulates in the food chain. Decontamination of these valuable resources, as well as avoidance of additional contamination has long been needed to avoid detrimental health impacts. Phytoremediation is a realistic and promising strategy for heavy metal removal from polluted areas, based on the employment of hyper-accumulator plant species that are extremely tolerant to HMs present in the environment/soil. Green plants are used to remove, decompose, or detoxify hazardous metals in this technique. For soil decontamination, five types of phytoremediation methods have been used viz. phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation methods, on the other hand, have significant limits in terms of large-scale application, thus biotechnological efforts to modify plants for HM phytoremediation ways are being explored to improve the efficacy of plants as HM decontamination candidates. It is relatively a new technology that is widely regarded as economic, efficient and unique besides being environment friendly. New metal hyperaccumulators with high efficiency are being explored and employed for their use in phytoremediation and phytomining. Therefore, this review comprehensively discusses different strategies and biotechnological approaches for the removal of various HM containments from the environment, with emphasis on the advancements and implications of phytoremediation, along with their applications in cleaning up various toxic pollutants. Moreover, sources, effects of HMs and factors affecting phytoremediation of HMs metals have also been discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Punjab, 144402, India
| | - Syed Anam Ul Haq
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Asif Rafiq
- College of Temperate Sericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Mirgund, Baramulla, Jammu and Kashmir, 193121, India
| | - Mudasir Ali
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, Number 56, 15385-000, Ilha Solteira, SP, Brazil; Brazil University, Street Carolina Fonseca, Number 584, 08230-030, São Paulo, SP, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
26
|
Lai T, Wang J, Xiong W, Wang H, Yang M, Li T, Kong X, Zou X, Zhao Y, O'Hare D, Song YF. Photocatalytic CO2 reduction and environmental remediation using mineralization of toxic metal cations products. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Lebrun M, Miard F, Trakal L, Bourgerie S, Morabito D. The reduction of the As and Pb phytotoxicity of a former mine technosol depends on the amendment type and properties. CHEMOSPHERE 2022; 300:134592. [PMID: 35430201 DOI: 10.1016/j.chemosphere.2022.134592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In remediation of metal(loid) polluted soils, it is crucial to improve soil conditions and reduce metal(loid) toxicity to permit plant growth. To do that, amendments, such as biochar, activated carbon, and redmud, can be applied to the soil. Their effects are dependent on their type and properties. The aims of this study were thus to evaluate the potential of diverse biochars, activated carbons, and redmuds to reduce phytotoxicity of a former mine technosol polluted with As and Pb. Two pots experiments were set up. The first one applied on Pontgibaud technosol ten biochars, eight activated carbons, and three redmuds, at 2% for the biochars and activated carbons and 1% for the redmud. Soil pore water properties (pH, electrical conductivity), metal(loid) mobility, and Phaseolus vulgaris growth were monitored. In a second experiment, the five best amendments, one redmud associated with two biochars and two activated carbons, selected based on their ability to improve soil conditions, immobilize metal(loid)s and improve plant growth, were applied. The same plant species was used and soil and plant parameters were measured. Results demonstrated that not all amendments were capable of ameliorating soil conditions and reducing soil phytotoxicity. Moreover, the five selected amendments (biochars from oak bark sapwood and bamboo, activated carbons from vegetal feedstock chemically activated and physically activated, modified redmud) showed good sorption capacity towards Pb, with maximum sorption capacity between 63 and 217 mg g-1, depending on the amendment, and their combined application led to better soil properties improvement than the single amendments. However, plant growth was only ameliorated further than a single application in the redmud-biochar combination but not in the association of redmud with activated carbon. This study is one of the first to deliver a rapid phytotoxicity test screening demonstrating that redmud associated with particular biochar could be beneficial in reducing the phytotoxicity of technosol polluted with As and Pb and thus allow plant growth and a phytomanagement process.
Collapse
Affiliation(s)
- Manhattan Lebrun
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France.
| | - Florie Miard
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Praha 6, Suchdol, Czech Republic
| | - Sylvain Bourgerie
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France
| | - Domenico Morabito
- University of Orleans, INRA USC1328, LBLGC EA 1207, Rue de Chartres, BP 6759, 45067, Orléans, Cedex 2, France
| |
Collapse
|
28
|
Roe RAL, MacFarlane GR. The potential of saltmarsh halophytes for phytoremediation of metals and persistent organic pollutants: An Australian perspective. MARINE POLLUTION BULLETIN 2022; 180:113811. [PMID: 35667258 DOI: 10.1016/j.marpolbul.2022.113811] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 05/22/2023]
Abstract
Persistent organic and inorganic pollutants are among the most concerning pollutants in Australian estuaries due to their persistent, ubiquitous, and potentially toxic nature. Traditional methods of soil remediation often fall short of practical implementation due to high monetary investment, environmental disturbance, and potential for re-contamination. Phytoremediation is gaining traction as an alternative, or synergistic mechanism of contaminated soil remediation. Phytoremediation utilises plants and associated rhizospheric microorganisms to stabilise, degrade, transform, or remove xenobiotics from contaminated mediums. Due to their apparent cross-tolerance to salt, metals, and organic contaminants, halophytes have shown promise as phytoremediation species. This review examines the potential of 93 species of Australian saltmarsh halophytes for xenobiotic phytoremediation. Considerations for the practical application of phytoremediation in Australia are discussed, including mechanisms of enhancement, and methods of harvesting and disposal. Knowledge gaps for the implementation of phytoremediation in Australian saline environments are identified, and areas for future research are suggested.
