1
|
Leopold M, Kolm C, Linke RB, Schachner-Groehs I, Koller M, Kandler W, Kittinger C, Zarfel G, Farnleitner AH, Kirschner AKT. Using a harmonised study design and quantitative tool-box reveals major inconsistencies when investigating the main drivers of water and biofilm antibiotic resistomes in different rivers. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137343. [PMID: 39923370 DOI: 10.1016/j.jhazmat.2025.137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
The spread of antibiotic resistance (ABR) via surface waters is of increasing concern. Large-scale studies investigating ABR drivers in different water bodies and habitats with uniform quantitative methods are largely missing. Here, we present a comprehensive investigation on ABR occurrence and drivers in water and biofilms of four Austrian rivers over a one-year-cycle using a harmonised quantitative tool-box and study-design. At the bacterial community level, human faecal pollution was a main factor driving the aquatic riverine resistome. Despite relatively low concentrations, also antibiotics and metals showed significant correlations, however to a different extent in the different rivers. At the organismic level, a decoupling of the Escherichia coli resistome from the bacterial community resistomes was observed. In biofilms, the relationships with anthropogenic pollution factors were heterogeneous and markedly dampened. Our results clearly show that general conclusions about the role of biofilms, the influence of pollution or the prevalence of resistance genes or phenotypic resistances must be drawn with caution. Results are dependent on the river and local situation of the sampling sites due to the large environmental heterogeneity. International harmonisation of the methodology and general awareness of this problem shall contribute to better understand environmental ABR to develop effective mitigation strategies.
Collapse
Affiliation(s)
- Melanie Leopold
- Karl Landsteiner University of Health Sciences, Department of Pharmacology, Physiology and Microbiology, Division Water Quality and Health, Dr. Karl-Dorrek-Straße 30, Krems 3500, Austria; Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3 and Research Centre Water&Health E057-08, Gumpendorferstraße 1a, Vienna 1060, Austria
| | - Claudia Kolm
- Karl Landsteiner University of Health Sciences, Department of Pharmacology, Physiology and Microbiology, Division Water Quality and Health, Dr. Karl-Dorrek-Straße 30, Krems 3500, Austria; Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3 and Research Centre Water&Health E057-08, Gumpendorferstraße 1a, Vienna 1060, Austria
| | - Rita B Linke
- Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3 and Research Centre Water&Health E057-08, Gumpendorferstraße 1a, Vienna 1060, Austria
| | - Iris Schachner-Groehs
- Medical University Vienna, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna 1090, Austria
| | - Michael Koller
- Medical University Graz, Institute of Hygiene, Microbiology and Environmental Medicine, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Wolfgang Kandler
- University of Natural Resources and Life Sciences, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrotechnology (IFA-Tulln), Konrad-Lorenz-Straße 20, Tulln an der Donau, Austria
| | - Clemens Kittinger
- Medical University Graz, Institute of Hygiene, Microbiology and Environmental Medicine, Neue Stiftingtalstraße 2, Graz 8010, Austria
| | - Gernot Zarfel
- Medical University Graz, Institute of Hygiene, Microbiology and Environmental Medicine, Neue Stiftingtalstraße 2, Graz 8010, Austria.
| | - Andreas H Farnleitner
- Karl Landsteiner University of Health Sciences, Department of Pharmacology, Physiology and Microbiology, Division Water Quality and Health, Dr. Karl-Dorrek-Straße 30, Krems 3500, Austria; Technische Universität Wien, Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3 and Research Centre Water&Health E057-08, Gumpendorferstraße 1a, Vienna 1060, Austria
| | - Alexander K T Kirschner
- Karl Landsteiner University of Health Sciences, Department of Pharmacology, Physiology and Microbiology, Division Water Quality and Health, Dr. Karl-Dorrek-Straße 30, Krems 3500, Austria; Medical University Vienna, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna 1090, Austria.
| |
Collapse
|
2
|
Li F, Xiong W, Zhang C, Wang D, Zhou C, Li W, Zeng G, Song B, Zeng Z. Neonicotinoid insecticides in non-target organisms: Occurrence, exposure, toxicity, and human health risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125432. [PMID: 40279746 DOI: 10.1016/j.jenvman.2025.125432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Pesticides have consistently portrayed a crucial role in the history of modern agricultural production. Neonicotinoid insecticides are classified as the fourth generation of pesticides, following organophosphorus, pyrethroids, and carbamates. Due to their broad-spectrum insecticidal activity, unique neurotoxic mode of action, and versatility of application methods, neonicotinoids have been widely used worldwide since their introduction. Recent studies have shown that neonicotinoids are frequently detected in a variety of food and environmental media around the world, posing considerable safety risks to human health and ecosystems, and therefore have become an emerging contaminant. However, the toxic effects and exposure risks of neonicotinoids to non-target organisms, including humans, have not received sufficient attention. Therefore, based on previous studies, this critical review concisely evaluates the occurrence and exposure levels of neonicotinoids in the environment and the associated risks to human health. The toxic effects of neonicotinoids on non-target organisms are systematically reviewed, including the aspects of acute toxicity, reproductive development, nervous system, immune function, genetics, and others. The potential toxic mechanism of these pesticides is discussed. The existing knowledge gaps are identified, and future prospects for neonicotinoids are proposed to provide scientific guidance for the safe and rational use of neonicotinoids and future research directions.
Collapse
Affiliation(s)
- Fang Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Wenbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
3
|
Uhlhorn J, Ng KT, Barron LP, Ford AT, Miller TH. Chemical profiling of surface water and biota in protected marine harbours impacted by combined sewer overflows. ENVIRONMENT INTERNATIONAL 2025; 199:109417. [PMID: 40194897 DOI: 10.1016/j.envint.2025.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Few studies exist that focus on contaminants of emerging concern (CECs) in transitional and coastal waterbodies. This study presents chemical profiling of two protected marine harbours on the South coast of the UK sampled in 2022. Across 21 sites, 105 unique compounds were detected (0.05 ng L-1 --1798 ng L-1, median: 11 ng L-1) in water samples and biota, including 67 pharmaceuticals, 29 pesticides and nine recreational drugs. There were significant differences between campaigns with increased chemical numbers and concentrations that coincided with increased rainfall and combined sewer overflow (CSO) discharges. The comparison with CSO discharges revealed that they were an important source for loading of specific chemicals with concentrations increasing for some cases by three-orders of magnitude. High relative risks were estimated for sites sampled during recorded CSO discharges for five compounds with risk quotients (RQs) ranging from 1.1 up to 9.3, with the highest risk from the neonicotinoid, imidacloprid. To understand the exposure in biota, six species; one macroalgae (Fucus vesiculosus) and five fauna (Hediste diversicolor, Patella vulgate, Crassostrea gigas, Carcinus maenas, Echinogammarus marinus) were analysed (n = 5/species) at a CSO-impacted site. Between eight to 18 compounds were detected with Fucus vesiculosus (seaweed) showing the highest accumulation with mean cumulative burdens reaching up to 343 ± 71 ng g-1. Surface water contamination did not correlate with body burdens. Overall, the work highlights the complexity of the chemical space present in a transitional waterbody showing dynamic contamination patterns that are further influenced by tide, rainfall and salinity. CSOs demonstrated an important but compound specific role for CEC input and pulsing into receiving waters.
