1
|
Wang H, Wu Z, Zhao A, Wang Y, Li Q, Zhang L, Wang Z, Li T, Zhao J. Distinct patterns and processes of eukaryotic phytoplankton communities along a steep elevational gradient in highland rivers. ENVIRONMENTAL RESEARCH 2025; 275:121427. [PMID: 40113062 DOI: 10.1016/j.envres.2025.121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Phytoplankton play a crucial role in biogeochemical cycling and aquatic food webs while also susceptible to environmental variations. However, their response to altitude gradients remains poorly understood. In this study, we applied a metabarcoding approach to explore eukaryotic phytoplankton community structure, co-occurrence networks, and assembly processes along a steep altitudinal gradient (590-4500 m) in the Nyang River and the lower reaches of the Yarlung Zangbo River on the Qinghai-Tibetan Plateau during dry and wet seasons. Using 18S rDNA sequencing, we obtained 2852 amplicon sequence variants. Our results demonstrated that Ochrophyta was the dominant taxon in the eukaryotic phytoplankton community across both seasons. Alpha diversity exhibited distinct seasonal patterns, decreasing monotonically with increasing altitude in the dry season whereas the highest diversity was observed at medium altitudes in the wet season. Phytoplankton co-occurrence networks became more topologically complex as species diversity increased. Among environmental factors, altitude (r = 0.62), water temperature (r = 0.52) and pH (r = 0.51) significantly influenced phytoplankton communities. Stochastic processes globally dominated phytoplankton community assembly (66 %) and became increasingly influential from dry season (51 %) to wet season (71 %). Their impact gradually increased from low altitude (57 %) to medium altitude (64 %), but deterministic processes overwhelming dominated community assembly at the higher altitude in both seasons (dry season: 95 %, wet season 71 %). In summary, these findings enhance our understanding of the spatial and temporal dynamics of eukaryotic phytoplankton communities in highland rivers and the maintenance of planktonic diversity along elevational gradients.
Collapse
Affiliation(s)
- Haotian Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Aiwen Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Youxin Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, People's Republic of China
| | - Qi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Lin Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhong Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, People's Republic of China; The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China; School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
2
|
Fan Y, Xiang T, Dai Z, Wei Q, Li Y, Wang F, Yang S, Liu L, Xu W, Cao W. Cascade effects of nutrient input on river microeukaryotic stability: habitat heterogeneity-driven assembly mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125626. [PMID: 40334416 DOI: 10.1016/j.jenvman.2025.125626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The assembly process and stability mechanism of microeukaryotes can reflect the health and sustainability of river ecosystems, and changes in land use types can alter biodiversity and affect ecosystem functions. Here, we used 18S rDNA amplicon sequencing technology to explore the effects of land use and dry and wet season changes on microeukaryotic species composition, community assembly, co-occurrence networks, and network stability, as well as the mechanisms driving observed changes. The total phosphorus concentration was 13.3 and 7.8 times higher and the total nitrogen concentration was 6.3 and 3.8 times higher in agricultural and urban river sections, respectively, than in forest river sections. Differences in land use types have created heterogeneity on river habitats and altered the distribution and species composition of microeukaryotes, reducing the number and diversity of endemic species in communities and simplifying the food web. High nitrogen and phosphorus inputs promoted the abundance of low-trophic-level species; ecosystem stability and population sizes were maintained by high trophic levels, which controlled the abundance of low trophic levels through predation and promoted nitrogen transformation. The high-nutrient environment reduced the niche breadth of species (>70 % dry season niche breadth contraction), thus promoting specialization; given that this placed these species at a disadvantage in the competition for resources, community stability decreased (60 %/40 % wet/dry season robustness reductions). The physical dilution effect of the river in the dry season was weakened, and the input of domestic sewage and agricultural return water promoted deterministic processes (71.43 % increased |βNTI|>2 in dry season). The environmental filtration effect in the wet season was still stronger than the physical dilution effect caused by the increase in river flow (neutral model R2 = 33.5 %). The input of large amounts of nutrients was the main driver of the decline in the stability of microeukaryotes (Total Effect = -0.62).
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tao Xiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiqi Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yujie Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, 361102, Fujian, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, 361102, Fujian, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
3
|
Chu C, Zhao L, Chen L, Chen L, Wang L, Li C, Jiang J, Pan H. Stochastic Processes Drive the Assembly of Planktonic Ciliates in A Trellised River Network. J Eukaryot Microbiol 2025; 72:e70016. [PMID: 40400101 DOI: 10.1111/jeu.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
The topology and connectivity of rivers can be modified by the water project operation for agriculture and civilization, as exemplified by the trellised river system in Chongming Island. Ciliates, as an exceptional indicator, are often employed for monitoring the health of aquatic ecosystems. However, the assembly and structure of planktonic microeukaryote (e.g., ciliates) communities, especially in complex river networks, are rarely investigated. Here, we investigated the ciliate community structure and assembly mechanism among seasons in Chongming Island's trellised river network using both metabarcoding and quantitative protargol stain (QPS) approaches. Both methods showed that ciliates exhibited similar community composition at the class level and distinct seasonal succession, which are attributed to variations in nutrients, dissolved oxygen and water temperature. The stochastic process was the main factor in explaining the assembly of the ciliate community in all seasons, which is probably attributed to the high connectivity of the river network and the frequent opening of sluices for the water project operation. Collectively, unique ciliate community structure, seasonal variation, and specific community assembly mechanism driven by hydrology were reported in this study. Furthermore, methodological differences also should be fully considered when conducting an ecological study in complex hydrographic waters.
Collapse
Affiliation(s)
- Chang Chu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Lianwen Zhao
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Lele Chen
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Lijing Chen
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, China
| | - Liqing Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Hongbo Pan
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Lu Y, Jin L, Chen H, Luo A, Ehrlich E, Li S, Wilkinson DM, Sha Z, Yang J. Urbanization leads to convergent succession and homogenization of phytoplankton functional traits in a subtropical watershed over 11 years. ENVIRONMENTAL RESEARCH 2025; 271:121097. [PMID: 39938632 DOI: 10.1016/j.envres.2025.121097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Urbanization can significantly drive biodiversity loss in river ecosystems, yet the underlying mechanisms require further study. Here, we used a trait-based approach to investigate temporal succession and variation in the dissimilarity of phytoplankton community functional traits along an urbanizing subtropical river over 11 years - during which time the downstream of catchment underwent rapid urbanization. Our results indicated that urbanization altered the interannual succession of phytoplankton. The phytoplankton communities in the rural region were mainly shaped by a specialist trade-off between extreme lotic strategies (single cell, high maximum growth rate and high silica demand) in river habitat, and extreme lentic strategies (colonial, toxin production and nitrogen fixation abilities) in reservoir habitat. Conversely, in the urban region, generalist strategies with intermediate trait combinations (moderate mobility and mixotrophic ability) dominated the communities in both river and reservoir habitats. Time-lag analysis of functional dissimilarity showed lower, or even no significant variations of functional beta diversity in the urban region. Further decomposition of functional beta diversity indicated a reduced rate of functional turnover in urban river compared with that in rural river and a decrease in functional nestedness in urban reservoir. Paired differences between river and reservoir in the urban region exhibited convergent succession by functional turnover. The convergent succession and homogenization in the urban region made the variation in phytoplankton functional structure more unpredictable in a random forest model, and diminished the relationship between functional dissimilarity and environmental factors compared to the rural region. Our study shows how urbanization shapes the phytoplankton functional structure and causes homogenization in functional trait composition. The insight gained enhance our ability to assess and predict the environmental impacts of urbanization on aquatic ecosystems.
Collapse
Affiliation(s)
- Yifan Lu
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Luo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elias Ehrlich
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14469, Germany; Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - David M Wilkinson
- School of Natural Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - Zhansen Sha
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Hebei University, Baoding 071000, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Kim HG, Yu SI, Shin SG, Cho KH. Graph-based deep learning for predictions on changes in microbiomes and biogas production in anaerobic digestion systems. WATER RESEARCH 2025; 274:123144. [PMID: 39826399 DOI: 10.1016/j.watres.2025.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Anaerobic digestion (AD), which relies on a complex microbial consortium for efficient biogas generation, is a promising avenue for renewable energy production and organic waste treatment. However, understanding and optimising AD processes are challenging because of the intricate interactions within microbial communities and the impact of volatile fatty acids (VFAs) on biogas production. To address these challenges, this study proposes the application of graph convolutional networks (GCNs) to comprehensively model AD processes. GCN models were developed to predict microbial dynamics and biogas production by integrating network analyses of high-throughput sequencing data and VFA inhibition effects. The models were trained based on the responses of anaerobic digesters to organic loading rate shock, starvation, and bioaugmentation for 281 d under various feeding conditions. Shifts in microbial community composition during AD stages and feeding conditions were successfully identified using next-generation sequencing tools. Graph topological features indicated a significant coupling between VFAs and microbial families, and the hydrogenotrophic archaeal families were most frequently connected to other families or residual acids. The GCN accurately predicted microbial abundances and gas production rates, achieving a mean squared error of 0.11 and 0.01 and a coefficient of determination of 0.72 and 0.87 for the testing dataset. These results provide valuable insights into the effects of starvation and bioaugmentation on the microbiome by utilising GCNs to model anaerobic treatment processes, predict microbial dynamics, and assess reactor productivity. Our study suggests a new modelling framework for understanding and improving AD systems by considering microbial interaction networks in relation to chemical parameter information at relevant operating scales.
Collapse
Affiliation(s)
- Hyo Gyeom Kim
- Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Korea
| | - Sung Il Yu
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Seung Gu Shin
- Department of Energy System Engineering, Gyeongsang National University, Gyeongnam 52828, Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
6
|
Hou W, Yu J, Shi H, Xu J, Chen SS, Shaban SS, Kim Y, Bai J. As a reservoir of antibiotic resistance genes and pathogens, the hydrodynamic characteristics drive their distribution patterns in Lake Victoria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125903. [PMID: 39988254 DOI: 10.1016/j.envpol.2025.125903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Antibiotic resistance genes (ARGs) and pathogenic bacteria pose significant challenges to human health, and hydrodynamic processes complicate their transmission mechanisms in lake ecosystems, particularly in tropical regions. Lake Victoria supports abundant water resources and provides livelihoods for millions of people, yet the environmental behavior of ARGs and pathogenic bacteria remains unclear. Herein, the novel insights into the co-occurrence patterns and transmission mechanisms of ARGs and pathogenic bacteria in Lake Victoria was investigated via molecular techniques and a hydrodynamic model. The results showed that as a large reservoir of ARGs and pathogenic bacteria, a total of 172 ARG subtypes and 93 pathogenic bacteria were identified in Lake Victoria. ARGs were spread through mobile genetic elements (tnpA4 and int2), enhancing the antibiotic resistance and virulence factors (secretion systems, regulatory factors, and toxins) of various pathogenic bacteria. The hydrodynamic model indicated that surface wind-driven currents and bottom compensatory flows shaped the outward dispersion of ARGs and pathogenic bacteria from the gulf. The NCM model suggested that water exchange accelerated the diffusion of antibiotics and pathogens, likely enhancing the deterministic assembly process of ARGs and the stochastic assembly process of pathogens. The PLS-PM model revealed that hydrodynamics directly influenced the accumulation of ARGs and pathogenic bacteria, and subsequently affected the diffusion and distribution patterns of ARGs and pathogens by facilitating the propagation of MGEs. Our study overcomes the limitations associated with lake and microenvironmental scale, providing insights and understanding into the transmission mechanisms of ARGs and pathogenic bacteria.