Collapse
Affiliation(s)
- Rebecca A L Roe
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
29
|
Gong H, Zhao L, Rui X, Hu J, Zhu N. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128668. [PMID: 35325861 DOI: 10.1016/j.jhazmat.2022.128668] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 05/28/2023]
Abstract
In recent years, the application of biochar in the remediation of heavy metals (HMs) contaminated soil has received tremendous attention globally. We reviewed the latest research on the immobilization of soil HMs by biochar almost in the last 5 years (until 2021). The methods, effects and mechanisms of biochar and modified biochar on the immobilization of typical HMs in soil have been systematically summarized. In general, the HMs contaminating the soil can be categorized into two groups, the oxy-anionic HMs (As and Cr) and the cationic HMs (Pb, Cd, etc.). Reduction and precipitation of oxy-anionic HMs by biochar/modified biochar are the dominant mechanism for reducing HMs toxicity. Pristine biochar can effectively immobilize cationic HMs. The commonly applied modification method is to add substances that can precipitate HMs to the biochar. In addition, we assessed the risks of biochar applications. For instance, biochar may cause the leaching of certain HMs; biochar aging; co-transportation of biochar nanoparticles with HMs. Future work should focus on the artificial/intelligent design of biochar to make it suitable for remediation of multiple HMs contaminated soil.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
30
|
Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. CHEMOSPHERE 2022; 297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals, heavy metals, pesticides, and dyes are the main environmental contaminants that have serious effects on both land and aquatic lives and necessitate the development of effective methods to mitigate these issues. Although some conventional methods are in use to tackle soil contamination, but biochar and biochar-based composites represent a reliable and sustainable means to deal with a spectrum of toxic organic and inorganic pollutants from contaminated environments. The capacity of biochars and derived constructs to remediate inorganic dyes, pesticides, insecticides, heavy metals, and pharmaceuticals from environmental matrices is attributed to their extensive surface area, surface functional groups, pore size distribution, and high sorption capability of these pollutants in water and soil environments. Application conditions, biochar feedstock, pyrolysis conditions and precursor materials are the factors that influence the capacity and functionality of biochar to adsorb pollutants from wastewater and soil. These factors, when improved, can benefit biochar in agrochemical and heavy metal remediation from various environments. However, the processes involved in biochar production and their influence in enhancing pollutant sequestration remain unclear. Therefore, this paper throws light on the current strategies, operational conditions, and sequestration performance of biochar and biochar-based composites for agrochemical and heavy metal in soil and water environments. The main challenges associated with biochar preparation and exploitation, toxicity evaluation, research directions and future prospects for biochar in environmental remediation are also outlined.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | | | - Linda Yeboah
- School of Biological Sciences, University of Ghana, Legon, 00233, Accra, Ghana
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
31
|
Li R, Zhang X, Wang G, Kong L, Guan Q, Yang R, Jin Y, Liu X, Qu J. Remediation of cadmium contaminated soil by composite spent mushroom substrate organic amendment under high nitrogen level. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128345. [PMID: 35149508 DOI: 10.1016/j.jhazmat.2022.128345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) contamination in soil poses a serious threat to ecological environment and crop quality, especially under high nitrogen level. Here, the efficiency of composite organic amendment (spent mushroom substrate and its biochar) on remediation of Cd contaminated soil under high nitrogen level has been studied through a 42 days' soil incubation experiment. The results showed: (i) the application of composite organic amendment minimized the repercussions of high nitrogen and significantly reduced the exchangeable Cd proportion by 28.3%-29.5%, especially for Ca(NO3)2 treatment; (ii) the application of composite organic amendment improved the physicochemical properties of soil, such as pH, CEC and organic matter content increased by 0.63-0.99 unit, 39.69%-45.00% and 7.77%-11.47%, and EC decreased by 16.21%-44.47% compared with non-amendment Cd-contaminated soil, respectively; (iii) the application of composite organic amendment significantly increased the soil enzyme activities and microbial biomass, among which urease activity was increased most by 12.06-16.42 mg·g-1·d-1, and the copy number of AOA was decreased by 30.6%- 92.0%, and the copy number of AOB was increased most by about 45 times. In brief, the composite organic amendment can alleviate the adverse effects of Cd and nitrogen on the soil, but its long-term efficacy needs to be verified in further field study.
Collapse
Affiliation(s)
- Rui Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guoliang Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Linghui Kong
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
32
|
Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. SUSTAINABILITY 2022. [DOI: 10.3390/su14095665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wastewater can supplement freshwater in agriculture; however, it contains toxic heavy metals such as cadmium, chromium, and lead that are hazardous to humans and the environment. We investigated the effects of barley straw biochar, green and table waste compost, and their mix on heavy metal transport in soil and uptake by potatoes (Solanum tuberosum L.) irrigated with synthetic wastewater for two years. In both years, amending soil with compost significantly reduced (p ≤ 0.05) cadmium uptake in potato flesh, skin, roots, and stems; zinc uptake in potato skin and roots; and copper uptake in potato flesh due to increased soil cation-exchange capacity, dissolved organic carbon, and soil pH. Co-amending the soil with compost and 3% biochar significantly reduced (p ≤ 0.05) the bioavailability of cadmium, copper, and zinc in the contaminated soil. Relative to the non-amended soils, soil amendment with biochar, compost, and their mix affected neither the transport of chromium, iron, and lead in the soils nor their uptake by potatoes. It was concluded that amending soil with barley straw biochar and/or compost produced from city green table waste could be used to improve the safety of wastewater irrigated potatoes, depending on the biochar application rate and heavy metal type.