Collapse
Affiliation(s)
- Jasmin Uhlhorn
- Centre for Pollution Research & Policy, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Keng Tiong Ng
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Leon P Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, PO4 9LY, UK.
| | - Thomas H Miller
- Centre for Pollution Research & Policy, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| |
Collapse
|
4
|
Xiong J, Pu C, Qian Z, Yi J, Wang K, Zhang C, Liu W, Chen W, Xu L, Qi S, Zhang Z, Zhang H, Jones KC. Diffusive gradients in thin-films (DGT) for in situ measurement of neonicotinoid insecticides (NNIs) in waters. WATER RESEARCH 2025; 269:122772. [PMID: 39591705 DOI: 10.1016/j.watres.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Neonicotinoid insecticides (NNIs) are among the most widely-used insecticides, although their threat to non-target organisms has attracted attention in recent years. In this study, a diffusive gradient in thin-films (DGT) passive sampling technique was developed for in situ monitoring of time-weighted average (TWA) concentrations of NNIs in groundwater and wastewater. Systematic studies demonstrated that DGT with HLB as binding gels (HLB-DGT) is suitable for quantitative sampling of NNIs under a wide range of conditions, independent of pH (5-9.5), ionic strength (0.001-0.5 M) and dissolved organic matter (0-10 mg/L). The HLB-DGT performance was also independent of the typical groundwater ionic environments. The thicknesses of in-situ measured diffusive boundary layer were 0.35 and 0.25 mm in the groundwater and effluent, respectively. HLB-DGT can provide TWA concentrations over 14-18 days' deployment with linear uptake in both groundwater and wastewater. Concentrations and occurrence patterns of NNIs obtained by HLB-DGT were consistent with those measured from grab samples. The median TWA concentration of NNIs was 4.42 ng/L in water from the largest urban lake of China (the Tangxun Lake) in winter, with wastewater discharge being the main potential source. The reliability and stability of the HLB-DGT for measuring NNIs in the groundwater and surface water were confirmed and can be used to improve understanding of the occurrence and fate of NNIs in aquatic environment.
Collapse
Affiliation(s)
- Junwu Xiong
- School of Environmental Studies and MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Chang Pu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Zhe Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Jiapei Yi
- School of Environmental Studies and MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Kang Wang
- School of Environmental Studies and MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chi Zhang
- School of Environmental Studies and MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Wei Liu
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Wei Chen
- School of Environmental Studies and MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Resources and Eco-Environment Geology, Hubei Geological Bureau, Wuhan 430034, China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Shihua Qi
- School of Environmental Studies and MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
5
|
Gajendra G, Pulimi M, Natarajan C, Mukherjee A. Occurrence, Toxicodynamics, and Mechanistic Insights for Atrazine Degradation in the Environment. WATER, AIR, & SOIL POLLUTION 2024; 235:649. [DOI: 10.1007/s11270-024-07439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/11/2024] [Indexed: 01/12/2025]
|
6
|
M A E, K K, N F, E D, M R, A F, S R, A L, K, H B, A J, E J. An assessment and characterization of pharmaceuticals and personal care products (PPCPs) within the Great Lakes Basin: Mussel Watch Program (2013-2018). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:345. [PMID: 38438687 PMCID: PMC10912168 DOI: 10.1007/s10661-023-12119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 03/06/2024]
Abstract
Defining the environmental occurrence and distribution of chemicals of emerging concern (CECs), including pharmaceuticals and personal care products (PPCPs) in coastal aquatic systems, is often difficult and complex. In this study, 70 compounds representing several classes of pharmaceuticals, including antibiotics, anti-inflammatories, insect repellant, antibacterial, antidepressants, chemotherapy drugs, and X-ray contrast media compounds, were found in dreissenid mussel (zebra/quagga; Dreissena spp.) tissue samples. Overall concentration and detection frequencies varied significantly among sampling locations, site land-use categories, and sites sampled proximate and downstream of point source discharge. Verapamil, triclocarban, etoposide, citalopram, diphenhydramine, sertraline, amitriptyline, and DEET (N,N-diethyl-meta-toluamide) comprised the most ubiquitous PPCPs (> 50%) detected in dreissenid mussels. Among those compounds quantified in mussel tissue, sertraline, metformin, methylprednisolone, hydrocortisone, 1,7-dimethylxanthine, theophylline, zidovudine, prednisone, clonidine, 2-hydroxy-ibuprofen, iopamidol, and melphalan were detected at concentrations up to 475 ng/g (wet weight). Antihypertensives, antibiotics, and antidepressants accounted for the majority of the compounds quantified in mussel tissue. The results showed that PPCPs quantified in dreissenid mussels are occurring as complex mixtures, with 4 to 28 compounds detected at one or more sampling locations. The magnitude and composition of PPCPs detected were highest for sites not influenced by either WWTP or CSO discharge (i.e., non-WWTPs), strongly supporting non-point sources as important drivers and pathways for PPCPs detected in this study. As these compounds are detected at inshore and offshore locations, the findings of this study indicate that their persistence and potential risks are largely unknown, thus warranting further assessment and prioritization of these emerging contaminants in the Great Lakes Basin.
Collapse
Affiliation(s)
- Edwards M A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA.
| | - Kimbrough K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Fuller N
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Davenport E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Rider M
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Freitag A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Regan S
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | | | - K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Burkart H
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Jacob A
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Johnson E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| |
Collapse
|
7
|
Zhou R, Dong Z, Li Z, Zhou W, Li Y, Xing L, Wu T, Lin W, Chang H, Li B. Adsorption-desorption behavior of florpyrauxifen-benzyl on three microplastics in aqueous environment as well as its mechanism and various influencing factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116066. [PMID: 38325269 DOI: 10.1016/j.ecoenv.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Microplastics (MPs) and pesticides are two categories contaminants with proposed negative impacts to aqueous ecosystems, and adsorption of pesticides on MPs may result in their long-range transport and compound combination effects. Florpyrauxifen-benzyl, a novel pyridine-2-carboxylate auxin herbicide has been widely used to control weeds in paddy field, but the insights of which are extremely limited. Therefore, adsorption and desorption behaviors of florpyrauxifen-benzyl on polyvinyl chloride (PVC), polyethylene (PE) and disposable face masks (DFMs) in five water environment were investigated. The impacts of various environmental factors on adsorption capacity were evaluated, as well as adsorption mechanisms. The results revealed significant variations in adsorption capacity of florpyrauxifen-benzyl on three MPs, with approximately order of DFMs > PE > PVC. The discrepancy can be attributed to differences in structural and physicochemical properties, as evidenced by various characterization analysis. The kinetics and isotherm of florpyrauxifen-benzyl on three MPs were suitable for different models, wherein physical force predominantly governed adsorption process. Thermodynamic analysis revealed that both high and low temperatures weakened PE and DFMs adsorption, whereas temperature exhibited negligible impact on PVC adsorption. The adsorption capacity was significantly influenced by most environmental factors, particularly pH, cations and coexisting herbicide. This study provides valuable insights into the fate of florpyrauxifen-benzyl in presence of MPs, suggesting that PVC, PE and DFMs can serve as carriers of florpyrauxifen-benzyl in aquatic environment.
Collapse
Affiliation(s)
- Rendan Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zemin Dong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Agricultural Technology Extension Center, Nanchang 330046, China
| | - Zhuo Li
- Tobacco Science Institute of Jiangxi Province, Nanchang 330000, China
| | - Wenwen Zhou
- College of Food Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuqi Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Xing
- Jiangxi Agricultural Technology Extension Center, Nanchang 330046, China
| | - Tianqi Wu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Lin
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hailong Chang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
8
|
Cai Y, Liu F, He G, Kong X, Jiang Y, Liu J, Yan B, Zhang S, Zhang J, Yan Z. Mechanisms of total phosphorus removal and reduction of β-lactam antibiotic resistance genes by exogenous fungal combination activated sludge. BIORESOURCE TECHNOLOGY 2024; 393:130046. [PMID: 37980948 DOI: 10.1016/j.biortech.2023.130046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
This study utilized Trichoderma and activated sludge to construct combined activated sludge (TAS). The metagenomic approach was employed to examine the shifts in microbial community structure and function of TAS under amoxicillin stress and investigate the mechanism underlying the reduction of β-lactam antibiotic resistance genes (β-ARGs). The findings demonstrated that the elevated aundance of glpa, glpd, ugpq, glpq, and glpb were primarily responsible for the reduction in total phosphorus (TP) removal by TAS. The increased abundance of Proteobacteria and Verrucomicrobia led to enhanced expression of ugpb, phnd, and phne, thereby improving the TP removal of TAS. Furthermore, antibiotic inactivation has gradually become the primary antibiotic resistance mechanism in TAS. Specifically, an increase in the abundance of OXA-309 in TAS will decrease the probability of amoxicillin accumulation in TAS. A decrease in β-ARGs diversity confirmed this. This study presents a novel approach to reducing antibiotic and ARG accumulation in sludge.