Collapse
Affiliation(s)
- Wanli Hou
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Haoqian Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jing Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Nanjing Institute of Environmental Sciences, MEE, Nanjing, 210044, China
| | - Sophia Shuang Chen
- College of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Sophia S Shaban
- Tanzania Fisheries Research Institute, Mwanza, 33113, Tanzania
| | - Youngchul Kim
- Department of Environmental Engineering, Hanseo University, Seosan, 356706, Republic of Korea
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
7
|
Liu L, Zhu G, Hu J, Chen H, Zhai Y. An unignorable human health risk posed by antibiotic resistome and microbiome in urban rivers: Insights from Beijing, China. ENVIRONMENTAL RESEARCH 2025; 268:120752. [PMID: 39755199 DOI: 10.1016/j.envres.2025.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers. In this study, shotgun metagenomic approach was used to characterize ARGs, mobile genetic elements (MGEs), and virulence factors (VFs) in water and sediment from Xinfeng River in Beijing and to identify microbes, potential antibiotic resistant bacteria, and human pathogens (HPs). MGE, microbial community, VF, and ARG co-occurrences were used to assess the environmental risks posed by ARGs. The results indicated that quinolone was the most abundant ARG type and that tufA and fusA were the two dominant ARG subtypes. Wetland effluent increased ARG abundance in the river, and the effect was detected even 50 m downstream. ARG abundances and distribution in the river had difference in different seasons. The dominant bacteria in the river were Proteobacteria, Bacteroidetes, and Actinobacteria, and 59 HPs were detected. In total, 69 MGEs and 19 VFs were found. Co-occurrence networks indicated that potential antibiotic resistant bacteria, MGEs, VFs, and ARGs in the river significantly correlated, indicating the potential risks posed by ARGs. The results improve our understanding of ARG distribution and environmental risks in urban river water. More attention should be paid to controlling environmental risks posed by ARGs in urban river and reclaimed water.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Ye S, Xu S, Ren M, Chang C, Hu E, Li M. Land use types, basin characteristics and water quality together shape riverine phytoplankton community composition and diversity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124496. [PMID: 39933371 DOI: 10.1016/j.jenvman.2025.124496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Exploring the combined effects of basin characteristics, land use types, and human activities on phytoplankton biomass, community composition and diversity is important for developing effective river protection strategies. In the present study, 182 phytoplankton samples were collected in the Hanjian and Danjiang River basins and the explanation rate of the above factors was analyzed. Water quality was the primary factor affecting riverine phytoplankton biomass, with an explanation rate to Chl a reaching 59.8%. Water quality was also the primary factor affecting phytoplankton diversity but the contribution of land use types and basin characteristics was also high. In addition to affecting phytoplankton communities and diversity by affecting water quality, diverse land use can increase the taxa of algae discharged through soil erosion processes. Elevation and slope were the main basin characteristics regulating phytoplankton community and diversity because they can determine the retention time of phytoplankton in rivers. The results also showed that land use types were the primary factor affecting the critical relative abundance of extinction (a), competition coefficient (k), environmental taxa capacity (N), but water quality was the primary factor affecting Shannon index, Simpson index, and Pielou index. This difference indicated that index a, k, and N could reflect specific characteristics of phytoplankton diversity that were not reflected by the latter indices. Our results implied that land use types and basin characteristics affected the discharge of exotic algal taxa, retention time, and other factors, thereby influencing the composition and diversity of riverine phytoplankton communities.
Collapse
Affiliation(s)
- Sisi Ye
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Xu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, Shaanxi, 710061, China
| | - Mi Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, Shaanxi, 710061, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Chen X, Yan A, Lu S, Zhang H, Li D, Jiang X. Accelerated stochastic processes of plankton community assembly due to tidal restriction by seawall construction in the Yangtze River Estuary. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106941. [PMID: 39753010 DOI: 10.1016/j.marenvres.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/29/2024] [Indexed: 02/09/2025]
Abstract
Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary. While environmental heterogeneity did not exert a significant influence on alpha diversity of plankton, it had a significant impact on community structure. Variation partitioning analysis (VPA) and neutral community model indicated that neither environmental nor spatial factors were predominant drivers of plankton community composition and structure, instead, they were influenced by stochastic processes. Moreover, it was observed that the relative significance of stochastic processes in the tide-restricted area exceeded that in the unrestricted area. High habitat uniformity and water connectivity resulting from seawall construction may facilitate homogenization and spread among high-abundance groups. The results have significant implications for understanding the mechanisms underlying succession and composition, and for improving ecological assessment and remediation efforts in areas impacted by tidal restriction.
Collapse
Affiliation(s)
- Xingyu Chen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ailing Yan
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environmental Science, Shanghai, China
| | - Shiqiang Lu
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environmental Science, Shanghai, China.
| | - Haoran Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Da Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodong Jiang
- School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China.
| |
Collapse
|
10
|
Lv Z, Ma L, Zhang H, Zhao Y, Zhang Q. Environmental and hydrological synergies shaping phytoplankton diversity in the Hetao irrigation district. ENVIRONMENTAL RESEARCH 2024; 263:120142. [PMID: 39401604 DOI: 10.1016/j.envres.2024.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
Phytoplankton are crucial primary producers in freshwater ecosystems, driving matter and energy flow across trophic levels, essential for biodiversity and ecological balance. Most research emphasizes environmental factors shaping their diversity, while the role of hydrological connectivity remains poorly understood. This study collected 81 phytoplankton samples from the Hetao Irrigation District along a gradient from upstream to downstream and utilized high-throughput sequencing to evaluate the spatial distribution patterns of phytoplankton diversity. The study analyzed the impacts of environmental factors, hydrological connectivity (water surface ratio, Wp), and human activities (land-use intensity, LUI) on phytoplankton diversity. The results revealed that the phytoplankton community comprised 9 phyla, 158 families, 378 genera, and 1189 species. There were significant differences in phytoplankton diversity among different water bodies, with a gradual increase in phytoplankton diversity from west to east across the five major irrigation areas. Lake Ulansuhai had relatively low phytoplankton diversity. The ASV number, Chao1 index, and ACE index showed significant positive correlations with dissolved oxygen (DO), pH, and water temperature (WT). The Shannon index and Pielou'e evenness (Pielou_e) index showed significant positive correlations with the water surface ratio (Wp). The partial least squares model indicated that environmental factors directly influenced phytoplankton diversity. Hydrological connectivity indirectly affected phytoplankton diversity by altering environmental factors. We emphasize that hydrological connectivity is as important as environmental factors in driving phytoplankton diversity in the Hetao Irrigation District. This study provides key insights for water quality assessment and biodiversity conservation in the region.
Collapse
Affiliation(s)
- Zhuozhuo Lv
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Le Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Hengrui Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Yanyun Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Inner Mongolia Key Laboratory of Grassland Ecology, Hohhot, 010021, China.
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Inner Mongolia Key Laboratory of Grassland Ecology, Hohhot, 010021, China.
| |
Collapse
|
11
|
Hu H, Wei XY, Liu L, Wang YB, Bu LK, Jia HJ, Pei DS. Biogeographic patterns of meio- and micro-eukaryotic communities in dam-induced river-reservoir systems. Appl Microbiol Biotechnol 2024; 108:130. [PMID: 38229334 DOI: 10.1007/s00253-023-12993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/30/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Although the Three Gorges Dam (TGD) is the world's largest hydroelectric dam, little is known about the spatial-temporal patterns and community assembly mechanisms of meio- and micro-eukaryotes and its two subtaxa (zooplankton and zoobenthos). This knowledge gap is particularly evident across various habitats and during different water-level periods, primarily arising from the annual regular dam regulation. To address this inquiry, we employed mitochondrial cytochrome c oxidase I (COI) gene-based environmental DNA (eDNA) metabarcoding technology to systematically analyze the biogeographic pattern of the three communities within the Three Gorges Reservoir (TGR). Our findings reveal distinct spatiotemporal characteristics and complementary patterns in the distribution of meio- and micro-eukaryotes. The three communities showed similar biogeographic patterns and assembly processes. Notably, the diversity of these three taxa gradually decreased along the river. Their communities were less shaped by stochastic processes, which gradually decreased along the longitudinal riverine-transition-lacustrine gradient. Hence, deterministic factors, such as seasonality, environmental, and spatial variables, along with species interactions, likely play a pivotal role in shaping these communities. Environmental factors primarily drive seasonal variations in these communities, while hydrological conditions, represented as spatial distance, predominantly influence spatial variations. These three communities followed the distance-decay pattern. In winter, compared to summer, both the decay and species interrelationships are more pronounced. Taken together, this study offers fresh insights into the composition and diversity patterns of meio- and micro-eukaryotes at the spatial-temporal level. It also uncovers the mechanisms behind community assembly in various environmental niches within the dam-induced river-reservoir systems. KEY POINTS: • Distribution and diversity of meio- and micro-eukaryotes exhibit distinct spatiotemporal patterns in the TGR. • Contribution of stochastic processes in community assembly gradually decreases along the river. • Deterministic factors and species interactions shape meio- and micro-eukaryotic community.
Collapse
Affiliation(s)
- Huan Hu
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xing-Yi Wei
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yuan-Bo Wang
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ling-Kang Bu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huang-Jie Jia
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Kim HG, Jung EY, Jeong H, Son H, Baek SS, Cho KH. Modeling freshwater plankton community dynamics with static and dynamic interactions using graph convolution embedded long short-term memory. WATER RESEARCH 2024; 266:122401. [PMID: 39265215 DOI: 10.1016/j.watres.2024.122401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Given the frequent association between freshwater plankton and water quality degradation, several predictive models have been devised to understand and estimate their dynamics. However, the significance of biotic and abiotic interactions has been overlooked. In this study, we aimed to address the importance of the interaction term in predicting plankton community dynamics by applying graph convolution embedded long short-term memory networks (GC-LSTM) models, which can incorporate interaction terms as graph signals. Temporal graph series comprising plankton genera or environmental drivers as node features and their relationships for edge features from two distinct water bodies, a reservoir and a river, were utilized to develop these models. To assess the predictability, the performances of the GC-LSTM models on community dynamics were compared those of LSTM and GCN models at various lead times. Moreover, GNNExplainer was used to examine the global and local importance of the nodes and edges for all predictions and specific predictions, respectively. The GC-LSTM models outperformed the LSTM models, consistently showing higher prediction accuracy. Although all the models exhibited performance degradation at longer lead times, the GC-LSTM models consistently demonstrated better performance regarding each graph signal and plankton genus. GNNExplainer yielded interpretable explanations for important genera and interaction pairs among communities, revealing consistent importance patterns across different lead times at both global and local scales. These findings underscore the potential of the proposed modeling approach for forecasting community dynamics and emphasize the critical role of graph signals with interaction terms in plankton communities.