Collapse
|
33
|
Wang X, Fernandes de Souza M, Mench MJ, Li H, Ok YS, Tack FMG, Meers E. Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118627. [PMID: 34871647 DOI: 10.1016/j.envpol.2021.118627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg-1 for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N'-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg-1) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg-1 EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg-1 EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg-1 (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Haichao Li
- Department of Environment, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
34
|
Cao R, Liu S, Yang X, Wang C, Wang Y, Wang W, Pi Y. Enhanced remediation of Cr(VI)-contaminated groundwater by coupling electrokinetics with ZVI/Fe 3O 4/AC-based permeable reactive barrier. J Environ Sci (China) 2022; 112:280-290. [PMID: 34955212 DOI: 10.1016/j.jes.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 05/22/2023]
Abstract
Although widely used in permeation reaction barrier (PRB) for strengthening the removal of various heavy metals, zero-valent iron (ZVI) is limited by various inherent drawbacks, such as easy passivation and poor electron transfer. As a solution, a synergistic system with PRB and electrokinetics (PRB-EK) was established and applied for the efficient removal of Cr(VI)-contaminated groundwater. As the filling material of PRB, ZVI/Fe3O4/activated carbon (ZVI/Fe3O4/AC) composites were synthesized by ball milling and thermal treatment. A series of continuous flow column experiments and batch tests was conducted to evaluate the removal efficiency of Cr(VI). Results showed that the removal efficiency of Cr(VI) remained above 93% even when the bed volume (BV) reached 2000 under the operational parameters (iron/AC mass ratio, 2:1; current, 5 mA). The mechanism of Cr(VI) removal by the PRB-EK system was revealed through field emission scanning electron microscopy images, X-ray diffraction, X-ray photoelectron spectroscopy, Fe2+ concentration, and redox potential (Eh) values. The key in Cr(VI) reduction was the Fe2+/Fe3+ cycle driven by the surface microelectrolysis of the composites. The application of an externally supplied weak direct current maintained the redox process by enhancing the electron transfer capability of the system, thereby prolonging the column lifetime. Cr(VI) chemical speciation was determined through sequential extraction, verifying the stability and safety of the system. These findings provide a scientific basis for PRB design and the in-situ remediation of Cr(VI)-contaminated groundwater.
Collapse
Affiliation(s)
- Ruolin Cao
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Shiqing Liu
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Yang
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chunfeng Wang
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Yanbin Wang
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Wanfeng Wang
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yunqing Pi
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), School of Environment, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
35
|
Chen M, Wang D, Xu X, Zhang Y, Gui X, Song B, Xu N. Biochar nanoparticles with different pyrolysis temperatures mediate cadmium transport in water-saturated soils: Effects of ionic strength and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150668. [PMID: 34597543 DOI: 10.1016/j.scitotenv.2021.150668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/28/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Biochar is advocated as an environment-friendly and cost-effective material for removing both heavy metals and organic contaminants in soil remediation. However, our understandings on the cotransport potential of contaminants with the nanoscale biochar downward along soil profiles (e.g., potential environmental risks towards groundwater) remain largely unknown. This study investigated the effects of wheat straw-derived biochar nanoparticles pyrolyzed at 350 °C and 500 °C (BNP350 and BNP500) on the transport of cadmium (Cd(II)) in water-saturated soil packed columns. Different ionic strengths (ISs) without/with humic acid (HA) were tested to mimic the scenarios during soil remediation. BNPs could act as a vehicle mediating Cd(II) transport in soils. At a low IS (1.0 mM KCl), compared to the limited transport of individual Cd(II), BNP500 enhanced (69 times) Cd(II) transport (Cd(II) mass recovery (M) = 7.59%) in soils, which was greater than that by BNP350 (54 times, M = 5.92%), likely due to the higher adsorption of Cd(II) onto BNP500. HA further increased the Cd(II) transport by BNPs (M = 8.40% for BNP350 and M = 11.95% for BNP500), which was mainly due to the increased mobility of BNPs carrying more absorbed Cd(II). In contrast, at a high IS (10 mM KCl), BNP500 dramatically inhibited the transport of Cd(II) (M = 12.9%), decreasing by about 61.6%, compared to the BNPs absence (M = 33.6%). This is because a large amount of BNP500-Cd(II) was retained in soils at a high IS. This inhibition effect of Cd(II) transport by BNPs was reinforced with the presence of HA. Our findings suggest that the pyrolysis temperature of biochar should be carefully considered when applying biochar for in-situ remediation of soils contaminated by heavy metals such as Cd(II) under various organic matter and IS conditions.
