1
|
Fulton KM, Mendoza-Barberà E, Tomás JM, Twine SM, Smith JC, Merino S. Polar flagellin glycan heterogeneity of Aeromonas hydrophila strain ATCC 7966 T. Bioorg Chem 2025; 158:108300. [PMID: 40058227 DOI: 10.1016/j.bioorg.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Motile pathogens often rely upon flagellar motility as an essential virulence factor and in many species the structural flagellin protein is glycosylated. Flagellin glycosylation has been shown to be important for proper function of the flagellar filament in a number of bacterial species. Aeromonas hydrophila is a ubiquitous aquatic pathogen with a constitutively expressed polar flagellum. Using a suite of mass spectrometry techniques, the flagellin FlaA and FlaB structural proteins of A. hydrophila strain ATCC 7966T were shown to be glycosylated with significant microheterogeneity, macroheterogeneity, and metaheterogeneity. The primary linking sugar in this strain was a novel and previously unreported pseudaminic acid derivative with a mass of 422 Da. The pseudaminic acid derivative was followed in sequence by two hexoses, an N-acetylglucosamine (with additional variable secondary modification), and a deoxy N-acetylglucosamine derivative. These pentasaccharide glycans were observed modifying all eight modification sites. Hexasaccharides, which included an additional N-acetylhexosamine residue as the capping sugar, were observed exclusively modifying a pair of isobaric peptides from FlaA and FlaB. Interestingly, these isobaric peptides are immediately adjacent to a toll-like receptor 5 binding site in both protein sequences. Glycosylation status was also linked to motility, a critical bacterial virulence factor.
Collapse
Affiliation(s)
- Kelly M Fulton
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada; Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Elena Mendoza-Barberà
- Departamento de Biologia, Sanidad y Medio Ambiente, Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona, C/ Joan XXIII, 27, 08028 Barcelona, Barcelona, Spain; Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain
| | - Juan M Tomás
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada; Department of Biology, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Susana Merino
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Bojar BE, Craig AT, Leduc A, Blumenthal M, Mayo B, Ahmed AS, Cahak C, Beattie R, Skwor T. Similar antimicrobial resistance and virulence profiles among Aeromonas isolates from recreational beaches, post-chlorinated wastewater and clinical samples in Milwaukee, Wisconsin USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179035. [PMID: 40048954 DOI: 10.1016/j.scitotenv.2025.179035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
The genus Aeromonas consists of Gram-negative facultative anaerobes that are ubiquitous in water and soil environments. Traditionally considered fish pathogens, members of the genus Aeromonas have received increasing attention over the years due to their association with human diseases. Furthermore, given their omnipresence and genetic flexibility, this genus is positioned at the intersection of One Health components and may disproportionately contribute to the dissemination of antimicrobial resistance (AMR) in the environment. To form a more complete picture of the relationship between Aeromonas and AMR dissemination, we assessed the prevalence, species composition, AMR and virulence profiles, and cytotoxicity of Aeromonas isolates from post-chlorinated wastewater effluents (WW), adjacent beach sands, and local clinics. Our data show that Aeromonas represents approximately 22-50 % of culturable bacteria across all three beaches. The species composition across beaches, WW, and the clinic were similar, and two of the four most notable pathogens, A. hydrophila and A. caviae, were present in all three sources. Conversely, AMR and multi-drug resistant (MDR) populations were significantly more prevalent in WW and the clinic compared to the beaches. Assessments of virulence genes and cytotoxic phenotypes revealed that while isolates carrying act were significantly associated with cytotoxic phenotypes, there were minimal differences between cytotoxicity and source, despite the relative abundance of act and hlyA in the clinic compared to the beach and WW. Our data suggests that environmental Aeromonas populations may be capable of higher AMR acquisition rates potentially causing infection in humans to a greater extent than is currently observed.
Collapse
Affiliation(s)
- Brooke E Bojar
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Anthony T Craig
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Anamarie Leduc
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Max Blumenthal
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Barbara Mayo
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Alia S Ahmed
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA
| | - Caitlin Cahak
- Wisconsin Diagnostic Laboratories, Milwaukee, WI 53226, USA
| | - Rachelle Beattie
- Marquette University, Department of Biological Sciences, Milwaukee, WI 53233, USA
| | - Troy Skwor
- University of Wisconsin - Milwaukee, Department of Biomedical Sciences, Milwaukee, WI 53211, USA.
| |
Collapse
|
3
|
Xu J, Jensen MKS, Lassen SB, Brandt KK, Dechesne A, Smets BF. Aeromonas isolation reveals this genus's contribution to antimicrobial resistance fluxes across the wastewater-treated water-river interface. J Appl Microbiol 2025; 136:lxae302. [PMID: 39701815 DOI: 10.1093/jambio/lxae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
AIM Aeromonas spp. are common members of water and wastewater microbiomes, but some are listed as opportunistic pathogens and are often reported to carry antimicrobial resistance (AMR) genes. We aimed to assess the performance of isolation media for capturing their distribution and their role in AMR dissemination into aquatic environments. METHODS AND RESULTS We investigated the abundance, diversity, and AMR profile of Aeromonas isolates from wastewater and receiving water bodies at five municipal wastewater treatment plants in Denmark using three isolation media. This was then compared with the diversity estimated from community-wide 16S rRNA gene amplicon sequencing and resistance patterns inferred from high-throughput qPCR of resistance genes. Isolates from ampicillin sheep blood agar were the most phylogenetically diverse, but the overall Aeromonas recovery on the three media was similarly good and matched the dominant amplicon sequence variants. While the dominant phylotypes were ubiquitous, some types were only detected in treated wastewater and the receiving rivers. The resistance prevalence was moderate and mostly to beta-lactams and tetracyclines. Isolates resistant to piperacilin-tazobactam, cefepime, and tetracycline downstream of the plants were linked to wastewater origin. CONCLUSION Overall, our work demonstrates Aeromonas and Aeromonas-mediated AMR fluxes at the wastewater/environment interfaces and provides methodological bases for monitoring aeromonads in wastewater and surface waters.
Collapse
Affiliation(s)
- Jianxin Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Mia Kristine Staal Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research (SDC), Beijing 100049, China
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research (SDC), Beijing 100049, China
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Ramos S, Júnior E, Alegria O, Vieira E, Patroca S, Cecília A, Moreira F, Nunes A. Metagenomics insights into bacterial diversity and antibiotic resistome of the sewage in the city of Belém, Pará, Brazil. Front Microbiol 2024; 15:1466353. [PMID: 39629213 PMCID: PMC11611572 DOI: 10.3389/fmicb.2024.1466353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The advancement of antimicrobial resistance is a significant public health issue today. With the spread of resistant bacterial strains in water resources, especially in urban sewage, metagenomic studies enable the investigation of the microbial composition and resistance genes present in these locations. This study characterized the bacterial community and antibiotic resistance genes in a sewage system that receives effluents from various sources through metagenomics. Methods One liter of surface water was collected at four points of a sewage channel, and after filtration, the total DNA was extracted and then sequenced on an NGS platform (Illumina® NextSeq). The sequenced data were trimmed, and the microbiome was predicted using the Kraken software, while the resistome was analyzed on the CARD webserver. All ecological and statistical analyses were performed using the. RStudio tool. Results and discussion The complete metagenome results showed a community with high diversity at the beginning and more restricted diversity at the end of the sampling, with a predominance of the phyla Bacteroidetes, Actinobacteria, Firmicutes, and Proteobacteria. Most species were considered pathogenic, with an emphasis on those belonging to the Enterobacteriaceae family. It was possible to identify bacterial groups of different threat levels to human health according to a report by the U.S. Centers for Disease Control and Prevention. The resistome analysis predominantly revealed genes that confer resistance to multiple drugs, followed by aminoglycosides and macrolides, with efflux pumps and drug inactivation being the most prevalent resistance mechanisms. This work was pioneering in characterizing resistance in a sanitary environment in the Amazon region and reinforces that sanitation measures for urban sewage are necessary to prevent the advancement of antibiotic resistance and the contamination of water resources, as evidenced by the process of eutrophication.
Collapse
Affiliation(s)
- Sérgio Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
- Oncology Research Center, João de Barros Barreto Hospital, Federal University of Pará, Belém, Brazil
| | - Edivaldo Júnior
- Laboratory of Leishmaniasis, Parasitology Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Oscar Alegria
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
| | - Elianne Vieira
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
| | - Sandro Patroca
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Ana Cecília
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Fabiano Moreira
- Oncology Research Center, João de Barros Barreto Hospital, Federal University of Pará, Belém, Brazil
| | - Adriana Nunes
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
5
|
Philo SE, Monteiro S, Fuhrmeister ER, Santos R, Meschke JS. Wastewater surveillance for antibiotic resistance genes during the late 2020 SARS-CoV-2 peak in two different populations. JOURNAL OF WATER AND HEALTH 2024; 22:1683-1694. [PMID: 39340381 DOI: 10.2166/wh.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 09/30/2024]
Abstract
The United States Centers for Disease Control and Prevention reported a rise in resistant infections after the coronavirus disease 2019 (COVID-19) pandemic started. How and if the pandemic contributed to antibiotic resistance in the larger population is not well understood. Wastewater treatment plants are good locations for environmental surveillance because they can sample entire populations. This study aimed to validate methods used for COVID-19 wastewater surveillance for bacterial targets and to understand how rising COVID-19 cases from October 2020 to February 2021 in Portugal (PT) and King County, Washington contributed to antibiotic resistance genes in wastewater. Primary influent wastewater was collected from two treatment plants in King County and five treatment plants in PT, and hospital effluent was collected from three hospitals in PT. Genomic extracts were tested with the quantitative polymerase chain reaction for antibiotic resistance genes conferring resistance against antibiotics under threat. Random-effect models were fit for log-transformed gene abundances to assess temporal trends. All samples collected tested positive for multiple resistance genes. During the sampling period, mecA statistically significantly increased in King County and PT. No statistical evidence exists of correlation between samples collected in the same Portuguese metro area.
Collapse
Affiliation(s)
- Sarah E Philo
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sílvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Erica R Fuhrmeister
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA E-mail:
| |
Collapse
|
6
|
Gray HK, Bisht A, Caldera JR, Fossas Braegger NM, Cambou MC, Sakona AN, Beaird OE, Uslan DZ, Walton SC, Yang S. Nosocomial infections by diverse carbapenemase-producing Aeromonas hydrophila associated with combination of plumbing issues and heat waves. Am J Infect Control 2024; 52:337-343. [PMID: 37778710 DOI: 10.1016/j.ajic.2023.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Aquatic opportunistic pathogen Aeromonas hydrophila, known to persist in low-nutrient chlorinated waters, can cause life-threatening infections. Two intensive care units experienced a cluster of Aeromonas infections following outdoor temperature spikes coinciding with recurrent plumbing issues, with fatalities due to severe underlying comorbidities co-occurring with extensively-drug resistant (XDR) Aeromonas. METHODS We investigated this cluster using whole genome sequencing to assess genetic relatedness of isolates and identify antimicrobial resistance determinants. Three A. hydrophila were isolated from patients staying in or adjacent to rooms with plumbing issues during or immediately after periods of elevated outdoor temperatures. Sinks and faucets were swabbed for culture. RESULTS All A. hydrophila clinical isolates exhibited carbapenem resistance but were not genetically related. Diverse resistance determinants corresponding to extensively-drug resistant were found, including co-occurring KPC-3 and VIM-2, OXA-232, and chromosomal CphA-like carbapenemase genes, contributing to major treatment challenges. All 3 patients were treated with multiple antibiotic regimens to overcome various carbapenemase classes and expired due to underlying comorbidities. Environmental culture yielded no Aeromonas. CONCLUSIONS While the investigation revealed no singular source of contamination, it supports a possible link between plumbing issues, elevated outdoor temperatures and incidence of nosocomial Aeromonas infections. The diversity of carbapenemase genes detected in these wastewater-derived Aeromonas warrants heightened infection prevention precautions during periods of plumbing problems especially with heat waves.