Collapse
Affiliation(s)
- Hyo Gyeom Kim
- Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Young Jung
- Busan Water Quality Institute, Gyeongsangnam-do, 50804, Republic of Korea
| | - Heewon Jeong
- Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gyeongsangnam-do, 50804, Republic of Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Jiao G, Huang Y, Tang H, Chen Y, Zhou D, Yu D, Ma Z, Ni S. Unveiling the hidden impact: How human disturbances threaten aquatic microorganisms in cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175305. [PMID: 39117200 DOI: 10.1016/j.scitotenv.2024.175305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Urban activity emissions have important ecological significance to bacterial communities' spatial and temporal distribution and the mechanism of bacterial community construction. The mechanism of bacterial community construction is the key to community structure and lifestyle, and the influence of this aspect has not been thoroughly studied. This study analyzed the response of bacteria in water and sediment in different seasons to urban activities in Jinsha River. The results showed that the influence of urban activities on bacterial community structure in sediment was greater than that in water. The input of pollution in different regions changed the diversity and abundance of water and sediments bacteria and promoted bacterial community reconstruction to a certain extent. Co-network analysis found that many metal-mediated species are core species within the same module and can be used to mitigate pollution caused by metal or organic pollutants due to interspecific solid interactions. Different potential pollution sources around urban rivers affect the metabolic function of bacteria in aquatic ecosystems and promote the detoxification function of bacteria in different media. The results of this study supplement our understanding of the characteristics of microbial communities in urban river systems and provide clues for understanding the maintenance mechanism of microbial diversity in multi-pollution environments.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China; Yunnan Earthquake Agency, Yunnan 650000, China; Observation Station for Field Scientific Research of Crustal Tectonic Activity in Northwest Yunnan, Dali 671000, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| | - Hua Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ying Chen
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| | - Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Daming Yu
- Pangang Group Company Limited, Sichuan 617050, China
| | - Zhongjian Ma
- Pangang Group Company Limited, Sichuan 617050, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| |
Collapse
|
14
|
Jia J, Gao Y, Wang S, Wu F, Lu Y, Ha X. Feedbacks between phytoplankton and global changes in a riverine source-mainstem-estuary continuum. WATER RESEARCH 2024; 268:122746. [PMID: 39536638 DOI: 10.1016/j.watres.2024.122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Global changes have led to alterations in phytoplankton community structure and dynamics in aquatic environments. However, limited information is available on the comprehensive impacts of global changes on phytoplankton communities along river systems affected by anthropogenic activities. This study explores how anthropogenic pressures and climate change affect phytoplankton community transitions and induce harmful algal blooms by employing field surveys and a 40-year historical data analysis along China's Yangtze River source-mainstem-estuary continuum. Results revealed significantly higher phytoplankton density and biodiversity in the mainstem compared to the source and estuary zones. From the river's source to its mainstem and estuary, the dominant phytoplankton community formed a transition pattern (diatoms - chlorophytes - cyanobacteria - diatoms). Similarly, phytoplankton functional groups transitioned from mixed to eutrophic groups, signaling a shift in water quality towards moderate eutrophication, although it has not yet threatened the survival of diverse phytoplankton species. Moreover, compared to climate change, anthropogenic activities have more significantly intensified the urban heat island effect and nutrient inputs, thereby promoting phytoplankton cell density and biodiversity, particularly in the case of eutrophic functional groups. However, since 2003, governmental regulations have slowed the increase in nitrogen and phosphorus transport flux from the source to the estuary, contributing to the stabilization of harmful algal blooms at low levels in the estuary and adjacent waters. Strict control of nitrogen-to-phosphorus ratios is essential for preserving biodiversity, mitigating eutrophication, and preventing harmful algal blooms, thereby ensuring ecological balance and protecting water environments along the Yangtze River.
Collapse
Affiliation(s)
- Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fan Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xianrui Ha
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
15
|
Zheng B, Zhou L, Wang J, Dong P, Zhao T, Deng Y, Song L, Shi J, Wu Z. The shifts in microbial interactions and gene expression caused by temperature and nutrient loading influence Raphidiopsis raciborskii blooms. WATER RESEARCH 2024; 268:122725. [PMID: 39504700 DOI: 10.1016/j.watres.2024.122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Climate change and the trophic status of water bodies are important factors in global occurrence of cyanobacterial blooms. The aim of this study was to explore the cyanobacteria‒bacterial interactions that occur during Raphidiopsis raciborskii (R. raciborskii) blooms by conducting microcosm simulation experiments at different temperatures (20 °C and 30 °C) and with different phosphorus concentrations (0.01 mg/L and 1 mg/L) using an ecological model of microbial behavior and by analyzing microbial self-regulatory strategies using weighted gene coexpression network analysis (WGCNA). Three-way ANOVA revealed significant effects of temperature and phosphorus on the growth of R. raciborskii (P < 0.001). The results of a metagenomics-based analysis of bacterioplankton revealed that the synergistic effects of both climate and trophic changes increased the ability of R. raciborskii to compete with other cyanobacteria for dominance in the cyanobacterial community. The antagonistic effects of climate and nutrient changes favored the occurrence of R. raciborskii blooms, especially in eutrophic waters at approximately 20 °C. The species diversity and richness indices differed between the eutrophication treatment group at 20 °C and the other treatment groups. The symbiotic bacterioplankton network revealed the complexity and stability of the symbiotic bacterioplankton network during blooms and identified the roles of key species in the network. The study also revealed a complex pattern of interactions between cyanobacteria and non-cyanobacteria dominated by altruism, as well as the effects of different behavioral patterns on R. raciborskii bloom occurrence. Furthermore, this study revealed self-regulatory strategies that are used by microbes in response to the dual pressures of temperature and nutrient loading. These results provide important insights into the adaptation of microbial communities in freshwater ecosystems to environmental change and provide useful theoretical support for aquatic environmental management and ecological restoration efforts.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Ling Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Jinna Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Peichang Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Teng Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Yuting Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
16
|
Zhu A, Liang Z, Gao L, Xie Z. Dispersal limitation determines the ecological processes that regulate the seasonal assembly of bacterial communities in a subtropical river. Front Microbiol 2024; 15:1430073. [PMID: 39252829 PMCID: PMC11381306 DOI: 10.3389/fmicb.2024.1430073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Bacteria play a crucial role in pollutant degradation, biogeochemical cycling, and energy flow within river ecosystems. However, the underlying mechanisms governing bacterial community assembly and their response to environmental factors at seasonal scales in subtropical rivers remain poorly understood. In this study, we conducted 16S rRNA gene amplicon sequencing on water samples from the Liuxi River to investigate the composition, assembly processes, and co-occurrence relationships of bacterial communities during the wet season and dry season. The results demonstrated that seasonal differences in hydrochemistry significantly influenced the composition of bacterial communities. A more heterogeneous community structure and increased alpha diversity were observed during the dry season. Water temperature emerged as the primary driver for seasonal changes in bacterial communities. Dispersal limitation predominantly governed community assembly, however, during the dry season, its contribution increased due to decreased immigration rates. Co-occurrence network analysis reveals that mutualism played a prevailing role in shaping bacterial community structure. Compared to the wet season, the network of bacterial communities exhibited higher modularity, competition, and keystone species during the dry season, resulting in a more stable community structure. Although keystone species displayed distinct seasonal variations, Proteobacteria and Actinobacteria were consistently abundant keystone species maintaining network structure in both seasons. Our findings provide insights into how bacterial communities respond to seasonal environmental changes, uncovering underlying mechanisms governing community assembly in subtropical rivers, which are crucial for the effective management and conservation of riverine ecosystems.
Collapse
Affiliation(s)
- Aiping Zhu
- School of Geography and Tourism, Anhui Normal University, Wuhu, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zuobing Liang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Gao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenglan Xie
- School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| |
Collapse
|
17
|
Lin S, Li L, Zhou Z, Yuan H, Saad OS, Tang J, Cai W, Yu K, Lin S. Higher genotypic diversity and distinct assembly mechanism of free-living Symbiodiniaceae assemblages than sympatric coral-endosymbiotic assemblages in a tropical coral reef. Microbiol Spectr 2024; 12:e0051424. [PMID: 38874391 PMCID: PMC11302235 DOI: 10.1128/spectrum.00514-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
While in hospite Symbiodiniaceae dinoflagellates are essential for coral health, ambient free-living counterparts are crucial for coral recruitment and resilience. Comparing free-living and in hospite Symbiodiniaceae communities can potentially provide insights into endosymbiont acquisition and recurrent recruitment in bleaching recovery. In this study, we studied coral-endosymbiotic and ambient free-living Symbiodiniaceae communities in the South China Sea. We collected samples from 183 coral and ambient plankton samples and conducted metabarcoding to investigate the diversity distribution, driving factors, and assembly mechanisms of the two groups of Symbiodiniaceae. Results revealed Cladocopium C1 and Durusdinium D1 as dominant genotypes. We detected a higher genotypic diversity in free-living than in hospite symbiodiniacean communities, but with shared dominant genotypes. This indicates a genetically diverse pool of Symbiodiniaceae available for recruitment by corals. Strikingly, we found that the cooler area had more Symbiodiniaceae thermosensitive genotypes, whereas the warmer area had more Symbiodiniaceae thermotolerant genotypes. Furthermore, in hospite and free-living Symbiodiniaceae communities were similarly affected by environmental factors, but shaped by different assembly mechanisms. The in hospite communities were controlled mainly by deterministic processes, whereas the ambient communities by stochastic processes. This study sheds light on the genetic diversity of source environmental Symbiodiniaceae and differential assembly mechanisms influencing Symbiodiniaceae inside and outside corals.IMPORTANCESymbiodiniaceae dinoflagellates play a pivotal role as key primary producers within coral reef ecosystems. Coral-endosymbiotic Symbiodiniaceae communities have been extensively studied, but relatively little work has been reported on the free-living Symbiodiniaceae community. Conducting a comparative analysis between sympatric coral-endosymbiotic and free-living Symbiodiniaceae communities can potentially enhance the understanding of how endosymbiont communities change in response to changing environments and the mechanisms driving these changes. Our findings shed light on the genetic diversity of source environmental Symbiodiniaceae and differential assembly mechanisms shaping free-living and in hospite Symbiodiniaceae communities, with implications in evaluating the adaptive and resilient capacity of corals in response to future climate change.
Collapse
Affiliation(s)
- Sitong Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhi Zhou
- School of Marine Science and Engineering, Hainan University, Haikou, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Osama S. Saad
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jia Tang
- School of Marine Science and Engineering, Hainan University, Haikou, China
| | - Wenqi Cai
- School of Marine Science and Engineering, Hainan University, Haikou, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
18
|
Yang Y, Zhao R. Precipitation input increases biodiversity of planktonic communities in the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174666. [PMID: 38992378 DOI: 10.1016/j.scitotenv.2024.174666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Planktonic communities in aquatic ecosystems are crucial water quality indicators, with their growth dependent on runoff chemical and hydraulic characteristics (e.g., nutrient availability and turbidity). Previous studies have indicated that runoff components (i.e., proportions of precipitation, groundwater, snowmelt, etc.) play a vital role in regulating runoff characteristics, potentially affecting planktonic communities. However, the response of these communities to runoff components, particularly in mountainous regions, remains underexplored. In this study, we conducted four sampling campaigns from 2017 to 2020 in a watershed on the Qinghai-Tibet Plateau. Combined with laboratory incubation experiments, we examined the impact of various runoff components on the diversity and abundance of phytoplankton and zooplankton. We found that a higher proportion of precipitation in runoff contributed to an increase in the diversity of plankton communities. Laboratory experiments with unified water samples incubated with different runoff components demonstrated that the significant influence of precipitation on planktonic diversity primarily stems from the influx of abundant exogenous particulate material into rivers. Using a path analysis, we further confirmed that the impact of precipitation on diversity is primarily through chemical pathways, notably by increasing nutrient concentrations. Our study enhances our understanding of the interactions between the hydrological cycle and aquatic ecosystems, offering valuable insights for effectively maintaining and managing these natural environments.