Collapse
Affiliation(s)
- Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingqing Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
36
|
Ji M, Wang X, Usman M, Liu F, Dan Y, Zhou L, Campanaro S, Luo G, Sang W. Effects of different feedstocks-based biochar on soil remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118655. [PMID: 34896220 DOI: 10.1016/j.envpol.2021.118655] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/19/2021] [Accepted: 12/05/2021] [Indexed: 05/22/2023]
Abstract
As a promising amendment, biochar has excellent characteristics and can be used as a remediation agent for diverse types of soil pollution. Biochar is mostly made from agricultural wastes, forestry wastes, and biosolids (eg, sewage sludge), but not all the biochar has the same performance in the improvement of soil quality. There is a lack of guidelines devoted to the selection of biochar to be used for different types of soil pollution, and this can undermine the remediation efficiency. To shed light on this sensitive issue, this review focus on the following aspects, (i) how feedstocks affect biochar properties, (ii) the effects of biochar on heavy metals and organic pollutants in soil, and (iii) the impact on greenhouse gas emissions from soil. Generally, the biochars produced from crop residue and woody biomass which are composed of lignin, cellulose, and hemicellulose are more suitable for organic pollution remediation and greenhouse gas emission reduction, while biochar with high ash content are more suitable for cationic organic pollutant and heavy metal pollution (manure and sludge, etc.). Additionally, the effect of biochar on soil microorganisms shows that gram-negative bacteria in soil tend to use WB biochar with high lignin content, while biochar from OW (rich in P, K, Mg, and other nutrients) is more able to promote enzyme activity. Finally, our recommendations on feedstocks selection are presented in the form of a flow diagram, which is precisely intended to be used as a support for decisions on the crucial proportioning conditions to be selected for the preparation of biochar having specific properties and to maximize its efficiency in pollution control.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Department of Biology, University of Padua, 35131, Padova, Italy
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | | | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
37
|
Yin Z, Sheng H, Xiao H, Xue Y, Man Z, Huang D, Zhou Q. Inter-annual reduction in rice Cd and its eco-environmental controls in 6-year biannual mineral amendment in subtropical double-rice cropping ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118566. [PMID: 34822944 DOI: 10.1016/j.envpol.2021.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The alkaline mineral amendment is a practical means of alleviating Cd concentration in rice grain (CdR) in the short-term; however, the long-term remediation effect of mineral amendment on the CdR and the eco-environmental controls remains unknown. Here a mineral (Si-Ca-Mg) amendment, calcined primarily from molybdenum tailings and dolomite, was applied biannually over 6 years (12 seasons) to acidic and moderately Cd-contaminated double-rice cropping ecosystems. This study investigated the inter-annual variation of Cd in the rice-soil ecosystem and the eco-environmental controls in subtropical rice ecosystems. CdR was reduced by 50%-86% following mineral amendment. The within-year reduction in CdR was similar between early rice (50%-86%, mean of 68%) and late rice (68%-85%, mean of 74%), leading to CdR in all early rice and in 83% of late rice samples below the upper limit (0.2 mg kg-1) of the China National Food Safety Standards. In contrast, the inter-annual reduction in CdR was moderately variable, showing a greater CdR reduction in the later 3 years (73%-86%) than in the former 3 years (54%-79%). Three years continuous mineral amendment was required to guarantee the safety rice production. The concentrations of DTPA-extractable and exchangeable Cd fractions in soil were reduced, while the concentration of oxides-bound Cd was increased. In addition, the soil pH, concentrations of Olsen-P and exchangeable Ca and Mg were elevated. These imply a lower apparent phytoavailability of Cd in the soil following mineral amendment. An empirical model of the 3-variable using soil DTPA-Cd, soil Olsen-P, and a climatic factor (precipitation) effectively predicted temporal changes in CdR. Our study demonstrates that Cd phytoavailability in soil (indexed by DTPA-extractable Cd) and climatic factors (e.g., temperature and precipitation) may directly/indirectly control the inter-annual reduction in CdR following mineral amendment in slightly and moderately Cd-contaminated paddy ecosystems.
Collapse
Affiliation(s)
- Zerun Yin
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hao Sheng
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Huacui Xiao
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yi Xue
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Man
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dezhi Huang
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Qing Zhou
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
38
|
Mohseni A, Heidari S, Raei B, Moftakharzadeh SA, Bidast S. Determination of Poultry Manure and Plant Residues Effects on Zn Bioavailable Fraction in Contaminated Soil via DGT Technique. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:72-81. [PMID: 34750655 DOI: 10.1007/s00244-021-00901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A greenhouse experiment aimed to assess the effects of poultry manure, sorghum, and clover residues (0 and 15 g kg-1) on the zinc (Zn) bioavailable fraction in contaminated calcareous soil using two chemical assays, including diffusion gradient in thin-films (DGT) and diethylene triamine pentaacetic acid-triethanolamine (DTPA-TEA), and a bioassay with corn (Zea mase L.). The results showed that poultry manure, clover, and sorghum residues application increased dissolved organic carbon (DOC) by 53.6 and 36.1, and 9.2%, respectively, and decreased soil pH by 0.42, 0.26, and 0.06 units, respectively compared to unamended soil. These changes resulted in increases of Zn effective concentration (CE) and DTPA-Zn, and plant Zn concentration as observed by the increase in exchangeable form of Zn. In the sorghum residues-amended soils, CE-Zn decreased by 29.5% compared to other treatments. The best correlations between corn metal concentrations and soil metal bioavailability were obtained for CE-Zn using the DGT technique, which also provided the best Zn bioavailability estimate. It is concluded that sorghum residues could be used to reduce the phytotoxicity risk of Zn in calcareous contaminated soil, and the DTPA method is the less robust indicator of Zn bioavailability than the DGT technique.
Collapse
Affiliation(s)
- Amir Mohseni
- Department of Soil Science, University of Tabriz, 29 Bahman Blvd, 5166616471, Tabriz, Iran.