Collapse
Affiliation(s)
- Yixiang Cai
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China.
| | - Guiyi He
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410028, China
| | - Xiaoliang Kong
- College of Resources , Hunan Agricultural University, Changsha 410028, China
| | - Yuexi Jiang
- College of Resources , Hunan Agricultural University, Changsha 410028, China
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, China; Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Binghua Yan
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410028, China
| | - Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Jiachao Zhang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410028, China
| | - Zhiyong Yan
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410028, China
| |
Collapse
|
9
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
10
|
Maghsodian Z, Sanati AM, Mashifana T, Sillanpää M, Feng S, Nhat T, Ramavandi B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics (Basel) 2022; 11:antibiotics11111461. [PMID: 36358116 PMCID: PMC9686498 DOI: 10.3390/antibiotics11111461] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotics, as pollutants of emerging concern, can enter marine environments, rivers, and lakes and endanger ecology and human health. The purpose of this study was to review the studies conducted on the presence of antibiotics in water, sediments, and organisms in aquatic environments (i.e., seas, rivers, and lakes). Most of the reviewed studies were conducted in 2018 (15%) and 2014 (11%). Antibiotics were reported in aqueous media at a concentration of <1 ng/L−100 μg/L. The results showed that the highest number of works were conducted in the Asian continent (seas: 74%, rivers: 78%, lakes: 87%, living organisms: 100%). The highest concentration of antibiotics in water and sea sediments, with a frequency of 49%, was related to fluoroquinolones. According to the results, the highest amounts of antibiotics in water and sediment were reported as 460 ng/L and 406 ng/g, respectively. In rivers, sulfonamides had the highest abundance (30%). Fluoroquinolones (with an abundance of 34%) had the highest concentration in lakes. Moreover, the highest concentration of fluoroquinolones in living organisms was reported at 68,000 ng/g, with a frequency of 39%. According to the obtained results, it can be concluded that sulfonamides and fluoroquinolones are among the most dangerous antibiotics due to their high concentrations in the environment. This review provides timely information regarding the presence of antibiotics in different aquatic environments, which can be helpful for estimating ecological risks, contamination levels, and their management.
Collapse
Affiliation(s)
- Zeinab Maghsodian
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Tebogo Mashifana
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
- Correspondence: (M.S.); (B.R.)
| | - Shengyu Feng
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
| | - Tan Nhat
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
- Correspondence: (M.S.); (B.R.)
| |
Collapse
|
11
|
MacKeown H, Benedetti B, Scapuzzi C, Di Carro M, Magi E. A Review on Polyethersulfone Membranes in Polar Organic Chemical Integrative Samplers: Preparation, Characterization and Innovation. Crit Rev Anal Chem 2022; 54:1758-1774. [PMID: 36263980 DOI: 10.1080/10408347.2022.2131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The membranes in polar organic chemical integrative samplers (POCIS) enclose the receiving sorbent and protect it from coming into direct contact with the environmental matrix. They have a crucial role in extending the kinetic regime of contaminant uptake, by slowing down their diffusion between the water phase and the receiving phase. The drive to improve passive sampling requires membranes with better design and enhanced performances. In this review, the preparation of standard polyethersulfone (PES) membranes for POCIS is presented, as well as methods to evaluate their composition, morphology, structure, and performance. Generally, only supplier-related morphological and structural data are provided, such as membrane type, thickness, surface area, and pore diameter. The issues related to the use of PES membranes in POCIS applications are exposed. Finally, alternative membranes to PES in POCIS are also discussed, although no better membrane has yet been developed. This review highlights the urge for more membrane characterization details and a better comprehension of the mechanisms which underlay their behavior and performance, to improve membrane selection and optimize passive sampler development.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Fatema M, Farenhorst A, Sheedy C. Using the Pesticide Toxicity Index to show the potential ecosystem benefits of on-farm biobeds. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1044-1053. [PMID: 35838005 DOI: 10.1002/jeq2.20394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The influent and effluent of two single-cell biobeds (Province of Alberta, Canada) and two dual cell-biobeds (Province of Saskatchewan, Canada) were monitored during a number of growing seasons. A total of 59 unique pesticide active ingredients were detected, with all biobed influent samples (n = 54) and 93% of effluent samples (n = 54) containing pesticide mixtures. About one-half of the effluent samples in both single-cell (56%) and dual-cell (45%) biobeds contained active ingredients that have Groundwater Ubiquity Score (GUS) values >2.8 and so were more likely to move through the biomatrix materials into effluent. The Pesticide Toxicity Index (PTI) calculated for aquatic indicator species (i.e., vascular and nonvascular plants, invertebrates, and fish) was always larger for influent samples (e.g., median PTI >500 for invertebrates in dual-cell biobed) than effluent samples (i.e., median PTI <1). As such, this study demonstrates the potential ecosystem benefits of the broad adoption of on-farm biobeds in the Canadian Prairies for recycling tank rinsate as a strategy to accelerate a green economy. Although biobeds were highly effective in reducing the concentrations for pesticides with a wide range of soil organic carbon coefficient and half-life values, the biobed effectiveness was relatively poor for the herbicides clopyralid, diclofop, fluroxypyr, and imazethapyr. Clopyralid (3.02), fluroxypyr (3.70), and imazethapyr (3.90) all have relatively high GUS values (>2.8) and are thus more likely to be detected in effluent than active ingredients with smaller GUS values. This suggests that further improvements in biosystem design need to be made for optimizing the recycling of these pesticides.
Collapse
Affiliation(s)
- Marufa Fatema
- Dep. of Soil Science, Univ. of Manitoba, Ellis Building, 13 Freedman Crescent, Winnipeg, MB, R3T2N2, Canada
| | - Annemieke Farenhorst
- Dep. of Soil Science, Univ. of Manitoba, Ellis Building, 13 Freedman Crescent, Winnipeg, MB, R3T2N2, Canada
| | - Claudia Sheedy
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J4B1, Canada
| |
Collapse
|
13
|
Rice Straw as Green Waste in a HTiO2@AC/SiO2 Nanocomposite Synthesized as an Adsorbent and Photocatalytic Material for Chlorpyrifos Removal from Aqueous Solution. Catalysts 2022. [DOI: 10.3390/catal12070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2) is utilized to photo breakdown catalytically and adsorb chlorpyrifos insecticide. SEM, TEM, and X-ray diffraction were used to examine HTiO2@AC/SiO2, synthesized through sol–gel synthesis. With an average size of 7–9 nm, the crystallized form of HTiO2 is the most common form found. At varied pH, catalyst doses, agitation speed, initial pesticide concentrations, contact periods, and temperatures, HTiO2@AC/SiO2 was examined for efficiency under visible light and in darkness. Because of the pseudo-second-order kinetics observed for chlorpyrifos, chemisorption is believed to dominate the adsorption process, as indicated by an estimated activation energy of 182.769 kJ/mol, which indicates that chemisorption dominates the adsorption process in this study. The maximal adsorption capacity of chlorpyrifos is 462.6 mg g−1, according to the Langmuir isotherms, which infer this value. When exposed to visible light, the adsorption capacity of HTiO2@AC/SiO2 increased somewhat as the temperature rose (283 k 323 k 373 k), indicating an exothermic change in Gibbs free energy during the process (−1.8 kJ/mol), enthalpy change (−6.02 kJ/mol), and entropy change (0.014 J/mol K), respectively, at 298.15 K. Negative (ΔS) describes a process with decreased unpredictability and suggests spontaneous adsorption. HTiO2@AC/SiO2 may be a promising material.