Collapse
Affiliation(s)
- Hannah K Gray
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Anjali Bisht
- Department of Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, CA
| | - J R Caldera
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Nicole M Fossas Braegger
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Mary C Cambou
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Ashlyn N Sakona
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Omer E Beaird
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Daniel Z Uslan
- Department of Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, CA; Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Shaunte C Walton
- Department of Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, CA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA.
| |
Collapse
|
7
|
Shen C, He M, Zhang J, Liu J, Su J, Dai J. Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115367. [PMID: 37586197 DOI: 10.1016/j.ecoenv.2023.115367] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/09/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Both heavy metals and antibiotics exert selection pressure on bacterial resistance, and as they are commonly co-contaminated in the environment, they may play a larger role in bacterial resistance. This study examined how breeding cycles affect antibiotic resistance genes (ARGs) in chicken manure and the surrounding topsoils at 20, 50, 100, 200, and 300 m from twelve typical laying hen farms in the Ningxia Hui Autonomous Region of northwest China. Six antibiotics, seven heavy metals, ten mobile genetic elements (MGEs), and microbial community affected the ARGs profile in chicken dung and soil samples. Tetracycline antibiotic residues were prevalent in chicken manure, as were relatively high content of aureomycin during each culture period. Zinc (Zn) content was highest among the seven heavy metals in chicken feces. Chicken dung also enriched aminoglycosides, MLSB, and tetracycline ARGs, notably during brooding and high production. The farm had a minimal influence on antibiotics in the surrounding soil, but its effect on ARGs and MGEs closer to the farm (50 m) was stronger, and several ARGs and MGEs increased with distance. Manure microbial composition differed dramatically throughout breeding cycles and sampling distances. ARGs were more strongly related with antibiotics and heavy metals in manure than soil, whereas MGEs were the reverse. Antibiotics, heavy metals, MGEs, and bacteria in manure accounted 12.28%, 22.25%, 0.74%, and 0.19% of ARGs composition variance, respectively, according to RDA and VPA. Bacteria (2.89%) and MGEs (2.82%) only affected soil ARGs composition. These findings showed that heavy metals and antibiotics are the main factors affecting faecal ARGs and bacteria and MGEs soil ARGs. This paper includes antibiotic resistance data for large-scale laying hen husbandry in northwest China and a theoretical framework for decreasing antibiotic resistance.
Collapse
Affiliation(s)
- Cong Shen
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Mengyuan He
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Junhua Zhang
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan 750021, Ningxia, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan 750021, Ningxia, China.
| | - Jili Liu
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan 750021, Ningxia, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan 750021, Ningxia, China
| | - Jianyu Su
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jinxia Dai
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
8
|
Hou X, Zhu Y, Wu L, Wang J, Yan W, Gao S, Wang Y, Ma Y, Wang Y, Peng Z, Tao Y, Tang Q, Yang J, Xiao L. The investigation of the physiochemical factors and bacterial communities indicates a low-toxic infectious risk of the Qiujiang River in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69135-69149. [PMID: 37131005 DOI: 10.1007/s11356-023-27144-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The overall water quality of urban rivers is closely related to the community structure and the physiochemical factors in them. In this study, the bacterial communities and physiochemical factors of the Qiujiang River, an important urban river in Shanghai, were explored. Water samples were collected from nine sites of the Qiujiang River on November 16, 2020. The water quality and bacterial diversity were studied through physicochemical detection, microbial culture and identification, luminescence bacteria method, and 16S rRNA Illumina MiSeq high-throughput sequencing technology. The water pollution of the Qiujiang River was quite serious with three water quality evaluation indexes, including Cd2+, Pb2+, and NH4+-N, exceeding the Class V standard set by the Environmental Quality Standards for Surface Water (China, GB3838-2002), while the luminescent bacteria test indicated low toxicity of nine sampling sites. Through 16S rRNA sequencing, a total of 45 phyla, 124 classes, and 963 genera were identified, in which Proteobacteria, Gammaproteobacteria, and Limnohabitans were the most abundant phylum, class, and genus, respectively. The Spearman correlation heatmap and redundancy analysis showed that the bacterial communities in the Qiujiang River were correlated with pH; the concentrations of K+, and NH4+-N, and the Limnohabitans were significantly correlated with the concentrations of K+, and NH4+-N in the Zhongyuan Road bridge segment. In addition, opportunistic pathogens Enterobacter cloacae complex and Klebsiella pneumoniae in the samples collected in the Zhongyuan Road bridge segment and Huangpu River segment, respectively, were successfully cultured. The Qiujiang River was a heavily polluted urban river. The bacterial community structure and diversity were greatly affected by the physiochemical factors of the Qiujiang River, and it displayed low toxicity while a relatively high infectious risk of intestinal and lung infectious diseases.
Collapse
Affiliation(s)
- Xiaochuan Hou
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ling Wu
- Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Jie Wang
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Wei Yan
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Songyu Gao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Yushi Ma
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhaoyun Peng
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ye Tao
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Qinglong Tang
- Central Medical District of Chinese, PLA General Hospital, Beijing, 100120, China
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Drk S, Puljko A, Dželalija M, Udiković-Kolić N. Characterization of Third Generation Cephalosporin- and Carbapenem-Resistant Aeromonas Isolates from Municipal and Hospital Wastewater. Antibiotics (Basel) 2023; 12:antibiotics12030513. [PMID: 36978380 PMCID: PMC10044312 DOI: 10.3390/antibiotics12030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the greatest threats to global health, and Aeromonas species have the potential to spread AR in the aquatic environment. The spread of resistance to antibiotics important to human health, such as third-generation cephalosporins (3GCs) and carbapenems, is of great concern. We isolated and identified 15 cefotaxime (3GC)- and 51 carbapenem-resistant Aeromonas spp. from untreated hospital and treated municipal wastewater in January 2020. The most common species were Aeromonas caviae (58%), A. hydrophila (17%), A. media (11%), and A. veronii (11%). Almost all isolates exhibited a multidrug-resistant phenotype and harboured a diverse plasmidome, with the plasmid replicons ColE, IncU, and IncR being the most frequently detected. The most prevalent carbapenemase gene was the plasmid-associated blaKPC-2 and, for the first time, the blaVIM-2, blaOXA-48, and blaIMP-13 genes were identified in Aeromonas spp. Among the 3GC-resistant isolates, the blaGES-5 and blaMOX genes were the most prevalent. Of the 10 isolates examined, three were capable of transferring carbapenem resistance to susceptible recipient E. coli. Our results suggest that conventionally treated municipal and untreated hospital wastewater is a reservoir for 3GC- and carbapenem-resistant, potentially harmful Aeromonas spp. that can be introduced into aquatic systems and pose a threat to both the environment and public health.
Collapse
Affiliation(s)
- Sara Drk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
10
|
Puvača N, Ljubojević Pelić D, Pelić M, Bursić V, Tufarelli V, Piemontese L, Vuković G. Microbial Resistance to Antibiotics and Biofilm Formation of Bacterial Isolates from Different Carp Species and Risk Assessment for Public Health. Antibiotics (Basel) 2023; 12:antibiotics12010143. [PMID: 36671344 PMCID: PMC9855140 DOI: 10.3390/antibiotics12010143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this research was to investigate the effects of biofilm on antibiotic resistance of the bacterial isolates present in fish meat and to assess the risk of antibiotic residues for public health. Common carp, silver carp and grass carp fishes were purchased from retail stores for an in vitro biofilm investigation and a drug-resistant pattern determination. In all samples, up to 104 CFU/g of bacteria, such as Escherichia coli, Aeromonas hydrophila, Shewanella putrefaciens, Vibrio spp. and Staphylococcus spp., were observed. Isolates from the samples and their biofilms were subjected to an antibiogram assay using antibiotics such as amoxicillin, ampicillin, cefotaxime, ciprofloxacin, chloramphenicol, gentamicin, streptomycin, tetracycline and trimethoprim. Obtained results showed that some of the isolates were sensitive to antibiotics and some were resistant. Results of LC-MS/MS analysis showed that antibiotics residues were present in fish samples in the range between 4.9 and 199.4 µg/kg, with a total sum of 417.1 µg/kg. Estimated daily intake (EDI) was established to be 0.274 μg/kg of body weight/day for men and 0.332 μg/kg of body weight/day for women, with an acceptable daily intake (ADI) of 8.5 and 7.0 µg/kg of body weight/day for men and women, respectively. The results of the present study, therefore, highlight the safe consumption of fresh fish.
Collapse
Affiliation(s)
- Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-65-219-1284
| | | | - Miloš Pelić
- Scientific Veterinary Institute Novi Sad, Rumenački Put 20, 21000 Novi Sad, Serbia
| | - Vojislava Bursić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, 70010 Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Gorica Vuković
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
11
|
Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12010084. [PMID: 36671285 PMCID: PMC9854640 DOI: 10.3390/antibiotics12010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has become one of the greatest challenges worldwide, hampering the treatment of a plethora of infections. Indeed, the AMR crisis poses a threat to the achievement of the United Nations' Sustainable Development Goals and, due to its multisectoral character, a holistic approach is needed to tackle this issue. Thus, the investigation of environments beyond the clinic is of utmost importance. Here, we investigated thirteen strains of antimicrobial-resistant Aeromonas isolated from an urban estuary in Brazil. Most strains carried at least one antimicrobial resistance gene and 11 carried at least one heavy metal resistance gene. Noteworthy, four (30.7%) strains carried the blaKPC gene, coding for a carbapenemase. In particular, the whole-genome sequence of Aeromonas hydrophila strain 34SFC-3 was determined, revealing not only the presence of antimicrobial and heavy metal resistance genes but also a versatile virulome repertoire. Mobile genetic elements, including insertion sequences, transposons, integrative conjugative elements, and an IncQ1 plasmid were also detected. Considering the ubiquity of Aeromonas species, their genetic promiscuity, pathogenicity, and intrinsic features to endure environmental stress, our findings reinforce the concept that A. hydrophila truly is a "Jack of all trades'' that should not be overlooked under the One Health perspective.
Collapse
|
12
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
González-Villarreal JA, González-Lozano KJ, Aréchiga-Carvajal ET, Morlett-Chávez JA, Luévanos-Escareño MP, Balagurusamy N, Salinas-Santander MA. Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Exp Ther Med 2022; 24:753. [PMID: 36561977 PMCID: PMC9748766 DOI: 10.3892/etm.2022.11689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.