| | - Saber Heidari
- Faculty Members of Soil and Water Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran
| | - Bijan Raei
- Department of Soil Science, University of Tabriz, 29 Bahman Blvd, 5166616471, Tabriz, Iran
| | | | - Solmaz Bidast
- Department of Soil Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
39
|
Liu Q, Chen Z, Huang L, Mujtaba Munir MA, Wu Y, Wang Q, Ma L, Xu S, Wen Z, Feng Y. The effects of a combined amendment on growth, cadmium adsorption by five fruit vegetables, and soil fertility in contaminated greenhouse under rotation system. CHEMOSPHERE 2021; 285:131499. [PMID: 34265715 DOI: 10.1016/j.chemosphere.2021.131499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) exposure is related to a multitude of adverse health outcomes because food crops grown on Cd-polluted soil are widely consumed by the public. The present study investigates the different application techniques of a combined amendment (lime + zeolite + biochar + compost, LZBC) for soil Cd immobilization effect on growth performance, Cd uptake by the second season crops, and soil quality in greenhouse vegetable production (GVP) under a rotation system. Five fruit vegetables were cultivated as the second season crop in the same plots which have been used for pakchoi as the first season crop (with or without LZBC application). The results indicated that LZBC with the consecutive application (T3) promoted crops biomass and fruit yield the most, followed by LZBC with the second crop application (T2) and LZBC with the first crop application (T1). LZBC application showed increasing rhizosphere soil pH and improvement in soil fertility of all crops including available nitrogen, available phosphorus, available potassium, organic matter, and cation exchange capacity. LZBC had positive influences on soluble sugar, soluble protein, and vitamin C in edible parts of 5 vegetables. Cd contents in fruit, shoot, and root of eggplant, pimento, cowpea, and tomato except cucumber were reduced by adding LZBC. As for the economic performance, T3 had the highest output/input ratio in general. Overall, these results demonstrated that T3 was dramatically more effective for minimizing health risk, increasing production, and facilitating sustainable utilization of soil under the Cd-contaminated GVP system.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Luyao Ma
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shunan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
40
|
Zhu Y, Jin Y, Liu X, Miao T, Guan Q, Yang R, Qu J. Insight into interactions of heavy metals with livestock manure compost-derived dissolved organic matter using EEM-PARAFAC and 2D-FTIR-COS analyses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126532. [PMID: 34252653 DOI: 10.1016/j.jhazmat.2021.126532] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
Dissolved organic matter (DOM), as the most active ingredient in compost, directly determines the speciation and environmental behavior of HMs. Here, the binding properties of DOM derived from chicken-manure compost (CHM), cow-manure compost (COM) and pig-manure compost (PIM) with HMs were explored by analyses of Fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and two-dimensional correlation Fourier transform infrared spectroscopy (2D-FTIR-COS). Results showed that the binding characteristics vary with origin of DOM and type of HMs. The fulvic-like component dominated the transformation of HMs speciation, and CHM-DOM had higher affinity with HMs and greater risk causing pollution due to its higher aromaticity, molecular weight and distribution of fluorescent components. Moreover, Cu(II) can efficiently bind to DOM with the stability constants (log kM) ranging from 4.53 to 5.38, followed by Pb(II) (3.34-3.57), whereas Cd(II) can hardly bind to DOM. The amide and polysaccharide were the predominant sites for HMs binding in CHM-DOM, and polysaccharide and phenolic in COM-DOM, while phenolic and amide in PIM-DOM, respectively. Although the proportion of protein-like components and non-fluorescent polysaccharides in DOM were low, their role in HMs binding should not be ignored. In brief, the environmental risk caused by livestock manure compost may originate from interactions between DOM and HMs.
Collapse
Affiliation(s)
- Yuanchen Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianlin Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
41
|
Li J, Otero-Gonzalez L, Parao A, Tack P, Folens K, Ferrer I, Lens PNL, Du Laing G. Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer. CHEMOSPHERE 2021; 281:130767. [PMID: 34022598 DOI: 10.1016/j.chemosphere.2021.130767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals with a narrow window between deficiency and toxicity levels. Application of conventional chemical Se fertilizers to increase the Se content of crops in Se deficient areas could result in environmental contamination due to the fast leaching of inorganic Se. Slow-release Se-enriched biofertilizers produced from wastewater treatment may therefore be beneficial. In this study, the potential of Se-enriched biomaterials (sludge and duckweed) as slow-release Se biofertilizers was evaluated through pot experiments with and without planted green beans (Phaseolus vulgaris). The Se concentration in the bean tissues was 1.1-3.1 times higher when soils were amended with Se-enriched sludge as compared to Se-enriched duckweed. The results proved that the Se released from Se-enriched biomaterials was efficiently transformed to health-beneficial selenoamino acids (e.g., Se-methionine, 76-89%) after being taken up by beans. The Se-enriched sludge, containing mainly elemental Se, is considered as the preferred slow-release Se biofertilizer and an effective Se source to produce Se-enriched crops for Se-deficient populations, as shown by the higher Se bioavailability and lower organic carbon content. This study could offer a theoretical reference to choose an environmental-friendly and sustainable alternative to conventional mineral Se fertilizers for biofortification, avoiding the problem of Se losses by leaching from chemical Se fertilizers while recovering resources from wastewater. This could contribute to the driver for a future circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Amelia Parao
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Tack
- XMI Research Group, Department of Chemistry, Campus Sterre (S12), Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Karel Folens
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601, DA, Delft, the Netherlands
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
42
|
Noller C, Friesl-Hanl W, Hood-Nowotny R, Puschenreiter M, Watzinger A. Effect of Chelant-Based Soil Washing and Post-Treatment on Pb, Cd, and Zn Bioavailability and Plant Uptake. WATER, AIR, AND SOIL POLLUTION 2021; 232:405. [PMID: 34789952 PMCID: PMC8550514 DOI: 10.1007/s11270-021-05356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The remediation of Pb, Cd, and Zn contaminated soil by ex situ EDTA washing was investigated in two pot experiments. We tested the influence of (i) 0, 0.5, 1.0, and 1.5%wt zero-valent iron (ZVI) and (ii) a combination of 5%wt vermicompost, 2%wt biochar, and 1%wt ZVI on the metal availability in EDTA-washed soil using different soil extracts (Aqua regia, NH4NO3) and plant concentrations. We found that EDTA soil washing significantly reduced the total concentration of Pb, Cd, and Zn and significantly reduced the Cd and Zn plant uptake. Residual EDTA was detected in water extracts causing the formation of highly available Pb-EDTA complexes. While organic amendments had no significant effect on Pb behavior in washed soils, an amendment of ≥ 1%wt ZVI successfully reduced EDTA concentrations, Pb bioavailability, and plant uptake. Our results suggest that Pb-EDTA complexes adsorb to a Fe oxyhydroxide layer, quickly developing on the ZVI surface. The increase in ZVI application strongly decreases Zn concentrations in plant tissue, whereas the uptake of Cd was not reduced, but even slightly increased. Soil washing did not affect plant productivity and organic amendments improved biomass production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11270-021-05356-0.
