1
|
Jabłońska-Czapla M, Grygoyć K, Yandem G. Assessment of contamination, mobility and application of selected technology-critical elements as indicators of anthropogenic pollution of bottom sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49694-49714. [PMID: 39078551 PMCID: PMC11324682 DOI: 10.1007/s11356-024-34377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
The study investigates the potential of technology-critical elements (TCEs) in the bottom sediments of the Biała Przemsza River as indicators of anthropogenic activities. The mass fractions of TCEs: Ge, Ga, In, Tl, Sb and Te (and other elements) in the sediment were analysed by inductively coupled plasma mass spectrometry with the maximum mass fractions: 2.46, 25.6, 0.528, 27.7, 12.5 and 0.293 mg/kg, respectively. Distribution and identification of TCE sources were supported by statistical analysis (principal component analysis coupled with varimax rotation and hierarchical cluster analysis). Assessments of TCE contamination using the geoaccumulation index, pollution index, contamination factor, enrichment factor and the antimony-to-arsenic ratio highlighted the high contamination of bottom sediments by Sb, Ga, Tl, Cd, As, Zn, Pb and moderate contamination by Co, In and V. Distinct behaviour patterns were observed among TCEs, revealing Sb and Tl as potential indicators of Zn-Pb ore mining activities. Co, V, Ge and, to a lesser extent, Te emerged as promising indicators of coal and coal fly ash effluents. Sequential chemical extraction of TCEs showed that Sb, In and Tl had the highest mobility from sediments. The Risk Assessment Code calculations suggest, that in the Biała Przemsza River bottom sediments, there is an average risk of contamination by As, Tl and Mn. Soluble forms of Tl, Ge, Sb, Te and In were identified in descending order, indicating their bioavailability.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland.
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland
| | - George Yandem
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland
| |
Collapse
|
2
|
Gong D, Yang P, Zhao J, Jia X. Selective removal of thallium from water by MnO 2-doped magnetic beads: Performance and mechanism study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120147. [PMID: 38325278 DOI: 10.1016/j.jenvman.2024.120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Aqueous thallium has posed an increasing threat to environment as human's intensified activities in mining, refining, process and discharge. Remediation on thallium pollution has been of up-most importance to water treatment. In present work, MnO2 and magnetic Fe3O4 have been implanted to sodium alginate (SA) in presence of carboxyl methyl cellulose (CMC), and the resultant beads consisted of SA/CMC/MnO2/Fe3O4 were characterized. The materials were applied to treatment of Tl-contaminated water as adsorbent in lab. The removal results revealed that the adsorption capacity reached 38.8 mg (Tl)·g (beads)-1 and almost 100 % removal efficiency was achieved. The residual Tl was below 0.1 μg·L-1, meeting the discharge standard regulated in China. The kinetic adsorption was better described as a pseudo-second-order and three-step intra-particle diffusion model. Freundlich isotherm was well fitted the experimental data. The absorbent shown an excellent competitive specificity (KTl/M: ∼104!) over common hazardous ions Cu2+, Cd2+, Co2+, Pb2+ and Cr3+, as well as naturally abundant K+ and Na+ (KTl/M: 10-102) in mimic environmental conditions. Regeneration and reusability of the absorbent was also verified by five absorption-desorpotion cycles. XPS results revealed that a redox reaction between Mn4+ with Tl+, and an ion exchange of H+ (-O-Fe) and Tl+ were assumed to be main process for the specific capturing. This study provided an efficient SA/CMC/MnO2/Fe3O4 composite beads that could be a promising adsorbent for Tl-polluted water treatment.
Collapse
Affiliation(s)
- Dirong Gong
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Panpan Yang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Junyi Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No.1799, Jimei Road, Xiamen, Fujian, 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315830, PR China
| | - Xiaoyu Jia
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No.1799, Jimei Road, Xiamen, Fujian, 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315830, PR China.