Collapse
Affiliation(s)
| | - Katia Jamileth González-Lozano
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Jesús Antonio Morlett-Chávez
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico
| | | | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón, Coahuila 27275, Mexico
| | - Mauricio Andrés Salinas-Santander
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico,Correspondence to: Dr Mauricio Andrés Salinas-Santander, Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Calle Francisco Murguía Sur 205, Zona Centro, Saltillo, Coahuila 25000, Mexico
| |
Collapse
|
14
|
Malayil L, Ramachandran P, Chattopadhyay S, Allard SM, Bui A, Butron J, Callahan MT, Craddock HA, Murray R, East C, Sharma M, Kniel K, Micallef S, Hashem F, Gerba CP, Ravishankar S, Parveen S, May E, Handy E, Kulkarni P, Anderson-Coughlin B, Craighead S, Gartley S, Vanore A, Duncan R, Foust D, Haymaker J, Betancourt W, Zhu L, Mongodin EF, Sapkota A, Pop M, Sapkota AR. Variations in Bacterial Communities and Antibiotic Resistance Genes Across Diverse Recycled and Surface Water Irrigation Sources in the Mid-Atlantic and Southwest United States: A CONSERVE Two-Year Field Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15019-15033. [PMID: 36194536 PMCID: PMC9632240 DOI: 10.1021/acs.est.2c02281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 05/30/2023]
Abstract
Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Padmini Ramachandran
- Office
of Regulatory Science, Division of Microbiology, United States Food and Drug Administration, HFS-712, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Suhana Chattopadhyay
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Sarah M. Allard
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Anthony Bui
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Jicell Butron
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Mary Theresa Callahan
- Department
of Plant Science and Landscape Agriculture, University of Maryland, College
Park, Maryland 20740, United States
| | - Hillary A. Craddock
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Rianna Murray
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Cheryl East
- Northeast
Area, Beltsville Agriculture Research Center, Environmental Microbiology
and Food Safety Laboratory, Agriculture
Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Manan Sharma
- Northeast
Area, Beltsville Agriculture Research Center, Environmental Microbiology
and Food Safety Laboratory, Agriculture
Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Kalmia Kniel
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Shirley Micallef
- Department
of Plant Science and Landscape Agriculture, University of Maryland, College
Park, Maryland 20740, United States
| | - Fawzy Hashem
- Department
of Agriculture and Resource Sciences, University
of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Charles P. Gerba
- Department
of Environmental Science, University of
Arizona, Tucson, Arizona 85719, United States
| | - Sadhana Ravishankar
- School
of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Salina Parveen
- Department
of Agriculture and Resource Sciences, University
of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Eric May
- Department
of Agriculture and Resource Sciences, University
of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Eric Handy
- Northeast
Area, Beltsville Agriculture Research Center, Environmental Microbiology
and Food Safety Laboratory, Agriculture
Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, United States
| | - Prachi Kulkarni
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Brienna Anderson-Coughlin
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Shani Craighead
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Samantha Gartley
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Adam Vanore
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Rico Duncan
- Department
of Agriculture and Resource Sciences, University
of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Derek Foust
- Department
of Agriculture and Resource Sciences, University
of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Joseph Haymaker
- Department
of Agriculture and Resource Sciences, University
of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Walter Betancourt
- Department
of Environmental Science, University of
Arizona, Tucson, Arizona 85719, United States
| | - Libin Zhu
- School
of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Emmanuel F. Mongodin
- Institute
for Genome Sciences, University of Maryland
School of Medicine, Baltimore, Maryland 21201, United States
| | - Amir Sapkota
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| | - Mihai Pop
- Department
of Computer Science and Center for Bioinformatics and Computational
Biology, University of Maryland, College Park, Maryland 20742, United States
| | - Amy R. Sapkota
- Maryland
Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland 20740, United States
| |
Collapse
|
15
|
Leroy-Freitas D, Machado EC, Torres-Franco AF, Dias MF, Leal CD, Araújo JC. Exploring the microbiome, antibiotic resistance genes, mobile genetic element, and potential resistant pathogens in municipal wastewater treatment plants in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156773. [PMID: 35724791 DOI: 10.1016/j.scitotenv.2022.156773] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 05/28/2023]
Abstract
Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future.
Collapse
Affiliation(s)
- D Leroy-Freitas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - E C Machado
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - A F Torres-Franco
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil; Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - M F Dias
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - C D Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - J C Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-010, Brazil.
| |
Collapse
|
16
|
Roguet A, Newton RJ, Eren AM, McLellan SL. Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure. mSystems 2022; 7:e0011822. [PMID: 35762794 PMCID: PMC9426572 DOI: 10.1128/msystems.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Microbes have inhabited the oceans and soils for millions of years and are uniquely adapted to their habitat. In contrast, sewer infrastructure in modern cities dates back only ~150 years. Sewer pipes transport human waste and provide a view into public health, but the resident organisms that likely modulate these features are relatively unexplored. Here, we show that the bacterial assemblages sequenced from untreated wastewater in 71 U.S. cities were highly coherent at a fine sequence level, suggesting that urban infrastructure separated by great spatial distances can give rise to strikingly similar communities. Within the overall microbial community structure, temperature had a discernible impact on the distribution patterns of closely related amplicon sequence variants, resulting in warm and cold ecotypes. Two bacterial genera were dominant in most cities regardless of their size or geographic location; on average, Arcobacter accounted for 11% and Acinetobacter 10% of the entire community. Metagenomic analysis of six cities revealed these highly abundant resident organisms carry clinically important antibiotic resistant genes blaCTX-M, blaOXA, and blaTEM. In contrast, human fecal bacteria account for only ~13% of the community; therefore, antibiotic resistance gene inputs from human sources to the sewer system could be comparatively small, which will impact measurement capabilities when monitoring human populations using wastewater. With growing awareness of the metabolic potential of microbes within these vast networks of pipes and the ability to examine the health of human populations, it is timely to increase our understanding of the ecology of these systems. IMPORTANCE Sewer infrastructure is a relatively new habitat comprised of thousands of kilometers of pipes beneath cities. These wastewater conveyance systems contain large reservoirs of microbial biomass with a wide range of metabolic potential and are significant reservoirs of antibiotic resistant organisms; however, we lack an adequate understanding of the ecology or activity of these communities beyond wastewater treatment plants. The striking coherence of the sewer microbiome across the United States demonstrates that the sewer environment is highly selective for a particular microbial community composition. Therefore, results from more in-depth studies or proven engineering controls in one system could be extrapolated more broadly. Understanding the complex ecology of sewer infrastructure is critical for not only improving our ability to treat human waste and increasing the sustainability of our cities but also to create scalable and effective sewage microbial observatories, which are inevitable investments of the future to monitor health in human populations.
Collapse
Affiliation(s)
- Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Pessoa RBG, de Oliveira WF, Correia MTDS, Fontes A, Coelho LCBB. Aeromonas and Human Health Disorders: Clinical Approaches. Front Microbiol 2022; 13:868890. [PMID: 35711774 PMCID: PMC9195132 DOI: 10.3389/fmicb.2022.868890] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Aeromonas comprises more than 30 Gram-negative bacterial species and naturally inhabitants from aquatic environments. These microorganisms, commonly regarded as pathogens of fish and several other animals, have been gaining prominence on medical trial due to its ability to colonize and infect human beings. Besides water, Aeromonas are widely spreaded on most varied sources like soil, vegetables, and food; Although its opportunistic nature, they are able to cause infections on immunocompromised or immunocompetent patients. Aeromonas species regarded as potential human pathogens are usually A. hydrophila, A. caviae, and A. veronii biovar sobria. The main clinical manifestations are gastrointestinal tract disorders, wound, and soft tissue infections, as well as septicemia. Regarding to antibiotic responses, the bacteria present a diversified susceptibility profile and show inherence resistance to ampicillin. Aeromonas, as an ascending genus in microbiology, has been carefully studied aiming comprehension and development of methods for detection and medical intervention of infectious processes, not fully elucidated in medicine. This review focuses on current clinical knowledge related to human health disorders caused by Aeromonas to contribute on development of efficient approaches able to recognize and impair the pathological processes.
Collapse
Affiliation(s)
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
18
|
Stec J, Kosikowska U, Mendrycka M, Stępień-Pyśniak D, Niedźwiedzka-Rystwej P, Bębnowska D, Hrynkiewicz R, Ziętara-Wysocka J, Grywalska E. Opportunistic Pathogens of Recreational Waters with Emphasis on Antimicrobial Resistance-A Possible Subject of Human Health Concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127308. [PMID: 35742550 PMCID: PMC9224392 DOI: 10.3390/ijerph19127308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Infections caused by exposure to opportunistic pathogens can cause serious health problems during recreational water use. The problem of diseases caused by microbes transmitted by water is a major public health challenge, especially in developing countries with economic problems and poor hygiene conditions. Moreover, the quality of water in natural reservoirs is often at a very low level in terms of microbiological water purity, which means that their use for recreational purposes, but also as a source of drinking water, may have serious health consequences. Recreational waters pose a threat to human health. Therefore, the quality of recreational waters is closely monitored in many jurisdictions. In this review, we summarize key information on the most common pathogens that can be water-based or waterborne. The issue of antimicrobial resistance among opportunistic pathogens remains equally important. It is important not only to fight pathogens, but also to take action to reduce chemical stressors (especially antibiotics) in the aquatic environment, and to understand the various mechanisms of the spread of antibiotic-resistant genes.
Collapse
Affiliation(s)
- Joanna Stec
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (J.S.); (U.K.)
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (J.S.); (U.K.)
| | - Mariola Mendrycka
- Department of Nursing, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland;
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | | | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.N.-R.); (R.H.)
- Correspondence:
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.N.-R.); (R.H.)
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
19
|
Li Y, Zhang C, Mou X, Zhang P, Liang J, Wang Z. Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1176-1190. [PMID: 35228362 DOI: 10.2166/wst.2022.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The distribution characteristics of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in urban recreational water from different water-supply sources might be different. In this study, water samples were collected to detect the antibiotic resistance of heterotrophic bacteria to five antibiotics, and the content, phenotype, gene type and species distribution of resistant bacteria were analyzed. The results showed that the changes of bacteria resistance rate in two lakes to five kinds of antibiotics were synchronous with time, and it would reach its maximum in autumn. The detection of ARGs and int I in 80 resistance strains showed that the detection rate of tetG, tetA and int I was high. Here, 51.25% of the bacteria were doubly resistant to AMP-CTX. The 80 isolate strains were of nine genera and 19 species, among which Bacillus cereus, Escherichia coli, Aeromonas veronii, Aeromonas caviae and Raoultella ornithinolytica were the common ARB species in two lakes. Correlation analysis showed that the water temperature was significantly correlated with the content of ARB in sulfamethoxazole (SMZ) and cefotaxime (CTX) (p < 0.05), and the total phosphorus (TP) in FQ lake was significantly correlated with the content of AMP-resistant bacteria (p < 0.05), while there were no other correlations between the changes of other water quality indexes and the content of ARB (p > 0.05).