Collapse
|
14
|
de Araújo EP, Caldas ED, Oliveira-Filho EC. Pesticides in surface freshwater: a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:452. [PMID: 35608712 DOI: 10.1007/s10661-022-10005-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
The objective of this study was to critically review studies published up to November 2021 that investigated the presence of pesticides in surface freshwater to answer three questions: (1) in which countries were the studies conducted? (2) which pesticides are most evaluated and detected? and (3) which pesticides have the highest concentrations? Using the Prisma protocol, 146 articles published from 1976 to November 2021 were included in this analysis: 127 studies used grab sampling, 10 used passive sampling, and 9 used both sampling techniques. In the 45-year historical series, the USA, China, and Spain were the countries that conducted the highest number of studies. Atrazine was the most evaluated pesticide (56% of the studies), detected in 43% of the studies using grab sampling, and the most detected in passive sampling studies (68%). The compounds with the highest maximum and mean concentrations in the grab sampling were molinate (211.38 µg/L) and bentazone (53 µg/L), respectively, and in passive sampling, they were oxyfluorfen (16.8 µg/L) and atrazine (4.8 μg/L), respectively. The levels found for atrazine, p,p'-DDD, and heptachlor in Brazil were higher than the regulatory levels for superficial water in the country. The concentrations exceeded the toxicological endpoint for at least 11 pesticides, including atrazine (Daphnia LC50 and fish NOAEC), cypermethrin (algae EC50, Daphnia and fish LC50; fish NOAEC), and chlorpyrifos (Daphnia and fish LC50; fish NOAEC). These results can be used for planning pesticide monitoring programs in surface freshwater, at regional and global levels, and for establishing or updating water quality regulations.
Collapse
Affiliation(s)
| | - Eloisa Dutra Caldas
- Toxicology Laboratory, Faculty of Health Sciences, University of Brasília - UnB, Brasília, Federal District, Brazil
| | | |
Collapse
|
15
|
Vanderpont AK, Lobson C, Lu Z, Luong K, Arentsen M, Vera T, Moore D, White MS, Prosser RS, Wong CS, Hanson ML. Fate of thiamethoxam from treated seeds in mesocosms and response of aquatic invertebrate communities. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:341-356. [PMID: 35000026 DOI: 10.1007/s10646-021-02500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Thiamethoxam is a neonicotinoid insecticide widely applied in the Canadian Prairies. It has been detected in surface waters of agro-ecosystems, including wetlands, but the potential effects on non-target invertebrate communities in these wetlands have not been well characterized. In an effort to understand better the fate of thiamethoxam in wetlands and the response of invertebrates (zooplankton and emergent insects), model systems were used to mimic wetland flooding into planted fields. Outdoor mesocosms were treated with a single application of thiamethoxam-treated canola seeds at three treatment levels based on a recommended seeding rate (i.e., 6 kg/ha; 1×, 10×, and 100× seeding rate) and monitored over ten weeks. The mean half-life of thiamethoxam in the water column was 6.2 d. There was no ecologically meaningful impact on zooplankton abundances or community structure among treatments. Statistically significant differences were observed in aquatic insect abundance between control mesocosms and the two greatest thiamethoxam treatments (10× and 100× seeding rate). The observed results indicate exposure to thiamethoxam at environmentally relevant concentrations likely does not represent a significant ecological risk to abundance and community structure of wetland zooplankton and emergent insects.
Collapse
Affiliation(s)
- A K Vanderpont
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - C Lobson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Z Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada
| | - K Luong
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - M Arentsen
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - T Vera
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - D Moore
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - M S White
- EcoMetrix Inc, Mississauga, ON, L5N 2L8, Canada
| | - R S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C S Wong
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - M L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
16
|
Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12020163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The photocatalytic degradation and adsorption of the oxamyl pesticide utilizing a nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2). Sol-gel Synthesis was used to produce HTiO2@AC/SiO2, which was examined using Scanning Electron Microscopy, Transmission Electron Microscopy, and an X-ray diffractometer. The analyses confirmed that HTiO2 is mainly present in its crystalline form at a size of 7–9 nm. The efficiency of HTiO2@AC/SiO2 was assessed at various pHs, catalyst doses, agitating intensities, initial pesticide concentrations, contact times, and temperatures under visible light and in darkness. Oxamyl adsorption kinetics followed a pseudo-second-order kinetic model, suggesting that the adsorption process is dominated by chemisorption, as supported by a calculated activation energy of −182.769 kJ/mol. The oxamyl adsorption is compatible with Langmuir and Freundlich isotherms, suggesting a maximum adsorption capacity of 312.76 mg g−1. The adsorption capacity increased slightly with increasing temperature (283 K < 323 K < 373 K), suggesting an exothermic process with the Gibbs free energy change ΔG, enthalpy change ΔH, and entropy change ΔS°, being –3.17 kJ/mol, −8.85 kJ/mol, and −0.019 J/mol K, respectively, at 310 K for HTiO2@AC/SiO2 under visible light. This indicates spontaneous adsorption, and negative (ΔS) explain a decreased randomness process. HTiO2@AC/SiO2 would be a promising material.
Collapse
|
17
|
Lim KY, Foo KY. Hazard identification and risk assessment of the organic, inorganic and microbial contaminants in the surface water after the high magnitude of flood event. ENVIRONMENT INTERNATIONAL 2021; 157:106851. [PMID: 34560322 DOI: 10.1016/j.envint.2021.106851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The present work has been oriented to the qualitative and quantitative assessments of the aftermath effects of 2014 flood tragedy on the organic, inorganic and microbial contaminants in the floodwater, with a particular emphasis on their relative health risks and microbial infectious hazards to the flood-affected population, using average daily dose, hazard quotient, hazard index (HI), cancer risk (CR) and quantitative microbial risk assessment. Statistical comparison of the organic and inorganic contents was performed using the paired t-tests, while the predominant socio-demographic profiles and health attributes of the respondents to flood-induced health risks (HI) were verified by the chi-square test and binary logistic regression analysis. Among all, Fe, Cu, Pb, Ni, Zn, Cr, Cd, chlorpyrifos, diazinon, polycyclic aromatic hydrocarbons, estriol, 17α-ethinylestradiol, estrone, β-estradiol and bisphenol A were detected at the study area after flooding. The microbiological quality of the floodwater samples has been tracked positive for Escherichia coli, Salmonella typhimurium and Shigella flexneri, with the mean concentrations of 6500, 50 and 180 CFU/100 mL, respectively. Exposure and health risk assessments revealed that the overall HI value for organic and inorganic contaminants in the water samples was 1.19, exceeding the USEPA maximum limit of 1, after the flood incidence. The largest CR contributors were Ni, Cr and Cd, while the infection risks (Pinf,single) associated with the exposure of E. coli, Salmonella spp. and Shigella spp. were identified to be 3.1 × 10-2, 1.2 × 10-4 and 3.2 × 10-5 for incidental scenario; and 8.3 × 10-1, 3.9 × 10-1 and 1.9 × 10-1 for intentional scenario, respectively. The findings of these integrated tools are critically important to provide a more reliable quantitative assessment of human health hazards and microbial risks for different environmental settings, to safeguard water resource, and preservation of public health and the overall river ecosystem.
Collapse
Affiliation(s)
- Kah Yee Lim
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia (USM), Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia.
| | - Keng Yuen Foo
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia (USM), Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
18
|
Gamhewage M, Sheedy C, Munira S, Farenhorst A. Pesticide Mixtures in the Water-Column Versus Bottom-Sediments of Prairie Rivers. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:936-941. [PMID: 34014360 DOI: 10.1007/s00128-021-03254-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
River water-column and bottom-sediments samples were screened for 160 pesticide compounds to compare the types of pesticides present in the water-column versus bottom-sediments, and between segments of rivers flowing through intensively-managed versus semi-natural habitats. Of the 35 pesticide compounds detected, current-use pesticides accounted for 96% (water) and 76% (bottom sediments). Pesticide mixtures were present in 72% (water) and 51% (sediment) of the total samples. Only the river flowing through the most intensively managed habitat showed a wide range of pesticides in sediments, and many of these pesticides were also present in the water-column of that river. Current-use fungicides were detected in both the water-column and bottom-sediments but not in samples taken from rivers flowing predominantly through semi-natural habitats. The study period (May to August) corresponds to the peak time of regional pesticide applications and hence the time period that is most likely to show elevated concentrations of current-use pesticides in the water-column. The environmental concentrations of pesticide mixtures detected in the water-column were used to calculate Pesticide Toxicity Index (PTI) values as it applies to non-vascular or vascular plants, invertebrates, and fish. The PTI values were largest for non-vascular and vascular plants, reflecting that the pesticide mixtures in water-column were dominated by herbicides.