| |
Collapse
|
3
|
Jia Y, Xiao T, Sun J, Ning Z, Xiao E, Lan X, Chen Y. Calcium Enhances Thallium Uptake in Green Cabbage ( Brassica oleracea var. capitata L.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:4. [PMID: 36612325 PMCID: PMC9819253 DOI: 10.3390/ijerph20010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Thallium (Tl) is a nonessential and toxic trace metal that is detrimental to plants, but it can be highly up-taken in green cabbage (Brassica oleracea L. var. capitata L.). It has been proven that there is a significant positive correlation between Tl and Calcium (Ca) contents in plants. However, whether Ca presents a similar role for alleviating Tl toxicity in plants remains unclear, and little is known in terms of evidence for both Ca-enhanced uptake of Tl from soils to green cabbage and associated geochemical processes. In this study, we investigated the influence of Ca in soils on Tl uptake in green cabbage and the associated geochemical process. The pot experiments were conducted in 12 mg/kg Tl(I) and 8 mg/kg Tl(III) treatments with various Ca dosages. The results showed that Ca in soils could significantly enhance Tl uptake in green cabbage, increasing 210% in content over the control group. The soluble concentrations of Tl were largely increased by 210% and 150%, respectively, in 3.0 g/kg Ca treatment, compared with the corresponding treatment without Ca addition. This was attributed to the geochemical process in which the enhanced soluble Ca probably replaces Tl held on the soil particles, releasing more soluble Tl into the soil solution. More interestingly, the bioconcentration factor of the leaves and whole plant for the 2.0, 2.5, 3.0 g/kg Ca dosage group were greatly higher than for the non-Ca treatment, which could reach 207%, implying the addition of Ca can improve the ability of green cabbage to transfer Tl from the stems to the leaves. Furthermore, the pH values dropped with the increasing Ca concentration treatment, and the lower pH in soils also increased Tl mobilization, which resulted in Tl accumulation in green cabbage. Therefore, this work not only informs the improvement of agricultural safety management practices for the farming of crops in Tl-polluted and high-Ca-content areas, but also provides technical support for the exploitation of Ca-assisted phytoextraction technology.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jialong Sun
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Yuxiao Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Jabłońska-Czapla M, Grygoyć K. Selected technology-critical elements as indicators of anthropogenic contamination of surface water and suspended solids on the example of the Biała Przemsza River (Poland). CHEMOSPHERE 2022; 307:135801. [PMID: 35932918 DOI: 10.1016/j.chemosphere.2022.135801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Pollution of surface waters from anthropogenic activities is a global problem, affecting natural ecosystems, having a large impact on the life and health of living organisms. The development of mining and metallurgic industries of Pb and Zn ores in the Biała Przemsza cachment area has had a strong influence on the surface waters and suspended solids. This paper proposes the use of selected critical elements such as Tl, Te, Ga, Ge and In as indicators of anthropogenic pollution of surface waters and suspended solids on the example of the Biała Przemsza River. The impact of strongly anthropogenic urban-industrial catchment on the temporal and spatial distribution of the selected TCEs content in the water and suspension of the Biała Przemsza River depending on the oxygen, pH and Eh conditions is presented. Research has shown that selected critical elements such as Te, Ge, and In can be indicators of anthropogenic pollution of surface waters. In the case of the Biała Przemsza River, elements such as Ga and Tl cannot be indicators of anthropogenic pollution due to their presence in the zinc and lead ore deposits occurring in the river basin. Correlation matrices showed significant relationships between the selected TCEs and other water parameters. The calculated water pollution indices confirmed that the Biała Przemsza River is the most polluted in the last three sampling points.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland.
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland.
| |
Collapse
|
5
|
Jiang Y, Wei X, He H, She J, Liu J, Fang F, Zhang W, Liu Y, Wang J, Xiao T, Tsang DCW. Transformation and fate of thallium and accompanying metal(loid)s in paddy soils and rice: A case study from a large-scale industrial area in China. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126997. [PMID: 34474370 DOI: 10.1016/j.jhazmat.2021.126997] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is an extremely toxic metal, while its occurrence and fate in paddy soil environment remain understudied. Herein, the enrichment and migration mechanisms and potential health risks of Tl and metal(loid)s were evaluated in paddy soils surrounding an industrial park utilizing Tl-bearing minerals. The results showed that Tl contamination was evident (0.63-3.16 mg/kg) in the paddy soils and Tl was generally enriched in root of rice (Oryza sativa L.) with a mean content of 1.27 mg/kg. A remarkably high level of Tl(III) (30-50%) was observed in the paddy soils. Further analyses by STEM-EDS and XPS indicated that Tl(I) in the paddy soils was jointly controlled by adsorption, oxidation, and precipitation of Fe/Mn(hydr)oxide (e.g. hematite and birnessite), which might act as important stabilization mechanisms for inhibiting potential Tl uptake by rice grains. The health quotient (HQ) values indicated a potentially high Tl risk for inhabitants via consumption of the rice grains. Therefore, it is critical to establish effective measures for controlling the discharge of Tl-containing waste and wastewater from different industrial activities to ensure food safety in the rice paddy soils.