Collapse
Affiliation(s)
- Yongqiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chongmiao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiao Mou
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, China
| | - Peipei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jie Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
20
|
Yazhiniprabha M, Gopi N, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, Riaz MN, Sivakamavalli J, Govindarajan M, Vaseeharan B. The dietary supplementation of zinc oxide and selenium nanoparticles enhance the immune response in freshwater fish Oreochromis mossambicus against aquatic pathogen Aeromonas hydrophila. J Trace Elem Med Biol 2022; 69:126878. [PMID: 34688058 DOI: 10.1016/j.jtemb.2021.126878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Green nanoparticles are subjected as an immunostimulant against bacterial pathogens. METHODS Murraya koenigii berry extract-based synthesized zinc oxide nanoparticles (Mb-ZnO NPs) and selenium nanoparticles (Mb-Se NPs) were relatively analyzed for immunostimulation in serum and mucus fish Oreochromis mossambicus against Aeromonas hydrophila infections. Initial minimum inhibitory concentration (MIC) was determined for both Mb-ZnO NPs and Mb-Se NPs followed by specific growth rate (SGR), antioxidant level (Superoxide dismutase activity (SOD), Catalase activity (CA), and Glutathione peroxidase activity (GPx)), and immune parameters Myeloperoxidase activity (MPO), Respiratory burst activity (RBA), Lysozyme activity (LYZ), Alkaline phosphatase activity (ALP), Serum antiprotease activity and Natural complement activity (NAC). RESULTS The potential bacterial inhibition property of Mb-ZnO NPs and Mb-Se NPs exhibited the most negligible concentration of 25 and 15 μg mL-1, respectively, against A. hydrophila. In addition, Mb-ZnO NPs and Mb-Se NPs exhibited 70-80 % and 90-95 % diminished biofilm activity at 50 μg mL-1 that was viewed under an inverted research microscope and confocal laser scanning microscopy (CLSM). Protein leakage and nucleic acid leakage assay quantified oozed out protein and nucleic acid from A. hydrophila that confirms Mb-Se NPs exhibited vigorous antibacterial activity than Mb-ZnO NPs at tested concentrations. Oreochromis mossambicus fed with Mb-ZnO NPs and Mb-Se NPs supplemented diet at different concentrations (0.5 mg/kg, 1 mg/kg and 2 mg/kg) improved SGR along with a rise in the immune response of those fishes against A. hydrophila infection. Serum and mucus of fish fed with Mb-Se NPs supplemented diet exhibited a significant rise in antioxidant level SOD, CA and GPx at a dosage of 2 mg/kg. Likewise, lipid peroxidation assay detected significantly diminished oxidative stress in the serum and mucus of fish fed with Mb-Se NPs supplemented diet (2 mg/kg). Enhanced immune parameters in serum and mucus of fish fed with Mb-Se NPs supplemented diet determined by MPO, RBA, LYZ, ALP, Serum antiprotease activity and NAC. CONCLUSION Thus O. mossambicus fed with Mb-Se NPs supplemented diet was less prone to become infected by aquatic pathogen A. hydrophila established by challenge study. On the whole, Mb-Se NPs supplemented diet ensured the rise in antioxidant response that boosts the immune responses and reduces the chance of getting infected against A. hydrophila infections.
Collapse
Affiliation(s)
- Mariappan Yazhiniprabha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | | | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
21
|
Analysis of migration of pathogenic drug-resistant bacteria to soils and groundwater after fertilization with sewage sludge. PLoS One 2021; 16:e0256936. [PMID: 34914715 PMCID: PMC8675741 DOI: 10.1371/journal.pone.0256936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
The paper discusses the analysis of the effect of using sewage sludge for fertilization on the level of soil and groundwater contamination with drug-resistant bacteria. Other sanitary contaminants in these environments were also analysed. Composted sewage sludge was introduced into the sandy soil over a period of 6 months. The examinations were conducted under conditions of a lysimetric experiment with the possibility of collecting soil leachates (in natural conditions). The following doses of sewage sludge were used: 0, 10, 20, 30 and 40 t/ha calculated per experimental object containing 10 kg of sandy soil. The research were carried out within the time frame of one year. Dactylis glomerata grass was grown on the fertilized soils. In soils and leachates from soils (which may have polluted groundwater) collected from fertilized experimental objects, the sanitary condition and quantity of drug-resistant bacteria (mainly from the families Enterobacteriaceae and Enterococcus) were analysed one year after fertilization. Their drug resistance to selected antibiotics was also analysed based on current recommendations. The study showed that fertilization with sewage sludge (even after stabilization and hygienization) results in contamination of soil and infiltrating waters with many species of drug-resistant pathogenic bacteria. The lowest level of contamination of soil and water environment was found after the application of sewage sludge at a dose of 10 t/ha. The isolated drug-resistant strains of intestinal bacteria were less sensitive to older generations of antibiotics including cefazolin, ampicillin, and co-amoxiclav.
Collapse
|
22
|
Aleem M, Azeem AR, Rahmatullah S, Vohra S, Nasir S, Andleeb S. Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Cureus 2021; 13:e18738. [PMID: 34790487 PMCID: PMC8587521 DOI: 10.7759/cureus.18738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon.
Collapse
Affiliation(s)
- Maira Aleem
- Biotechnology, Combined Military Hospital (CMH) - Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Abdul R Azeem
- General Medicine, Combined Military Hospital (CMH), Lahore, PAK
| | - Sidra Rahmatullah
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| | - Sufyan Vohra
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| | - Shumyila Nasir
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| |
Collapse
|
23
|
Zieliński W, Korzeniewska E, Harnisz M, Drzymała J, Felis E, Bajkacz S. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes - An epidemiological threat to workers and environment. ENVIRONMENT INTERNATIONAL 2021; 156:106641. [PMID: 34015664 DOI: 10.1016/j.envint.2021.106641] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 05/23/2023]
Abstract
Conventional mechanical and biological wastewater treatment is unable to completely eliminate all pollutants, which can therefore enter surface water bodies together with treated wastewater. In addition, bioaerosols produced during wastewater treatment can pose a threat to the health of the wastewater treatment plant staff. In order to control the impact of a wastewater treatment plant (WWTP) on the surrounding environment, including its employees, samples of wastewater and water from a river which received treated wastewater were analysed in terms of their content of antibiotics and heavy metals, levels of selected physiochemical parameters, concentrations of antibiotic-resistance genes (ARGs) and genes of integrases. Furthermore, a quantitative analysis of ARGs in the metagenomic DNA from nasal and throat swabs collected from the WWPT employees was made. Both untreated and treated wastewater samples were dominated by genes of resistance to sulphonamides (sul1, sul2), MLS group of drugs (ermF, ermB) and beta-lactams (blaOXA). A significant increase in the quantities of ARGs and concentrations of antibiotics was observed in the river following the discharge of treated wastewater in comparison to their amounts in the river water upstream from the point of discharge. Moreover, a higher concentration of ARGs was detected in the DNA from swabs obtained from the wastewater treatment plant employees than from ones collected from the control group. Many statistically significant (p < 0.05) correlations between the concentration of the gene of resistance to heavy metals cnrA versus ARGs, and between the ARGs content and the concentrations of heavy metals in both wastewater and river water samples were observed. The study has demonstrated that the mechanical and biological methods of wastewater treatment are not efficient and may affect the transmission of hazardous pollutants to the aquatic environment and to the atmospheric air. It has been shown that an activated sludge bioreactor can be a potential source of the presence of multi-drug resistant microorganisms in the air, which is a health risk to persons working in WWTPs. It has also been found that an environment polluted with heavy metals is where co-selection of antibiotic resistance may occur, in the development of which integrase genes play an essential role.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Ewa Felis
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland
| |
Collapse
|
24
|
Li Y, Wang J, Li B, Geng M, Wang Y, Zhao J, Jin B, Li Y. Response of extracellular polymeric substances and microbial community structures on resistance genes expression in wastewater treatment containing copper oxide nanoparticles and humic acid. BIORESOURCE TECHNOLOGY 2021; 340:125741. [PMID: 34426248 DOI: 10.1016/j.biortech.2021.125741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The extracellular polymeric substances (EPS) and microbial community structures were investigated in wastewater treatment containing copper oxide nanoparticles (CuO NPs) (reactor R1) and CuO NPs and humic acid (HA) (reactor R2) using both sequencing batch bioreactors (SBRs), and their response on resistance genes expression was analyzed. The removal of influent chemical oxygen demands (COD) and NH4+-N was moderately influenced under CuO NPs (5 mg/L) stress, while the function of HA (10 mg/L) was not reflected. However, the EPS production and microbial community were affected by the HA addition. The expression of different antibiotic resistance genes (ARGs), metal-resistance genes (MRGs), and intI1 was related to the primary compositions of polysaccharides and proteins in EPS and different microbial communities at the genus level. Furthermore, the expression of resistance genes was not stimulated under CuO NPs stress, and supplying HA was suggested to reduce their expression in wastewater treatment.
Collapse
Affiliation(s)
- Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jing Wang
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Bingyan Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mengdan Geng
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
25
|
Aeromonas: the multifaceted middleman in the One Health world. Curr Opin Microbiol 2021; 65:24-32. [PMID: 34717260 DOI: 10.1016/j.mib.2021.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023]
Abstract
Aeromonas is at the interface of all the One Health components and represents an amazingly sound test case in the One Health approach, from economic loss in aquaculture tochallenges related to antibiotic-resistant bacteria selected from the environment. In human health, infections following leech therapy is an outstanding example of such One Health challenges. Aeromonads are not only ubiquitous environmental bacteria, able to rapidly colonize and cause opportunistic infections in humans and animals, they are also capable of promoting interactions and gene exchanges between the One Health components. This makes this genus a key amplifier of genetic transfer, especially of antibiotic resistance genes.
Collapse
|
26
|
Chen JS, Hsu GJ, Hsu BM, Yang PY, Kuo YJ, Wang JL, Hussain B, Huang SW. Prevalence, virulence-gene profiles, antimicrobial resistance, and genetic diversity of human pathogenic Aeromonas spp. from shellfish and aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117361. [PMID: 34004475 DOI: 10.1016/j.envpol.2021.117361] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Aeromonas are found in various habitats, particularly in aquatic environments. This study examined the presence of the most common human pathogenic Aeromonas species (Aeromonas caviae, A. hydrophila, and A. veronii) in surface water, sea water, and shellfish. The detection rates in fishing harbour seawater, shellfish farming seawater, and a river basin were 33.3%, 26.4%, and 29.4%, respectively, and high prevalence was observed in summer. The detection rates in shellfish procured from a fish market and shellfish farm were 34.9% and 13.3%, respectively. The most abundant species of human pathogenic Aeromonas detected via water sampling was A. caviae, whereas that obtained via shellfish sampling was A. veronii. The prevalence of human pathogenic Aeromonas in river water was lower in fishing harbours and in the estuary shellfish farming area. Here, 25 isolates of human pathogenic Aeromonas species were isolated from 257 samples and divided among 16 virulence profiles. The high virulence gene-carrying isolates (more than six genes) belonged to A. hydrophila. The shellfish-sourced isolates had the highest detection rates of act, aerA, and fla genes than of other virulence genes, and vice versa for seawater-sourced isolates. The Aeromonas isolates showed high levels of resistance to ampicillin-sulbactam; however, none were resistant to cefepime, ciprofloxacin, or gentamicin. The incidence of multiple drug resistance (MDR) in Aeromonas isolates was 20%. In this study, phylogenetic analysis with 16S rRNA sequencing, biochemical tests and enterobacterial repetitive intergenic consensus-polymerase chain reaction fingerprinting facilitated the distinct categorisation of three species of human pathogenic Aeromonas isolates. In addition, A. veronii isolates from the same geographical area were also concentrated in the same cluster. This study provides information on the risk of infection by Aeromonas with MDR and multiple virulence genes isolated from shellfish and aquatic environments.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County, Taiwan.