Collapse
Affiliation(s)
- Christoph Noller
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources & Life Science (BOKU), Konrad-Lorenz Str. 24, 3430 Tulln, Austria
| | - Wolfgang Friesl-Hanl
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources & Life Science (BOKU), Konrad-Lorenz Str. 24, 3430 Tulln, Austria
| | - Rebecca Hood-Nowotny
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources & Life Science (BOKU), Konrad-Lorenz Str. 24, 3430 Tulln, Austria
| | - Markus Puschenreiter
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources & Life Science (BOKU), Konrad-Lorenz Str. 24, 3430 Tulln, Austria
| | - Andrea Watzinger
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources & Life Science (BOKU), Konrad-Lorenz Str. 24, 3430 Tulln, Austria
| |
Collapse
|
43
|
Bilias F, Nikoli T, Kalderis D, Gasparatos D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. TOXICS 2021; 9:184. [PMID: 34437502 PMCID: PMC8402515 DOI: 10.3390/toxics9080184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and the bioavailability of potentially toxic elements describing research areas of intense current and emerging activity. Using a visual scientometric analysis, our study shows that between 2019 and 2020, research sub-fields like earthworm activities and responses, greenhouse gass emissions, and low molecular weight organic acids have gained most of the attention when biochar was investigated for soil remediation purposes. Moreover, biomasses like rice straw, sewage sludge, and sawdust were found to be the most commonly used feedstocks for biochar production. The effect of biochar on soil chemistry and different mechanisms responsible for PTEs' immobilization with biochar, are also briefly reported. Special attention is also given to specific PTEs most commonly found at contaminated soils, including Cu, Zn, Ni, Cr, Pb, Cd, and As, and therefore are more extensively revised in this paper. This review also addresses some of the issues in developing innovative methodologies for engineered biochars, introduced alongside some suggestions which intend to form a more focused soil remediation strategy.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, Soil Science and Agricultural Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Thomai Nikoli
- Laboratory of Soil Science and Plant Diagnostics, Mediterranean Agronomic Institute of Chania, 73100 Chania, Greece;
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
44
|
Ondrasek G, Rengel Z, Maurović N, Kondres N, Filipović V, Savić R, Blagojević B, Tanaskovik V, Gergichevich CM, Romić D. Growth and Element Uptake by Salt-Sensitive Crops under Combined NaCl and Cd Stresses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061202. [PMID: 34204700 PMCID: PMC8231652 DOI: 10.3390/plants10061202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
To test an assumption that organic soil can ameliorate nutritional disorders associated with metal and salinity stresses, we exposed salt-sensitive strawberry and lettuce to four salinity (0-60 mM NaCl) and three contamination (0.3-5 mg Cd/kg) rates in peat (pHH2O = 5.5). The results showed that, even at 20 mM NaCl, salinity stress exerted a dominant effect on rhizosphere biogeochemistry and physiological processes, inducing leaf-edge burns, chlorosis/necrosis, reducing vegetative growth in crops; at ≥40 mM, NaCl mortality was induced in strawberry. Signifiacntly decreased K/Na, Ca/Na and Mg/Na concentration ratios with raising salinity were confirmed in all tissues. The combined CdxNaCl stresses (vs. control) increased leaf Cd accumulation (up to 42-fold in lettuce and 23-fold in strawberry), whereas NaCl salinity increased the accumulation of Zn (>1.5-fold) and Cu (up to 1.2-fold) in leaves. Lettuce accumulated the toxic Cd concentration (up to 12.6 mg/kg) in leaves, suggesting the strong root-to-shoot transport of Cd. In strawberry Cd, concentration was similar (and sub-toxic) in fruits and leaves, 2.28 and 1.86 mg/kg, respectively, suggesting lower Cd root-to-shoot translocation, and similar Cd mobility in the xylem and phloem. Additionally, the accumulation of Cd in strawberry fruits was exacerbated at high NaCl exposure (60 mM) compared with lower NaCl concentrations. Thus, in salinized, slightly acidic and organically rich rhizosphere, pronounced organo- and/or chloro-complexation likely shifted metal biogeochemistry toward increased mobility and phytoavailability (with metal adsorption restricted due to Na+ oversaturation of the caton exchange complex in the substrate), confirming the importance of quality water and soils in avoiding abiotic stresses and producing non-contaminated food.
Collapse
Affiliation(s)
- Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Zed Rengel
- School of Earth and Environment, University of Western Australia, Perth 6009, Australia;
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Nada Maurović
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Nada Kondres
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Vilim Filipović
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| | - Radovan Savić
- Department of Water Management, Faculty of Agriculture, University of Novi Sad, 21102 Novi Sad, Serbia; (R.S.); (B.B.)
| | - Boško Blagojević
- Department of Water Management, Faculty of Agriculture, University of Novi Sad, 21102 Novi Sad, Serbia; (R.S.); (B.B.)
| | - Vjekoslav Tanaskovik
- Faculty of Agricultural Sciences and Food, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia;
| | - Cristian Meriño Gergichevich
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 1145, Chile;
| | - Davor Romić
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (N.K.); (V.F.); (D.R.)