Collapse
Affiliation(s)
- Yanjun Jiang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wenhui Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Rodríguez-Hernández JA, Araújo RG, López-Pacheco IY, Rodas-Zuluaga LI, González-González RB, Parra-Arroyo L, Sosa-Hernández JE, Melchor-Martínez EM, Martínez-Ruiz M, Barceló D, Pastrana LM, Iqbal HMN, Parra-Saldívar R. Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies. ENVIRONMENTAL SCIENCE: ADVANCES 2022; 1:680-704. [DOI: 10.1039/d2va00179a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endocrine disrupting chemicals are a group of contaminants that have severe effects on humans and animals when exposed, like cancer and alterations to the nervous and reproductive systems.
Collapse
Affiliation(s)
| | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| |
Collapse
|
7
|
Zhao F, Gu S, Hao L, Cheng H, Liu L. Secondary Sulfate Minerals from Pyrite Oxidation in Lanmuchang Hg-Tl Deposit, Southwest Guizhou Province, China: Geochemistry and Environmental Significance. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1004-1011. [PMID: 34417844 DOI: 10.1007/s00128-021-03358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is a highly toxic trace metal posing a significant threat to human health. Tl pollution in soils and chronic Tl poisoning related to Tl-rich sulfides weathering in the Lanmuchang mine of southwest Guizhou province, China, have been intensively studied in recent years. And yet, there are few studies on the role of secondary sulfate minerals associated with Tl mobility in this area. The sulfate minerals were characterized by XRD and SEM-EDS. The concentrations of Tl and other elements were determined by ICP-MS. The results show that sulfate minerals are predominantly melanterite, halotrichite, and fibroferrite. The average contents of Tl in rock, sulfate minerals, and soil samples were 156.4, 0.11, and 72.1 µg g-1, respectively. This study suggests that Tl in the mineralized rocks entered soils by pyrite oxidation with less scavenged of the sulfate minerals. The dissolution of the ferric sulfate minerals accelerates pyrite oxidation and maintains soil acidity, and this likely enhances Tl mobility from soil to crops.
Collapse
Affiliation(s)
- Fengqi Zhao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Shangyi Gu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang, 550025, China.
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Lingfei Liu
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| |
Collapse
|
8
|
Elemental Speciation Analysis in Environmental Studies: Latest Trends and Ecological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212135. [PMID: 34831893 PMCID: PMC8623758 DOI: 10.3390/ijerph182212135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Speciation analysis is a key aspect of modern analytical chemistry, as the toxicity, environmental mobility, and bioavailability of elemental analytes are known to depend strongly on an element’s chemical species. Henceforth, great efforts have been made in recent years to develop methods that allow not only the determination of elements as a whole, but also each of its separate species. Environmental analytical chemistry has not ignored this trend, and this review aims to summarize the latest methods and techniques developed with this purpose. From the perspective of each relevant element and highlighting the importance of their speciation analysis, different sample treatment methods are introduced and described, with the spotlight on the use of modern nanomaterials and novel solvents in solid phase and liquid-liquid microextractions. In addition, an in-depth discussion of instrumental techniques aimed both at the separation and quantification of metal and metalloid species is presented, ranging from chromatographic separations to electro-chemical speciation analysis. Special emphasis is made throughout this work on the greenness of these developments, considering their alignment with the precepts of the Green Chemistry concept and critically reviewing their environmental impact.
Collapse
|
9
|
Rinklebe J, Shaheen SM, El-Naggar A, Wang H, Du Laing G, Alessi DS, Sik Ok Y. Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. ENVIRONMENT INTERNATIONAL 2020; 140:105754. [PMID: 32371311 DOI: 10.1016/j.envint.2020.105754] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal, and sediment phase of a mining soil treated and untreated with biochar as affected by the redox potential (EH) -dependent changes of soil pH, dissolved organic carbon, Fe, Mn and S. The experiment was conducted stepwise at two EH cycles (+200 mV → -30 mV → +333 mV → 0 mV) using biogeochemical microcosm. Silver was abundant in the colloidal fraction in both cycles, indicating that Ag might be associated with colloids under different redox conditions. Antimony, Sn and Tl were abundant in the colloidal fraction in the first cycle and in the dissolved fraction in the second cycle, which indicates that they are retained by colloids under oxic acidic conditions and released under reducing alkaline conditions. Release of dissolved Sb, Sn, and Tl was governed positively by pH, Fe, S, and dissolved aromatic compounds. Biochar mitigated Ag release, but promoted Sb, Sn, and Tl mobilization, which might be due to the wider range of EH (-12 to +333) and pH (4.9-8.1) in the biochar treated soil than the un-treated soil (EH = -30 to +218; pH = 5.9-8.6). Also, the biochar surface functional groups may act as electron donors for the Sb, Sn, and Tl reduction reactions, and thus biochar may play an important role in reducing Tl3+ to Tl+, Sb5+ to Sb3+, and Sn4+ to Sn2+, which increase their solubility under reducing conditions as compared to oxic conditions. Thallium and Sb exhibit higher potential mobility in the solid phase than Sn and Ag. Biochar increased the potential mobility of Sb, Sn, and Tl under oxic acidic conditions. The results improve our understanding of the redox-driven mobilization of these contaminants in soils.