| | - Pei-Yu Yang
- Department of Laboratory, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Dhanapala PM, Kalupahana RS, Kalupahana AW, Wijesekera D, Kottawatta SA, Jayasekera NK, Silva-Fletcher A, Jagoda SDS. Characterization and Antimicrobial Resistance of Environmental and Clinical Aeromonas Species Isolated from Fresh Water Ornamental Fish and Associated Farming Environment in Sri Lanka. Microorganisms 2021; 9:2106. [PMID: 34683427 PMCID: PMC8537582 DOI: 10.3390/microorganisms9102106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
The aims of this study were to characterize and investigate antimicrobial susceptibility and presence of integrons in 161 Aeromonas spp. isolated from ornamental freshwater fish farming environment, apparently healthy and diseased fish. Phylogenetic analyses of the gyrB gene sequences identified Aeromonas veronii as the most abundant species (75.8%) followed by Aeromonashydrophila (9.3%), Aeromonas caviae (5%), Aeromonas jandaei (4.3%), Aeromonas dhakensis (3.7%), Aeromonas sobria (0.6%), Aeromonas media (0.6%), and Aeromonas popoffii (0.6%). Susceptibility to thirteen antimicrobials was determined and antimicrobial resistance frequencies were: amoxicillin (92.5%), enrofloxacin (67.1%), nalidixic acid (63.4%), erythromycin (26.1%), tetracycline (23.6%), imipenem (18%), trimethoprim-sulfamethoxazole (16.8%), and gentamicin (16.8%). Multi-drug resistance (MDR) was widespread among the isolates (51.6%, 83/161) with 51.6% (63/122) A. veronii isolates being MDR. In addition, 68.3% of isolates had multiple antibiotic resistance (MAR) indexes higher than 0.2, suggesting that they originated from a high-risk source of contamination where antimicrobials are often used. In all, 21.7% isolates carried class 1 integrons, with 97.1% having gene cassettes, while there were 12 isolates carrying class 2 integron gene cassettes. Our findings highlight that the aquatic environment and ornamental fish act as reservoirs of multidrug resistant Aeromonas spp. and underline the need for a judicious use of antimicrobials and timely surveillance of antimicrobial resistance (AMR) in aquaculture.
Collapse
Affiliation(s)
- Pavithra M. Dhanapala
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - Ruwani S. Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Anil W. Kalupahana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - D.P.H. Wijesekera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - Sanda A. Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Niromi K. Jayasekera
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | | | - S.S.S. de S. Jagoda
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| |
Collapse
|
28
|
Zhang R, Liu WC, Liu Y, Zhang HL, Zhao ZH, Zou LY, Shen YC, Lan WS. Impacts of anthropogenic disturbances on microbial community of coastal waters in Shenzhen, South China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1652-1661. [PMID: 33161467 DOI: 10.1007/s10646-020-02297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 05/16/2023]
Abstract
During the urbanization, human activities have brought great changes to marine biodiversity and microbial communities of coastal water. Shenzhen is a coastal city that has developed rapidly over the past four decades, but the microbial communities and metabolic potential in offshore water are still not well characterized. Here, 16S rRNA gene V4-V5 sequencing was conducted to determine the microbial components from coastal waters in twenty selected areas of Shenzhen. The results showed a significant difference on the microbial composition between the western and eastern waters. Samples from western coast had more abundant Burkholderiaceae, Sporichthyaceae, Aeromonadaceae, and Methylophilaceae compared to eastern coast, and at the genus level, Candidatus Aquiluna, Aeromonas, Arcobacter, Ottowia and Acidibacter were significantly higher in western waters. There was also a notable difference within the western sample group, suggesting the taxa-compositional heterogeneity. Moreover, analysis of environmental factors and water quality revealed that salinity, pH and dissolved oxygen were relatively decreased in western samples, while total nitrogen, total phosphorus, chemical oxygen demand, and harmful marine vibrio were significantly increased compared to eastern waters. The results suggest the coastal waters pollution is more serious in western Shenzhen than eastern Shenzhen and the microbial communities are altered, which can be associated with anthropogenic disturbances.
Collapse
Affiliation(s)
- Rui Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China.
| | - Wen-Chao Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Yu Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Hong-Lian Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Zhi-Hui Zhao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Ling-Yun Zou
- Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, PR China
| | - Yu-Chun Shen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Wen-Sheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Science and Technology for Inspection and Quarantine, Technology Center for Animal and Plant Inspection and Quarantine, Shenzhen Customs, Shenzhen, 518010, PR China.
| |
Collapse
|
29
|
Martin C, Stebbins B, Ajmani A, Comendul A, Hamner S, Hasan NA, Colwell R, Ford T. Nanopore-based metagenomics analysis reveals prevalence of mobile antibiotic and heavy metal resistome in wastewater. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1572-1585. [PMID: 33459951 DOI: 10.1007/s10646-020-02342-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In-depth studies of the microbiome and mobile resistome profile of different environments is central to understanding the role of the environment in antimicrobial resistance (AMR), which is one of the urgent threats to global public health. In this study, we demonstrated the use of a rapid (and easily portable) sequencing approach coupled with user-friendly bioinformatics tools, the MinION (Oxford Nanopore Technologies), on the evaluation of the microbial as well as mobile metal and antibiotic resistome profile of semi-rural wastewater. A total of 20 unique phyla, 43 classes, 227 genera, and 469 species were identified in samples collected from the Amherst Wastewater Treatment Plant, both from primary and secondary treated wastewater. Alpha diversity indices indicated that primary samples were significantly richer and more microbially diverse than secondary samples. A total of 1041 ARGs, 68 MRGs, and 17 MGEs were detected in this study. There were more classes of AMR genes in primary than secondary wastewater, but in both cases multidrug, beta-lactam and peptide AMR predominated. Of note, OXA β-lactamases, some of which are also carbapenemases, were enriched in secondary samples. Metal resistance genes against arsenic, copper, zinc and molybdenum were the dominant MRGs in the majority of the samples. A larger proportion of resistome genes were located in chromosome-derived sequences except for mobilome genes, which were predominantly located in plasmid-derived sequences. Genetic elements related to transposase were the most common MGEs in all samples. Mobile or MGE/plasmid-associated resistome genes that confer resistance to last resort antimicrobials such as carbapenems and colistin were detected in most samples. Worryingly, several of these potentially transferable genes were found to be carried by clinically-relevant hosts including pathogenic bacterial species in the orders Aeromonadales, Clostridiales, Enterobacterales and Pseudomonadales. This study demonstrated that the MinION can be used as a metagenomics approach to evaluate the microbiome, resistome, and mobilome profile of primary and secondary wastewater.
Collapse
Affiliation(s)
| | | | - Asha Ajmani
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | | | - Nur A Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA
| | - Rita Colwell
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA
| | - Timothy Ford
- University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
30
|
Zhu G, Du R, Du D, Qian J, Ye M. Keystone taxa shared between earthworm gut and soil indigenous microbial communities collaboratively resist chlordane stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117095. [PMID: 33862342 DOI: 10.1016/j.envpol.2021.117095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/27/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Chlordane is an organochlorine pesticide that is applied extensively. Residual concentrations that remain in soils after application are highly toxic to soil organisms, particularly affecting the earthworm gut and indigenous soil microorganisms. However, response mechanisms of the earthworm gut and indigenous soil microorganism communities to chlordane exposure are not well known. In this study, earthworms (Metaphire guillelmi) were exposed to chlordane-contaminated soils to investigate their response mechanisms over a gradient of chlordane toxicity. Results from high-throughput sequencing and network analysis showed that the bacterial composition in the earthworm gut varied more significantly than that in indigenous soil microbial communities under different concentrations of chlordane stress (2.3-60.8 mg kg-1; p < 0.05). However, keystone species of Flavobacterium, Candidatus Nitrososphaera, and Acinetobacter remained stable in both the earthworm gut and bacterial communities despite varying degrees of chlordane exposure, and their relative abundance was slightly higher in the low-concentration treatment group (T1, T2) than in the high-concentration treatment group (T3, T4). Additionally, network analysis demonstrated that the average value of the mean degree of centrality, closeness centrality, and eigenvector centrality of all keystone species screened by four methods (MetagenomeSeq, LEfSe, OPLS-DA, Random Forest) were 161.3, 0.5, and 0.63, respectively, and that these were significantly higher (p < 0.05) than values for non-keystone species (84.9, 0.4, and 0.2, respectively). Keystone species had greater network connectivity and a stronger capacity to degrade pesticides and transform carbon and nitrogen than non-keystone species. The keystone species, which were closely related to the microbial community in soil indigenous flora and earthworm intestinal flora, could resist chlordane stress and undertake pesticide degradation. These results have increased understanding of the role of the earthworm gut and indigenous soil bacteria in resisting chlordane stress and sustaining microbial equilibrium in soil.
Collapse
Affiliation(s)
- Guofan Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Heifei, 230009, PR China
| | - Ruijun Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiazhong Qian
- School of Resources and Environmental Engineering, Hefei University of Technology, Heifei, 230009, PR China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
31
|
Guo L, Zhou M, Chen D, Yi C, Sun B, Wang S, Ru Y, Chen H, Wang H. A new insight to characterize immunomodulation based on hepatopancreatic transcriptome and humoral immune factor analysis of the Cherax quadricarinatus infected with Aeromonas veronii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112347. [PMID: 34044307 DOI: 10.1016/j.ecoenv.2021.112347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Cherax quadricarinatus is a type of large freshwater crayfish that is characterized by rapid growth and formidable adaptability. It has also been widely cultured and studied as a model organism. Aeromonas veronii is the dominant pathogen in aquatic environments and the primary threat to aquaculture's economic stability. To better understand the interactions between C. quadricarinatus and A. veronii, high-throughput RNA sequencing of the C. quadricarinatus hepatopancreas was carried out on a control group, susceptible group (6 h after infection), and resistant group (48 h after infection). A total of 65,850,929 genes were obtained. Compared with the control group, 2616 genes were up-regulated and 1551 genes were down-regulated in the susceptible group; while 1488 genes were up-regulated and 1712 genes were down-regulated in the resistant group. GO and KEGG analysis showed that these differentially expressed genes (DEGs) were associated with multiple immune pathways, including Toll-like receptors (TLRs), antigen processing and presentation, NOD-like receptor signaling pathway, phagosome, lysosome, JAK-STAT signaling pathway. qRT-PCR showed that infection by A. veronii changed the expression pattern of the serine proteinase inhibitor (SPI), crustacean hyperglycemic hormone (CHH), anti-lipopolysaccharide factor (ALF), and extracellular copper/zinc superoxide dismutase (SOD1), all of which were significantly higher than in the control group up to 48 h after infection. In addition, detection of superoxide dismutase (SOD), catalase (CAT), lysozyme (LZM), and phenoloxidase (PO) activity, as well as ceruloplasmin (CP) concentration at different times after infection showed diverse trends. Furthermore, pathological sections obtained 24 h after infection show lesions on the hepatopancreas and intestinal tissues caused by A. veronii. The results of this study provide a foundation for analyzing the immune mechanism of C. quadricarinatus infected with A. veronii at the transcriptional level and a theoretical basis for screening disease-resistant individuals to ensure healthy economic development of the aquatic industry.