| |
Collapse
|
45
|
Jing F, Chen C, Chen X, Liu W, Wen X, Hu S. Cadmium transport in red paddy soils amended with wheat straw biochar. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:381. [PMID: 34085125 DOI: 10.1007/s10661-021-09162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) can be leached from soil into the groundwater and exhibit its adverse effect on the health of animals and humans. While previous studies have studied the process of Cd transport in water-saturated sand columns, literature regarding Cd transport in soil is scarce. The aim of this experiment was to investigate the transport of Cd in soil columns and biochar application rate effects on the mobility and distribution of Cd in soil. The red paddy soil was collected from the paddy of Changsha County, Hunan Province in southern China. Batch sorption and column experiments were conducted to study the adsorption isotherms of Cd2+ and its mobility at different biochar application rate treatments (0, 0.5, 1, 1.5, and 2%) referenced here as A0, A10, A20, A30, and A40, respectively. The Cd concentration of in effluent samples and digestion solutions was measured by inductively coupled plasma optical emission spectrometer (ICP-OES, Thermo Fisher Scientific, USA). After finishing the column experiment, columns were dissected into five layers (1-cm segments), the Cd fractions in soil were performed by the European Community Bureau of Reference (BCR). The amount of Cd sorption among treatments decreased in the order of A40 > A30 > A20 > A10 > A0, and the Langmuir model was more suitable to study the Cd2+ adsorption on biochar-amended soil than Freundlich model. Breakthrough curves showed that increasing biochar application rate increased the initial breakthrough time, whereas the pore-water velocity and dispersion coefficient were 81.0 and 99.8% lower in the A40 treatments than in the A0 treatments, respectively. Increasing biochar application rate enhanced the pH but reduced redox potential (Eh) in the most of effluents. Compared with A0, the concentration of Cd retained in soil columns increased by 86.6% in the A40 treatments. However, BCR sequential extractions showed that biochar addition in A40 treatments increased the acid soluble fraction but reduced the reducible fraction. In A40 treatments, compared with the 0-1-cm soil layer, the relative Cd concentration (N/Ni) in the 1-2-, 2-3-, 3-4-, and 4-5-cm soil layers increased by 5.4, 10.9, 14.3, and 21.9%, respectively. Biochar application in A40 treatments showed strong capacity for retarding Cd transport in soil, while the potential mobility of Cd in soil should be considered.
Collapse
Affiliation(s)
- Feng Jing
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Can Chen
- College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - Xiaomin Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Wei Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xin Wen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shimin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
46
|
Nawrot N, Wojciechowska E, Pazdro K, Szmagliński J, Pempkowiak J. Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: Impact of seedling origin and initial trace metal content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144983. [PMID: 33454486 DOI: 10.1016/j.scitotenv.2021.144983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 05/26/2023]
Abstract
The study presents results from 6 months of phytoremediation of sediments dredged from three urban retention tanks carried out in a mesocosm setup with the use of P. australis. Two kinds of P. australis seedlings were considered: seedlings originating from natural (uncontaminated - Suncont) and anthropogenically changed environments (contaminated - Scont); this distinction was reflected in the baseline concentrations of trace metals inside their tissues. The potentially toxic elements (PTEs) considered in this study were as follows: Zn, Cu, Cd, Ni, Cr, and Pb. The aim of the study was to compare the uptake, accumulation, and translocation properties of seedlings with different initial trace metal contents. The PTE concentrations were analyzed in sediments as well as in belowground and aboveground parts of plants in the middle (3rd month) and at the end of the investigation period using inductively coupled plasma mass spectrometry (ICP-MS), and the accumulation of PTEs in plant tissues was calculated. Phytoextraction efficiency was evaluated using the bioconcentration factor (BF) and translocation factor (TF). Plant morphology was assessed with scanning electron microscopy (SEM) to document plant stress due to PTE exposure. The results of our study indicated that P. australis seedlings originating from sites differing in the initial trace metal content exhibited different behavior when grown on sediments dredged from urban retention tanks. Suncont seedlings with low initial metal contents tended to adapt to the dredged sediments and showed phytoextraction ability, while Scont seedlings originating from sites with initial high contents of trace metals acted as phytoexcluders and tended to release PTEs from their tissues into the sediments. The morphological and structural effects caused by metal toxicity were observed in growth limitation, root tissue disturbance, root hair number decrease, and structural alterations in the epidermis and endodermis. Therefore, the Suncont seedlings presented better properties and adaptability for phytoremediation purposes.
Collapse
Affiliation(s)
- Nicole Nawrot
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Ewa Wojciechowska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Marine Geotoxicology Laboratory, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Jacek Szmagliński
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Pempkowiak
- Institute of Oceanology of the Polish Academy of Sciences, Marine Biogeochemistry Laboratory, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
47
|
Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, Iqbal M, Yousaf S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. ENVIRONMENTAL RESEARCH 2021; 195:110780. [PMID: 33539835 DOI: 10.1016/j.envres.2021.110780] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 05/22/2023]
Abstract
Environmental matrices are polluted with the plethora of contaminants, and among these, the concerns related to heavy metals (HMs) are also included. Due to the low cost in a long-term application and environmental friendliness, the use of biological remediation has gained significant attention in recent decades. The use of ornamental plants (OPs) in the field of phytoremediation is scarcely reported, and the impacts of HMs on OPs have also not been investigated in great depth. The OPs mediated HMs remediation can simultaneously remove contaminants and bring improvement in aesthetics of the site. The biomass of OPs produced after such activities can be used and sold as pot plants, cut flowers, essential oils, perfumes, air fresheners production, metal phytomining, and feedstock in silk production. The OPs also present a lower risk of HMs bioaccumulation compared to crop plants. This review focuses on the current knowledge of HMs toxicity to OPs, their applicability advantages, methods to improve the tolerance of OPs with incremented HMs uptake, challenges in the field, and future application perspectives. The case studies realted to practical application of OPs, from China, Iran, India, Oman, Pakistan, and Turkey, were also discussed. This work fetches the inter-disciplinary features and understanding for the sustainable treatment of HMs in a new novel way, to which no previous review has focused.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- Department of Earth & Environmental Sciences, Bahria University (Karachi Campus), Karachi, 75260, Pakistan; Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Amna Kiyani
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan; Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Cyrus Raza Mirza
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Rocío Barros
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain
| | - Basit Ali
- Department of Economics, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
48
|
Nandillon R, Lebrun M, Miard F, Gaillard M, Sabatier S, Morabito D, Bourgerie S. Contrasted tolerance of Agrostis capillaris metallicolous and non-metallicolous ecotypes in the context of a mining technosol amended by biochar, compost and iron sulfate. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1457-1475. [PMID: 31673918 DOI: 10.1007/s10653-019-00447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Metal(loid) contamination of soil, resulting from the mining activities, is a major issue worldwide, due to its negative effects on the environment and health. Therefore, these contaminated soils need to be remediated. One realistic method is the assisted phytostabilization, which aims at establishing a vegetation cover on the soil that will reduce metal(loid) bioavailability and spreading through the prevention of wind erosion and water leaching. In addition, amendments are applied to improve soil conditions and ameliorate plant growth. In this goal, biochar and compost showed good results in terms of amelioration of soil fertility and reduction in lead bioavailability. However, they usually have a negative effect on arsenic. On the contrary, iron sulfate showed capacity to reduce arsenic mobility through interaction with its iron hydroxides. Finally, the choice of the appropriate plant species is crucial for the success of assisted phytostabilization. One good option is to use endemic species, adapted to the metal(loid) stress, with a fast growth and large shoot and root systems. The aims of this study were to (1) evaluate the effects of applying biochar, compost and iron sulfate, alone or combined, to a former mine soil on the soil properties and Agrostis capillaris growth, and (2) assess the difference between two Agrostis capillaris ecotypes, an endemic metallicolous ecotype and a non-metallicolous ecotype. Results of the mesocosm experiment showed that amendment application improved soil properties, i.e., reduced soil acidity, increased nutrient availability and lower metal(loid) stress, the best being the combination biochar-compost-iron sulfate. These ameliorations allowed a better plant growth. Finally, the metallicolous ecotype performed better in terms of growth than the non-metallicolous one and could thus be used in an assisted phytostabilization process on the former mine site.