Collapse
Affiliation(s)
- Yuheng Yang
- Department of Geography, National University of Singapore, Arts Link, Kent Ridge 117570, Singapore
| | - Ruiying Zhao
- Department of Geography, National University of Singapore, Arts Link, Kent Ridge 117570, Singapore.
| |
Collapse
|
19
|
Zheng Y, Li S, Feng X, He X, Li Y. Seasonality regulates the distinct assembly patterns of microeukaryotic plankton communities in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37705-37716. [PMID: 38780846 DOI: 10.1007/s11356-024-33613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The hydrographic and environmental factors along the Three Gorges Reservoir (TGR) have been significantly altered since the Three Gorges Dam (TGD) began working in 2006. Here, we collected 54 water samples, and then measured the environmental factors, followed by sequencing of the 18S rRNA gene and subsequent analysis of community assembly mechanisms. The findings indicated that the majority of environmental variables (such as AN, TP, Chl-a, CODMn, and Cu) exhibited both temporal and spatial variations due to the influences of the TGD. The distribution of different environmental factors and microeukaryotic plankton communities is influenced by the changing seasons. The community structure in TGR showed variations across three seasons, possibly due to variations in their environmental preferences, inherent dissimilarities, and seasonal succession. Furthermore, different communities exhibited a comparable distance-decay trend, suggesting that distinct taxa are likely to exhibit a similar spatial distribution. In addition, the community formation in TGR was influenced by both deterministic and stochastic factors, with the balance between them being mainly controlled by the season. Specifically, deterministic processes could explain 33.9-51.1% of community variations, while stochastic processes could contribute 23.5-32.2%. The findings of this research demonstrated that the varying ecological processes' significance relied on environmental gradients, geographical scale, and ecological conditions. This could offer a fresh outlook on comprehending the composition, assembly mechanisms, and distribution patterns of microeukaryotic plankton in reservoir ecosystems.
Collapse
Affiliation(s)
- Yu Zheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Suping Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiao Feng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- School of Biological Sciences, University of Western, Australia, Perth, WA, 6009, Australia
| | - Yong Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
20
|
Wu Y, Peng C, Li G, He F, Huang L, Sun X, Wu S. Integrated evaluation of the impact of water diversion on water quality index and phytoplankton assemblages of eutrophic lake: A case study of Yilong Lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120707. [PMID: 38554455 DOI: 10.1016/j.jenvman.2024.120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Water diversion has been widely utilized to enhance lake water quality and mitigate cyanobacterial blooms. However, previous studies have mainly focused on investigating the effects of water diversion on water quality or aquatic ecological health. Consequently, there is limited research investigating the combined impact of water diversion on the water quality and the ecological health of eutrophic lakes, and whether the WQI and phytoplankton assemblages demonstrate similar patterns following water diversion. In this study, the effects of water diversion on the ecosystem health of eutrophic lakes were comprehensively evaluated based on the WQI indices and phytoplankton assemblages during the NWDP-21 and WDP-22. The results showed that the annual mean of WQI increased from 52.02 to 54.36 after water diversion, which improved the water quality of the lake, especially NH3-N and TN decreased by 58.6% and 15.2%, respectively. The phytoplankton assemblages changed significantly before and after water diversion, and we observed that the total biomass of phytoplankton decreased by 12.3% and phytoplankton diversity indices (Shannon-Wiener diversity, Pielou evenness, and Simpson index) increased by 8.6%-8.9% after water diversion, with an improvement in the connectivity and stability of the phytoplankton. Notably, enhanced adaptations of rare sub-communities for resource use in water diversion environments, and water diversion inhibited the dispersal ability of dominant functional groups, and the effects of hydrological disturbances on the structure of phytoplankton assemblage favored the ecological health of eutrophic lakes. VPA analysis further reveals that water diversion alters the drivers of phytoplankton functional group biomass and phytoplankton diversity. The results of the PLS-PM analysis clarify that water diversion indirectly impacts the total phytoplankton biomass and phytoplankton diversity primarily by modifying light availability. Significant correlations are observed between the dominant functional groups biomass and diversity indices of WQI. The trends in changes observed in water quality indices and phytoplankton following water diversion align with the evaluation of water ecological health. This study provides valuable guidance for the ecological management of the diversion project in Yilong Lake and serves as a reference for similar projects in other lakes.
Collapse
Affiliation(s)
- Yundong Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, PR China.
| | - Feng He
- Kunming Dianchi and Plateau Lakes Institute, Kunming 650228, PR China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, PR China
| | - Licheng Huang
- Kunming Dianchi and Plateau Lakes Institute, Kunming 650228, PR China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, PR China
| | - Xiuqiong Sun
- Bureau of Yilong Lake Administration, Shiping 662200, PR China
| | - Sirui Wu
- Bureau of Yilong Lake Administration, Shiping 662200, PR China
| |
Collapse
|
21
|
Zheng B, Dong P, Zhao T, Deng Y, Li J, Song L, Wang J, Zhou L, Shi J, Wu Z. Strategies for regulating the intensity of different cyanobacterial blooms: Insights from the dynamics and stability of bacterioplankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170707. [PMID: 38325489 DOI: 10.1016/j.scitotenv.2024.170707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The occurrence of cyanobacterial blooms is increasing in frequency and magnitude due to climate change and human activities, which poses a direct threat to drinking water security. The impacts of abiotic and biotic factors on the development of blooms have been well studied; however, control strategies for different bloom intensities have rarely been explored from the perspective of the dynamics and stability of bacterioplankton communities. Here, a network analysis was used to investigate the interactions and stability of microbial communities during different periods of R. raciborskii bloom in an inland freshwater lake. The abundance and diversity of rare taxa were significantly higher than that of abundant taxa throughout the bloom cycle. At the pre-bloom (PB) stage, microbial interactions among the different bacterial groups were weak but strongly negatively correlated, indicating low robustness and weak disturbance resistance within the community. However, community stability was better, and microbial interactions became more complicated at the high-bloom (HB) and low-bloom (LB) stages. Interestingly, rare taxa were significantly responsible for community stability and connectivity despite their low relative abundance. The Mantel test revealed that Secchi depth (SD), orthophosphate (PO43--P), and dissolved oxygen (DO) were significantly positively correlated with abundant taxa, rare taxa and PB. DO was significantly positively correlated with HB, intermediate taxa, and rare taxa, while water temperature (WT), N/P and total nitrogen (TN) were significantly positively correlated with LB, abundant taxa, intermediate taxa, and rare taxa. These findings suggest that reducing the PO43--P concentration at the PB stage may be an effective approach to preventing the development of R. raciborskii blooms, while regulating rare taxa at the HB and LB stages may be a key factor in controlling R. raciborskii blooms.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peichang Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Teng Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuting Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jie Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinna Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ling Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Zheng S, Liu M, Han Q, Pang L, Cao H. Seasonal variation and human impacts of the river biofilm bacterial communities in the Shiting River in southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:341. [PMID: 38436747 DOI: 10.1007/s10661-024-12490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Bacterial communities in epilithic biofilm plays an important role in biogeochemistry processes in freshwater ecosystems. Nevertheless, our understanding of the geographical and seasonal variations of the composition of bacterial communities in the biofilm of gravels on river bed is still limited. Various anthropogenic activities also influence the biofilm bacteria in gravel rivers. By taking the Shiting River in the upper Yangtze River basin in Sichuan Province as an example, we studied the geographical and seasonal variations of epilithic bacteria and the impacts of weirs and other human activities (e.g., sewage pollution). The river has experienced severe degradation since the Ms 8.0 Wenchuan Earthquake, and weirs were constructed to prevent bed erosion. We collected epilithic biofilms samples at 17 sites along ~ 30 km river reach of the Shiting River in the autumn of 2021 and the summer of 2022, respectively. We applied 16S rRNA gene high-throughput sequencing technology and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to analyze the seasonal and biogeographic patterns and potential functions of the biofilm bacterial communities. The results showed that epilithic bacteria from the two surveys exhibited variation in community composition, bacterial diversity and potential functions. The bacteria samples collected in the autumn have much higher alpha diversity and richness than those collected in the summer. Bacterial richness and diversity were lower downstream of the weirs than upstream. Low diversity was observed at a sampling site influenced by sewage inflow, which contains high level of nitrogen-related chemicals.
Collapse
Affiliation(s)
- Shan Zheng
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China.
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China.
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| | - Min Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Qinghua Han
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Huiqun Cao
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| |
Collapse
|
23
|
Manirakiza B, Zhang S, Addo FG, Yu M, Alklaf SA. Interactions between water quality and microbes in epiphytic biofilm and superficial sediment of lake in trophic agriculture area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169321. [PMID: 38103607 DOI: 10.1016/j.scitotenv.2023.169321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Epiphytic and superficial sediment biofilm-dwelling microbial communities play a pivotal role in water quality regulation and biogeochemical cycling in shallow lakes. However, the interactions are far from clear between water physicochemical parameters and microbial community on aquatic plants and in surface sediments of lake in trophic agriculture area. This study employed Illumina sequencing, Partial Least Squares Path Modeling (PLS-PM), and physico-chemical analytical methods to explore the interactions between water quality and microbes (bacteria and eukaryotes) in three substrates of trophic shallow Lake Cyohoha North, Rwanda. The Lake Cyohoha was significantly polluted with total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3-N), and ammonia nitrogen (NH3-N) in the wet season compared to the dry season. PLS-PM revealed a strong positive correlation (+0.9301) between land use types and physico-chemical variables in the rainy season. In three substrates of the trophic lake, Proteobacteria, Cyanobacteria, Firmicutes, and Actinobacteria were dominant phyla in the bacterial communities, and Rotifers, Platyhelminthes, Gastrotricha, and Ascomycota dominated in microeukaryotic communities. As revealed by null and neutral models, stochastic processes predominantly governed the assembly of bacterial and microeukaryotic communities in biofilms and surface sediments. Network analysis revealed that the microbial interconnections in Ceratophyllum demersum were more stable and complex compared to those in Eichhornia crassipes and sediments. Co-occurrence network analysis (|r| > 0.7, p < 0.05) revealed that there were complex interactions among physicochemical parameters and microbes in epiphytic and sediment biofilms, and many keystone microbes on three substrates played important role in nutrients removal, food web and microbial community stable. These findings emphasize that eutrophic water influence the structure, composition, and interactions of microbes in epiphytic and surface sediment biofilms, and provided new insights into the interconnections between water quality and microbial community in presentative substrates in tropical lacustrine ecosystems in agriculturally polluted areas. The study provides useful information for water quality protection and aquatic plants restoration for policy making and catchment management.