Collapse
Affiliation(s)
- Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Wang N, Su Z, Deng N, Qiu Y, Ma L, Wang J, Chen Y, Hu K, Huang C, Xiao T. Removal of thallium(I) from aqueous solutions using titanate nanomaterials: The performance and the influence of morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137090. [PMID: 32065899 DOI: 10.1016/j.scitotenv.2020.137090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) pollution has attracted environmental attention due to its high toxicity, thus the cleanup of Tl from the environment is of significance. Titanate nanomaterials (TNMs) with different morphologies can be synthesized via a hydrothermal reaction under different conditions but the knowledge of the Tl(I) removal by them is limited. Our results indicated that TNM prepared at 130 °C exhibited a nanotubular appearance and a longer reaction time resulted in the formation of perfect nanotube, while that prepared at 180 °C exhibited a nanowire-like arrangement. The nanotubular and nanowire-like TNMs possessed approximately excellent Tl(I) adsorption capacities, wide pH, and temperature application ranges but different adsorption kinetics. Inorganic ions influenced the Tl(I) removal and the inhibiting effect of heavy metal ions followed the sequence Pb(II) > Cu(II) > Cd(II) > Zn(II). The anti-interference ability and selectivity of wire-like TNMs for Tl(I) removal were higher than those of tubular TNMs. High Tl(I) uptakes of tubular and wire-like TNMs were driven by the electrostatic attraction, ion exchange with Na+/H+, and complexation with -ONa functional groups in the interlayers and Ti-OH on the surfaces of TNMs as well as microprecipitation; while their adsorption configurations were different. TNMs are promising for potential applications in Tl(I) elimination from wastewater due to the high adsorption capacity and regenerability. This work indicates that TNMs synthesized under different conditions have the similar Tl(I) adsorption performances and the preparation of TNMs used for Tl(I) removal has an undemanding synthesis condition.
Collapse
Affiliation(s)
- Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zebin Su
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nairui Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuyin Qiu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Liang Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuxiao Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kaimei Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chujie Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Li H, Lin M, Xiao T, Long J, Liu F, Li Y, Liu Y, Liao D, Chen Z, Zhang P, Chen Y, Zhang G. Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122016. [PMID: 31958614 DOI: 10.1016/j.jhazmat.2020.122016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, tannery wastewater was used as carbon source to hydrothermally synthesize magnetic carbon-coated nickel ferrite composite (NiFe2O4@C), which was employed as a catalyst for thallium (Tl) oxidation by hypochlorite and simultaneously as an adsorbent for Tl removal from wastewater. Compared with NiFe2O4@C adsorption or hypochlorite oxidation alone, the combination of NiFe2O4@C and hypochlorite substantially enhanced the rate and efficiency of Tl(I) removal. In addition, this process was highly effective for Tl(I) removal over a wide pH range (6-12). The maximum Tl(I) removal capacity was 1699 mg/g at pH 10, which is the highest one reported so far. Electron spin resonance spectra suggested the formation of hypochlorite-based free radicals induced by the NiFe2O4@C composite, which enhanced the Tl(I) oxidation and removal. Oxidation-induced surface precipitation and surface complexation were found to be the main Tl(I) removal mechanisms. Consecutive cyclic regeneration tests implied robust regeneration and reuse performance of the composite. Moreover, it was effective for Tl(I) removal from real industrial wastewater. Therefore, the hypochlorite catalytic oxidation coupled with adsorption by the magnetic NiFe2O4@C composite is a promising technique for Tl(I) removal from wastewater. This hybrid process also has great potential for the removal of other pollutants.