Collapse
Affiliation(s)
- Mauli Gamhewage
- Department of Soil Science, University of Manitoba, Ellis Building, 13 Freedman Crescent, Winnipeg, MB, R3T 2N2, Canada
| | - Claudia Sheedy
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Sirajum Munira
- Department of Soil Science, University of Manitoba, Ellis Building, 13 Freedman Crescent, Winnipeg, MB, R3T 2N2, Canada.
| | - Annemieke Farenhorst
- Department of Soil Science, University of Manitoba, Ellis Building, 13 Freedman Crescent, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
19
|
Cardoso-Vera JD, Elizalde-Velázquez GA, Islas-Flores H, Mejía-García A, Ortega-Olvera JM, Gómez-Oliván LM. A review of antiepileptic drugs: Part 1 occurrence, fate in aquatic environments and removal during different treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145487. [PMID: 33736324 DOI: 10.1016/j.scitotenv.2021.145487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Antiepileptic drugs (AEDs) are the main treatment for people with epilepsy. However, in recent years, more and more people are using them for other indications such as: migraine, chronic neuropathic pain, and mood disorders. Consequently, the prescriptions and consumption of these drugs are increasing worldwide. In WWTPs, AEDs can resist degradation processes, such as photodegradation, chemical degradation and/or biodegradation. Until now, only constructed wetlands and photocatalysis have shown good removal rates of AEDs from wastewater. However, their effectiveness depends on the specific conditions used during the treatment. Since the consumption of AEDs has increased in the last decade and their degradation in WWTPs is poor, these drugs have been largely introduced into the environment through the discharge of municipal and/or hospital effluents. Once in the environment, AEDs are distributed in the water phase, as suspended particles or in the sediments, suggesting that these drugs have a high potential for groundwater contamination. In this first part of the AEDs review is designed to fill out the current knowledge gap about the occurrence, fate and removal of these drugs in the aquatic environment. This is a review that emphasizes the characteristics of AEDs as emerging contaminants.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - José Mario Ortega-Olvera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
20
|
Lu Y, Hua Z, Chu K, Gu L, Liu Y, Liu X. Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake, East China. ENVIRONMENTAL RESEARCH 2021; 194:110733. [PMID: 33434608 DOI: 10.1016/j.envres.2021.110733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in various environments. This has caused great public concern, particularly in the shallow freshwater lake region, where the lake, rivers, and estuaries form a highly interconnected continuum. However, little is known about the environmental behaviors of PFAAs in the continuum. For the first time, a high-resolution monitoring framework covering the river-estuary-lake continuum of Luoma Lake was built, and the concentrations, sources, and environmental fates of PFAAs were identified and analyzed. The results revealed that the total concentration of PFAAs was at a moderate level in the water and at a high level in the sediment compared to global levels respectively. Perfluorooctanesulfonate (PFOS) was the most abundant PFAA in the continuum. In particular, the ∑PFAA concentration in the particle phase was much higher than that in the sediment phase. Distinct spatial heterogeneities were observed in the behaviors of distribution and the multiphase fate of PFAAs in the continuum, mainly driven by the turbulent mixing during transport, dilution of lake water, and spatial differences of hydrodynamic features and sedimentary properties among the sub-regions. Interestingly, the pH of the sediment and water had significant effects on the water-sediment portioning of PFAAs in contrasting ways. Furthermore, based on the composition of the sediments, four possible migration paths for PFAAs were deduced and the main sources of PFAAs were identified as sewage, domestic, and industrial effluents using the positive matrix factorization model. During the human health assessment, no risk was found under the median exposure scenario; however, under the high exposure scenario, PFAAs posed uncertain risks to human health, which cannot be ignored. This study provides basic information for simulating the fate and transport of PFAAs in the continuum and is significant for developing cost-effective control and remediation strategies in the near future.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Yuanyuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| |
Collapse
|
21
|
Dionne E, Hanson ML, Anderson JC, Brain RA. Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142589. [PMID: 33065508 DOI: 10.1016/j.scitotenv.2020.142589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Fathead minnows (Pimephales promelas) were continuously exposed to the herbicide atrazine (0.15, 0.25, 0.46, 0.99, and 2.0 mg a.i./L, plus dilution water and solvent controls) for a complete life cycle (274 days). Concentrations of atrazine up to 2.0 mg a.i./L did not significantly reduce hatching success, larval survival at 30 or 60 days post-hatch, or reproduction (eggs/spawn, total eggs, spawns/female, or eggs/female) in the F0 generation. However, at 60 days of exposure, total length and total survival to study completion were significantly reduced in ≥0.46 mg a.i./L and ≥ 0.99 mg a.i./L treatments, respectively. In the F1 generation, hatchability of embryos at ≥0.25 mg a.i./L (range 74-82%) was significantly less than that of pooled control organisms (86%). Following 30 days' post-hatch exposure, F1 survival was not significantly different from pooled control for any treatment. Finally, tissues representing major life stages had bioconcentration factors ranging from 3.7× (F1 embryos, <24 h) to 8.5× (F0 adults), indicating little to no evidence of bioconcentration. We developed a series of questions to assess the consistency of observed responses in order to place the data in context with the wider available and relevant literature (e.g., Observed between studies? Observed between species? Observed at lower levels of biological organization?). The analysis for consistency supports the conclusion that atrazine does not pose a significant chronic risk to freshwater fish in terms of growth, reproduction, or survivorship at concentrations of up to at least 100 μg/L.
Collapse
Affiliation(s)
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Julie C Anderson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
22
|
Li H, Wang F, Li J, Deng S, Zhang S. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. CHEMOSPHERE 2021; 264:128556. [PMID: 33049512 DOI: 10.1016/j.chemosphere.2020.128556] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 05/20/2023]
Abstract
Microplastics could act as a carrier for pesticides in the water environment and pose a potential risk. This study mainly investigated the effects of reaction time, microplastics dosages, pH, and NaCl salinity on the adsorption characteristics of three pesticides (Imidacloprid, Buprofezin, Difenoconazole) on polyethylene (PE) microplastics in aqueous solution. The results showed that high pH and low NaCl salinity were conducive to the adsorption. The adsorption data were well fitted by the Freundlich isotherm model and the pseudo-first-order kinetics, indicating that it was mainly controlled by physical function. The adsorption capacity of three pesticides on PE microplastics followed the order of Difenoconazole > Buprofezin > Imidacloprid. The thermodynamic study indicated the adsorption of all pesticides as spontaneous and exothermic processes, and the elevated temperature was favorable to the adsorption. SEM-EDS and FTIR results verified that pesticides were adsorbed on the microplastics but the adsorption process was mainly controlled by intermolecular Van Der Waals Force and the microporous filling mechanism. Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulation results indicated that surface adsorption was the exclusive mechanism for the adsorption of pesticides on microplastics, and the final adsorption configurations revealed that there were complex interactions between the pesticide molecules and the C, H atoms in PE molecules. The results of this study illustrated that PE microplastics are potential carriers for pesticides in the water environment.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Fenghe Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Jining Li
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environmental (MEE), Nanjing, China.
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environmental (MEE), Nanjing, China
| |
Collapse
|
23
|
Anderson JC, Marteinson SC, Prosser RS. Prioritization of Pesticides for Assessment of Risk to Aquatic Ecosystems in Canada and Identification of Knowledge Gaps. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:171-231. [PMID: 34625837 DOI: 10.1007/398_2021_81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides can enter aquatic environments via direct application, via overspray or drift during application, or by runoff or leaching from fields during rain events, where they can have unintended effects on non-target aquatic biota. As such, Fisheries and Oceans Canada identified a need to prioritize current-use pesticides based on potential risks towards fish, their prey species, and habitats in Canada. A literature review was conducted to: (1) Identify current-use pesticides of concern for Canadian marine and freshwater environments based on use and environmental presence in Canada, (2) Outline current knowledge on the biological effects of the pesticides of concern, and (3) Identify general data gaps specific to biological effects of pesticides on aquatic species. Prioritization was based upon recent sales data, measured concentrations in Canadian aquatic environments between 2000 and 2020, and inherent toxicity as represented by aquatic guideline values. Prioritization identified 55 pesticides for further research nationally. Based on rank, a sub-group of seven were chosen as the top-priority pesticides, including three herbicides (atrazine, diquat, and S-metolachlor), three insecticides (chlorpyrifos, clothianidin, and permethrin), and one fungicide (chlorothalonil). A number of knowledge gaps became apparent through this process, including gaps in our understanding of sub-lethal toxicity, environmental fate, species sensitivity distributions, and/or surface water concentrations for each of the active ingredients reviewed. More generally, we identified a need for more baseline fish and fish habitat data, ongoing environmental monitoring, development of marine and sediment-toxicity benchmarks, improved study design including sufficiently low method detection limits, and collaboration around accessible data reporting and management.