Collapse
Affiliation(s)
- Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, 3900, Kigali, Rwanda
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Ma Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Salah Alden Alklaf
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
24
|
Zou S, Lian Q, Ni M, Zhou D, Liu M, Zhang X, Chen G, Yuan J. Spatiotemporal assembly and functional composition of planktonic microeukaryotic communities along productivity gradients in a subtropical lake. Front Microbiol 2024; 15:1351772. [PMID: 38440145 PMCID: PMC10909917 DOI: 10.3389/fmicb.2024.1351772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024] Open
Abstract
Microeukaryotes play crucial roles in the microbial loop of freshwater ecosystems, functioning both as primary producers and bacterivorous consumers. However, understanding the assembly of microeukaryotic communities and their functional composition in freshwater lake ecosystems across diverse environmental gradients remains limited. Here, we utilized amplicon sequencing of 18S rRNA gene and multivariate statistical analyses to examine the spatiotemporal and biogeographical patterns of microeukaryotes in water columns (at depths of 0.5, 5, and 10 m) within a subtropical lake in eastern China, covering a 40 km distance during spring and autumn of 2022. Our results revealed that complex and diverse microeukaryotic communities were dominated by Chlorophyta (mainly Chlorophyceae), Fungi, Alveolata, Stramenopiles, and Cryptophyta lineages. Species richness was higher in autumn than in spring, forming significant hump-shaped relationships with chlorophyll a concentration (Chl-a, an indicator of phytoplankton biomass). Microeukaryotic communities exhibited significant seasonality and distance-decay patterns. By contrast, the effect of vertical depth was negligible. Stochastic processes mainly influenced the assembly of microeukaryotic communities, explaining 63, 67, and 55% of community variation for spring, autumn, and both seasons combined, respectively. Trait-based functional analysis revealed the prevalence of heterotrophic and phototrophic microeukaryotic plankton with a trade-off along N:P ratio, Chl-a, and dissolved oxygen (DO) gradients. Similarly, the mixotrophic proportions were significantly and positively correlated with Chl-a and DO concentrations. Overall, our findings may provide useful insights into the assembly patterns of microeukaryotes in lake ecosystem and how their functions respond to environmental changes.
Collapse
Affiliation(s)
- Songbao Zou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Qingping Lian
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Meng Ni
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Dan Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Mei Liu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Xin Zhang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Guangmei Chen
- Zhejiang Fenghe Fishery Co., Ltd., Lishui, Zhejiang, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| |
Collapse
|
25
|
He H, Zhou J, Wang Y, Jiao S, Qian X, Liu Y, Liu J, Chen J, Delgado-Baquerizo M, Brangarí AC, Chen L, Cui Y, Pan H, Tian R, Liang Y, Tan W, Ochoa-Hueso R, Fang L. Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers. GLOBAL CHANGE BIOLOGY 2024; 30:e17028. [PMID: 37955302 DOI: 10.1111/gcb.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.
Collapse
Affiliation(s)
- Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingxiong Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Earth and Environmental Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Albert C Brangarí
- Institute for Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Renmao Tian
- Institute for Food Safety and Health (IFSH), Illinois Institute of Technology, Bedford Park, Illinois, USA
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Campus del Rio San Pedro, Cádiz, Spain
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
26
|
Huang W, Dong X, Tu C, Yang H, Chang Y, Yang X, Chen H, Che F. Response mechanism of sediment endogenous phosphorus release to functional microorganisms and its cyanobacterial growth and disappearance effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167676. [PMID: 37816408 DOI: 10.1016/j.scitotenv.2023.167676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Endogenous phosphorus (P) release from lake sediments is an important factor in the eutrophication of overlying waters, as P is the limiting nutrient salt affecting cyanobacterial growth. Microorganisms are also key to the evolution of cyanobacterial growth and disappearance, as they can influence the release of endogenous P. Meanwhile, endogenous phosphorus can also have an impact on microbial structure. However, there is a lack of studies on the response mechanisms between endogenous P release and microorganisms, as well as the exploration of endogenous P release on the whole cyanobacterial growth and disappearance evolution process. In this study, metagenome sequencing was used to characterize the microbial community structure at different times and to explain the P cycle from the perspective of functional genes. The results showed that the number of sediment microorganisms (genes) gradually increased with the P release capacity, and the outbreak with the strongest P release capacity possessed the most abundant microorganisms (genes). Proteobacteria with P solubilizing functions were consistently the most abundant phylum in all four periods and were positively correlated with P release potential assessment factors EPC0, EPC0F, and NAP. Functional genes affect the P cycle by acting primarily on inorganic P solubilization, organic P mineralization, and P transport. These P-functional genes are mainly found in Proteobacteria, Acidobacteria, Chloroflexi, and Actinobacteria microorganisms. In addition, the P form in the sediments was dominated by IP, with the highest concentration (704.86 mg/kg) occurring during the dormant period. Sediments from this period acted as a strong P "sink", creating a precondition for cyanobacterial recovery and outbreaks to provide a source of P. The results of this study can provide a theoretical basis for controlling endogenous P release at the microscopic level of cyanobacterial growth and disappearance.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoshuang Dong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengqi Tu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongsheng Chang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xixi Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
27
|
Xu S, Zhang T, Zhang X, Gui Q, Sun F, Zhang Y. Dynamics of the sedimentary bacterial communities in a plain river network: similar coalescence patterns with bacterioplankton communities driven by distinct assembly processes. Appl Environ Microbiol 2023; 89:e0146523. [PMID: 38092675 PMCID: PMC10734549 DOI: 10.1128/aem.01465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/12/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE Microorganisms play important roles in driving the biogeochemical cycles within river ecosystems. It has been suggested that hydrologic conditions could influence microbial communities in rivers, but their specific effects on the behaviours of microbial coalescence have not been thoroughly investigated. In this study, the dynamics of sedimentary bacterial communities within a plain river network were analyzed by amplicon sequencing followed by several ecological models to uncover the underlying assembly processes. Additionally, a comparative analysis between bacterioplankton communities and sedimentary bacterial communities was performed to unveil their coalescence patterns. The results suggested that similar coalescence patterns between sedimentary bacterial and bacterioplankton communities were driven by distinct assembly processes under dynamic hydrological conditions. These findings enhanced our understanding of microbial diversity features within river ecosystems.
Collapse
Affiliation(s)
- Sai Xu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tao Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qiyao Gui
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Fengbin Sun
- State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yimin Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| |
Collapse
|
28
|
Zhang L, Fang S, Hong W, Shen Z, Li S, Fang W. Differences in pathogenic community assembly processes and their interactions with bacterial communities in river and lake ecosystems. ENVIRONMENTAL RESEARCH 2023; 236:116847. [PMID: 37558117 DOI: 10.1016/j.envres.2023.116847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Pathogenic bacterial infections caused by water quality degradation are one of the most widespread environmental problems. Clarifying the structure of pathogens and their assembly mechanisms in lake ecosystems is vital to prevent the infestation of waterborne pathogens and maintain human health. However, the composition and assembly mechanisms of pathogenic bacterial communities in river and lake ecosystems are still poorly understood. In this study, we collected 17 water and 17 sediment samples from Lake Chaohu and its 11 inflow rivers. Sequencing of 16S rRNA genes was used to study bacterial pathogen communities. The results of the study showed that there was a significant difference (P < 0.05) in the composition of the pathogen community between riverine and lake habitats. Acinetobacter (36.49%) was the dominant bacterium in the river, whereas Flavobacterium (21.6%) was the most abundant bacterium in the lake. Deterministic processes (i.e., environmental filtering and species interaction) drove the assembly of pathogenic bacterial communities in the lake habitat, while stochastic processes shaped river pathogenic bacterial communities. Spearman correlation analysis showed that the α-diversity of bacterial communities was linearly and negatively linked to the relative abundance of pathogens. Having a higher bacterial community diversity had a suppressive effect on pathogen abundance. In addition, co-occurrence network analysis showed that bacterial communities were tightly linked to pathogenic bacteria. Pseudomonas aeruginosa and Salmonella enterica were identified as keystone species in an inflow water sampling network (W_FR), reducing the complexity of the network. These results provide a reference for assessments of water quality safety and pathogenic bacteria posing risks to human health in large freshwater lakes.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Shuqi Fang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wenqing Hong
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shuo Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232000, China
| |
Collapse
|
29
|
Ding J, Yang W, Liu X, Zhao Q, Dong W, Zhang C, Liu H, Zhao Y. Unraveling the rate-limiting step in microorganisms' mediation of denitrification and phosphorus absorption/transport processes in a highly regulated river-lake system. Front Microbiol 2023; 14:1258659. [PMID: 37901815 PMCID: PMC10613053 DOI: 10.3389/fmicb.2023.1258659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
River-lake ecosystems are indispensable hubs for water transfers and flow regulation engineering, which have frequent and complex artificial hydrological regulation processes, and the water quality is often unstable. Microorganisms usually affect these systems by driving the nutrient cycling process. Thus, understanding the key biochemical rate-limiting steps under highly regulated conditions was critical for the water quality stability of river-lake ecosystems. This study investigated how the key microorganisms and genes involving nitrogen and phosphorus cycling contributed to the stability of water by combining 16S rRNA and metagenomic sequencing using the Dongping river-lake system as the case study. The results showed that nitrogen and phosphorus concentrations were significantly lower in lake zones than in river inflow and outflow zones (p < 0.05). Pseudomonas, Acinetobacter, and Microbacterium were the key microorganisms associated with nitrate and phosphate removal. These microorganisms contributed to key genes that promote denitrification (nirB/narG/narH/nasA) and phosphorus absorption and transport (pstA/pstB/pstC/pstS). Partial least squares path modeling (PLS-PM) revealed that environmental factors (especially flow velocity and COD concentration) have a significant negative effect on the key microbial abundance (p < 0.001). Our study provides theoretical support for the effective management and protection of water transfer and the regulation function of the river-lake system.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qingqing Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Weiping Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chuqi Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
30
|
Han B, Yu Q, Wang X, Feng T, Long M, Li H. Copper and temperature shaped abundant and rare community assembly respectively in the Yellow River. Appl Microbiol Biotechnol 2023; 107:3847-3858. [PMID: 37133799 DOI: 10.1007/s00253-023-12538-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Untangling assembly and microbial interaction of abundant and rare microbiota in aquatic ecosystem is pivotal for understanding how community assembly respond to environmental variables and co-occurrence patterns. Here, we explored the assembly mechanisms, their drivers, and species co-occurrence of abundant and rare microbiomes in the Yellow River using 16S rRNA gene sequencing in Lanzhou, China. Here, abundant community was ubiquitous across all sites, whereas rare community was uneven distributed. The richness and community dissimilarity of rare taxa were significantly greater than those of abundant ones. Stochastic processes structured the rare community assembly in spring and winter, while deterministic processes shaped the abundant and rare community assembly in other seasons and all sites. Copper and water temperature mediated the balance between deterministic and stochastic processes of abundant and rare community, respectively. A few abundant taxa with closer relationships frequently occupied central positions and had a great effect on other co-occurrences in the network, while the majority of keystone microbiota were rare microbiome and played a considerable part in maintaining the network structure. Our study provides some ecological proposals for water quality management and ecological stability of the Yellow River. KEY POINTS: • Deterministic process dominated abundant and rare community assembly. • Cu and TW mediated the balance of abundant and rare community assembly respectively. • Abundant taxa had a greater effect on other co-occurrences in the network.