Collapse
Affiliation(s)
- Romain Nandillon
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
- ISTO, UMR 7327, BRGM, BP 36009, 45060, Orléans, France
| | - Manhattan Lebrun
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090, Pesche, Italy
| | - Florie Miard
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Marie Gaillard
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
| | | | - Domenico Morabito
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
49
|
Luo H, Du P, Shi J, Yang B, Liang T, Wang P, Chen J, Zhang Y, He Y, Jia X, Duan G, Li F. DGT methodology is more sensitive than conventional extraction strategies in assessing amendment-induced soil cadmium availability to rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143949. [PMID: 33340737 DOI: 10.1016/j.scitotenv.2020.143949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Using diffusive gradients in thin films (DGT) is a recently developed alternative method of rapidly evaluating the bioavailability of metals in soil. However, the method has found only limited application in systematic assessment of the bioavailability of cadmium (Cd) in red limestone paddy soils treated with different soil amendments. Of the four methods compared for estimating Cd content of rice grains from plants grown in such soils of central China treated with eleven different soil amendments in pot culture, Cd content of DGT-labile soil was significantly correlated to Cd concentrations in brown rice (R = 0.447, p < 0.01). The other three methods involved CaCl2, diethylenetriaminepentaacetic acid (DTPA), or NH4NO3. Some other properties of soil, such as pH, redox potential, content of dissolved organic matter, and cation exchange capacity were also determined. A simple algorithm developed to evaluate the sensitivity of the four methods also confirmed DGT as the most efficient method to predict the bioavailability of Cd in red limestone paddy soils.
Collapse
Affiliation(s)
- Huilong Luo
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ping Du
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Jing Shi
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Tian Liang
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Panpan Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juan Chen
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunhui Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ying He
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xiuwen Jia
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fasheng Li
- College of Water Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
50
|
Rathnayake D, Rego F, Van Poucke R, Bridgwater AV, Mašek O, Meers E, Wang J, Yang Y, Ronsse F. Chemical stabilization of Cd-contaminated soil using fresh and aged wheat straw biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10155-10166. [PMID: 33169282 DOI: 10.1007/s11356-020-11574-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Metal mining and smelting activities can introduce a substantial amount of potentially toxic elements (PTE) into the environment that can persist for an extended period. That can limit the productivity of the land and creates dangerous effects on ecosystem services. The effectiveness of wheat straw biochar to immobilize Cd in contaminated soil due to metal smelting activities was investigated in this study. The biochar carbon stability and long-term provisioning of services depend on the biochar production conditions, nature of the feedstock, and the biotic and abiotic environmental conditions in which the biochar is being used. Within this context, three types of wheat straw biochar were produced using a screw reactor at 400 °C, 500 °C, and 600 °C and tested in a laboratory incubation study. Soil was amended with 2 wt% of biochar. Both fresh and aged forms of biochar were used. Biochars produced at lower temperatures were characterized by lower pH, a lower amount of stable C, and higher amounts of acidic surface functional groups than the freshly produced biochars at higher production temperatures. At the end of the 6 months of incubation time, compared to the soil only treatment, fresh and aged forms of wheat straw biochar produced at 600 °C reduced the Cd concentration in soil pore water by 22% and 15%, respectively. Our results showed that the aged forms of biochar produced at higher production temperatures (500 °C and 600 °C) immobilized Cd more efficiently than the aged forms of lower temperature biochar (400 °C). The findings of this study provide insights to choose the production parameters in wheat straw biochar production while considering their aging effect to achieve successful stabilization of Cd in contaminated soils.
Collapse
Affiliation(s)
- Dilani Rathnayake
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium.
| | - Filipe Rego
- Bioenergy Research Group, EBRI, Aston University, Birmingham, B4 7ET, UK
| | - Reinhart Van Poucke
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium
| | | | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, Crew Building, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Erik Meers
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium
| | - Jiawei Wang
- Bioenergy Research Group, EBRI, Aston University, Birmingham, B4 7ET, UK
| | - Yang Yang
- Bioenergy Research Group, EBRI, Aston University, Birmingham, B4 7ET, UK
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium
| |
Collapse
|