Collapse
Affiliation(s)
- Leifeng Guo
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Min Zhou
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Duanduan Chen
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Cao Yi
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Bing Sun
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Shouquan Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yuanyuan Ru
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Hongju Chen
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| | - Hui Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
32
|
Conte D, Palmeiro J, Bavaroski A, Rodrigues L, Cardozo D, Tomaz A, Camargo J, Dalla‐Costa L. Antimicrobial resistance in
Aeromonas
species isolated from aquatic environments in Brazil. J Appl Microbiol 2021; 131:169-181. [DOI: https:/doi.org/10.1111/jam.14965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- D. Conte
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| | - J.K. Palmeiro
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
- Departamento de Análises Clínicas Universidade Federal de Santa Catarina (ACL‐UFSC) Florianópolis, Santa Catarina Brazil
| | - A.A. Bavaroski
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| | - L.S. Rodrigues
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| | - D. Cardozo
- Liga Paranaese de Combate ao Câncer ‐ Hospital Erasto Gaertner (HEG) Curitiba, Paraná Brazil
| | - A.P. Tomaz
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
- Complexo Hospital de ClínicasUniversidade Federal do Paraná (CHC‐UFPR) Curitiba, Paraná Brazil
| | - J.O. Camargo
- Departamento de Bioquímica e Biologia Molecular Universidade Federal do Paraná (UFPR) Curitiba, Paraná Brazil
- Setor de Educação Profissional e Tecnológica (SEPT) Programa de Graduação em Bioinformática Universidade Federal do Paraná (UFPR) Curitiba, Paraná Brazil
| | - L.M. Dalla‐Costa
- Faculdades Pequeno Príncipe (FPP) Curitiba, Paraná Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP) Curitiba, Paraná Brazil
| |
Collapse
|
33
|
Hooban B, Fitzhenry K, Cahill N, Joyce A, O' Connor L, Bray JE, Brisse S, Passet V, Abbas Syed R, Cormican M, Morris D. A Point Prevalence Survey of Antibiotic Resistance in the Irish Environment, 2018-2019. ENVIRONMENT INTERNATIONAL 2021; 152:106466. [PMID: 33706038 DOI: 10.1016/j.envint.2021.106466] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Water bodies worldwide have proven to be vast reservoirs of clinically significant antibiotic resistant organisms. Contamination of waters by anthropogenic discharges is a significant contributor to the widespread dissemination of antibiotic resistance. The aim of this research was to investigate multiple different anthropogenic sources on a national scale for the role they play in the environmental propagation of antibiotic resistance. A total of 39 water and 25 sewage samples were collected across four local authority areas in the West, East and South of Ireland. In total, 211 Enterobacterales were isolated (139 water, 72 sewage) and characterised. A subset of isolates (n=60) were chosen for whole genome sequencing. Direct comparisons of the water versus sewage isolate collections revealed a higher percentage of sewage isolates displayed resistance to cefoxitin (46%) and ertapenem (32%), while a higher percentage of water isolates displayed resistance to tetracycline (55%) and ciprofloxacin (71%). Half of all isolates displayed extended spectrum beta-lactamase (ESBL) production phenotypically (n = 105/211; 50%), with blaCTX-M detected in 99/105 isolates by PCR. Carbapenemase genes were identified in 11 isolates (6 sewage, 5 water). The most common variant was blaOXA-48 (n=6), followed by blaNDM-5 (n=2) and blaKPC-2 (n=2). Whole genome sequencing analysis revealed numerous different sequence types in circulation in both waters and sewage including E. coli ST131 (n=15), ST38 (n=8), ST10 (n=4) along with Klebsiella ST405 (n=3) and ST11 (n=2). Core genome MLST (cgMLST) comparisons uncovered three highly similar Klebsiella isolates originating from hospital sewage and two nearby waters. The Klebsiella isolates from an estuary and seawater displayed 99.1% and 98.8% cgMLST identity to the hospital sewage isolate respectively. In addition, three pairs of E. coli isolates from different waters also revealed cgMLST similarities, indicating widespread dissemination and persistence of certain strains in the aquatic environment. These findings highlight the need for routine monitoring of water bodies used for recreational and drinking purposes for the presence of multi-drug resistant organisms.
Collapse
Affiliation(s)
- Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway.
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Louise O' Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Virginie Passet
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Raza Abbas Syed
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway; Health Service Executive, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| |
Collapse
|
34
|
Grilo ML, Isidoro S, Chambel L, Marques CS, Marques TA, Sousa-Santos C, Robalo JI, Oliveira M. Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns. Antibiotics (Basel) 2021; 10:759. [PMID: 34206643 PMCID: PMC8300795 DOI: 10.3390/antibiotics10070759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the fact that freshwater fish populations are experiencing severe declines worldwide, our knowledge on the interaction between endangered populations and pathogenic agents remains scarce. In this study, we investigated the prevalence and structure of Aeromonas communities isolated from the critically endangered Iberochondrostoma lusitanicum, a model species for threatened Iberian leuciscids, as well as health parameters in this species. Additionally, we evaluated the virulence profiles, antimicrobial resistance signatures and genomic relationships of the Aeromonas isolates. Lesion prevalence, extension and body condition were deeply affected by location and seasonality, with poorer performances in the dry season. Aeromonas composition shifted among seasons and was also different across river streams. The pathogenic potential of the isolates significantly increased during the dry season. Additionally, isolates displaying clinically relevant antimicrobial resistance phenotypes (carbapenem and fluroquinolone resistance) were detected. As it inhabits intermittent rivers, often reduced to disconnected pools during the summer, the dry season is a critical period for I. lusitanicum, with lower general health status and a higher potential of infection by Aeromonas spp. Habitat quality seems a determining factor on the sustainable development of this fish species. Also, these individuals act as reservoirs of important antimicrobial resistant bacteria with potential implications for public health.
Collapse
Affiliation(s)
- Miguel L. Grilo
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Sara Isidoro
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
| | - Lélia Chambel
- BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Carolina S. Marques
- Departamento de Biologia Animal, Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.S.M.); (T.A.M.)
| | - Tiago A. Marques
- Departamento de Biologia Animal, Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.S.M.); (T.A.M.)
- Centre for Research into Ecological & Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK
| | - Carla Sousa-Santos
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Joana I. Robalo
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
| |
Collapse
|
35
|
Dworaczek K, Kurzylewska M, Laban M, Drzewiecka D, Pękala-Safińska A, Turska-Szewczuk A. Structural Studies of the Lipopolysaccharide of Aeromonas veronii bv. sobria Strain K133 Which Represents New Provisional Serogroup PGO1 Prevailing among Mesophilic Aeromonads on Polish Fish Farms. Int J Mol Sci 2021; 22:ijms22084272. [PMID: 33924078 PMCID: PMC8074265 DOI: 10.3390/ijms22084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia (MAI/MAS) on a Polish fish farm. The structural characterization of the O-PS, which was obtained by mild acid degradation of the LPS, was performed with chemical methods, MALDI-TOF mass spectrometry, and 1H and 13C NMR spectroscopy. It was revealed that the O-PS has a unique composition of a linear tetrasaccharide repeating unit and contains a rarely occurring sugar 2,4-diamino-2,4,6-trideoxy-D-glucose (bacillosamine), which may determine the specificity of the serogroup. Western blotting and ELISA confirmed that A. veronii bv. sobria strain K133 belongs to the new serogroup PGO1, which is one of the most commonly represented immunotypes among carp and trout isolates of Aeromonas sp. in Polish aquacultures. Considering the increase in the MAI/MAS incidences and their impact on freshwater species, also with economic importance, and in the absence of an effective immunoprophylaxis, studies of the Aeromonas O-antigens are relevant in the light of epidemiological data and monitoring emergent pathogens representing unknown antigenic variants and serotypes.
Collapse
Affiliation(s)
- Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Magdalena Laban
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16 St., 90-237 Łódź, Poland;
| | - Agnieszka Pękala-Safińska
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantów 57 St., 24-100 Puławy, Poland;
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
- Correspondence: ; Tel.: +48-81-537-50-18; Fax: +48-81-537-59-59
| |
Collapse
|
36
|
Zhao J, Li Y, Li Y, Zhang K, Zhang H, Li Y. Effects of humic acid on sludge performance, antibiotics resistance genes propagation and functional genes expression during Cu(II)-containing wastewater treatment via metagenomics analysis. BIORESOURCE TECHNOLOGY 2021; 323:124575. [PMID: 33360357 DOI: 10.1016/j.biortech.2020.124575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The humic acid (HA) function on the sludge performance, antibiotics resistance genes (ARGs) propagation and functional genes expression during Cu(II)-containing wastewater treatment was comprehensively investigated via metagenomics analysis. Results showed that the pollutants removal was significantly inhibited after long-term exposure of 5 mg/L Cu(II), while the inhibitory effects were moderately alleviated after addition of 10 mg/L HA. The extracellular polymeric substances (EPS) production with Cu(II) acclimation was higher than the sludge with Cu(II) and HA acclimation. The microbial community was significantly affected by the HA addition, while the relative abundance of dominant ARGs had no distinct differences with or without HA addition under Cu(II) stress. The functional genes were largely implemented for microbial metabolism, while no significant differences were found with HA addition under Cu(II) stress. Thus, the HA function for ARGs propagation and functional genes expression needed to be further research under Cu(II) stress in wastewater treatment.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
37
|
Conte D, Palmeiro JK, Bavaroski AA, Rodrigues LS, Cardozo D, Tomaz AP, Camargo JO, Dalla-Costa LM. Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. J Appl Microbiol 2020; 131:169-181. [PMID: 33306232 DOI: 10.1111/jam.14965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Abstract
AIM The current study was conducted to determine the antimicrobial resistance profile and genetic relatedness of Aeromonas sp. isolated from healthcare and urban effluents, wastewater treatment plant (WWTP) and river water. METHODS AND RESULTS We detected the presence of genes conferring resistance to β-lactam, quinolone and aminoglycoside. Multilocus sequence typing was carried out to differentiate the strains, and multilocus phylogenetic analysis was used to identify the species. A total of 28 cefotaxime-resistant Aeromonas sp. strains were identified, harbouring uncommon Guiana-extended-spectrum (GES)-type β-lactamases (GES-1, GES-5, GES-7 and GES-16). Multidrug-resistant Aeromonas sp. were found in hospital wastewater, WWTP and sanitary effluent, and A. caviae was identified as the most prevalent species (85·7%). CONCLUSION The release of untreated healthcare effluents, presence of antimicrobials in the environment, in addition to multidrug-resistant Aeromonas sp., are all potential factors for the spread of resistance. SIGNIFICANCE AND IMPACT OF THE STUDY We identified a vast repertoire of antimicrobial resistance genes (ARG) in Aeromonas sp. from diverse aquatic ecosystems, including those that encode enzymes degrading broad-spectrum antimicrobials widely used to treat healthcare-associated infections. Hospital and sanitary effluents serve as potential sources of bacteria harbouring ARG and are a threat to public health.