Collapse
Affiliation(s)
- Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Xiaochen Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Meng Long
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| |
Collapse
|
31
|
Li H, Li Z, Tang Q, Li R, Lu L. Local-Scale Damming Impact on the Planktonic Bacterial and Eukaryotic Assemblages in the upper Yangtze River. MICROBIAL ECOLOGY 2023; 85:1323-1337. [PMID: 35437690 DOI: 10.1007/s00248-022-02012-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Dam construction and impoundment cause discontinuities in the natural biophysical gradients in rivers. These discontinuities may alter distinctive habitats and different microbial community assembly mechanisms upstream and downstream of dams, which reflect the potential impacts of damming on riverine aquatic ecosystems. In this study, we investigated the planktonic microbial assemblages of three large dams in the upper Yangtze River by using high-throughput sequencing. The results revealed that the alpha diversity indexes increased downstream of the dams. In addition, more eukaryotic ASVs solely occurred downstream of the dams, which indicated that a large proportion of eukaryotes appeared downstream of the dams. The nonmetric multidimensional scaling analysis indicated that there was no obvious geographic clustering of the planktonic microbial assemblages among the different locations or among the different dams. However, the dam barriers changed dam-related variables (maximum dam height and water level) and local environmental variables (water temperature, DOC, etc.) that could possibly affect the assembly of the planktonic microbial communities that are closest to the dams. A co-occurrence network analysis demonstrated that the keystone taxa of the planktonic bacteria and eukaryotes decreased downstream of the dams. In particular, the keystone taxa of the eukaryotes disappeared downstream of the dams. The robustness analysis indicated that the natural connectivity of the microbial networks decreased more rapidly upstream of the dams, and the downstream eukaryotic network was more stable. In conclusion, damming has a greater impact on planktonic eukaryotes than on bacteria in near-dam areas, and planktonic microbial assemblages were more susceptible to the environmental changes. Our study provides a better understanding of the ecological effects of river damming.
Collapse
Affiliation(s)
- Hang Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Qiong Tang
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Lunhui Lu
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
32
|
Xu N, Hu H, Wang Y, Zhang Z, Zhang Q, Ke M, Lu T, Penuelas J, Qian H. Geographic patterns of microbial traits of river basins in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162070. [PMID: 36764554 DOI: 10.1016/j.scitotenv.2023.162070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
River microbiotas contribute to critical geochemical processes and ecological functions of rivers but are sensitive to variations of environmental drivers. Understanding the geographic pattern of river microbial traits in biogeochemical processes can provide important insights into river health. Many studies have characterized river microbial traits in specific situations, but the geographic patterns of these traits and environmental drivers at a large scale are unknown. We reanalyzed 4505 raw 16S rRNA sequences samples for microbiota from river basins in China. The results indicated differences in the diversity, composition, and structure of microbiotas across diverse river basins. Microbial diversity and functional potential in the river basins decreased over time in northern China and increased in southern China due to niche differentiation, e.g., the Yangtze River basin was the healthiest ecosystem. River microbiotas were mainly involved in the cycling of carbon and nitrogen in the river ecosystems and participated in potential organic metabolic functions. Anthropogenic pollutants discharge was the most critical environmental driver for the microbial traits, e.g., antibiotic discharge, followed by climate change. The prediction by machine-learning models indicated that the continuous discharge of antibiotics and climate change led to high ecological risks for the rivers. Our study provides guidelines for improving the health of river ecosystems and for the formulation of strategies to restore the rivers.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
33
|
Deterministic Processes Shape Abundant and Rare Bacterial Communities in Drinking Water. Curr Microbiol 2023; 80:111. [PMID: 36808560 DOI: 10.1007/s00284-023-03210-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
The deep mechanisms shaping bacterial assembly are a crucial challenge in drinking water ecosystem. However, much less is known about seasonal diversity distributions and assembly mechanisms of abundant and rare bacteria in drinking water. The combination of environmental variables and high-throughput 16S rRNA gene sequencing was conducted to examine the composition, assembly, co-occurrence patterns of abundant and rare bacteria from five drinking water sites across four seasons in one year in China. The results indicated that abundant taxa were mainly composed of Rhizobiales_UG1, Sphingomonadales_UG1, and Comamonadaceae, while rare taxa were Sphingomonadales_UG1, Rhizobiales_UG2, and Rhizobiales_UG1. The richness of rare bacteria was greater than that of abundant ones, and the richness had no differences among seasons. The beta diversity was significantly discrepant in abundant and rare communities and among seasons. Deterministic mechanism accounted for a larger contribution to abundant taxa than rare taxa. Furthermore, water temperature had higher effects on abundant microbiome than rare ones. Co-occurrence network analysis indicated that abundant taxa that occupied frequently in central positions had stronger effect on co-occurrence network. In our study, these results collectively suggested that rare bacteria respond to environmental variables with an analogical pattern to abundant counterparts (similar community assembly), but their ecological diversities, driving forces, and co-occurrence patterns were not equivalent in drinking water.
Collapse
|
34
|
Chen W, Sang S, Shao L, Li Y, Li T, Gan L, Liu L, Wang D, Zhou L. Biogeographic Patterns and Community Assembly Processes of Bacterioplankton and Potential Pathogens in Subtropical Estuaries in China. Microbiol Spectr 2023; 11:e0368322. [PMID: 36507672 PMCID: PMC9927264 DOI: 10.1128/spectrum.03683-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial communities in coastal waters are diverse and dynamic and play important roles in ecosystem functions and services. Despite the ecological impact of bacterioplankton or pathogens, little is known about whether bacterioplankton and pathogen communities exhibit similar patterns. Here, using 16S RNA gene amplicon sequencing, the geographic patterns and assembly processes of bacterioplankton and pathogen communities in 30 subtropical estuaries were studied. Results showed that the estuarine bacterioplankton communities mainly consisted of Proteobacteria (49.06%), Actinobacteria (17.62%), and Bacteroidetes (16.33%), among which 31 pathogen genera (186 amplicon sequence variants [ASVs]) were identified. Under the influence of salinity, bacterioplankton and pathogens showed similar biogeographic patterns. Redundancy and correlation analyses indicated that the bacterioplankton communities were strongly correlated with estuarine environmental factors, but potential pathogens were less influenced. Co-occurrence network analysis revealed a close relationship between bacterioplankton and potential pathogens, with two pathogens identified as connectors (i.e., ASV340 [Clostridium perfringens] and ASV1624 [Brevundimonas diminuta]), implying potential impacts of pathogens on structure, function, and stability of estuarine bacterioplankton communities. Null-model analysis revealed that deterministic processes (heterogeneous selection) dominated bacterioplankton community assembly, while stochastic processes (undominated effect) shaped the potential pathogen community. Our findings illustrate the biogeographic patterns and community assembly mechanisms of bacterioplankton and pathogens in estuaries, which should provide guidance and a reference for the control of potential pathogenic bacteria. IMPORTANCE Bacterioplankton play an important role in estuarine ecosystem functions and services; however, potentially pathogenic bacteria may exhibit infectivity and pose a serious threat to environmental and human health. In this study, geographic patterns and assembly processes of bacterioplankton communities in 30 subtropical estuaries were explored, and potential pathogenic bacteria in the estuaries were detected and profiled. Our results demonstrate here that bacterioplankton and pathogens show similar biogeographic patterns under the influence of salinity. Interestingly, heterogeneous selection dominated bacterioplankton assembly, while stochasticity dominated pathogen assembly. This study provides important information for future risk assessment of potential pathogenic bacteria as well as management in estuarine ecosystems.
Collapse
Affiliation(s)
- Wenjian Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Liyi Shao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yusen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Tongzhou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lihong Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Wu N, Guo K, Suren AM, Riis T. Lake morphological characteristics and climatic factors affect long-term trends of phytoplankton community in the Rotorua Te Arawa lakes, New Zealand during 23 years observation. WATER RESEARCH 2023; 229:119469. [PMID: 36527869 DOI: 10.1016/j.watres.2022.119469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Monitoring the long-term dynamics of lake phytoplankton can help understand their natural temporal variability, as well as assess potential impacts of interventions aimed at improving lake ecological condition. However, investigating long-term changes in lake ecosystems has received scant attention. In the present study, we analyzed a long-term dataset of phytoplankton communities collected from 1990 to 2013 from eleven of the 12 Rotorua Te Arawa lakes in New Zealand, to explore their responses to changing abiotic conditions. We used a sequential algorithm to examine the likelihood of regime shifts in abiotic and biotic factors during the study period that could be attributable to lake interventions. Our analysis suggests that lake interventions have improved the abiotic factors, whereas the response of biotic factors was less clear. Total phosphorus levels were implicated in the decline in lake condition, including in two lakes subject to lake interventions, and in four control lakes. Both abiotic and biotic factors showed diverse trends (e.g., increase, decrease or no change), and abiotic factors had more regime shifts than biotic factors. Shifts in biotic indices also displayed time lags to shifts in abiotic factors. Long-term responses of abiotic and biotic factors were also influenced by lake morphological characteristics and climatic variables. This latter finding underscores the importance of considering lake morphological characteristics and climate changes when planning management practices. A sound understanding of resilience and threshold of phytoplankton shifts to environmental changes are needed to assess the effectiveness of previous management strategies and prioritize the future conservation efforts toward water quality goals.
Collapse
Affiliation(s)
- Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, 315211 Ningbo, China.
| | - Kun Guo
- Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Alastair M Suren
- Bay of Plenty Regional Council, 5 Quay St, 3120 Whakatane, New Zealand
| | - Tenna Riis
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Wang H, Zhang W, Li Y, Gao Y, Niu L, Zhang H, Wang L. Hydrodynamics-driven community coalescence determines ecological assembly processes and shifts bacterial network stability in river bends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159772. [PMID: 36309275 DOI: 10.1016/j.scitotenv.2022.159772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Community coalescence, i.e., the mixing and merging of microbial communities and their surrounding environments, is prevalent in various ecosystems and potentially acts on ecological processes. River bends are distinguished by significant cross-stream velocities and spiral flow. The flow in river bends causes the mixing of microbial communities, thus making the resultant community (after mixing) different from its precursors (before mixing) through ecological processes. However, so far, no studies have explored the effect of community coalescence on ecological processes and network stability under the hydrodynamic processes of river bends. Here, we explored bacterial community assembly and community coalescence in river bends by coupling hydrodynamic profiling, aqueous biogeochemistry, DNA sequencing, and ecological theory. The results showed that the water flow dominated the community coalescence by regulating the movement of suspended sediments. The main ecological process determining the bacterial community compositions in water was the dispersal process, whereas in sediments it was the selection process. Furthermore, the negative cohesion results showed that community coalescence determined the stability of bacterial networks through competition and predation. This study depicted the bacterial community coalescence in river bends and highlighted their associations with network stability, which might provide new insights into bacterial community assembly and coalescence under complex hydrodynamics in the aquatic environment.