Collapse
Affiliation(s)
- Huosheng Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mao Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianyou Long
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fengli Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuting Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dandan Liao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zexin Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ping Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Gaosheng Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Rasool A, Xiao T, Ali S, Ali W, Nasim W. Quantification of Tl (I) and Tl (III) based on microcolumn separation through ICP-MS in river sediment pore water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9686-9696. [PMID: 31925682 DOI: 10.1007/s11356-019-07553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) is a typical toxic element, whose biological effects and geochemical behavior are closely related with its chemical speciation in the environment. In this context, the objective of the present study was to develope an effective method for separation of Tl (I) and Tl (III) based on solid-phase extraction (SPE) using anion exchange resin AG1-X8 as a sorbent and ICP-MS measurement. In this proposed method, Tl (I) and Tl (III) could be separated by selective adsorption of Tl (III)-DTPA in the resin, while Tl (III) was eluted by the solution mixed with HCl and SO2. The validity of this method was confirmed by assays of standard solutions of Tl (I) and Tl (III), as well as with spike of contaminated samples. The present study results revealed that higher concentration of Tl (I) (245.48 μg/l) and Tl (III) (20.92 μg/l) had been found near the acid mine drainage (AMD) sample of sediment pore water. The results revealed that Tl (I) of 61.47 μg/l and Tl (III) of 9.73 μg/l were present in the river water contaminated by acid mine drainage. This thallium speciation analysis implied that the dominant Tl (I) species in the river water studied might be due to the weathering of sulfide mineral-bearing rocks, mining, and smelting activities in the studied area.
Collapse
Affiliation(s)
- Atta Rasool
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Institute of Geochemistry, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Environmental Sciences, COMSATS University , Islamabad (CUI), Vehari 61100, Pakistan, Vehari, Pakistan
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Salar Ali
- Department of Biological Sciences, University of Baltistan, Skardu, 16100, Pakistan
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Institute of Geochemistry, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wajid Nasim
- Department of Agronomy, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur (IUB), Bahawalpur, Pakistan
| |
Collapse
|
13
|
Wang D, Yang B, Ye Y, Zhang W, Wei Z. Nickel speciation of spent electroless nickel plating effluent along the typical sequential treatment scheme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:35-42. [PMID: 30439692 DOI: 10.1016/j.scitotenv.2018.10.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
The electroless nickel (EN) industry has suffered from the reduction in Ni concentration to lower than 0.1 mg/L. Hence, Ni speciation along a typical sequential treatment scheme has important implications to optimize the design of advanced treatment. For the first time, we revealed the Ni speciation in segmented EN outfall effluents by virtue of multiple analytical methods. After ensuring all the Ni-bearing complexes were completely dissolved by size-fractioned ultrafiltration trials, customized mass spectra analysis was conducted. In a series of ICP-MS assays, the potential polyatomic interfering species was primarily excluded. The chromatography hyphenated IC-ICP-MS and SEC-ICP-MS results demonstrated that the dominant Ni species in the EN effluents was similar to EDTA-Ni but with a smaller size. The LC-MS experiment further distinguished several typical Ni-bearing complexes. Although Ni concentration declined continuously along the treatment scheme, the number of detected Ni-bearing complexes gradually increased but with lower molecular weights. Most of the detected mononuclear complexes had higher indexes of hydrogen deficiency (IHD) than EDTA-Ni, whereas it was believed that the similar stereo ring shape was widespread in the EN effluent. Considering the efficient Ni decrease after the Fenton unit, further post-treatment approaches featuring higher active radical yields were suggested.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bowen Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuxuan Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Xiao Q, Rasool A, Xiao T, Baveye PC. A modified method of separating Tl(I) and Tl(III) in aqueous samples using solid phase extraction. Chem Cent J 2018; 12:132. [PMID: 30519801 PMCID: PMC6768029 DOI: 10.1186/s13065-018-0502-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
In spite of the development of new measurement techniques in recent years, the rapid and accurate speciation of thallium in environmental aqueous samples remains a challenge. In this context, a novel method of solid phase extraction (SPE), involving the anion exchange resin AG1-X8, is proposed to separate Tl(I) and Tl(III). In the presence of diethylene triamine pentacetate acid (DTPA), Tl(III) and Tl(I) can be separated by selective adsorption of Tl(III)-DTPA onto the resin, Tl(III) is then eluted by a solution of HCl with SO2. The validity of this method was confirmed by assays of standard solutions of Tl(I) and Tl(III). The proposed method is shown to have an outstanding performance even in solutions with a high ratio of Tl(I)/Tl(III), and can be applied to aqueous samples with a high concentration of other electrolytes, which could interfere with the measurement. Portable equipment and reagents make it possible to use the proposed method routinely in the field.
Collapse
Affiliation(s)
- Qingxiang Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Atta Rasool
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Philippe C Baveye
- UMR Ecosys, Université Paris-Saclay, AgroParisTech, Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France
| |
Collapse
|