Collapse
Affiliation(s)
- D Conte
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - J K Palmeiro
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil.,Departamento de Análises Clínicas, Universidade Federal de Santa Catarina (ACL-UFSC), Florianópolis, Santa Catarina, Brazil
| | - A A Bavaroski
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - L S Rodrigues
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - D Cardozo
- Liga Paranaese de Combate ao Câncer - Hospital Erasto Gaertner (HEG), Curitiba, Paraná, Brazil
| | - A P Tomaz
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil.,Complexo Hospital de Clínicas, Universidade Federal do Paraná (CHC-UFPR), Curitiba, Paraná, Brazil
| | - J O Camargo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil.,Setor de Educação Profissional e Tecnológica (SEPT), Programa de Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - L M Dalla-Costa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| |
Collapse
|
38
|
Whole-Genome Sequences of Antibiotic-Resistant Aeromonas caviae Strains Isolated from Treated Wastewater. Microbiol Resour Announc 2020; 9:9/40/e00645-20. [PMID: 33004446 PMCID: PMC7530918 DOI: 10.1128/mra.00645-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The presented data provide new information on antibiotic resistance and virulence genes in the genomes of Aeromonas caviae strains TW-2 and TW-6, isolated from treated wastewater. The results confirm the presence of multi-antibiotic-resistant Aeromonas caviae strains with virulence properties as “high-risk isolates” in treated wastewater. The presented data provide new information on antibiotic resistance and virulence genes in the genomes of Aeromonas caviae strains TW-2 and TW-6, isolated from treated wastewater. The results confirm the presence of multi-antibiotic-resistant Aeromonas caviae strains with virulence properties as “high-risk isolates” in treated wastewater.
Collapse
|
39
|
Zieliński W, Korzeniewska E, Harnisz M, Hubeny J, Buta M, Rolbiecki D. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. ENVIRONMENT INTERNATIONAL 2020; 143:105914. [PMID: 32615351 DOI: 10.1016/j.envint.2020.105914] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Drug-resistant and pathogenic Staphylococcus spp. strains can reach surface waters and air with wastewater evacuated to the environment. These strains increase the environmental pool of genetic determinants conferring antibiotic resistance and virulence, and constitute a health risk for the employees of wastewater treatment plants (WWTP) who come into daily contact with bioaerosols. The aim of this study was to identify the genetic determinants of drug resistance and virulence in Staphylococcus spp. strains isolated from untreated (UWW) and treated wastewater (TWW), an activated sludge (AS) bioreactor, river water collected upstream and downstream from the wastewater discharge point (URW and DRW), and WWTP employees. All isolates were analysed for the presence of the rpoB gene, and were subjected to clonal analysis by ERIC fingerprinting. As a result, 249 of the 455 analysed isolates were selected for PCR. The presence of the gene encoding nuclease activity in S. aureus (nuc), the methicillin resistance gene (mecA), vancomycin resistance gene (vanA), antiseptic resistance gene (qacA/B) and virulence genes (sasX, pvl, tst1, hla, sec) was determined. The prevalence of nuc, mecA, vanA and qacA/B genes in wastewater and river water was determined by quantitative PCR (qPCR). In the group of strains isolated from wastewater and water samples, 63% were identified as S. aureus, and 20% of the strains carried the vanA gene. The hla virulence gene was present in 80% of the isolates, and the pvl gene was detected in 27% of the isolates. In the group of strains isolated from the employees, 82% were identified as S. aureus, and the presence of vanA and mecA genes was confirmed in 14% and 16% of the isolates, respectively. The most prevalent virulence gene was hla (74%), whereas pvl was observed in 43% of the isolates. The quantitative analysis revealed the highest concentrations of the studied genes in UWW samples, at 2.56x104 gene copies/ml for nuc, 1.18x103 gene copies /ml for mecA, 8.28x105 gene copies /ml for vanA and 3.83x105 gene copies /ml for qacA/B. Some of analysed genes were identified in the isolates from both URW and DRW samples, as well as in genomic DNA of these samples. These results indicate that wastewater is not effectively treated in the analysed WWTP, which could contribute to the dissemination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) to the environment. An analysis of the genetic relatedness of selected isolates revealed clusters of strains originating from UWW samples, AS samples and the employees. These observations suggest that ARGs and ARB are transmitted by wastewater bioaerosols to the upper respiratory tract mucosa of the plant's employees, thus increasing their exposure to infectious factors.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Martyna Buta
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| |
Collapse
|
40
|
Hooban B, Joyce A, Fitzhenry K, Chique C, Morris D. The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review. WATER RESEARCH 2020; 180:115880. [PMID: 32438141 DOI: 10.1016/j.watres.2020.115880] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The natural aquatic environment is a significant contributor to the development and circulation of clinically significant antibiotic resistance genes (ARGs). The potential for the aquatic environment to act as a reservoir for ARG accumulation in areas receiving anthropogenic contamination has been thoroughly researched. However, the emergence of novel ARGs in the absence of external influences, as well as the capacity of environmental bacteria to disseminate ARGs via mobile genetic elements remain relatively unchallenged. In order to address these knowledge gaps, this scoping literature review was established focusing on the detection of two important and readily mobile ARGs, namely, extended spectrum beta-lactamase (ESBL) and carbapenemase genes. This review included 41 studies from 19 different countries. A range of different water bodies including rivers (n = 26), seawaters (n = 6) and lakes (n = 3), amongst others, were analysed in the included studies. ESBL genes were reported in 29/41 (70.7%) studies, while carbapenemase genes were reported in 13/41 (31.7%), including joint reporting in 9 studies. The occurrence of mobile genetic elements was evaluated, which included the detection of integrons (n = 22), plasmids (n = 18), insertion sequences (n = 4) and transposons (n = 3). The ability of environmental bacteria to successfully transfer resistance genes via conjugation was also examined in 11 of the included studies. The findings of this scoping review expose the presence of clinically significant ARGs in the natural aquatic environment and highlights the potential ability of environmental isolates to disseminate these genes among different bacterial species. As such, the results presented demonstrate how anthropogenic point discharges may not act as the sole contributor to the development and spread of clinically significant antibiotic resistances. A number of critical knowledge gaps in current research were also identified. Key highlights include the limited number of studies focusing on antibiotic resistance in uncontaminated aquatic environments as well as the lack of standardisation among methodologies of reviewed investigations.
Collapse
Affiliation(s)
- Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland.
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Carlos Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Ireland; Environmental Research Institute, University College Cork, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| |
Collapse
|
41
|
Niestępski S, Harnisz M, Ciesielski S, Korzeniewska E, Osińska A. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122544. [PMID: 32224375 DOI: 10.1016/j.jhazmat.2020.122544] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the effect of the activated sludge process on the abundance of anaerobic bacteria of the phylum Bacteroidetes, with special emphasis on Bacteroides fragilis group (BFG) bacteria, in twelve full-scale wastewater treatment plants. The composition of bacterial phyla and classes in wastewater samples were analyzed by next-generation sequencing. The presence of specific to BFG bacteria genes and the abundance of ARGs and genes encoding class 1 integrase in wastewater samples were determined by qPCR. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were dominant bacterial phyla in wastewater samples. Next-generation sequencing revealed similar proportions of Bacteroidia (<1.0-8.2 % of all bacteria) in wastewater influents and effluents, which suggest that these microorganisms are not completely eliminated in the activated sludge process. The average copy numbers of specific to BFG bacteria gene, were 106, and 104 copies in 1 mL of wastewater influents and effluents, respectively. The results revealed a correlation between the abundance of BFG bacteria and BFG-specific genes encoding resistance to antibiotics. The observed changes in the prevalence of BFG-specific genes and ARGs in untreated and treated wastewater indicate that the activated sludge process decreases the number of gene copies in the effluent evacuated to the environment.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
42
|
Kolda A, Mujakić I, Perić L, Vardić Smrzlić I, Kapetanović D. Microbiological Quality Assessment of Water and Fish from Karst Rivers of the Southeast Black Sea Basin (Croatia), and Antimicrobial Susceptibility of Aeromonas Isolates. Curr Microbiol 2020; 77:2322-2332. [PMID: 32529482 DOI: 10.1007/s00284-020-02081-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 11/29/2022]
Abstract
Karst rivers are of great interest for commercial fishing and aquaculture, yet they are quite vulnerable aquatic environments because the permeable karst rocks do not effectively filter out contaminants. To understand the current state of karst rivers water quality, we analysed the physico-chemical and microbiological parameters, focusing on antibiotic pollution and the emergence of antibiotic-resistant microbes of three such rivers in Croatia. Water quality varied between classes I and II across sampling sites, and the numbers of total coliforms, enterococci and heterotrophic bacteria varied substantially among sites. Swabs from fish gills, spleen, liver and kidneys were cultured and 94 isolates identified by MALDI-TOF mass spectrometry. The predominant genus was Aeromonas (42.5% of all identified isolates), known for its adaptability to polluted environments and its frequent association with antibiotic resistance. Of the selected Aeromonas isolates known as most pathogenic, half were resistant to at least three antibiotic categories. The Enterobacteriaceae family was represented by the greatest number of genera, most of which are pathogenic for humans and animals and are spoilage bacteria for fish. The results of this study highlight the extent of antibiotic contamination in aquatic environments and the increasing threat of pathogenic and spoilage bacteria in traditionally high-quality karst rivers.
Collapse
Affiliation(s)
- Anamarija Kolda
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Centre ALGATECH, Institute of Microbiology, Czech Academy of Sciences, Novohradska 237, Opatovicky mlyn, 37981, Třeboň, Czech Republic
| | - Lorena Perić
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Irena Vardić Smrzlić
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Damir Kapetanović
- Laboratory for Aquaculture and Pathology of Aquatic Organisms, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
43
|
Milaković M, Vestergaard G, González-Plaza JJ, Petrić I, Kosić-Vukšić J, Senta I, Kublik S, Schloter M, Udiković-Kolić N. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136001. [PMID: 31855637 DOI: 10.1016/j.scitotenv.2019.136001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Environmental discharges of very high (mg/L) antibiotic levels from pharmaceutical production contributed to the selection, spread and persistence of antibiotic resistance. However, the effects of less antibiotic-polluted effluents (μg/L) from drug-formulation on exposed aquatic microbial communities are still scarce. Here we analyzed formulation effluents and sediments from the receiving creek collected at the discharge site (DW0), upstream (UP) and 3000 m downstream of discharge (DW3000) during winter and summer season. Chemical analyses indicated the largest amounts of trimethoprim (up to 5.08 mg/kg) and azithromycin (up to 0.39 mg/kg) at DW0, but sulfonamides accumulated at DW3000 (total up to 1.17 mg/kg). Quantitative PCR revealed significantly increased relative abundance of various antibiotic resistance genes (ARGs) against β-lactams, macrolides, sulfonamides, trimethoprim and tetracyclines in sediments from DW0, despite relatively high background levels of some ARGs already at UP site. However, only sulfonamide (sul2) and macrolide ARG subtypes (mphG and msrE) were still elevated at DW3000 compared to UP. Sequencing of 16S rRNA genes revealed pronounced changes in the sediment bacterial community composition from both DW sites compared to UP site, regardless of the season. Numerous taxa with increased relative abundance at DW0 decreased to background levels at DW3000, suggesting die-off or lack of transport of effluent-originating bacteria. In contrast, various taxa that were more abundant in sediments than in effluents increased in relative abundance at DW3000 but not at DW0, possibly due to selection imposed by high sulfonamide levels. Network analysis revealed strong correlation between some clinically relevant ARGs (e.g. blaGES, blaOXA, ermB, tet39, sul2) and taxa with elevated abundance at DW sites, and known to harbour opportunistic pathogens, such as Acinetobacter, Arcobacter, Aeromonas and Shewanella. Our results demonstrate the necessity for improved management of pharmaceutical and rural waste disposal for mitigating the increasing problems with antibiotic resistance.