Collapse
Affiliation(s)
- Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
37
|
Guo Y, Zhang A, Qin C, Yu G, Ma H. Community assembly patterns and processes of microbiome responses to habitats and Mytilopsis sallei invasion in the tidal zones of the Pearl River Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159675. [PMID: 36280051 DOI: 10.1016/j.scitotenv.2022.159675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The sustainability of estuarine ecosystem functions depends on the stabilization of microbial ecological processes. However, due to the unique and variable habitat characteristics of estuarine areas, in-depth studies on ecological processes such as the spatial distribution and assembly patterns of microbial community structure are lacking. As methods to elucidate this structure, we used 16S rDNA, 18S rDNA and ITS sequencing technologies to study the composition, diversity, spatial pattern and aggregation mechanism of the bacterial, protist and fungal communities in the tidal zones of the Pearl River Estuary (PRETZ). The abundance of bacterial communities was much higher than that of protists and fungi, and the spatial pattern was obvious in PRETZ. The application of neutral and null models revealed the assembly process of three microbial communities dominated by stochastic processes. Among the stochastic processes, undominated processes (64.03 %, 62.45 %, and 59.29 %) were the most critical processes in the assembly of bacterial, fungal and protist communities. Meanwhile, environmental variables, geographic locations, and biological factors were associated with the composition and assembly of bacterial, protist, and fungal communities. Among the environmental variables, dissolved oxygen and salinity were the main predictors that jointly affected the differences in the community structure of the three microorganisms, and geographic location was the second predictor affecting the community structure of the three microorganisms and had a more pronounced effect on the diversity and network structure of the bacterial and fungal communities. However, biological factors exerted a weaker effect on the microbial community structure than spatial factors and only affected bacteria and protists; the invasive species Mytilopsis sallei only affected the process of protist community assembly. In addition, environmental variables affected the relative importance of stochastic processes. In summary, the formation of microbial communities in the PRETZ was affected by random processes, environmental variables, geographic location, and invasive species.
Collapse
Affiliation(s)
- Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China; Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Ankai Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China; Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China.
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongmei Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
38
|
Huang Z, Pan B, Soininen J, Liu X, Hou Y, Liu X. Seasonal variation of phytoplankton community assembly processes in Tibetan Plateau floodplain. Front Microbiol 2023; 14:1122838. [PMID: 36891389 PMCID: PMC9986264 DOI: 10.3389/fmicb.2023.1122838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Uncovering the mechanisms underlying phytoplankton community assembly remains a major challenge in freshwater ecology. The roles of environmental filtering and spatial processes in shaping phytoplankton metacommunity in Tibetan floodplain ecosystems under various hydrological conditions are still unclear. Here, multivariate statistics and a null model approach were used to compare the spatiotemporal patterns and assembly processes of phytoplankton communities in the river-oxbow lake system of Tibetan Plateau floodplain between non-flood and flood periods. The results showed that phytoplankton communities had significant seasonal and habitat variations, with the seasonal variations being more remarkable. Phytoplankton density, biomass, and alpha diversity were distinctly lower in the flood than non-flood period. The habitat differences (rivers vs. oxbow lakes) in phytoplankton community were less pronounced during the flood than non-flood period, most likely due to the increased hydrological connectivity. There was a significant distance-decay relationship only in lotic phytoplankton communities, and such relationship was stronger in the non-flood than flood period. Variation partitioning and PER-SIMPER analysis showed that the relative role of environmental filtering and spatial processes affecting phytoplankton assemblages varied across hydrological periods, with environmental filtering dominating in the non-flood period and spatial processes in the flood period. These results suggest that the flow regime plays a key role in balancing environmental and spatial factors in shaping phytoplankton communities. This study contributes to a deeper understanding of ecological phenomena in highland floodplains and provides a theoretical basis for floodplain ecosystem maintenance and ecological health management.
Collapse
Affiliation(s)
- Zhenyu Huang
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shanxi, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Xinyuan Liu
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shanxi, China
| | - Yiming Hou
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shanxi, China
| | - Xing Liu
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shanxi, China
| |
Collapse
|
39
|
Ji F, Sun Y, Yang Q. Early warning of red tides using bacterial and eukaryotic communities in nearshore waters. ENVIRONMENTAL RESEARCH 2023; 216:114711. [PMID: 36334824 DOI: 10.1016/j.envres.2022.114711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic discharge activities have increased nutrient pollution in coastal areas, leading to algal blooms and microbial community changes. Particularly, microbial communities could easily be affected with variation in nutrient pollution, and thus offered a promising strategy to predict early red tides warning via microbial community-levels variation and their keystone taxa hysteretic responses to nutrient pollution. Herein high-throughput sequencing technology from 52 samples were used to explore the variation of microbial communities and find the significant tipping points with aggravating nutrient conditions in Xiaoping Island coastal area. Results indicated that bacterial and microeukaryote communities were generally spatial and seasonal heterogeneity and were influenced by the different nutrient conditions. Procrustes test results showed that the comprehensive index of organics polluting (OPI), total nitrogen (TN), inorganic nitrogen (DIN), and total phosphorus (TP) were significantly correlated with the composition of bacteria and microeukaryotes. A SEGMENTED analysis revealed that the threshold of TN, DIN, and NH4-N for bacterial community were 0.23 ± 0.091 mg/L, 0.21 ± 0.084 mg/L, 0.09 ± 0.057 mg/L, respectively. Tipping points for TN, DIN, and NH4-N agreed with the concentration during Ceratium tripos and Skeletonema costatum blooms. Co-occurrence network results found that Planktomarina, Acinetobacter, and Verrucomicrobiaceae were keystone and OPI-discriminatory taxa. The abundant changes of Planktomarina at station A1 were significantly correlated with the development of C. tripos blooms (r = 0.55, p < 0.05), and also significantly correlated with TN, DIN, and NO3-N (r≥|0.55|, p < 0.05). The abundant changes of Acinetobacter and Verrucomicrobiaceae at station C1 were significantly correlated with the development of C. tripos blooms (r ≥ 0.77, p < 0.05), and also significantly correlated with PO4-P (r ≥ 0.64, p < 0.05). The dynamic abundance of keystone taxa showed that the trend of rapid changes could be monitored 1.5 months before the occurrence of red tide. Therefore, this study provides an assessment method for early warning of red tide occurrence and factors that trigger red tide.
Collapse
Affiliation(s)
- Fengyun Ji
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China; Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| | - Qing Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| |
Collapse
|
40
|
Xu X, Yuan Y, Wang Z, Zheng T, Cai H, Yi M, Li T, Zhao Z, Chen Q, Sun W. Environmental DNA metabarcoding reveals the impacts of anthropogenic pollution on multitrophic aquatic communities across an urban river of western China. ENVIRONMENTAL RESEARCH 2023; 216:114512. [PMID: 36208790 DOI: 10.1016/j.envres.2022.114512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities are intensively affecting the structure and function of biological communities in river ecosystems. The effects of anthropogenic pollution on single-trophic community have been widely explored, but their effects on the structures and co-occurrence patterns of multitrophic communities remain largely unknown. In this study, we collected 13 water samples from the Neijiang River in Chengdu City of China, and identified totally 2352 bacterial, 207 algal, 204 macroinvertebrate, and 33 fish species based on the eDNA metabarcoding to systematically investigate the responses of multitrophic communities to environmental stressors. We observed significant variations in bacterial, algal, and macroinvertebrate community structures (except fish) with the pollution levels in the river. Network analyses indicated a more intensive interspecific co-occurrence pattern at high pollution level. Although taxonomic diversity of the multitrophic communities varied insignificantly, phylogenetic diversities of fish and algae showed significantly positive and negative associations with the pollution levels, respectively. We demonstrated the primary role of environmental filtering in driving the structures of bacteria, algae, and macroinvertebrates, while the fish was more controlled by dispersal limitation. Nitrogen was identified as the most important factor impacting the multitrophic community, where bacterial composition was mostly associated with NO3--N, algal spatial differentiation with TN, and macroinvertebrate and fish with NH4+-N. Further partial least-squares path model confirmed more important effect of environmental variables on the relative abundance of bacteria and algae, while macroinvertebrate and fish communities were directly driven by the algae-mediated pathway in the food web. Our study highlighted the necessity of integrated consideration of multitrophic biodiversity for riverine pollution management, and emphasized the importance of controlling nitrogen inputs targeting a healthy ecosystem.
Collapse
Affiliation(s)
- Xuming Xu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Yibin Yuan
- College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China; Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China
| | - Zhaoli Wang
- Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Malan Yi
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin, 300000, China
| | - Tianhong Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Zhijie Zhao
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| |
Collapse
|
41
|
Wang R, Xu S, Zhu Y, Zhang T, Ge S. Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process. Front Microbiol 2022; 13:1074316. [PMID: 36605517 PMCID: PMC9808034 DOI: 10.3389/fmicb.2022.1074316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process.
Collapse
Affiliation(s)
- Ruyue Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Sai Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China,*Correspondence: Sai Xu,
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China,Shijian Ge,
| |
Collapse
|
42
|
Jin L, Chen H, Xue Y, Soininen J, Yang J. The scale-dependence of spatial distribution of reservoir plankton communities in subtropical and tropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157179. [PMID: 35809738 DOI: 10.1016/j.scitotenv.2022.157179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Distance-decay relationships (DDRs) represent a very useful approach to describing the spatial distribution of biological communities. However, plankton DDR patterns and community assembly mechanisms are still poorly understood at different spatial scales in reservoir ecosystems. We collected phytoplankton, zooplankton and water samples in 24 reservoirs from subtropical and tropical China from July to August 2018. We examined DDR patterns across three distinct spatial scales, i.e., within-reservoir, within-drainage (but between reservoirs) and between drainages. We tested whether the rate of change (i.e., slope) of DDRs is consistent across different spatial scales. We assessed the relative importance of spatial and environmental variables in shaping the community distribution of plankton and quantitatively distinguished the community assembly mechanisms. We observed significant DDR curves in phytoplankton and zooplankton communities, in which slopes of the DDRs were steepest at the smallest spatial scale. Both spatial and environmental factors had significant impacts on DDR and dispersal assembly was a slightly stronger process in reservoir phytoplankton and zooplankton community assembly than niche-based process. We conclude that DDRs of reservoir phytoplankton and zooplankton vary with spatial scale. Our data shed light on how spatial and environmental variables contribute to plankton community assembly together. However, we revealed that dispersal process contributes to the biogeography of reservoir plankton slightly more strongly than environmental filtering. Collectively, this study enhances the understanding of plankton biogeography and distribution at multiple spatial scales.