Collapse
Affiliation(s)
| | - Sarah C Marteinson
- National Contaminants Advisory Group, Ecosystems and Oceans Science Sector, Fisheries and Oceans Canada, Ottawa, ON, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
24
|
Wang P, Challis JK, Luong KH, Vera TC, Wong CS. Calibration of organic-diffusive gradients in thin films (o-DGT) passive samplers for perfluorinated alkyl acids in water. CHEMOSPHERE 2021; 263:128325. [PMID: 33297256 DOI: 10.1016/j.chemosphere.2020.128325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
The application of the organic-diffusive gradients in thin films (o-DGT) passive sampling technique for the monitoring of per- and polyfluoroalkyl substances (PFAS) in the environment is still limited. Six common PFAS with different chain lengths were evaluated in water by o-DGT. Measured diffusion coefficients (D) in agarose and polyacrylamide diffusive gels ranged from 4.55-8.63 × 10-6 cm2 s-1 and 3.85-7.00 × 10-6 cm2 s-1 at 23 °C, respectively. Experimental sampling rates (Rs) for both agarose- and polyacrylamide-WAX sampler configurations were within 22% relative error of D-based Rs for four of the PFAS. Larger differences for perfluorobutanesulfonic acid (PFBS) and perfluoroundecanoic acid (PFUnDA) ranged from 36% to 56%. In general, in-situ Rs can be predicted using measured D-values for perfluorinated alkyl acids. The mass accumulation of six PFAS in two o-DGT configurations was linear over 21 days (R2 ≥ 0.97). Diffusion and uptake of o-DGT depended on the gel type and specific PFAS. Field demonstrations of o-DGT with WAX and HLB binding gels and polyacrylamide diffusive gels (not prone to biodegradation) found 0.3-19.5 ng L-1 of PFAS in rivers near industrial areas around Guangzhou and Foshan, China, with no apparent differences between the two co-deployed samplers. This study demonstrates that the configurations of o-DGT tested provide a cost-effective monitoring tool for measuring perfluorinated alkyl acids in aquatic systems, in particular the four PFAS for which reasonable correlations were observed.
Collapse
Affiliation(s)
- Po Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China; Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Kim H Luong
- Richardson College for the Environment, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | - Trisha C Vera
- Richardson College for the Environment, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | - Charles S Wong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China; Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA; Richardson College for the Environment, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada.
| |
Collapse
|
25
|
Zhang XP, Zhang YY, Mai L, Liu LY, Bao LJ, Zeng EY. Selected antibiotics and current-use pesticides in riverine runoff of an urbanized river system in association with anthropogenic stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140004. [PMID: 32535471 DOI: 10.1016/j.scitotenv.2020.140004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics and current-use pesticides are ubiquitous in the environment. It is important to figure out their spatial distribution under the influences of anthropogenic activities and transport from rivers to coastal oceans. To address this knowledge gap, the present study conducted quarterly sampling in eight main runoff outlets of the Pearl River, South China, and obtained total concentrations of antibiotics and current-use pesticides at 24-296 ng L-1. Higher total concentrations of these chemicals occurred in summer, attributed to seasonal consumption patterns and washout by rainfalls, respectively. The spatial distributions of target analytes were not significantly different between the eastern and western outlets with high and moderate urbanization levels, respectively. Approximately 16.4, 17.7, and 12.5 tons of antibiotics, organophosphorus pesticides, and neonicotinoids were discharged annually from the outlets to the South China Sea. These results suggested that usage amount and hydrology exhibited positive effects on the riverine inputs of the target chemicals. In addition, most target chemicals exhibited low risks to green algae, but erythromycin and parathion posed high ecological risks to aquatic organism (Daphnid and fish).
Collapse
Affiliation(s)
- Xiang-Pu Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yu-Yu Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
26
|
Li Z, Li M, Zhang Z, Li P, Zang Y, Liu X. Antibiotics in aquatic environments of China: A review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110668. [PMID: 32438219 DOI: 10.1016/j.ecoenv.2020.110668] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 04/19/2020] [Indexed: 05/22/2023]
Abstract
Antibiotics have adverse effects on human health and aquatic ecosystems in water environment, which is the main pool. In this study, antibiotics in the aquatic environment of China, containing both surface water and groundwater, were first systematically reviewed. That is essential for surface water and groundwater guideline and industry management. 128 articles were reviewed, containing 116 papers on surface water and 12 papers on groundwater. 94 antibiotics were detected at least once in the aquatic environment of China and most of the studies were in the eastern areas of China. The median concentrations of most antibiotics were below than 100 ng/L in the surface water and 10 ng/L in the groundwater. The concentrations of most antibiotics in China were similar or a little higher than in other countries. According to risk assessment, three antibiotics (enrofloxacin, ofloxacin and erythromycin) and three regions (Haihe River, Wangyang River and Taihu Lake) should be given more concerns. Strengthened policy and management are needed in these regions. In the future, more studies on groundwater and a priority list of antibiotics in the aquatic environment was needed.
Collapse
Affiliation(s)
- Zhen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Peng Li
- Beijing Institute of Hydrogeology and Engineering Geology, Beijing, 100195, China
| | - Yongge Zang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Jameel Y, Valle D, Kay P. Spatial variation in the detection rates of frequently studied pharmaceuticals in Asian, European and North American rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137947. [PMID: 32408421 DOI: 10.1016/j.scitotenv.2020.137947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical consumption has expanded rapidly during the last century and their persistent presence in the environment has become a major concern. Unfortunately, our understanding of the distribution of pharmaceuticals in surface water and their effects on aquatic biota and public health is limited. Here, we explore patterns in the detection rate of the most frequently studied pharmaceuticals in 64 rivers from 22 countries using bi-clustering algorithms and subsequently analyze the results in the context of regional differences in pharmaceutical consumption habits, social and environmental factors, and removal-efficiency of wastewater treatment plants (WWTP). We find that 20% of the pharmaceuticals included in this analysis are pervasively present in all the surface waterbodies. Several pharmaceuticals also display low overall positive detection rates; however, they exhibit significant spatial variability and their detection rates are consistently lower in Western European and North America (WEOG) rivers in comparison to Asian rivers. Our analysis suggests the important role of pharmaceutical consumption and population in governing these patterns, however the role of WWTP efficiency appeared to be limited. We were constrained in our ability to assess the role of hydrology, which most likely also plays an important role in regulating pharmaceuticals in rivers. Most importantly though, we demonstrate the ability of our algorithm to provide probabilistic estimates of the detection rate of pharmaceuticals that were not studied in a river, an exercise that could be useful in prioritizing pharmaceuticals for future study.