Collapse
Affiliation(s)
- Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Gisle Vestergaard
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Juan Jose González-Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Josipa Kosić-Vukšić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10 000 Zagreb, Croatia
| | - Ivan Senta
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
44
|
The Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Bacteria from Hospital Sewage, Treated Effluents and Receiving Rivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041183. [PMID: 32069792 PMCID: PMC7068339 DOI: 10.3390/ijerph17041183] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
Abstract
Hospital sewage plays a key role in the dissemination of antibiotic-resistant genes (ARGs) by serving as an environmental antimicrobial resistance reservoir. In this study, we aimed to characterize the cephalosporin- and carbapenem-resistant isolates from hospital sewage and receiving rivers. The results showed that ESBL (blaCTX-M) and carbapenemase genes (blaNDM and blaKPC) were widely detected in a number of different bacterial species. These resistance genes were mainly harbored in Enterobacteriaceae, followed by Acinetobacter and Aeromonas isolates. More attention should be given to these bacteria as important vectors of ARGs in the environment. Furthermore, we showed that the multidrug resistance phenotype was highly prevalent, which was found in 85.5% Enterobacteriaceae and 75% Acinetobacter strains. Notably, the presence of carbapenemase genes in isolates from treated effluents and receiving rivers indicates that the discharges of wastewater treatment plants could be an important source for high-risk resistance genes propagation to the environment. In conclusion, this study shows a high prevalence of ESBL- and carbapenemase-producing bacteria in hospital sewage and receiving rivers in China. These findings have serious implications for human health, and also suggest the need for more efforts to control the dissemination of resistant bacteria from hospital sewage into the environment.
Collapse
|
45
|
Ekundayo TC, Okoh AI. Antimicrobial resistance in freshwater Plesiomonas shigelloides isolates: Implications for environmental pollution and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113493. [PMID: 31753632 DOI: 10.1016/j.envpol.2019.113493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic resistance is known to impact treatment efficiency of Plesiomonas infections negatively with fatal outcomes. This study investigated antibiogram fingerprint of P. shigelloides (n = 182) isolated from three South Africa rivers using the disc diffusion technique. Environmental pollution and analogous health risk (given infections) that could associate with the freshwaters and empirical treatment of Plesiomonas were assessed using Antibiotic Resistance Index (ARI) and Multiple Antibiotic Resistance Indices (MARI), respectively. Thirteen EUCAST recommended (ERAs) and eleven non-recommended antibiotics (NAs) used as first line agents in the treatment of gastroenteritis and extraintestinal infections were tested. Resistance against ERAs decreased from cefoxitin (37.91%), cefuroxime (35.17%), cefepime (31.87%), ceftriaxone (29.67%), ciprofloxacin (18.13%), trimethoprim-sulfamethoxazole (10.44%), piperacillin/tazobactam (8.79%), ertapenem (4.95%), norfloxacin (4.40%), levofloxacin (2.75%), meropenem (1.10%) to imipenem (0.55%). The isolates had higher resistance (≥36.07%) against NAs but were susceptible to amikacin (67.58%), gentamycin (73.08%), and tetracycline (80.77%). MARI of the isolates were significantly different between ERAs and NAs (P-value < 0.05) and had an average of 0.17 ± 0.18 and 0.45 ± 0.13, respectively. About 33.87% and 95.63% of the isolates had MARI value from 0.23 to 0.62 and 0.27-0.82 to ERAs and NAs, respectively. Also, ERAs-based and NAs-based ARI across sampling units showed significantly different (P-value < 0.05) means of 0.18 ± 0.09 and 0.46 ± 0.05, respectively. MARI attributed low risk of empirical treatment to recommended antibiotics but higher risk to non-recommended antibiotics. Model estimated successful and unsuccessful empirical treatment of infections risks due to resistance in the isolates using recommended antibiotics as 65.93% and 34.07%, respectively; 1.65% and 98.35% in the case of non-recommended antibiotics, respectively. ARI based on recommended antibiotics identified potential environmental pollutions in a number of sites. Resistance in freshwater P. shigelloides especially against cephalosporin, quinolones and fluoroquinolones is distressing and might suggests high pollution of the freshwaters in the Eastern Cape Province.
Collapse
Affiliation(s)
- Temitope Cyrus Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa; Department of Biological Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
46
|
Prevalence of Potentially Pathogenic Antibiotic-Resistant Aeromonas spp. in Treated Urban Wastewater Effluents versus Recipient Riverine Populations: a 3-Year Comparative Study. Appl Environ Microbiol 2020; 86:AEM.02053-19. [PMID: 31757827 DOI: 10.1128/aem.02053-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance continues to be an emerging threat both in clinical and environmental settings. Among the many causes, the impact of postchlorinated human wastewater on antibiotic resistance has not been well studied. Our study compared antibiotic susceptibility among Aeromonas spp. in postchlorinated effluents to that of the recipient riverine populations for three consecutive years against 12 antibiotics. Aeromonas veronii and Aeromonas hydrophila predominated among both aquatic environments, although greater species diversity was evident in treated wastewater. Overall, treated wastewater contained a higher prevalence of nalidixic acid-, trimethoprim-sulfamethoxazole (SXT)-, and tetracycline-resistant isolates, as well as multidrug-resistant (MDR) isolates compared to upstream surface water. After selecting for tetracycline-resistant strains, 34.8% of wastewater isolates compared to 8.3% of surface water isolates were multidrug resistant, with nalidixic acid, streptomycin, and SXT being the most common. Among tetracycline-resistant isolates, efflux pump genes tetE and tetA were the most prevalent, though stronger resistance correlated with tetA. Over 50% of river and treated wastewater isolates exhibited cytotoxicity that was significantly correlated with serine protease activity, suggesting many MDR strains from effluent have the potential to be pathogenic. These findings highlight that conventionally treated wastewater remains a reservoir of resistant, potentially pathogenic bacterial populations being introduced into aquatic systems that could pose a threat to both the environment and public health.IMPORTANCE Aeromonads are Gram-negative, asporogenous rod-shaped bacteria that are autochthonous in fresh and brackish waters. Their pathogenic nature in poikilotherms and mammals, including humans, pose serious environmental and public health concerns especially with rising levels of antibiotic resistance. Wastewater treatment facilities serve as major reservoirs for the dissemination of antibiotic resistance genes (ARGs) and resistant bacterial populations and are, thus, a potential major contributor to resistant populations in aquatic ecosystems. However, few longitudinal studies exist analyzing resistance among human wastewater effluents and their recipient aquatic environments. In this study, considering their ubiquitous nature in aquatic environments, we used Aeromonas spp. as bacterial indicators of environmental antimicrobial resistance, comparing it to that in postchlorinated wastewater effluents over 3 years. Furthermore, we assessed the potential of these resistant populations to be pathogenic, thus elaborating on their potential public health threat.
Collapse
|
47
|
Korzeniewska E, Harnisz M. Sources, Occurrence, and Environmental Risk Assessment of Antibiotics and Antimicrobial-Resistant Bacteria in Aquatic Environments of Poland. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/978-3-030-12139-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Çiftçi Türetken PS, Altuğ G, Çardak M, Güneş K. Bacteriological quality, heavy metal and antibiotic resistance in Sapanca Lake, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:469. [PMID: 31243556 DOI: 10.1007/s10661-019-7588-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Sapanca Lake is important as a source of drinking water. In this study, we aimed to detect the bacterial quality, the frequency of bacterial antibiotic and heavy metal resistance, and bioindicator bacteria in the water samples taken from Sapanca Lake in the period between 2008 and 2010. The resistance of bacterial isolates to certain antibiotics and heavy metal salts was investigated using disc diffusion and minimum inhibitory concentration techniques. Bacterial metabolic reactions were tested using the VITEK 2 Compact 30 micro identification system for identification of cultivable bacteria. Twenty-seven bacteria species belonging to three classes-Gammaproteobacteria, Bacilli, Flavobacteria-were recorded for the first time in Sapanca Lake. The highest indicator bacteria were recorded as 71 ± 3.1 × 104 CFU/100 ml in the summer season. The highest bacterial resistance was recorded as 90.47% against vancomycin in a total of 84 strains. Ampicillin (88.10%) and amoxicillin-clavulanate (64.29%) followed them. The resistance varied between 10.71 and 59.52% against cefuroxime, kanamycin, aztreonam, ceftazidime, cefotaxime, and oxacillin. The highest frequency against heavy metal salts was recorded as 74.19% against NiCl2. The heavy metal resistance against Cu, Zn, Hg, and Cd detected as 52.38%, 46.42%, 33.33%, and 26.19%, respectively. The results showed that the occurrence of heavy metals and antibiotic sources in Sapanca Lake induced a tolerance in bacteria for the metal salts and antibiotic derivatives tested. The fluctuations in the indicator bacteria and the occurrence of pathogenic bacteria also showed the possibility that the coastal areas of Sapanca Lake had been exposed to contamination due to inadequate sewage treatment.
Collapse
Affiliation(s)
- Pelin S Çiftçi Türetken
- Faculty of Aquatic Sciences, Marine Biology Department, Istanbul University, Istanbul, Turkey
| | - Gülşen Altuğ
- Faculty of Aquatic Sciences, Marine Biology Department, Istanbul University, Istanbul, Turkey.
| | - Mine Çardak
- School of Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Kemal Güneş
- Environment and Cleaner Production Institute, TUBITAK Marmara Research Center, Gebze, Kocaeli, Turkey
| |
Collapse
|
49
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
50
|
Ohore OE, Addo FG, Zhang S, Han N, Anim-Larbi K. Distribution and relationship between antimicrobial resistance genes and heavy metals in surface sediments of Taihu Lake, China. J Environ Sci (China) 2019; 77:323-335. [PMID: 30573097 DOI: 10.1016/j.jes.2018.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 05/17/2023]
Abstract
Heavy metals, pharmaceuticals, and other wastes released into the environment can significantly influence environmental antibiotic resistance. We investigated the occurrence of 22 antimicrobial resistance genes (ARGs) and 10 heavy metal concentrations, and the relationship between ARGs and heavy metals in surface sediment from seven sites of Lake Taihu. The results showed significant correlations (p < 0.05) between sediment ARG levels, especially for tetracycline and sulfonamides (e.g., tet(A), tet(D), tet(E), tet(O), sul1, sul2 and int-1) and specific heavy metals (Fe, Mn, Cr, Cu, Zn, among others) in the Lake. In the surface sediments, heavy metals showed an interaction with resistance genes, but the strength of interaction was diminished with increasing depth. For most of the heavy metals, the concentration of elements in the top sediments was higher than that in other depths. Tetracycline resistance genes (tet(A), tet(B), tet(D), tet(E) and tet(O), β-lactam resistance genes (SHV, TEM, CTX, OXA and OXY) and sulfonamide resistance genes (sulA, sul1, sul2, sul3 and int-1) were detected. They showed a trend which inferred a statistically significant increase followed by decreases in the relative abundance of these ARGs (normalized to 16S rRNA genes) with increasing depth. This study revealed that tet(A), tet(O), TEM, OXY, int-1, sul1 and sul3 were widespread in surface sediments with high abundance, indicating that these genes deserve more attention in future work.
Collapse
Affiliation(s)
- Okugbe E Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China..
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China..
| | - Nini Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Kwaku Anim-Larbi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|