Collapse
Affiliation(s)
- Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
43
|
Du C, Li G, Xia R, Li C, Zhu Q, Li X, Li J, Zhao C, Tian Z, Zhang L. New insights into cyanobacterial blooms and the response of associated microbial communities in freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119781. [PMID: 35841988 DOI: 10.1016/j.envpol.2022.119781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial blooms are important environmental problems in aquatic ecosystems. Researchers have found that cyanobacterial blooms cannot be completely prevented by controlling and/or eliminating pollutants (nutrients). Thus, more in-depth basic research on the mechanism of cyanobacterial blooms is urgently needed. Cyanobacteria, being primordial microorganisms, provide habitats and have various forms of interactions (reciprocity and competition) with microorganisms, thus having a significant impact on themselves. However, little is known about how environmental conditions and microbial communities in both water and sediment jointly affect cyanobacterial blooms or about the co-occurrence patterns and interactions of microbial communities. We investigated changes in environmental factors and microbial communities in water and sediment during different cyanobacterial blooms and revealed their interacting effects on cyanobacteria. Cyanobacteria had greater competitive and growth advantages than other microorganisms and had antagonistic and aggressive effects on them when resources (such as nutrients) were abundant. Furthermore, microbial networks from cyanobacterial degradation periods may be more complex and stable than those from bloom periods, with more positive links among the microbial networks, suggesting that microbial community structures strengthen interconnections with each other to degrade cyanobacteria. In addition, we found that sediment-enriched cyanobacteria play a key role in cyanobacterial blooms, and sediment microorganisms promote the nutrient release, further promoting cyanobacterial blooms in the water bodies. The study contributes to further our understanding of the mechanisms for cyanobacterial blooms and microbial community structural composition, co-occurrence patterns, and responses to cyanobacteria. These results can contribute to future management strategies for controlling cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rui Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caole Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Academy of Environmental Sciences, College of Water Sciences, Beijing Normal University, Beijing, 100012, China
| | - Xiaoguang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaxi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Academy of Environmental Sciences, College of Water Sciences, Beijing Normal University, Beijing, 100012, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
44
|
Li Y, Khan FH, Wu J, Zhang Y, Jiang Y, Chen X, Yao Y, Pan Y, Han X. Drivers of Spatiotemporal Eukaryote Plankton Distribution in a Trans-Basin Water Transfer Canal in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.899993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Planktonic eukaryotes are important components of aquatic ecosystems, and analyses of the whole eukaryotic planktonic community composition and function have far-reaching significance for water resource management. We aimed to understand the spatiotemporal variation and drivers of eukaryotic plankton distribution in the Middle Route Project of the South-to-North Water Diversion in Henan Province, China. Specifically, we examined planktonic assemblages and water quality at five stations along the canal and another one located before the dam in March, June, September, and December 2019. High-throughput sequencing revealed that the eukaryotic plankton community was primarily composed of 53 phyla, 200 genera, and 277 species, with Cryptophyta, Ciliophora, and norank_k_Cryptophyta being the dominant phyla. Redundancy analysis of the eukaryotic community and environmental factors showed that five vital factors affecting eukaryotic plankton distribution were oxidation-reduction potential, nitrate nitrogen, pH, total phosphorus, and water flow velocity. Furthermore, the geographical distribution of eukaryotic communities was consistent with the distance decay model. Importantly, environmental selection dominantly shaped the geographical distribution of the eukaryotic community. In summary, our study elucidates the ecological response of planktonic eukaryotes by identifying the diversity and ecological distribution of planktonic eukaryotes in trans-basin diversion channels.
Collapse
|
45
|
Ou-Yang T, Yang SQ, Zhao L, Ji LL, Shi JQ, Wu ZX. Temporal heterogeneity of bacterial communities and their responses to Raphidiopsis raciborskii blooms. Microbiol Res 2022; 262:127098. [PMID: 35753182 DOI: 10.1016/j.micres.2022.127098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
To elucidate the interspecies connectivity between cyanobacteria and other bacteria (noncyanobacteria), microbial diversity and composition were investigated through high-throughput sequencing (HTS) in a drinking water reservoir in Chongqing city, Southwest China, during Raphidiopsis raciborskii blooms. Significant temporal changes were observed in microbial community composition during the sampling period, primarily reflected by variations in relative bacterial abundance. The modularity analysis of the network demonstrated that the bacterial community forms co-occurrence/exclusion patterns in response to variations in environmental factors. Moreover, five modules involved in the dynamic phases of the R. raciborskii bloom were categorized into the Pre-Bloom, Bloom, Post-Bloom, and Non-Bloom Groups. The reservoir was eutrophic (i.e., the average concentrations of total nitrogen (TN) and total phosphorus (TP) were 2.32 and 0.07 mg L-1, respectively) during the investigation; however, Pearson's correlation coefficient showed that R. raciborskii was not significantly correlated with nitrogen and phosphorus. However, other environmental factors, such as water temperature, pH, and the permanganate index, were positively correlated with R. raciborskii. Importantly, Proteobacteria (α-, γ-Proteobacteria), Acidobacteria, Chloroflexi, and Firmicutes were preferentially associated with increased R. raciborskii blooms. These results suggested that the transition of R. raciborskii bloom-related microbial modules and their keystone species could be crucial in the development and collapse of R. raciborskii blooms and could provide a fundamental basis for understanding the linkage between the structure and function of the microbial community during bloom dynamics.
Collapse
Affiliation(s)
- Tian Ou-Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Song-Qi Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu-Lu Ji
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jun-Qiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Zhong-Xing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
46
|
Wang Y, Ren Z, He P, Xu J, Li D, Liu C, Liu B, Wu N. Microeukaryotic Community Shifting Along a Lentic-Lotic Continuum. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.887787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As an important regulator of ecosystem functions in river systems, microeukaryotes play an important role in energy and material conversion, yet little is known about the shift along a lentic-lotic continuum. In this study, the 18S rRNA genes sequencing was used to identify the microeukaryotic communities at 82 sites along a lentic-lotic continuum with the aim of understanding the impact of upstream inlet river on microeukaryotic communities in Baiyang Lake (BYD) and its downstream. Our results showed that the upstream inlet river affected the diversity and community composition of microeukaryotes in BYD and downstream rivers, and environmental variables greatly affected the composition of microeukaryotic community. The community composition in BYD had lower variabilities. Co-occurrence network analysis revealed that the network was non-random and clearly parsed into three modules, and different modules were relatively more abundant to a particular area. As keystone taxa, some nodes of the upstream microeukaryotic network played an important role in structuring network and maintaining the stability of the ecosystem. In BYD and downstream, the microeukaryotic network was highly fragmented, and the loss of keystone taxa would have an adverse impact on the integrity and function of the microeukaryotic community. Microeukaryotes had strong tendencies to co-occur, which may contribute to the stability and resilience of microeukaryotic communities. Overall, these findings extend the current understanding of the diversity and community composition of microeukaryotic along a lentic-lotic continuum.
Collapse
|
47
|
Wang Y, Wu N, Tang T, Zhou S, Cai Q. Small Run-of-River Dams Affect Taxonomic and Functional β-Diversity, Community Assembly Process of Benthic Diatoms. Front Ecol Evol 2022; 10. [DOI: 10.3389/fevo.2022.895328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Being increasingly constructed worldwide, dams are a main driver of flow regime change and biodiversity decline. Although small run-of-river dams have exceeded the number of large dams, their impacts on taxonomic and functional β-diversity as well as community assembly process of aquatic organisms have been largely neglected. Ninety sites within twenty three small run-of-river dams in the Xiangxi River were selected, and the hydrological and physicochemical variables for each site were measured. We analyzed the traits and β-diversity of benthic diatoms, and explored the key driving mechanism of benthic diatom community assembly. Our results indicated that the construction of small run-of-river dams could affect the β-diversity of benthic diatoms and the mechanism of community assembly. Specifically, we found that small run-of-river dams could change the relative contribution of nestedness components to the trait-based β-diversity of benthic diatoms, but generally the taxonomy-based β-diversity was relatively higher than the trait-based β-diversity. Furthermore, the community assembly process of benthic diatoms was also affected. In areas affected directly by small run-of-river dams, dispersal assembly was the key mechanism for community assembly. Compared to unregulated habitats, the dispersal assembly process between the impacted and the unregulated habitats has been enhanced. We advocate that this study can be expanded to other organisms (such as macroinvertebrates, phytoplankton, fish) in future to fully understand impacts of small run-of-river dams on biodiversity from a multi-trophic level aspect. Based on our results, we suggest that maintaining genetic and ecological connectivity based on an effective impact assessment in dry seasons is a potential solution to mitigate the impacts of such dams, as key to adaptive management and sustainability.
Collapse
|
48
|
Hu J, Song Z, Zhou J, Soininen J, Tan L, Cai Q, Tang T. Differences in diversity and community assembly processes between planktonic and benthic diatoms in the upper reach of the Jinsha River, China. HYDROBIOLOGIA 2022; 849:1577-1591. [DOI: 10.1007/s10750-022-04801-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 06/16/2023]
|
49
|
Shu W, Wang P, Xu Q, Zeng T, Ding M, Zhang H, Nie M, Huang G. Coupled effects of landscape structures and water chemistry on bacterioplankton communities at multi-spatial scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151350. [PMID: 34728200 DOI: 10.1016/j.scitotenv.2021.151350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Bacterioplankton communities in rivers are strongly influenced by the surrounding landscape, yet the relationships between land use and bacterioplankton communities at multi-spatial scales and the mechanisms that shape bacterioplankton communities remain unclear. Here, we collected surface water samples from 14 tributaries of the Yuan River, a secondary tributary of the Yangtze River, which has been heavily impacted by human activities. We characterized the bacterioplankton communities by high-throughput sequencing techniques, and managed to identify the mechanisms governing bacterioplankton community assembly. The results showed that, in general, both landscape compositions and landscape configurations had significant effects on bacterial communities, and the effects were greater at the buffer scale than at the sub-basin scale. Additionally, there was no distinct distance-decay pattern for the effects of landscape structures on bacterial communities from the near-distance (100 m) to the long-distance (1000 m) buffer zones, with the maximal effects occurring in the 1000 m circular buffer (wet season) and 500 m riparian buffer (dry season) zone, respectively. Land use influenced the bacterioplankton community both directly through exogenous inputs (mass effect) and indirectly by affecting water chemistry (species sorting). Variance partitioning analyses showed that the total explanations of bacterial community variations by water chemistry and the intersections of water chemistry and land use (56.2% in wet season and 50.4% in dry season) were higher than that of land use alone (6.1% in wet season and 25.4% in dry season). These suggest that mass effects and species sorting jointly shaped bacterial community assembly, but that the effects of species sorting outweighed those of mass effects. Nevertheless, more biotic and abiotic factors need to be considered to better understand the microbial assembly mechanisms in anthropogenically influenced riverine ecosystems.
Collapse
Affiliation(s)
- Wang Shu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Qiyu Xu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ting Zeng
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
50
|
Zhang T, Xu S, Yan R, Wang R, Gao Y, Kong M, Yi Q, Zhang Y. Similar geographic patterns but distinct assembly processes of abundant and rare bacterioplankton communities in river networks of the Taihu Basin. WATER RESEARCH 2022; 211:118057. [PMID: 35066261 DOI: 10.1016/j.watres.2022.118057] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Bacterioplankton play an important role in the biogeochemical cycling in rivers. The dynamics of hydrologic conditions in rivers were believed to affect geographic pattern and assembly process of these microorganisms, which have not been widely investigated. In this study, the geographic pattern and assembly process of bacterioplankton community in river networks of the Taihu Basin were systematically explored using amplicon sequencing of the 16S rRNA gene. The results showed that the diversity, structure, and taxonomic composition of bacterioplankton community all exhibited significant temporal variation during wet, normal, and dry seasons (p<0.01). The neutral community model and null model were applied to reveal the assembly process of bacterioplankton community. The stochastic process and deterministic process both shaped the bacterioplankton community with greater influence of deterministic process. In addition, the abundant and rare bacterioplankton communities were comparatively analyzed. The abundant and rare bacterioplankton communities exhibited similar temporal dynamics (principal coordinates analysis) and spatial variations (distance-decay relationship), indicating similar geographic patterns. Meanwhile, distinct assembly processes were observed for the abundant and rare bacterioplankton communities. Stochastic process (dispersal limitation) shaped the abundant bacterioplankton community while deterministic process (heterogeneous selection) dominated the assembly process of rare bacterioplankton community. Mantel test, redundancy analysis, and correlation analysis together indicated that pH and dissolved oxygen were the major environmental attributes that affected thestructure and assembly process of bacterioplankton community. These results expanded our understanding of the geographic pattern, assembly process, and driving factors of bacterioplankton community in river networks and provided clues for the underlying mechanisms.
Collapse
Affiliation(s)
- Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Sai Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ruomeng Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruyue Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yimin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|