Collapse
Affiliation(s)
- Yusuf Jameel
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA.
| | - Denis Valle
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Paul Kay
- School of Geography, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
28
|
Noro K, Endo S, Shikano Y, Banno A, Yabuki Y. Development and Calibration of the Polar Organic Chemical Integrative Sampler (POCIS) for Neonicotinoid Pesticides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1325-1333. [PMID: 32348590 DOI: 10.1002/etc.4729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoid pesticides are highly hydrophilic systemic insecticides that have been extensively used worldwide. To evaluate their environmental risks, the concentrations of these pesticides in the aquatic environment must be monitored. Although the polar organic chemical integrative sampler (POCIS) has proved to be a suitable passive sampler for many highly hydrophilic compounds, Oasis HLB (Waters) POCIS has shown limitations for the monitoring of neonicotinoid pesticides, such as short linear uptake ranges. In the present study we optimized POCIS for neonicotinoid pesticides by selecting suitable adsorbents and filters. The ENVI-Carb (Supelco) nonporous carbon-based adsorbent demonstrated a good balance between strong sorption and high recovery. Static renewal experiments showed that the our POCIS device using ENVI-Carb with a polyethersulfone membrane filter had a 3 d (dinotefuran) to 28 d (clothianidin, imidacloprid, acetamiprid, and thiacloprid) linear range, which is longer than that of HLB POCIS (≤1 [dinotefuran] to 14 d). The POCIS using ENVI-Carb with a polytetrafluoroethylene membrane had higher sampling rates (0.270 L/d [clothianidin] to 0.686 [imidacloprid] L/d) than those of the HLB POCIS for short-term deployment. The time-weighted average concentrations in actual river water measured by the new POCIS were in good agreement with those obtained by repeated grab sampling, within 30%. Moreover, POCIS detected 2 neonicotinoid pesticides that were not detected by grab sampling. Thus, the proposed POCIS is a promising tool for the monitoring of neonicotinoid pesticides. Environ Toxicol Chem 2020;39:1325-1333. © 2020 SETAC.
Collapse
Affiliation(s)
- Kazushi Noro
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka, Japan
| | - Satoshi Endo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Osaka City University, Osaka, Japan
| | | | - Arisa Banno
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka, Japan
| | - Yoshinori Yabuki
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Habikino, Osaka, Japan
| |
Collapse
|
29
|
Challis JK, Almirall XO, Helm PA, Wong CS. Performance of the organic-diffusive gradients in thin-films passive sampler for measurement of target and suspect wastewater contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114092. [PMID: 32059137 DOI: 10.1016/j.envpol.2020.114092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Although passive sampling is widely accepted as an excellent tool for environmental monitoring, their integration with suspect or non-targeted screening by high-resolution mass spectrometry has been limited. This study describes the application of the organic-diffusive gradients in thin-films (o-DGT) passive sampler as a tool for accurate measurement of both targeted and suspect polar organic contaminants (primarily pharmaceuticals) in wastewater. First, performance of o-DGT was assessed alongside the polar organic chemical integrative sampler (POCIS) and active sampling at two wastewater treatment facilities using targeted analyses. Overall, water concentrations measured by o-DGT, POCIS, and 24-hr integrative active samples were in good agreement with each other. There were exceptions, including a systematic difference between o-DGT and POCIS at certain sites that we propose was a result of site-specific conditions and a difference in sampling rates between the two techniques. The second component of this work involved suspect screening of the o-DGT extracts using high-resolution, high mass accuracy quadrupole time-of-flight mass spectrometry (QTOF). Lamotrigine, venlafaxine, and des-methylvenlafaxine were three suspect compounds identified and selected as proof-of-concept case studies to determine the feasibility and accuracy of o-DGT for estimating water concentrations based upon predicted sampling rates using a previously validated o-DGT diffusion model. Semi-quantification of the suspect compounds was conducting using an average surrogate response factor based on the suite of compounds measured by the targeted analyses. This, combined with the modelled sampling rates provided time-weighted average wastewater concentrations of the identified suspects within a factor of 2 of the true value, confirmed by isotope dilution with mass labelled internal surrogates. To the knowledge of the authors, this work is the first to demonstrate the utility of the o-DGT passive sampler as a potential environmental screening tool that can be integrated into the rapidly advancing field of non-targeted high resolution mass spectrometry.
Collapse
Affiliation(s)
- Jonathan K Challis
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada.
| | - Xavier Ortiz Almirall
- Laboratory Services Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, M9P 3V6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Paul A Helm
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, M9P 3V6 Canada
| | - Charles S Wong
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada; Department of Chemistry and Department of Environmental Studies and Sciences, Richardson College for the Environment, The University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada; School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
30
|
de Castro Lima JAM, Labanowski J, Bastos MC, Zanella R, Prestes OD, de Vargas JPR, Mondamert L, Granado E, Tiecher T, Zafar M, Troian A, Le Guet T, Dos Santos DR. "Modern agriculture" transfers many pesticides to watercourses: a case study of a representative rural catchment of southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10581-10598. [PMID: 31942716 DOI: 10.1007/s11356-019-06550-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
The total cultivated area in Brazil reached to 62 million ha in 2018, with the predominance of genetically modified soybean and corn (36 and 17 million ha, respectively) in no-tillage systems. In 2018, 5.3 × 105 Mg of active ingredient of pesticides was applied in cropfields, representing about 7.3 L of commercial product by habitant. However, the monitoring of water courses contamination by pesticides remains scarce and is based on traditional grab sampling systems. In this study, we used the grab (water) and passive sampling (Polar Organic Chemical Integrative Sampler-POCIS) to monitor pesticide contamination in the river network of a representative agricultural catchment of southern Brazil. We selected 18 sampling sites located in tributaries and in the main course of the Guaporé River, in Rio Grande do Sul State, with different land use predominance including forest, urban, and agricultural areas. Altogether, 79 and 23 pesticides were, respectively, analyzed in water and POCIS samples. The water of Guaporé River and its tributaries were highly contaminated by many pesticides, especially by four herbicides (2,4-D, atrazine, deethyl-atrazine, and simazine), three fungicides (carbendazim, tebuconazole, and epoxiconazole), and one insecticide (imidacloprid). The amount, type, and concentration of pesticides detected were completely different depending on the sampling technic used. POCIS was effective to discriminate the contamination according to the main land use of each sampling site. The monitored areas with the predominance of soybean cultivation under no-tillage tended to have higher concentrations of fungicide, while in the more diversified region, the herbicides showed higher values. The presence of five herbicides used in corn and grassland forage production was correlated with areas of integrated crop-livestock systems, in contrast to higher contamination by 2,4-D in areas of intensive production of soybean and winter cereals.
Collapse
Affiliation(s)
| | - Jérôme Labanowski
- Université de Poitiers, IC2MP, UMR CNRS 7285, 7 rue Marcel Dore, B16, 860073, Poitiers Cedex 9, France
| | - Marília Camotti Bastos
- Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Renato Zanella
- Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Osmar Damian Prestes
- Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | | | - Leslie Mondamert
- Université de Poitiers, IC2MP, UMR CNRS 7285, 7 rue Marcel Dore, B16, 860073, Poitiers Cedex 9, France
| | - Eugenie Granado
- Université de Poitiers, IC2MP, UMR CNRS 7285, 7 rue Marcel Dore, B16, 860073, Poitiers Cedex 9, France
| | - Tales Tiecher
- Universidade Federal do Rio Grande do Sul, Bento Gonçalves, 7712, Porto Alegre, RS, 91540-000, Brazil.
| | - Mohsin Zafar
- University of Poonch Rawalakot, Azad Jammu and Kashmir, 12350, Pakistan
| | - Alexandre Troian
- Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Thibaut Le Guet
- Université de Poitiers, IC2MP, UMR CNRS 7285, 7 rue Marcel Dore, B16, 860073, Poitiers Cedex 9, France
| | | |
Collapse
|
31
|
Mörtl M, Vehovszky Á, Klátyik S, Takács E, Győri J, Székács A. Neonicotinoids: Spreading, Translocation and Aquatic Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2006. [PMID: 32197435 PMCID: PMC7143627 DOI: 10.3390/ijerph17062006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
Various environmental and ecotoxicological aspects related to applications of neonicotinoid insecticides are assessed. Dosages of neonicotinoids applied in seed coating materials were determined and are compared to other applications (spray and granule). Environmental levels in soils and affecting factors in translocation are discussed. Excretion of neonicotinoids via guttation from coated maize seeds up to two months upon emergence, as well as cross-contamination of plants emerged from non-coated seeds or weeds nearby have been demonstrated. Contamination of surface waters is discussed in scope of a worldwide review and the environmental fate of the neonicotinoid active ingredients and the formulating surfactant appeared to be mutually affected by each other. Toxicity of neonicotinoid active ingredients and formulations on Daphnia magna completed with some investigations of activity of the detoxifying glutathione S-transferase enzyme demonstrated the modified toxicity due to the formulating agents. Electrophysiological results on identified central neurons of the terrestrial snail Helixpomatia showed acetylcholine antagonist (inhibitory) effects of neonicotinoid insecticide products, but no agonist (ACh-like) effects were recorded. These data also suggested different molecular targets (nicotinergic acetylcholine receptors and acetylcholine esterase enzyme) of neonicotinoids in the snail central nervous system.
Collapse
Affiliation(s)
- Mária Mörtl
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| | - Ágnes Vehovszky
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, H-8237 Tihany POB 35, Hungary;
| | - Szandra Klátyik
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| | - Eszter Takács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| | - János Győri
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, H-8237 Tihany POB 35, Hungary;
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman O. u. 15, Hungary; (S.K.); (E.T.); (A.S.)
| |
Collapse
|
32
|
Godlewska K, Stepnowski P, Paszkiewicz M. Application of the Polar Organic Chemical Integrative Sampler for Isolation of Environmental Micropollutants – A Review. Crit Rev Anal Chem 2019; 50:1-28. [DOI: 10.1080/10408347.2019.1565983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
33
|
Wang R, Luo Y, Chen H, Yuan Y, Bingner RL, Denton D, Locke M, Zhang M. Environmental fate and impact assessment of thiobencarb application in California rice fields using RICEWQ. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:669-682. [PMID: 30763847 DOI: 10.1016/j.scitotenv.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Thiobencarb is a commonly used herbicide in Northern California rice fields. Released paddy water containing thiobencarb may pose ecological risks to non-targeted organisms. In this research, the Rice Water Quality Model (RICEWQ) is equilibrium tested and then calibrated using monitoring data at field level. Then it is employed to assess the environmental fate and impacts of thiobencarb in the Colusa Basin, and the effects of different management practices on water use and thiobencarb exposures. The model predicted thiobencarb concentrations from rice fields for multiple years throughout the Basin, using input from California Pesticide Use Reporting (PUR) database, and assessed both the temporal/spatial distribution of thiobencarb exposure and potential acute toxicity on non-target organisms. Our study indicated that RICEWQ can accurately reflect the initial partitioning of thiobencarb in both paddy water and soil phases and capture the dynamics of thiobencarb at field level after calibration. Mandatory water holding is critical for reducing thiobencarb exposure in released paddy water. A thirty-day holding time reduces thiobencarb concentrations by 64% relative to a 6-day holding practice. The geo-spatial pattern of exposure in the study domain indicates the differing extents of pollutant levels and their distribution over space. "Risk zones" for different species were identified based on the geospatial patterns of thiobencarb exposure and the species-specific susceptibilities of various non-target species to thiobencarb.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Yuzhou Luo
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA 95812, USA
| | - Huajin Chen
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Yongping Yuan
- USEPA/ORD/NERL, Research Triangle Park, NC 27111, USA
| | - Ronald L Bingner
- USDA-ARS Watershed Physical Processes and Water Quality & Ecology Research Unit, Oxford, MS 38655, USA
| | - Debra Denton
- USEPA, Standards and TMDLs office, Region 9, Sacramento, CA 95814, USA
| | - Martin Locke
- USDA-ARS Watershed Physical Processes and Water Quality & Ecology Research Unit, Oxford, MS 38655, USA
| | - Minghua Zhang
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA.
| |
Collapse
|
34
|
Challis JK, Stroski KM, Luong KH, Hanson ML, Wong CS. Field Evaluation and in Situ Stress Testing of the Organic-Diffusive Gradients in Thin-Films Passive Sampler. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12573-12582. [PMID: 30244575 DOI: 10.1021/acs.est.8b03622] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The organic-diffusive gradients in thin-films (o-DGT) technique has emerged as a promising aquatic passive sampler that addresses many of the challenges associated with current sampling tools used for measurement of polar organic contaminants. This study represents the first comprehensive field evaluation of the o-DGT in natural surface waters, across a wide suite of polar pharmaceuticals and pesticides. We explore the utility and limitations of o-DGT as a quantitative measurement tool compared to grab sampling and the polar organic chemical integrative sampler (POCIS) across four connected agricultural and wastewater-influenced freshwater systems spanning 600 km from the U.S. border to northern Manitoba, Canada. Overall, the suite of analytes detected with o-DGT and POCIS was similar. Concentrations in water estimated using o-DGT were greater than concentrations estimated from POCIS in 71 of 80 paired observations, and on average, the estimates from o-DGT were 2.3-fold greater than estimates from POCIS. Grab sample concentrations suggested that the systematic underestimation with POCIS were largely a result of sampling rate variation related to flow rate and boundary-layer effects, an issue reported consistently in the POCIS literature. These comprehensive measurements in an agriculturally influenced fast-flowing river, long-term sampling (>40 days) in a large dilute lake system, deployments in wastewaters, and under ice at near-freezing temperatures represent effective stress testing of o-DGT under representative and challenging conditions. Overall, its strong performance and improved accuracy over POCIS supports its use as a robust, quantitative, and sensitive measurement tool for polar organic chemicals in aquatic systems.
Collapse
Affiliation(s)
- Jonathan K Challis
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Kevin M Stroski
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Kim H Luong
- Department of Chemistry and Department of Environmental Studies and Sciences, Richardson College for the Environment , The University of Winnipeg , Winnipeg , Manitoba R3B 2E9 , Canada
| | - Mark L Hanson
- Department of Environment and Geography , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Charles S Wong
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
- Department of Chemistry and Department of Environmental Studies and Sciences, Richardson College for the Environment , The University of Winnipeg , Winnipeg , Manitoba R3B 2E9 , Canada
- Department of Environment and Geography , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
35
|
Finnegan MC, Emburey S, Hommen U, Baxter LR, Hoekstra PF, Hanson ML, Thompson H, Hamer M. A freshwater mesocosm study into the effects of the neonicotinoid insecticide thiamethoxam at multiple trophic levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1444-1457. [PMID: 30142560 DOI: 10.1016/j.envpol.2018.07.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Thiamethoxam is a neonicotinoid insecticide used widely in agriculture to control a broad spectrum of insect pests. To assess potential risks from this compound to non-target aquatic organisms, an outdoor mesocosm study was performed. Mesocosms (1300 L) were treated once with a formulated product with the active substance (a.s.) thiamethoxam at nominal concentrations of 1 (n = 3), 3 (n = 3), 10 (n = 4), 30 (n = 4), and 100 (n = 2) μg a.s./L, plus untreated controls (n = 4). Primary producers (phytoplankton), zooplankton, and macroinvertebrates were monitored for up to 93 days following treatment. Thiamethoxam was observed to have a water column dissipation half-life (DT50) of ≤1.6-5.2 days in the mesocosms. Community-based principal response curve analysis detected no treatment effects for phytoplankton, zooplankton, emergent insects, and macroinvertebrates, indicating a lack of direct and indirect effects. A number of statistically significant differences from controls were detected for individual phytoplankton and zooplankton species abundances, but these were not considered to be treatment-related due to their transient nature and lack of concentration-response. After application of 30 μg a.s./L, slight temporary effects on Asellus aquaticus could not be excluded. At 100 μg a.s./L, there was an effect with no clear recovery of Asellus observed, likely due to their inability to recolonize these isolated test systems. A statistically significant but transient reduction in the emergence of chironomids by day 23 at the 100 μg a.s./L treatment was observed and possibly related to direct toxicity from thiamethoxam on larval stages. Therefore, a conservative study specific No Observed Ecological Adverse Effect Concentration (NOEAEC) is proposed to be 30 μg a.s./L. Overall, based on current concentrations of thiamethoxam detected in North American surface waters (typically <0.4 μg/L), there is low likelihood of direct or indirect effects from a pulsed exposure on primary producers, zooplankton, and macroinvertebrates, including insects, as monitored in this study.
Collapse
Affiliation(s)
| | - Simon Emburey
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK
| | - Udo Hommen
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Division Applied Ecology, Auf dem Aberg 1, Schmallenberg, 57392, Germany
| | | | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Helen Thompson
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK.
| | - Mick Hamer
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK
| |
Collapse
|